xref: /DragonOS/kernel/src/filesystem/fat/fs.rs (revision 1d37ca6d172e01a98fa6785d2b3e07fb8202a4a9)
1 use core::intrinsics::unlikely;
2 use core::{any::Any, fmt::Debug};
3 use system_error::SystemError;
4 
5 use alloc::{
6     collections::BTreeMap,
7     string::String,
8     sync::{Arc, Weak},
9     vec::Vec,
10 };
11 
12 use crate::driver::base::device::device_number::DeviceNumber;
13 use crate::filesystem::vfs::SpecialNodeData;
14 use crate::ipc::pipe::LockedPipeInode;
15 use crate::{
16     driver::base::block::{block_device::LBA_SIZE, disk_info::Partition, SeekFrom},
17     filesystem::vfs::{
18         core::generate_inode_id,
19         file::{FileMode, FilePrivateData},
20         syscall::ModeType,
21         FileSystem, FileType, IndexNode, InodeId, Metadata,
22     },
23     kerror,
24     libs::{
25         spinlock::{SpinLock, SpinLockGuard},
26         vec_cursor::VecCursor,
27     },
28     time::TimeSpec,
29 };
30 
31 use super::entry::FATFile;
32 use super::{
33     bpb::{BiosParameterBlock, FATType},
34     entry::{FATDir, FATDirEntry, FATDirIter, FATEntry},
35     utils::RESERVED_CLUSTERS,
36 };
37 
38 /// FAT32文件系统的最大的文件大小
39 pub const MAX_FILE_SIZE: u64 = 0xffff_ffff;
40 
41 /// @brief 表示当前簇和上一个簇的关系的结构体
42 /// 定义这样一个结构体的原因是,FAT文件系统的文件中,前后两个簇具有关联关系。
43 #[derive(Debug, Clone, Copy, Default)]
44 pub struct Cluster {
45     pub cluster_num: u64,
46     pub parent_cluster: u64,
47 }
48 
49 impl PartialOrd for Cluster {
50     /// @brief 根据当前簇号比较大小
51     fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
52         return self.cluster_num.partial_cmp(&other.cluster_num);
53     }
54 }
55 
56 impl PartialEq for Cluster {
57     /// @brief 根据当前簇号比较是否相等
58     fn eq(&self, other: &Self) -> bool {
59         self.cluster_num == other.cluster_num
60     }
61 }
62 
63 impl Eq for Cluster {}
64 
65 #[derive(Debug)]
66 pub struct FATFileSystem {
67     /// 当前文件系统所在的分区
68     pub partition: Arc<Partition>,
69     /// 当前文件系统的BOPB
70     pub bpb: BiosParameterBlock,
71     /// 当前文件系统的第一个数据扇区(相对分区开始位置)
72     pub first_data_sector: u64,
73     /// 文件系统信息结构体
74     pub fs_info: Arc<LockedFATFsInfo>,
75     /// 文件系统的根inode
76     root_inode: Arc<LockedFATInode>,
77 }
78 
79 /// FAT文件系统的Inode
80 #[derive(Debug)]
81 pub struct LockedFATInode(SpinLock<FATInode>);
82 
83 #[derive(Debug)]
84 pub struct LockedFATFsInfo(SpinLock<FATFsInfo>);
85 
86 impl LockedFATFsInfo {
87     #[inline]
88     pub fn new(fs_info: FATFsInfo) -> Self {
89         return Self(SpinLock::new(fs_info));
90     }
91 }
92 
93 #[derive(Debug)]
94 pub struct FATInode {
95     /// 指向父Inode的弱引用
96     parent: Weak<LockedFATInode>,
97     /// 指向自身的弱引用
98     self_ref: Weak<LockedFATInode>,
99     /// 子Inode的B树. 该数据结构用作缓存区。其中,它的key表示inode的名称。
100     /// 请注意,由于FAT的查询过程对大小写不敏感,因此我们选择让key全部是大写的,方便统一操作。
101     children: BTreeMap<String, Arc<LockedFATInode>>,
102     /// 当前inode的元数据
103     metadata: Metadata,
104     /// 指向inode所在的文件系统对象的指针
105     fs: Weak<FATFileSystem>,
106 
107     /// 根据不同的Inode类型,创建不同的私有字段
108     inode_type: FATDirEntry,
109 
110     /// 若该节点是特殊文件节点,该字段则为真正的文件节点
111     special_node: Option<SpecialNodeData>,
112 }
113 
114 impl FATInode {
115     /// @brief 更新当前inode的元数据
116     pub fn update_metadata(&mut self) {
117         // todo: 更新文件的访问时间等信息
118         match &self.inode_type {
119             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
120                 self.metadata.size = f.size() as i64;
121             }
122             FATDirEntry::Dir(d) => {
123                 self.metadata.size = d.size(&self.fs.upgrade().unwrap().clone()) as i64;
124             }
125             FATDirEntry::UnInit => {
126                 kerror!("update_metadata: Uninitialized FATDirEntry: {:?}", self);
127                 return;
128             }
129         };
130     }
131 
132     fn find(&mut self, name: &str) -> Result<Arc<LockedFATInode>, SystemError> {
133         match &self.inode_type {
134             FATDirEntry::Dir(d) => {
135                 // 尝试在缓存区查找
136                 if let Some(entry) = self.children.get(&name.to_uppercase()) {
137                     return Ok(entry.clone());
138                 }
139                 // 在缓存区找不到
140                 // 在磁盘查找
141                 let fat_entry: FATDirEntry =
142                     d.find_entry(name, None, None, self.fs.upgrade().unwrap())?;
143                 // 创建新的inode
144                 let entry_inode: Arc<LockedFATInode> = LockedFATInode::new(
145                     self.fs.upgrade().unwrap(),
146                     self.self_ref.clone(),
147                     fat_entry,
148                 );
149                 // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的
150                 self.children
151                     .insert(name.to_uppercase(), entry_inode.clone());
152                 return Ok(entry_inode);
153             }
154             FATDirEntry::UnInit => {
155                 panic!(
156                     "Uninitialized FAT Inode, fs = {:?}, inode={self:?}",
157                     self.fs
158                 )
159             }
160             _ => {
161                 return Err(SystemError::ENOTDIR);
162             }
163         }
164     }
165 }
166 
167 impl LockedFATInode {
168     pub fn new(
169         fs: Arc<FATFileSystem>,
170         parent: Weak<LockedFATInode>,
171         inode_type: FATDirEntry,
172     ) -> Arc<LockedFATInode> {
173         let file_type = if let FATDirEntry::Dir(_) = inode_type {
174             FileType::Dir
175         } else {
176             FileType::File
177         };
178 
179         let inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode {
180             parent: parent,
181             self_ref: Weak::default(),
182             children: BTreeMap::new(),
183             fs: Arc::downgrade(&fs),
184             inode_type: inode_type,
185             metadata: Metadata {
186                 dev_id: 0,
187                 inode_id: generate_inode_id(),
188                 size: 0,
189                 blk_size: fs.bpb.bytes_per_sector as usize,
190                 blocks: if let FATType::FAT32(_) = fs.bpb.fat_type {
191                     fs.bpb.total_sectors_32 as usize
192                 } else {
193                     fs.bpb.total_sectors_16 as usize
194                 },
195                 atime: TimeSpec::default(),
196                 mtime: TimeSpec::default(),
197                 ctime: TimeSpec::default(),
198                 file_type: file_type,
199                 mode: ModeType::from_bits_truncate(0o777),
200                 nlinks: 1,
201                 uid: 0,
202                 gid: 0,
203                 raw_dev: DeviceNumber::default(),
204             },
205             special_node: None,
206         })));
207 
208         inode.0.lock().self_ref = Arc::downgrade(&inode);
209 
210         inode.0.lock().update_metadata();
211 
212         return inode;
213     }
214 }
215 
216 /// FsInfo结构体(内存中的一份拷贝,当卸载卷或者sync的时候,把它写入磁盘)
217 #[derive(Debug)]
218 pub struct FATFsInfo {
219     /// Lead Signature - must equal 0x41615252
220     lead_sig: u32,
221     /// Value must equal 0x61417272
222     struc_sig: u32,
223     /// 空闲簇数目
224     free_count: u32,
225     /// 第一个空闲簇的位置(不一定准确,仅供加速查找)
226     next_free: u32,
227     /// 0xAA550000
228     trail_sig: u32,
229     /// Dirty flag to flush to disk
230     dirty: bool,
231     /// FsInfo Structure 在磁盘上的字节偏移量
232     /// Not present for FAT12 and FAT16
233     offset: Option<u64>,
234 }
235 
236 impl FileSystem for FATFileSystem {
237     fn root_inode(&self) -> Arc<dyn crate::filesystem::vfs::IndexNode> {
238         return self.root_inode.clone();
239     }
240 
241     fn info(&self) -> crate::filesystem::vfs::FsInfo {
242         todo!()
243     }
244 
245     /// @brief 本函数用于实现动态转换。
246     /// 具体的文件系统在实现本函数时,最简单的方式就是:直接返回self
247     fn as_any_ref(&self) -> &dyn Any {
248         self
249     }
250 
251     fn name(&self) -> &str {
252         "fat"
253     }
254 }
255 
256 impl FATFileSystem {
257     /// FAT12允许的最大簇号
258     pub const FAT12_MAX_CLUSTER: u32 = 0xFF5;
259     /// FAT16允许的最大簇号
260     pub const FAT16_MAX_CLUSTER: u32 = 0xFFF5;
261     /// FAT32允许的最大簇号
262     pub const FAT32_MAX_CLUSTER: u32 = 0x0FFFFFF7;
263 
264     pub fn new(partition: Arc<Partition>) -> Result<Arc<FATFileSystem>, SystemError> {
265         let bpb = BiosParameterBlock::new(partition.clone())?;
266 
267         // 从磁盘上读取FAT32文件系统的FsInfo结构体
268         let fs_info: FATFsInfo = match bpb.fat_type {
269             FATType::FAT32(bpb32) => {
270                 let fs_info_in_disk_bytes_offset = partition.lba_start * LBA_SIZE as u64
271                     + bpb32.fs_info as u64 * bpb.bytes_per_sector as u64;
272                 FATFsInfo::new(
273                     partition.clone(),
274                     fs_info_in_disk_bytes_offset,
275                     bpb.bytes_per_sector as usize,
276                 )?
277             }
278             _ => FATFsInfo::default(),
279         };
280 
281         // 根目录项占用的扇区数(向上取整)
282         let root_dir_sectors: u64 = ((bpb.root_entries_cnt as u64 * 32)
283             + (bpb.bytes_per_sector as u64 - 1))
284             / (bpb.bytes_per_sector as u64);
285 
286         // FAT表大小(单位:扇区)
287         let fat_size = if bpb.fat_size_16 != 0 {
288             bpb.fat_size_16 as u64
289         } else {
290             match bpb.fat_type {
291                 FATType::FAT32(x) => x.fat_size_32 as u64,
292                 _ => {
293                     kerror!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16");
294                     return Err(SystemError::EINVAL);
295                 }
296             }
297         };
298 
299         let first_data_sector =
300             bpb.rsvd_sec_cnt as u64 + (bpb.num_fats as u64 * fat_size) + root_dir_sectors;
301 
302         // 创建文件系统的根节点
303         let root_inode: Arc<LockedFATInode> = Arc::new(LockedFATInode(SpinLock::new(FATInode {
304             parent: Weak::default(),
305             self_ref: Weak::default(),
306             children: BTreeMap::new(),
307             fs: Weak::default(),
308             inode_type: FATDirEntry::UnInit,
309             metadata: Metadata {
310                 dev_id: 0,
311                 inode_id: generate_inode_id(),
312                 size: 0,
313                 blk_size: bpb.bytes_per_sector as usize,
314                 blocks: if let FATType::FAT32(_) = bpb.fat_type {
315                     bpb.total_sectors_32 as usize
316                 } else {
317                     bpb.total_sectors_16 as usize
318                 },
319                 atime: TimeSpec::default(),
320                 mtime: TimeSpec::default(),
321                 ctime: TimeSpec::default(),
322                 file_type: FileType::Dir,
323                 mode: ModeType::from_bits_truncate(0o777),
324                 nlinks: 1,
325                 uid: 0,
326                 gid: 0,
327                 raw_dev: DeviceNumber::default(),
328             },
329             special_node: None,
330         })));
331 
332         let result: Arc<FATFileSystem> = Arc::new(FATFileSystem {
333             partition: partition,
334             bpb,
335             first_data_sector,
336             fs_info: Arc::new(LockedFATFsInfo::new(fs_info)),
337             root_inode: root_inode,
338         });
339 
340         // 对root inode加锁,并继续完成初始化工作
341         let mut root_guard: SpinLockGuard<FATInode> = result.root_inode.0.lock();
342         root_guard.inode_type = FATDirEntry::Dir(result.root_dir());
343         root_guard.parent = Arc::downgrade(&result.root_inode);
344         root_guard.self_ref = Arc::downgrade(&result.root_inode);
345         root_guard.fs = Arc::downgrade(&result);
346         // 释放锁
347         drop(root_guard);
348 
349         return Ok(result);
350     }
351 
352     /// @brief 计算每个簇有多少个字节
353     #[inline]
354     pub fn bytes_per_cluster(&self) -> u64 {
355         return (self.bpb.bytes_per_sector as u64) * (self.bpb.sector_per_cluster as u64);
356     }
357 
358     /// @brief 读取当前簇在FAT表中存储的信息
359     ///
360     /// @param cluster 当前簇
361     ///
362     /// @return Ok(FATEntry) 当前簇在FAT表中,存储的信息。(详情见FATEntry的注释)
363     /// @return Err(SystemError) 错误码
364     pub fn get_fat_entry(&self, cluster: Cluster) -> Result<FATEntry, SystemError> {
365         let current_cluster = cluster.cluster_num;
366         if current_cluster < 2 {
367             // 0号簇和1号簇是保留簇,不允许用户使用
368             return Err(SystemError::EINVAL);
369         }
370 
371         let fat_type: FATType = self.bpb.fat_type;
372         // 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
373         let fat_start_sector = self.fat_start_sector();
374         let bytes_per_sec = self.bpb.bytes_per_sector as u64;
375 
376         // cluster对应的FAT表项在分区内的字节偏移量
377         let fat_bytes_offset =
378             fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec);
379 
380         // FAT表项所在的LBA地址
381         // let fat_ent_lba = self.get_lba_from_offset(self.bytes_to_sector(fat_bytes_offset));
382         let fat_ent_lba = self.partition.lba_start + fat_bytes_offset / LBA_SIZE as u64;
383 
384         // FAT表项在逻辑块内的字节偏移量
385         let blk_offset = self.get_in_block_offset(fat_bytes_offset);
386 
387         let mut v = Vec::<u8>::new();
388         v.resize(self.bpb.bytes_per_sector as usize, 0);
389         self.partition
390             .disk()
391             .read_at(fat_ent_lba as usize, 1 * self.lba_per_sector(), &mut v)?;
392 
393         let mut cursor = VecCursor::new(v);
394         cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?;
395 
396         let res: FATEntry = match self.bpb.fat_type {
397             FATType::FAT12(_) => {
398                 let mut entry = cursor.read_u16()?;
399                 // 由于FAT12文件系统的FAT表,每个entry占用1.5字节,因此奇数的簇需要取高12位的值。
400                 if (current_cluster & 1) > 0 {
401                     entry >>= 4;
402                 } else {
403                     entry &= 0x0fff;
404                 }
405 
406                 if entry == 0 {
407                     FATEntry::Unused
408                 } else if entry == 0x0ff7 {
409                     FATEntry::Bad
410                 } else if entry >= 0x0ff8 {
411                     FATEntry::EndOfChain
412                 } else {
413                     FATEntry::Next(Cluster {
414                         cluster_num: entry as u64,
415                         parent_cluster: current_cluster,
416                     })
417                 }
418             }
419             FATType::FAT16(_) => {
420                 let entry = cursor.read_u16()?;
421 
422                 if entry == 0 {
423                     FATEntry::Unused
424                 } else if entry == 0xfff7 {
425                     FATEntry::Bad
426                 } else if entry >= 0xfff8 {
427                     FATEntry::EndOfChain
428                 } else {
429                     FATEntry::Next(Cluster {
430                         cluster_num: entry as u64,
431                         parent_cluster: current_cluster,
432                     })
433                 }
434             }
435             FATType::FAT32(_) => {
436                 let entry = cursor.read_u32()? & 0x0fffffff;
437 
438                 match entry {
439                     _n if (current_cluster >= 0x0ffffff7 && current_cluster <= 0x0fffffff) => {
440                         // 当前簇号不是一个能被获得的簇(可能是文件系统出错了)
441                         kerror!("FAT32 get fat entry: current cluster number [{}] is not an allocatable cluster number.", current_cluster);
442                         FATEntry::Bad
443                     }
444                     0 => FATEntry::Unused,
445                     0x0ffffff7 => FATEntry::Bad,
446                     0x0ffffff8..=0x0fffffff => FATEntry::EndOfChain,
447                     _n => FATEntry::Next(Cluster {
448                         cluster_num: entry as u64,
449                         parent_cluster: current_cluster,
450                     }),
451                 }
452             }
453         };
454         return Ok(res);
455     }
456 
457     /// @brief 读取当前簇在FAT表中存储的信息(直接返回读取到的值,而不加处理)
458     ///
459     /// @param cluster 当前簇
460     ///
461     /// @return Ok(u64) 当前簇在FAT表中,存储的信息。
462     /// @return Err(SystemError) 错误码
463     pub fn get_fat_entry_raw(&self, cluster: Cluster) -> Result<u64, SystemError> {
464         let current_cluster = cluster.cluster_num;
465 
466         let fat_type: FATType = self.bpb.fat_type;
467         // 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
468         let fat_start_sector = self.fat_start_sector();
469         let bytes_per_sec = self.bpb.bytes_per_sector as u64;
470 
471         // cluster对应的FAT表项在分区内的字节偏移量
472         let fat_bytes_offset =
473             fat_type.get_fat_bytes_offset(cluster, fat_start_sector, bytes_per_sec);
474 
475         // FAT表项所在的LBA地址
476         let fat_ent_lba = self.get_lba_from_offset(self.bytes_to_sector(fat_bytes_offset));
477 
478         // FAT表项在逻辑块内的字节偏移量
479         let blk_offset = self.get_in_block_offset(fat_bytes_offset);
480 
481         let mut v = Vec::<u8>::new();
482         v.resize(self.bpb.bytes_per_sector as usize, 0);
483         self.partition
484             .disk()
485             .read_at(fat_ent_lba, 1 * self.lba_per_sector(), &mut v)?;
486 
487         let mut cursor = VecCursor::new(v);
488         cursor.seek(SeekFrom::SeekSet(blk_offset as i64))?;
489 
490         let res = match self.bpb.fat_type {
491             FATType::FAT12(_) => {
492                 let mut entry = cursor.read_u16()?;
493                 entry = if (current_cluster & 0x0001) > 0 {
494                     entry >> 4
495                 } else {
496                     entry & 0x0fff
497                 };
498                 entry as u64
499             }
500             FATType::FAT16(_) => {
501                 let entry = (cursor.read_u16()?) as u64;
502                 entry
503             }
504             FATType::FAT32(_) => {
505                 let entry = cursor.read_u32()? & 0x0fff_ffff;
506                 entry as u64
507             }
508         };
509 
510         return Ok(res);
511     }
512 
513     /// @brief 获取当前文件系统的root inode,在磁盘上的字节偏移量
514     pub fn root_dir_bytes_offset(&self) -> u64 {
515         match self.bpb.fat_type {
516             FATType::FAT32(s) => {
517                 let first_sec_cluster: u64 = (s.root_cluster as u64 - 2)
518                     * (self.bpb.sector_per_cluster as u64)
519                     + self.first_data_sector;
520                 return (self.get_lba_from_offset(first_sec_cluster) * LBA_SIZE) as u64;
521             }
522             _ => {
523                 let root_sec = (self.bpb.rsvd_sec_cnt as u64)
524                     + (self.bpb.num_fats as u64) * (self.bpb.fat_size_16 as u64);
525                 return (self.get_lba_from_offset(root_sec) * LBA_SIZE) as u64;
526             }
527         }
528     }
529 
530     /// @brief 获取当前文件系统的根目录项区域的结束位置,在磁盘上的字节偏移量。
531     /// 请注意,当前函数只对FAT12/FAT16生效。对于FAT32,返回None
532     pub fn root_dir_end_bytes_offset(&self) -> Option<u64> {
533         match self.bpb.fat_type {
534             FATType::FAT12(_) | FATType::FAT16(_) => {
535                 return Some(
536                     self.root_dir_bytes_offset() + (self.bpb.root_entries_cnt as u64) * 32,
537                 );
538             }
539             _ => {
540                 return None;
541             }
542         }
543     }
544 
545     /// @brief 获取簇在磁盘内的字节偏移量(相对磁盘起始位置。注意,不是分区内偏移量)
546     pub fn cluster_bytes_offset(&self, cluster: Cluster) -> u64 {
547         if cluster.cluster_num >= 2 {
548             // 指定簇的第一个扇区号
549             let first_sec_of_cluster = (cluster.cluster_num - 2)
550                 * (self.bpb.sector_per_cluster as u64)
551                 + self.first_data_sector;
552             return (self.get_lba_from_offset(first_sec_of_cluster) * LBA_SIZE) as u64;
553         } else {
554             return 0;
555         }
556     }
557 
558     /// @brief 获取一个空闲簇
559     ///
560     /// @param prev_cluster 簇链的前一个簇。本函数将会把新获取的簇,连接到它的后面。
561     ///
562     /// @return Ok(Cluster) 新获取的空闲簇
563     /// @return Err(SystemError) 错误码
564     pub fn allocate_cluster(&self, prev_cluster: Option<Cluster>) -> Result<Cluster, SystemError> {
565         let end_cluster: Cluster = self.max_cluster_number();
566         let start_cluster: Cluster = match self.bpb.fat_type {
567             FATType::FAT32(_) => {
568                 let next_free: u64 = match self.fs_info.0.lock().next_free() {
569                     Some(x) => x,
570                     None => 0xffffffff,
571                 };
572                 if next_free < end_cluster.cluster_num {
573                     Cluster::new(next_free)
574                 } else {
575                     Cluster::new(RESERVED_CLUSTERS as u64)
576                 }
577             }
578             _ => Cluster::new(RESERVED_CLUSTERS as u64),
579         };
580 
581         // 寻找一个空的簇
582         let free_cluster: Cluster = match self.get_free_cluster(start_cluster, end_cluster) {
583             Ok(c) => c,
584             Err(_) if start_cluster.cluster_num > RESERVED_CLUSTERS as u64 => {
585                 self.get_free_cluster(Cluster::new(RESERVED_CLUSTERS as u64), end_cluster)?
586             }
587             Err(e) => return Err(e),
588         };
589 
590         self.set_entry(free_cluster, FATEntry::EndOfChain)?;
591         // 减少空闲簇计数
592         self.fs_info.0.lock().update_free_count_delta(-1);
593         // 更新搜索空闲簇的参考量
594         self.fs_info
595             .0
596             .lock()
597             .update_next_free((free_cluster.cluster_num + 1) as u32);
598 
599         // 如果这个空闲簇不是簇链的第一个簇,那么把当前簇跟前一个簇连上。
600         if let Some(prev_cluster) = prev_cluster {
601             // kdebug!("set entry, prev ={prev_cluster:?}, next = {free_cluster:?}");
602             self.set_entry(prev_cluster, FATEntry::Next(free_cluster))?;
603         }
604         // 清空新获取的这个簇
605         self.zero_cluster(free_cluster)?;
606         return Ok(free_cluster);
607     }
608 
609     /// @brief 释放簇链上的所有簇
610     ///
611     /// @param start_cluster 簇链的第一个簇
612     pub fn deallocate_cluster_chain(&self, start_cluster: Cluster) -> Result<(), SystemError> {
613         let clusters: Vec<Cluster> = self.clusters(start_cluster);
614         for c in clusters {
615             self.deallocate_cluster(c)?;
616         }
617         return Ok(());
618     }
619 
620     /// @brief 释放簇
621     ///
622     /// @param 要释放的簇
623     pub fn deallocate_cluster(&self, cluster: Cluster) -> Result<(), SystemError> {
624         let entry: FATEntry = self.get_fat_entry(cluster)?;
625         // 如果不是坏簇
626         if entry != FATEntry::Bad {
627             self.set_entry(cluster, FATEntry::Unused)?;
628             self.fs_info.0.lock().update_free_count_delta(1);
629             // 安全选项:清空被释放的簇
630             #[cfg(feature = "secure")]
631             self.zero_cluster(cluster)?;
632             return Ok(());
633         } else {
634             // 不能释放坏簇
635             kerror!("Bad clusters cannot be freed.");
636             return Err(SystemError::EFAULT);
637         }
638     }
639 
640     /// @brief 获取文件系统的根目录项
641     pub fn root_dir(&self) -> FATDir {
642         match self.bpb.fat_type {
643             FATType::FAT32(s) => {
644                 return FATDir {
645                     first_cluster: Cluster::new(s.root_cluster as u64),
646                     dir_name: String::from("/"),
647                     root_offset: None,
648                     short_dir_entry: None,
649                     loc: None,
650                 };
651             }
652             _ => FATDir {
653                 first_cluster: Cluster::new(0),
654                 dir_name: String::from("/"),
655                 root_offset: Some(self.root_dir_bytes_offset()),
656                 short_dir_entry: None,
657                 loc: None,
658             },
659         }
660     }
661 
662     /// @brief 获取FAT表的起始扇区(相对分区起始扇区的偏移量)
663     pub fn fat_start_sector(&self) -> u64 {
664         let active_fat = self.active_fat();
665         let fat_size = self.fat_size();
666         return self.bpb.rsvd_sec_cnt as u64 + active_fat * fat_size;
667     }
668 
669     /// @brief 获取当前活动的FAT表
670     pub fn active_fat(&self) -> u64 {
671         if self.mirroring_enabled() {
672             return 0;
673         } else {
674             match self.bpb.fat_type {
675                 FATType::FAT32(bpb32) => {
676                     return (bpb32.ext_flags & 0x0f) as u64;
677                 }
678                 _ => {
679                     return 0;
680                 }
681             }
682         }
683     }
684 
685     /// @brief 获取当前文件系统的每个FAT表的大小
686     pub fn fat_size(&self) -> u64 {
687         if self.bpb.fat_size_16 != 0 {
688             return self.bpb.fat_size_16 as u64;
689         } else {
690             match self.bpb.fat_type {
691                 FATType::FAT32(bpb32) => {
692                     return bpb32.fat_size_32 as u64;
693                 }
694 
695                 _ => {
696                     panic!("FAT12 and FAT16 volumes should have non-zero BPB_FATSz16");
697                 }
698             }
699         }
700     }
701 
702     /// @brief 判断当前文件系统是否启用了FAT表镜像
703     pub fn mirroring_enabled(&self) -> bool {
704         match self.bpb.fat_type {
705             FATType::FAT32(bpb32) => {
706                 return (bpb32.ext_flags & 0x80) == 0;
707             }
708             _ => {
709                 return false;
710             }
711         }
712     }
713 
714     /// @brief 根据分区内的扇区偏移量,获得在磁盘上的LBA地址
715     #[inline]
716     pub fn get_lba_from_offset(&self, in_partition_sec_offset: u64) -> usize {
717         return (self.partition.lba_start
718             + in_partition_sec_offset * (self.bpb.bytes_per_sector as u64 / LBA_SIZE as u64))
719             as usize;
720     }
721 
722     /// @brief 获取每个扇区占用多少个LBA
723     #[inline]
724     pub fn lba_per_sector(&self) -> usize {
725         return self.bpb.bytes_per_sector as usize / LBA_SIZE;
726     }
727 
728     /// @brief 将分区内字节偏移量转换为扇区偏移量
729     #[inline]
730     pub fn bytes_to_sector(&self, in_partition_bytes_offset: u64) -> u64 {
731         return in_partition_bytes_offset / (self.bpb.bytes_per_sector as u64);
732     }
733 
734     /// @brief 根据磁盘上的字节偏移量,获取对应位置在分区内的字节偏移量
735     #[inline]
736     pub fn get_in_partition_bytes_offset(&self, disk_bytes_offset: u64) -> u64 {
737         return disk_bytes_offset - (self.partition.lba_start * LBA_SIZE as u64);
738     }
739 
740     /// @brief 根据字节偏移量计算在逻辑块内的字节偏移量
741     #[inline]
742     pub fn get_in_block_offset(&self, bytes_offset: u64) -> u64 {
743         return bytes_offset % LBA_SIZE as u64;
744     }
745 
746     /// @brief 获取在FAT表中,以start_cluster开头的FAT链的所有簇的信息
747     ///
748     /// @param start_cluster 整个FAT链的起始簇号
749     pub fn clusters(&self, start_cluster: Cluster) -> Vec<Cluster> {
750         return self.cluster_iter(start_cluster).collect();
751     }
752 
753     /// @brief 获取在FAT表中,以start_cluster开头的FAT链的长度(总计经过多少个簇)
754     ///
755     /// @param start_cluster 整个FAT链的起始簇号
756     pub fn num_clusters_chain(&self, start_cluster: Cluster) -> u64 {
757         return self
758             .cluster_iter(start_cluster)
759             .fold(0, |size, _cluster| size + 1);
760     }
761     /// @brief 获取一个簇迭代器对象
762     ///
763     /// @param start_cluster 整个FAT链的起始簇号
764     fn cluster_iter(&self, start_cluster: Cluster) -> ClusterIter {
765         return ClusterIter {
766             current_cluster: Some(start_cluster),
767             fs: self,
768         };
769     }
770 
771     /// @brief 获取从start_cluster开始的簇链中,第n个簇的信息。(请注意,下标从0开始)
772     #[inline]
773     pub fn get_cluster_by_relative(&self, start_cluster: Cluster, n: usize) -> Option<Cluster> {
774         return self.cluster_iter(start_cluster).skip(n).next();
775     }
776 
777     /// @brief 获取整个簇链的最后一个簇
778     #[inline]
779     pub fn get_last_cluster(&self, start_cluster: Cluster) -> Option<Cluster> {
780         return self.cluster_iter(start_cluster).last();
781     }
782 
783     /// @brief 判断FAT文件系统的shut bit是否正常。
784     /// shut bit 表示文件系统是否正常卸载。如果这一位是1,则表示这个卷是“干净的”
785     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
786     ///
787     /// @return Ok(true) 正常
788     /// @return Ok(false) 不正常
789     /// @return Err(SystemError) 在判断时发生错误
790     #[allow(dead_code)]
791     pub fn is_shut_bit_ok(&mut self) -> Result<bool, SystemError> {
792         match self.bpb.fat_type {
793             FATType::FAT32(_) => {
794                 // 对于FAT32, error bit位于第一个扇区的第8字节。
795                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0800_0000;
796                 return Ok(bit > 0);
797             }
798             FATType::FAT16(_) => {
799                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x8000;
800                 return Ok(bit > 0);
801             }
802             _ => return Ok(true),
803         }
804     }
805 
806     /// @brief 判断FAT文件系统的hard error bit是否正常。
807     /// 如果此位为0,则文件系统驱动程序在上次安装卷时遇到磁盘 I/O 错误,这表明
808     /// 卷上的某些扇区可能已损坏。
809     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
810     ///
811     /// @return Ok(true) 正常
812     /// @return Ok(false) 不正常
813     /// @return Err(SystemError) 在判断时发生错误
814     pub fn is_hard_error_bit_ok(&mut self) -> Result<bool, SystemError> {
815         match self.bpb.fat_type {
816             FATType::FAT32(_) => {
817                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x0400_0000;
818                 return Ok(bit > 0);
819             }
820             FATType::FAT16(_) => {
821                 let bit = self.get_fat_entry_raw(Cluster::new(1))? & 0x4000;
822                 return Ok(bit > 0);
823             }
824             _ => return Ok(true),
825         }
826     }
827 
828     /// @brief 设置文件系统的shut bit为正常状态
829     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
830     ///
831     /// @return Ok(()) 设置成功
832     /// @return Err(SystemError) 在设置过程中,出现错误
833     pub fn set_shut_bit_ok(&mut self) -> Result<(), SystemError> {
834         match self.bpb.fat_type {
835             FATType::FAT32(_) => {
836                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0800_0000;
837                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
838 
839                 return Ok(());
840             }
841 
842             FATType::FAT16(_) => {
843                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x8000;
844                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
845                 return Ok(());
846             }
847             _ => return Ok(()),
848         }
849     }
850 
851     /// @brief 设置文件系统的hard error bit为正常状态
852     /// 参考资料:https://thestarman.pcministry.com/DOS/DirtyShutdownFlag.html
853     ///
854     /// @return Ok(()) 设置成功
855     /// @return Err(SystemError) 在设置过程中,出现错误
856     pub fn set_hard_error_bit_ok(&mut self) -> Result<(), SystemError> {
857         match self.bpb.fat_type {
858             FATType::FAT32(_) => {
859                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x0400_0000;
860                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
861                 return Ok(());
862             }
863 
864             FATType::FAT16(_) => {
865                 let raw_entry = self.get_fat_entry_raw(Cluster::new(1))? | 0x4000;
866                 self.set_entry(Cluster::new(1), FATEntry::Next(Cluster::new(raw_entry)))?;
867                 return Ok(());
868             }
869             _ => return Ok(()),
870         }
871     }
872 
873     /// @brief 执行文件系统卸载前的一些准备工作:设置好对应的标志位,并把缓存中的数据刷入磁盘
874     pub fn umount(&mut self) -> Result<(), SystemError> {
875         self.fs_info.0.lock().flush(&self.partition)?;
876 
877         self.set_shut_bit_ok()?;
878 
879         self.set_hard_error_bit_ok()?;
880 
881         self.partition.disk().sync()?;
882 
883         return Ok(());
884     }
885 
886     /// @brief 获取文件系统的最大簇号
887     pub fn max_cluster_number(&self) -> Cluster {
888         match self.bpb.fat_type {
889             FATType::FAT32(s) => {
890                 // FAT32
891 
892                 // 数据扇区数量(总扇区数-保留扇区-FAT占用的扇区)
893                 let data_sec: u64 = self.bpb.total_sectors_32 as u64
894                     - (self.bpb.rsvd_sec_cnt as u64
895                         + self.bpb.num_fats as u64 * s.fat_size_32 as u64);
896 
897                 // 数据区的簇数量
898                 let total_clusters: u64 = data_sec / self.bpb.sector_per_cluster as u64;
899 
900                 // 返回最大的簇号
901                 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1);
902             }
903 
904             _ => {
905                 // FAT12 / FAT16
906                 let root_dir_sectors: u64 = (((self.bpb.root_entries_cnt as u64) * 32)
907                     + self.bpb.bytes_per_sector as u64
908                     - 1)
909                     / self.bpb.bytes_per_sector as u64;
910                 // 数据区扇区数
911                 let data_sec: u64 = self.bpb.total_sectors_16 as u64
912                     - (self.bpb.rsvd_sec_cnt as u64
913                         + (self.bpb.num_fats as u64 * self.bpb.fat_size_16 as u64)
914                         + root_dir_sectors);
915                 let total_clusters = data_sec / self.bpb.sector_per_cluster as u64;
916                 return Cluster::new(total_clusters + RESERVED_CLUSTERS as u64 - 1);
917             }
918         }
919     }
920 
921     /// @brief 在文件系统中寻找一个簇号在给定的范围(左闭右开区间)内的空闲簇
922     ///
923     /// @param start_cluster 起始簇号
924     /// @param end_cluster 终止簇号(不包含)
925     ///
926     /// @return Ok(Cluster) 寻找到的空闲簇
927     /// @return Err(SystemError) 错误码。如果磁盘无剩余空间,或者簇号达到给定的最大值,则返回-ENOSPC.
928     pub fn get_free_cluster(
929         &self,
930         start_cluster: Cluster,
931         end_cluster: Cluster,
932     ) -> Result<Cluster, SystemError> {
933         let max_cluster: Cluster = self.max_cluster_number();
934         let mut cluster: u64 = start_cluster.cluster_num;
935 
936         let fat_type: FATType = self.bpb.fat_type;
937         let fat_start_sector: u64 = self.fat_start_sector();
938         let bytes_per_sec: u64 = self.bpb.bytes_per_sector as u64;
939 
940         match fat_type {
941             FATType::FAT12(_) => {
942                 let part_bytes_offset: u64 =
943                     fat_type.get_fat_bytes_offset(start_cluster, fat_start_sector, bytes_per_sec);
944                 let in_block_offset = self.get_in_block_offset(part_bytes_offset);
945 
946                 let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
947 
948                 // 由于FAT12的FAT表不大于6K,因此直接读取6K
949                 let num_lba = (6 * 1024) / LBA_SIZE;
950                 let mut v: Vec<u8> = Vec::new();
951                 v.resize(num_lba * LBA_SIZE, 0);
952                 self.partition.disk().read_at(lba, num_lba, &mut v)?;
953 
954                 let mut cursor: VecCursor = VecCursor::new(v);
955                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
956 
957                 let mut packed_val: u16 = cursor.read_u16()?;
958                 loop {
959                     let val = if (cluster & 0x1) > 0 {
960                         packed_val >> 4
961                     } else {
962                         packed_val & 0x0fff
963                     };
964                     if val == 0 {
965                         return Ok(Cluster::new(cluster as u64));
966                     }
967 
968                     cluster += 1;
969 
970                     // 磁盘无剩余空间,或者簇号达到给定的最大值
971                     if cluster == end_cluster.cluster_num || cluster == max_cluster.cluster_num {
972                         return Err(SystemError::ENOSPC);
973                     }
974 
975                     packed_val = match cluster & 1 {
976                         0 => cursor.read_u16()?,
977                         _ => {
978                             let next_byte = cursor.read_u8()? as u16;
979                             (packed_val >> 8) | (next_byte << 8)
980                         }
981                     };
982                 }
983             }
984             FATType::FAT16(_) => {
985                 // todo: 优化这里,减少读取磁盘的次数。
986                 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num {
987                     let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset(
988                         Cluster::new(cluster),
989                         fat_start_sector,
990                         bytes_per_sec,
991                     );
992                     let in_block_offset = self.get_in_block_offset(part_bytes_offset);
993 
994                     let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
995 
996                     let mut v: Vec<u8> = Vec::new();
997                     v.resize(self.lba_per_sector() * LBA_SIZE, 0);
998                     self.partition
999                         .disk()
1000                         .read_at(lba, self.lba_per_sector(), &mut v)?;
1001 
1002                     let mut cursor: VecCursor = VecCursor::new(v);
1003                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1004 
1005                     let val = cursor.read_u16()?;
1006                     // 找到空闲簇
1007                     if val == 0 {
1008                         return Ok(Cluster::new(val as u64));
1009                     }
1010                     cluster += 1;
1011                 }
1012 
1013                 // 磁盘无剩余空间,或者簇号达到给定的最大值
1014                 return Err(SystemError::ENOSPC);
1015             }
1016             FATType::FAT32(_) => {
1017                 // todo: 优化这里,减少读取磁盘的次数。
1018                 while cluster < end_cluster.cluster_num && cluster < max_cluster.cluster_num {
1019                     let part_bytes_offset: u64 = fat_type.get_fat_bytes_offset(
1020                         Cluster::new(cluster),
1021                         fat_start_sector,
1022                         bytes_per_sec,
1023                     );
1024                     let in_block_offset = self.get_in_block_offset(part_bytes_offset);
1025 
1026                     let lba = self.get_lba_from_offset(self.bytes_to_sector(part_bytes_offset));
1027 
1028                     let mut v: Vec<u8> = Vec::new();
1029                     v.resize(self.lba_per_sector() * LBA_SIZE, 0);
1030                     self.partition
1031                         .disk()
1032                         .read_at(lba, self.lba_per_sector(), &mut v)?;
1033 
1034                     let mut cursor: VecCursor = VecCursor::new(v);
1035                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1036 
1037                     let val = cursor.read_u32()? & 0x0fffffff;
1038 
1039                     if val == 0 {
1040                         return Ok(Cluster::new(cluster));
1041                     }
1042                     cluster += 1;
1043                 }
1044 
1045                 // 磁盘无剩余空间,或者簇号达到给定的最大值
1046                 return Err(SystemError::ENOSPC);
1047             }
1048         }
1049     }
1050 
1051     /// @brief 在FAT表中,设置指定的簇的信息。
1052     ///
1053     /// @param cluster 目标簇
1054     /// @param fat_entry 这个簇在FAT表中,存储的信息(下一个簇的簇号)
1055     pub fn set_entry(&self, cluster: Cluster, fat_entry: FATEntry) -> Result<(), SystemError> {
1056         // fat表项在分区上的字节偏移量
1057         let fat_part_bytes_offset: u64 = self.bpb.fat_type.get_fat_bytes_offset(
1058             cluster,
1059             self.fat_start_sector(),
1060             self.bpb.bytes_per_sector as u64,
1061         );
1062 
1063         match self.bpb.fat_type {
1064             FATType::FAT12(_) => {
1065                 // 计算要写入的值
1066                 let raw_val: u16 = match fat_entry {
1067                     FATEntry::Unused => 0,
1068                     FATEntry::Bad => 0xff7,
1069                     FATEntry::EndOfChain => 0xfff,
1070                     FATEntry::Next(c) => c.cluster_num as u16,
1071                 };
1072 
1073                 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset);
1074 
1075                 let lba = self.get_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset));
1076 
1077                 let mut v: Vec<u8> = Vec::new();
1078                 v.resize(LBA_SIZE, 0);
1079                 self.partition.disk().read_at(lba, 1, &mut v)?;
1080 
1081                 let mut cursor: VecCursor = VecCursor::new(v);
1082                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1083 
1084                 let old_val: u16 = cursor.read_u16()?;
1085                 let new_val: u16 = if (cluster.cluster_num & 0x1) > 0 {
1086                     (old_val & 0x000f) | (raw_val << 4)
1087                 } else {
1088                     (old_val & 0xf000) | raw_val
1089                 };
1090 
1091                 // 写回数据到磁盘上
1092                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1093                 cursor.write_u16(new_val)?;
1094                 self.partition.disk().write_at(lba, 1, cursor.as_slice())?;
1095                 return Ok(());
1096             }
1097             FATType::FAT16(_) => {
1098                 // 计算要写入的值
1099                 let raw_val: u16 = match fat_entry {
1100                     FATEntry::Unused => 0,
1101                     FATEntry::Bad => 0xfff7,
1102                     FATEntry::EndOfChain => 0xfdff,
1103                     FATEntry::Next(c) => c.cluster_num as u16,
1104                 };
1105 
1106                 let in_block_offset = self.get_in_block_offset(fat_part_bytes_offset);
1107 
1108                 let lba = self.get_lba_from_offset(self.bytes_to_sector(fat_part_bytes_offset));
1109 
1110                 let mut v: Vec<u8> = Vec::new();
1111                 v.resize(LBA_SIZE, 0);
1112                 self.partition.disk().read_at(lba, 1, &mut v)?;
1113 
1114                 let mut cursor: VecCursor = VecCursor::new(v);
1115                 cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1116 
1117                 cursor.write_u16(raw_val)?;
1118                 self.partition.disk().write_at(lba, 1, cursor.as_slice())?;
1119 
1120                 return Ok(());
1121             }
1122             FATType::FAT32(_) => {
1123                 let fat_size: u64 = self.fat_size();
1124                 let bound: u64 = if self.mirroring_enabled() {
1125                     1
1126                 } else {
1127                     self.bpb.num_fats as u64
1128                 };
1129                 // kdebug!("set entry, bound={bound}, fat_size={fat_size}");
1130                 for i in 0..bound {
1131                     // 当前操作的FAT表在磁盘上的字节偏移量
1132                     let f_offset: u64 = fat_part_bytes_offset + i * fat_size;
1133                     let in_block_offset: u64 = self.get_in_block_offset(f_offset);
1134                     let lba = self.get_lba_from_offset(self.bytes_to_sector(f_offset));
1135 
1136                     // kdebug!("set entry, lba={lba}, in_block_offset={in_block_offset}");
1137                     let mut v: Vec<u8> = Vec::new();
1138                     v.resize(LBA_SIZE, 0);
1139                     self.partition.disk().read_at(lba, 1, &mut v)?;
1140 
1141                     let mut cursor: VecCursor = VecCursor::new(v);
1142                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1143 
1144                     // FAT32的高4位保留
1145                     let old_bits = cursor.read_u32()? & 0xf0000000;
1146 
1147                     if fat_entry == FATEntry::Unused
1148                         && cluster.cluster_num >= 0x0ffffff7
1149                         && cluster.cluster_num <= 0x0fffffff
1150                     {
1151                         kerror!(
1152                             "FAT32: Reserved Cluster {:?} cannot be marked as free",
1153                             cluster
1154                         );
1155                         return Err(SystemError::EPERM);
1156                     }
1157 
1158                     // 计算要写入的值
1159                     let mut raw_val: u32 = match fat_entry {
1160                         FATEntry::Unused => 0,
1161                         FATEntry::Bad => 0x0FFFFFF7,
1162                         FATEntry::EndOfChain => 0x0FFFFFFF,
1163                         FATEntry::Next(c) => c.cluster_num as u32,
1164                     };
1165 
1166                     // 恢复保留位
1167                     raw_val |= old_bits;
1168 
1169                     // kdebug!("sent entry, raw_val={raw_val}");
1170 
1171                     cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1172                     cursor.write_u32(raw_val)?;
1173 
1174                     self.partition.disk().write_at(lba, 1, cursor.as_slice())?;
1175                 }
1176 
1177                 return Ok(());
1178             }
1179         }
1180     }
1181 
1182     /// @brief 清空指定的簇
1183     ///
1184     /// @param cluster 要被清空的簇
1185     pub fn zero_cluster(&self, cluster: Cluster) -> Result<(), SystemError> {
1186         // 准备数据,用于写入
1187         let zeros: Vec<u8> = vec![0u8; self.bytes_per_cluster() as usize];
1188         let offset: usize = self.cluster_bytes_offset(cluster) as usize;
1189         self.partition
1190             .disk()
1191             .write_at_bytes(offset, zeros.len(), zeros.as_slice())?;
1192         return Ok(());
1193     }
1194 }
1195 
1196 impl Drop for FATFileSystem {
1197     fn drop(&mut self) {
1198         let r = self.umount();
1199         if r.is_err() {
1200             kerror!(
1201                 "Umount FAT filesystem failed: errno={:?}, FS detail:{self:?}",
1202                 r.as_ref().unwrap_err()
1203             );
1204         }
1205     }
1206 }
1207 
1208 impl FATFsInfo {
1209     const LEAD_SIG: u32 = 0x41615252;
1210     const STRUC_SIG: u32 = 0x61417272;
1211     const TRAIL_SIG: u32 = 0xAA550000;
1212     #[allow(dead_code)]
1213     const FS_INFO_SIZE: u64 = 512;
1214 
1215     /// @brief 从磁盘上读取FAT文件系统的FSInfo结构体
1216     ///
1217     /// @param partition 磁盘分区
1218     /// @param in_disk_fs_info_offset FSInfo扇区在磁盘内的字节偏移量(单位:字节)
1219     /// @param bytes_per_sec 每扇区字节数
1220     pub fn new(
1221         partition: Arc<Partition>,
1222         in_disk_fs_info_offset: u64,
1223         bytes_per_sec: usize,
1224     ) -> Result<Self, SystemError> {
1225         let mut v = Vec::<u8>::new();
1226         v.resize(bytes_per_sec, 0);
1227 
1228         // 计算fs_info扇区在磁盘上的字节偏移量,从磁盘读取数据
1229         partition
1230             .disk()
1231             .read_at(in_disk_fs_info_offset as usize / LBA_SIZE, 1, &mut v)?;
1232         let mut cursor = VecCursor::new(v);
1233 
1234         let mut fsinfo = FATFsInfo::default();
1235 
1236         fsinfo.lead_sig = cursor.read_u32()?;
1237         cursor.seek(SeekFrom::SeekCurrent(480))?;
1238         fsinfo.struc_sig = cursor.read_u32()?;
1239         fsinfo.free_count = cursor.read_u32()?;
1240         fsinfo.next_free = cursor.read_u32()?;
1241 
1242         cursor.seek(SeekFrom::SeekCurrent(12))?;
1243 
1244         fsinfo.trail_sig = cursor.read_u32()?;
1245         fsinfo.dirty = false;
1246         fsinfo.offset = Some(in_disk_fs_info_offset);
1247 
1248         if fsinfo.is_valid() {
1249             return Ok(fsinfo);
1250         } else {
1251             kerror!("Error occurred while parsing FATFsInfo.");
1252             return Err(SystemError::EINVAL);
1253         }
1254     }
1255 
1256     /// @brief 判断是否为正确的FsInfo结构体
1257     fn is_valid(&self) -> bool {
1258         self.lead_sig == Self::LEAD_SIG
1259             && self.struc_sig == Self::STRUC_SIG
1260             && self.trail_sig == Self::TRAIL_SIG
1261     }
1262 
1263     /// @brief 根据fsinfo的信息,计算当前总的空闲簇数量
1264     ///
1265     /// @param 当前文件系统的最大簇号
1266     pub fn count_free_cluster(&self, max_cluster: Cluster) -> Option<u64> {
1267         let count_clusters = max_cluster.cluster_num - RESERVED_CLUSTERS as u64 + 1;
1268         // 信息不合理,当前的FsInfo中存储的free count大于计算出来的值
1269         if self.free_count as u64 > count_clusters {
1270             return None;
1271         } else {
1272             match self.free_count {
1273                 // free count字段不可用
1274                 0xffffffff => return None,
1275                 // 返回FsInfo中存储的数据
1276                 n => return Some(n as u64),
1277             }
1278         }
1279     }
1280 
1281     /// @brief 更新FsInfo中的“空闲簇统计信息“为new_count
1282     ///
1283     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
1284     pub fn update_free_count_abs(&mut self, new_count: u32) {
1285         self.free_count = new_count;
1286     }
1287 
1288     /// @brief 更新FsInfo中的“空闲簇统计信息“,把它加上delta.
1289     ///
1290     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
1291     pub fn update_free_count_delta(&mut self, delta: i32) {
1292         self.free_count = (self.free_count as i32 + delta) as u32;
1293     }
1294 
1295     /// @brief 更新FsInfo中的“第一个空闲簇统计信息“为next_free.
1296     ///
1297     /// 请注意,除非手动调用`flush()`,否则本函数不会将数据刷入磁盘
1298     pub fn update_next_free(&mut self, next_free: u32) {
1299         // 这个值是参考量,不一定要准确,仅供加速查找
1300         self.next_free = next_free;
1301     }
1302 
1303     /// @brief 获取fs info 记载的第一个空闲簇。(不一定准确,仅供参考)
1304     pub fn next_free(&self) -> Option<u64> {
1305         match self.next_free {
1306             0xffffffff => return None,
1307             0 | 1 => return None,
1308             n => return Some(n as u64),
1309         };
1310     }
1311 
1312     /// @brief 把fs info刷入磁盘
1313     ///
1314     /// @param partition fs info所在的分区
1315     pub fn flush(&self, partition: &Arc<Partition>) -> Result<(), SystemError> {
1316         if let Some(off) = self.offset {
1317             let in_block_offset = off % LBA_SIZE as u64;
1318 
1319             let lba = off as usize / LBA_SIZE;
1320 
1321             let mut v: Vec<u8> = Vec::new();
1322             v.resize(LBA_SIZE, 0);
1323             partition.disk().read_at(lba, 1, &mut v)?;
1324 
1325             let mut cursor: VecCursor = VecCursor::new(v);
1326             cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1327 
1328             cursor.write_u32(self.lead_sig)?;
1329             cursor.seek(SeekFrom::SeekCurrent(480))?;
1330             cursor.write_u32(self.struc_sig)?;
1331             cursor.write_u32(self.free_count)?;
1332             cursor.write_u32(self.next_free)?;
1333             cursor.seek(SeekFrom::SeekCurrent(12))?;
1334             cursor.write_u32(self.trail_sig)?;
1335 
1336             partition.disk().write_at(lba, 1, cursor.as_slice())?;
1337         }
1338         return Ok(());
1339     }
1340 
1341     /// @brief 读取磁盘上的Fs Info扇区,将里面的内容更新到结构体中
1342     ///
1343     /// @param partition fs info所在的分区
1344     pub fn update(&mut self, partition: Arc<Partition>) -> Result<(), SystemError> {
1345         if let Some(off) = self.offset {
1346             let in_block_offset = off % LBA_SIZE as u64;
1347 
1348             let lba = off as usize / LBA_SIZE;
1349 
1350             let mut v: Vec<u8> = Vec::new();
1351             v.resize(LBA_SIZE, 0);
1352             partition.disk().read_at(lba, 1, &mut v)?;
1353             let mut cursor: VecCursor = VecCursor::new(v);
1354             cursor.seek(SeekFrom::SeekSet(in_block_offset as i64))?;
1355             self.lead_sig = cursor.read_u32()?;
1356 
1357             cursor.seek(SeekFrom::SeekCurrent(480))?;
1358             self.struc_sig = cursor.read_u32()?;
1359             self.free_count = cursor.read_u32()?;
1360             self.next_free = cursor.read_u32()?;
1361             cursor.seek(SeekFrom::SeekCurrent(12))?;
1362             self.trail_sig = cursor.read_u32()?;
1363         }
1364         return Ok(());
1365     }
1366 }
1367 
1368 impl IndexNode for LockedFATInode {
1369     fn read_at(
1370         &self,
1371         offset: usize,
1372         len: usize,
1373         buf: &mut [u8],
1374         _data: &mut FilePrivateData,
1375     ) -> Result<usize, SystemError> {
1376         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1377         match &guard.inode_type {
1378             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
1379                 let r = f.read(
1380                     &guard.fs.upgrade().unwrap(),
1381                     &mut buf[0..len],
1382                     offset as u64,
1383                 );
1384                 guard.update_metadata();
1385                 return r;
1386             }
1387             FATDirEntry::Dir(_) => {
1388                 return Err(SystemError::EISDIR);
1389             }
1390             FATDirEntry::UnInit => {
1391                 kerror!("FATFS: param: Inode_type uninitialized.");
1392                 return Err(SystemError::EROFS);
1393             }
1394         }
1395     }
1396 
1397     fn write_at(
1398         &self,
1399         offset: usize,
1400         len: usize,
1401         buf: &[u8],
1402         _data: &mut FilePrivateData,
1403     ) -> Result<usize, SystemError> {
1404         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1405         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1406 
1407         match &mut guard.inode_type {
1408             FATDirEntry::File(f) | FATDirEntry::VolId(f) => {
1409                 let r = f.write(fs, &buf[0..len], offset as u64);
1410                 guard.update_metadata();
1411                 return r;
1412             }
1413             FATDirEntry::Dir(_) => {
1414                 return Err(SystemError::EISDIR);
1415             }
1416             FATDirEntry::UnInit => {
1417                 kerror!("FATFS: param: Inode_type uninitialized.");
1418                 return Err(SystemError::EROFS);
1419             }
1420         }
1421     }
1422 
1423     fn create(
1424         &self,
1425         name: &str,
1426         file_type: FileType,
1427         _mode: ModeType,
1428     ) -> Result<Arc<dyn IndexNode>, SystemError> {
1429         // 由于FAT32不支持文件权限的功能,因此忽略mode参数
1430         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1431         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1432 
1433         match &mut guard.inode_type {
1434             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1435                 return Err(SystemError::ENOTDIR);
1436             }
1437             FATDirEntry::Dir(d) => match file_type {
1438                 FileType::File => {
1439                     d.create_file(name, fs)?;
1440                     return Ok(guard.find(name)?);
1441                 }
1442                 FileType::Dir => {
1443                     d.create_dir(name, fs)?;
1444                     return Ok(guard.find(name)?);
1445                 }
1446 
1447                 FileType::SymLink => return Err(SystemError::EOPNOTSUPP_OR_ENOTSUP),
1448                 _ => return Err(SystemError::EINVAL),
1449             },
1450             FATDirEntry::UnInit => {
1451                 kerror!("FATFS: param: Inode_type uninitialized.");
1452                 return Err(SystemError::EROFS);
1453             }
1454         }
1455     }
1456 
1457     fn fs(&self) -> Arc<dyn FileSystem> {
1458         return self.0.lock().fs.upgrade().unwrap();
1459     }
1460 
1461     fn as_any_ref(&self) -> &dyn core::any::Any {
1462         return self;
1463     }
1464 
1465     fn metadata(&self) -> Result<Metadata, SystemError> {
1466         return Ok(self.0.lock().metadata.clone());
1467     }
1468     fn resize(&self, len: usize) -> Result<(), SystemError> {
1469         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1470         let fs: &Arc<FATFileSystem> = &guard.fs.upgrade().unwrap();
1471         let old_size = guard.metadata.size as usize;
1472 
1473         match &mut guard.inode_type {
1474             FATDirEntry::File(file) | FATDirEntry::VolId(file) => {
1475                 // 如果新的长度和旧的长度相同,那么就直接返回
1476                 if len == old_size {
1477                     return Ok(());
1478                 } else if len > old_size {
1479                     // 如果新的长度比旧的长度大,那么就在文件末尾添加空白
1480                     let mut buf: Vec<u8> = Vec::new();
1481                     let mut remain_size = len - old_size;
1482                     let buf_size = remain_size;
1483                     // let buf_size = core::cmp::min(remain_size, 512 * 1024);
1484                     buf.resize(buf_size, 0);
1485 
1486                     let mut offset = old_size;
1487                     while remain_size > 0 {
1488                         let write_size = core::cmp::min(remain_size, buf_size);
1489                         file.write(fs, &buf[0..write_size], offset as u64)?;
1490                         remain_size -= write_size;
1491                         offset += write_size;
1492                     }
1493                 } else {
1494                     file.truncate(fs, len as u64)?;
1495                 }
1496                 guard.update_metadata();
1497                 return Ok(());
1498             }
1499             FATDirEntry::Dir(_) => return Err(SystemError::EOPNOTSUPP_OR_ENOTSUP),
1500             FATDirEntry::UnInit => {
1501                 kerror!("FATFS: param: Inode_type uninitialized.");
1502                 return Err(SystemError::EROFS);
1503             }
1504         }
1505     }
1506 
1507     fn truncate(&self, len: usize) -> Result<(), SystemError> {
1508         let guard: SpinLockGuard<FATInode> = self.0.lock();
1509         let old_size = guard.metadata.size as usize;
1510         if len < old_size {
1511             drop(guard);
1512             self.resize(len)
1513         } else {
1514             Ok(())
1515         }
1516     }
1517 
1518     fn list(&self) -> Result<Vec<String>, SystemError> {
1519         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1520         let fatent: &FATDirEntry = &guard.inode_type;
1521         match fatent {
1522             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1523                 return Err(SystemError::ENOTDIR);
1524             }
1525             FATDirEntry::Dir(dir) => {
1526                 // 获取当前目录下的所有目录项
1527                 let mut ret: Vec<String> = Vec::new();
1528                 let dir_iter: FATDirIter = dir.to_iter(guard.fs.upgrade().unwrap());
1529                 for ent in dir_iter {
1530                     ret.push(ent.name());
1531 
1532                     // ====== 生成inode缓存,存入B树
1533                     let name: String = ent.name();
1534                     // kdebug!("name={name}");
1535 
1536                     if guard.children.contains_key(&name.to_uppercase()) == false
1537                         && name != "."
1538                         && name != ".."
1539                     {
1540                         // 创建新的inode
1541                         let entry_inode: Arc<LockedFATInode> = LockedFATInode::new(
1542                             guard.fs.upgrade().unwrap(),
1543                             guard.self_ref.clone(),
1544                             ent,
1545                         );
1546                         // 加入缓存区, 由于FAT文件系统的大小写不敏感问题,因此存入缓存区的key应当是全大写的
1547                         guard
1548                             .children
1549                             .insert(name.to_uppercase(), entry_inode.clone());
1550                     }
1551                 }
1552                 return Ok(ret);
1553             }
1554             FATDirEntry::UnInit => {
1555                 kerror!("FATFS: param: Inode_type uninitialized.");
1556                 return Err(SystemError::EROFS);
1557             }
1558         }
1559     }
1560 
1561     fn find(&self, name: &str) -> Result<Arc<dyn IndexNode>, SystemError> {
1562         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1563         let target = guard.find(name)?;
1564         return Ok(target);
1565     }
1566 
1567     fn open(&self, _data: &mut FilePrivateData, _mode: &FileMode) -> Result<(), SystemError> {
1568         return Ok(());
1569     }
1570 
1571     fn close(&self, _data: &mut FilePrivateData) -> Result<(), SystemError> {
1572         return Ok(());
1573     }
1574 
1575     fn unlink(&self, name: &str) -> Result<(), SystemError> {
1576         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1577         let target: Arc<LockedFATInode> = guard.find(name)?;
1578         // 对目标inode上锁,以防更改
1579         let target_guard: SpinLockGuard<FATInode> = target.0.lock();
1580         // 先从缓存删除
1581         let nod = guard.children.remove(&name.to_uppercase());
1582 
1583         // 若删除缓存中为管道的文件,则不需要再到磁盘删除
1584         if let Some(_) = nod {
1585             let file_type = target_guard.metadata.file_type;
1586             if file_type == FileType::Pipe {
1587                 return Ok(());
1588             }
1589         }
1590 
1591         let dir = match &guard.inode_type {
1592             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1593                 return Err(SystemError::ENOTDIR);
1594             }
1595             FATDirEntry::Dir(d) => d,
1596             FATDirEntry::UnInit => {
1597                 kerror!("FATFS: param: Inode_type uninitialized.");
1598                 return Err(SystemError::EROFS);
1599             }
1600         };
1601         // 检查文件是否存在
1602         dir.check_existence(name, Some(false), guard.fs.upgrade().unwrap())?;
1603 
1604         // 再从磁盘删除
1605         let r = dir.remove(guard.fs.upgrade().unwrap().clone(), name, true);
1606         drop(target_guard);
1607         return r;
1608     }
1609 
1610     fn rmdir(&self, name: &str) -> Result<(), SystemError> {
1611         let mut guard: SpinLockGuard<FATInode> = self.0.lock();
1612         let target: Arc<LockedFATInode> = guard.find(name)?;
1613         // 对目标inode上锁,以防更改
1614         let target_guard: SpinLockGuard<FATInode> = target.0.lock();
1615         // 先从缓存删除
1616         guard.children.remove(&name.to_uppercase());
1617 
1618         let dir = match &guard.inode_type {
1619             FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1620                 return Err(SystemError::ENOTDIR);
1621             }
1622             FATDirEntry::Dir(d) => d,
1623             FATDirEntry::UnInit => {
1624                 kerror!("FATFS: param: Inode_type uninitialized.");
1625                 return Err(SystemError::EROFS);
1626             }
1627         };
1628         // 检查文件夹是否存在
1629         dir.check_existence(name, Some(true), guard.fs.upgrade().unwrap())?;
1630 
1631         // 再从磁盘删除
1632         let r: Result<(), SystemError> =
1633             dir.remove(guard.fs.upgrade().unwrap().clone(), name, true);
1634         if r.is_ok() {
1635             return r;
1636         } else {
1637             let r = r.unwrap_err();
1638             if r == SystemError::ENOTEMPTY {
1639                 // 如果要删除的是目录,且不为空,则删除动作未发生,重新加入缓存
1640                 guard.children.insert(name.to_uppercase(), target.clone());
1641                 drop(target_guard);
1642             }
1643             return Err(r);
1644         }
1645     }
1646 
1647     fn move_to(
1648         &self,
1649         old_name: &str,
1650         target: &Arc<dyn IndexNode>,
1651         new_name: &str,
1652     ) -> Result<(), SystemError> {
1653         let old_id = self.metadata().unwrap().inode_id;
1654         let new_id = target.metadata().unwrap().inode_id;
1655         // 若在同一父目录下
1656         if old_id == new_id {
1657             let mut guard = self.0.lock();
1658             let old_inode: Arc<LockedFATInode> = guard.find(old_name)?;
1659             // 对目标inode上锁,以防更改
1660             let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock();
1661             let fs = old_inode_guard.fs.upgrade().unwrap();
1662             // 从缓存删除
1663             let _nod = guard.children.remove(&old_name.to_uppercase());
1664             let old_dir = match &guard.inode_type {
1665                 FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1666                     return Err(SystemError::ENOTDIR);
1667                 }
1668                 FATDirEntry::Dir(d) => d,
1669                 FATDirEntry::UnInit => {
1670                     kerror!("FATFS: param: Inode_type uninitialized.");
1671                     return Err(SystemError::EROFS);
1672                 }
1673             };
1674             // 检查文件是否存在
1675             // old_dir.check_existence(old_name, Some(false), guard.fs.upgrade().unwrap())?;
1676 
1677             old_dir.rename(fs, old_name, new_name)?;
1678         } else {
1679             let mut old_guard = self.0.lock();
1680             let other: &LockedFATInode = target
1681                 .downcast_ref::<LockedFATInode>()
1682                 .ok_or(SystemError::EPERM)?;
1683 
1684             let new_guard = other.0.lock();
1685             let old_inode: Arc<LockedFATInode> = old_guard.find(old_name)?;
1686             // 对目标inode上锁,以防更改
1687             let old_inode_guard: SpinLockGuard<FATInode> = old_inode.0.lock();
1688             let fs = old_inode_guard.fs.upgrade().unwrap();
1689             // 从缓存删除
1690             let _nod = old_guard.children.remove(&old_name.to_uppercase());
1691             let old_dir = match &old_guard.inode_type {
1692                 FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1693                     return Err(SystemError::ENOTDIR);
1694                 }
1695                 FATDirEntry::Dir(d) => d,
1696                 FATDirEntry::UnInit => {
1697                     kerror!("FATFS: param: Inode_type uninitialized.");
1698                     return Err(SystemError::EROFS);
1699                 }
1700             };
1701             let new_dir = match &new_guard.inode_type {
1702                 FATDirEntry::File(_) | FATDirEntry::VolId(_) => {
1703                     return Err(SystemError::ENOTDIR);
1704                 }
1705                 FATDirEntry::Dir(d) => d,
1706                 FATDirEntry::UnInit => {
1707                     kerror!("FATFA: param: Inode_type uninitialized.");
1708                     return Err(SystemError::EROFS);
1709                 }
1710             };
1711             // 检查文件是否存在
1712             old_dir.check_existence(old_name, Some(false), old_guard.fs.upgrade().unwrap())?;
1713             old_dir.rename_across(fs, new_dir, old_name, new_name)?;
1714         }
1715 
1716         return Ok(());
1717     }
1718 
1719     fn get_entry_name(&self, ino: InodeId) -> Result<String, SystemError> {
1720         let guard: SpinLockGuard<FATInode> = self.0.lock();
1721         if guard.metadata.file_type != FileType::Dir {
1722             return Err(SystemError::ENOTDIR);
1723         }
1724         match ino.into() {
1725             0 => {
1726                 return Ok(String::from("."));
1727             }
1728             1 => {
1729                 return Ok(String::from(".."));
1730             }
1731             ino => {
1732                 // 暴力遍历所有的children,判断inode id是否相同
1733                 // TODO: 优化这里,这个地方性能很差!
1734                 let mut key: Vec<String> = guard
1735                     .children
1736                     .keys()
1737                     .filter(|k| {
1738                         guard
1739                             .children
1740                             .get(*k)
1741                             .unwrap()
1742                             .metadata()
1743                             .unwrap()
1744                             .inode_id
1745                             .into()
1746                             == ino
1747                     })
1748                     .cloned()
1749                     .collect();
1750 
1751                 match key.len() {
1752                     0=>{return Err(SystemError::ENOENT);}
1753                     1=>{return Ok(key.remove(0));}
1754                     _ => panic!("FatFS get_entry_name: key.len()={key_len}>1, current inode_id={inode_id:?}, to find={to_find:?}", key_len=key.len(), inode_id = guard.metadata.inode_id, to_find=ino)
1755                 }
1756             }
1757         }
1758     }
1759 
1760     fn mknod(
1761         &self,
1762         filename: &str,
1763         mode: ModeType,
1764         _dev_t: DeviceNumber,
1765     ) -> Result<Arc<dyn IndexNode>, SystemError> {
1766         let mut inode = self.0.lock();
1767         if inode.metadata.file_type != FileType::Dir {
1768             return Err(SystemError::ENOTDIR);
1769         }
1770 
1771         // 判断需要创建的类型
1772         if unlikely(mode.contains(ModeType::S_IFREG)) {
1773             // 普通文件
1774             return Ok(self.create(filename, FileType::File, mode)?);
1775         }
1776 
1777         let nod = LockedFATInode::new(
1778             inode.fs.upgrade().unwrap(),
1779             inode.self_ref.clone(),
1780             FATDirEntry::File(FATFile::default()),
1781         );
1782 
1783         if mode.contains(ModeType::S_IFIFO) {
1784             nod.0.lock().metadata.file_type = FileType::Pipe;
1785             // 创建pipe文件
1786             let pipe_inode = LockedPipeInode::new();
1787             // 设置special_node
1788             nod.0.lock().special_node = Some(SpecialNodeData::Pipe(pipe_inode));
1789         } else if mode.contains(ModeType::S_IFBLK) {
1790             nod.0.lock().metadata.file_type = FileType::BlockDevice;
1791             unimplemented!()
1792         } else if mode.contains(ModeType::S_IFCHR) {
1793             nod.0.lock().metadata.file_type = FileType::CharDevice;
1794             unimplemented!()
1795         } else {
1796             return Err(SystemError::EINVAL);
1797         }
1798 
1799         inode
1800             .children
1801             .insert(String::from(filename).to_uppercase(), nod.clone());
1802         Ok(nod)
1803     }
1804 
1805     fn special_node(&self) -> Option<SpecialNodeData> {
1806         self.0.lock().special_node.clone()
1807     }
1808 }
1809 
1810 impl Default for FATFsInfo {
1811     fn default() -> Self {
1812         return FATFsInfo {
1813             lead_sig: FATFsInfo::LEAD_SIG,
1814             struc_sig: FATFsInfo::STRUC_SIG,
1815             free_count: 0xFFFFFFFF,
1816             next_free: RESERVED_CLUSTERS,
1817             trail_sig: FATFsInfo::TRAIL_SIG,
1818             dirty: false,
1819             offset: None,
1820         };
1821     }
1822 }
1823 
1824 impl Cluster {
1825     pub fn new(cluster: u64) -> Self {
1826         return Cluster {
1827             cluster_num: cluster,
1828             parent_cluster: 0,
1829         };
1830     }
1831 }
1832 
1833 /// @brief 用于迭代FAT表的内容的簇迭代器对象
1834 #[derive(Debug)]
1835 struct ClusterIter<'a> {
1836     /// 迭代器的next要返回的簇
1837     current_cluster: Option<Cluster>,
1838     /// 属于的文件系统
1839     fs: &'a FATFileSystem,
1840 }
1841 
1842 impl<'a> Iterator for ClusterIter<'a> {
1843     type Item = Cluster;
1844 
1845     fn next(&mut self) -> Option<Self::Item> {
1846         // 当前要返回的簇
1847         let ret: Option<Cluster> = self.current_cluster;
1848 
1849         // 获得下一个要返回簇
1850         let new: Option<Cluster> = match self.current_cluster {
1851             Some(c) => {
1852                 let entry: Option<FATEntry> = self.fs.get_fat_entry(c).ok();
1853                 match entry {
1854                     Some(FATEntry::Next(c)) => Some(c),
1855                     _ => None,
1856                 }
1857             }
1858             _ => None,
1859         };
1860 
1861         self.current_cluster = new;
1862         return ret;
1863     }
1864 }
1865