1 #![allow(dead_code)] 2 // 目前仅支持单主桥单Segment 3 4 use super::pci_irq::{IrqType, PciIrqError}; 5 use crate::arch::{PciArch, TraitPciArch}; 6 use crate::include::bindings::bindings::{PAGE_2M_SIZE, VM_DONTCOPY, VM_IO}; 7 use crate::libs::rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard}; 8 use crate::mm::kernel_mapper::KernelMapper; 9 use crate::mm::mmio_buddy::mmio_pool; 10 use crate::mm::page::PageFlags; 11 use crate::mm::{PhysAddr, VirtAddr}; 12 use crate::{kdebug, kerror, kinfo, kwarn}; 13 use alloc::vec::Vec; 14 use alloc::{boxed::Box, collections::LinkedList}; 15 use bitflags::bitflags; 16 17 use core::{ 18 convert::TryFrom, 19 fmt::{self, Debug, Display, Formatter}, 20 }; 21 // PCI_DEVICE_LINKEDLIST 添加了读写锁的全局链表,里面存储了检索到的PCI设备结构体 22 // PCI_ROOT_0 Segment为0的全局PciRoot 23 lazy_static! { 24 pub static ref PCI_DEVICE_LINKEDLIST: PciDeviceLinkedList = PciDeviceLinkedList::new(); 25 pub static ref PCI_ROOT_0: Option<PciRoot> = { 26 match PciRoot::new(0) { 27 Ok(root) => Some(root), 28 Err(err) => { 29 kerror!("Pci_root init failed because of error: {}", err); 30 None 31 } 32 } 33 }; 34 } 35 /// PCI域地址 36 #[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)] 37 #[repr(transparent)] 38 pub struct PciAddr(usize); 39 40 impl PciAddr { 41 #[inline(always)] 42 pub const fn new(address: usize) -> Self { 43 Self(address) 44 } 45 46 /// @brief 获取PCI域地址的值 47 #[inline(always)] 48 pub fn data(&self) -> usize { 49 self.0 50 } 51 52 /// @brief 将PCI域地址加上一个偏移量 53 #[inline(always)] 54 pub fn add(self, offset: usize) -> Self { 55 Self(self.0 + offset) 56 } 57 58 /// @brief 判断PCI域地址是否按照指定要求对齐 59 #[inline(always)] 60 pub fn check_aligned(&self, align: usize) -> bool { 61 return self.0 & (align - 1) == 0; 62 } 63 } 64 impl Debug for PciAddr { 65 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { 66 write!(f, "PciAddr({:#x})", self.0) 67 } 68 } 69 70 /// 添加了读写锁的链表,存储PCI设备结构体 71 pub struct PciDeviceLinkedList { 72 list: RwLock<LinkedList<Box<dyn PciDeviceStructure>>>, 73 } 74 75 impl PciDeviceLinkedList { 76 /// @brief 初始化结构体 77 fn new() -> Self { 78 PciDeviceLinkedList { 79 list: RwLock::new(LinkedList::new()), 80 } 81 } 82 /// @brief 获取可读的linkedlist(读锁守卫) 83 /// @return RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>> 读锁守卫 84 pub fn read(&self) -> RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>> { 85 self.list.read() 86 } 87 /// @brief 获取可写的linkedlist(写锁守卫) 88 /// @return RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>> 写锁守卫 89 pub fn write(&self) -> RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>> { 90 self.list.write() 91 } 92 /// @brief 获取链表中PCI结构体数目 93 /// @return usize 链表中PCI结构体数目 94 pub fn num(&self) -> usize { 95 let list = self.list.read(); 96 list.len() 97 } 98 /// @brief 添加Pci设备结构体到链表中 99 pub fn add(&self, device: Box<dyn PciDeviceStructure>) { 100 let mut list = self.list.write(); 101 list.push_back(device); 102 } 103 } 104 105 /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其可变引用 106 /// @param list 链表的写锁守卫 107 /// @param class_code 寄存器值 108 /// @param subclass 寄存器值,与class_code一起确定设备类型 109 /// @return Vec<&'a mut Box<(dyn PciDeviceStructure) 包含链表中所有满足条件的PCI结构体的可变引用的容器 110 pub fn get_pci_device_structure_mut<'a>( 111 list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>, 112 class_code: u8, 113 subclass: u8, 114 ) -> Vec<&'a mut Box<(dyn PciDeviceStructure)>> { 115 let mut result = Vec::new(); 116 for box_pci_device_structure in list.iter_mut() { 117 let common_header = (*box_pci_device_structure).common_header(); 118 if (common_header.class_code == class_code) && (common_header.subclass == subclass) { 119 result.push(box_pci_device_structure); 120 } 121 } 122 result 123 } 124 /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其不可变引用 125 /// @param list 链表的读锁守卫 126 /// @param class_code 寄存器值 127 /// @param subclass 寄存器值,与class_code一起确定设备类型 128 /// @return Vec<&'a Box<(dyn PciDeviceStructure) 包含链表中所有满足条件的PCI结构体的不可变引用的容器 129 pub fn get_pci_device_structure<'a>( 130 list: &'a mut RwLockReadGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>, 131 class_code: u8, 132 subclass: u8, 133 ) -> Vec<&'a Box<(dyn PciDeviceStructure)>> { 134 let mut result = Vec::new(); 135 for box_pci_device_structure in list.iter() { 136 let common_header = (*box_pci_device_structure).common_header(); 137 if (common_header.class_code == class_code) && (common_header.subclass == subclass) { 138 result.push(box_pci_device_structure); 139 } 140 } 141 result 142 } 143 144 //Bar0寄存器的offset 145 const BAR0_OFFSET: u8 = 0x10; 146 //Status、Command寄存器的offset 147 const STATUS_COMMAND_OFFSET: u8 = 0x04; 148 /// ID for vendor-specific PCI capabilities.(Virtio Capabilities) 149 pub const PCI_CAP_ID_VNDR: u8 = 0x09; 150 pub const PCI_CAP_ID_MSI: u8 = 0x05; 151 pub const PCI_CAP_ID_MSIX: u8 = 0x11; 152 pub const PORT_PCI_CONFIG_ADDRESS: u16 = 0xcf8; 153 pub const PORT_PCI_CONFIG_DATA: u16 = 0xcfc; 154 // pci设备分组的id 155 pub type SegmentGroupNumber = u16; //理论上最多支持65535个Segment_Group 156 157 bitflags! { 158 /// The status register in PCI configuration space. 159 pub struct Status: u16 { 160 // Bits 0-2 are reserved. 161 /// The state of the device's INTx# signal. 162 const INTERRUPT_STATUS = 1 << 3; 163 /// The device has a linked list of capabilities. 164 const CAPABILITIES_LIST = 1 << 4; 165 /// The device is capabile of running at 66 MHz rather than 33 MHz. 166 const MHZ_66_CAPABLE = 1 << 5; 167 // Bit 6 is reserved. 168 /// The device can accept fast back-to-back transactions not from the same agent. 169 const FAST_BACK_TO_BACK_CAPABLE = 1 << 7; 170 /// The bus agent observed a parity error (if parity error handling is enabled). 171 const MASTER_DATA_PARITY_ERROR = 1 << 8; 172 // Bits 9-10 are DEVSEL timing. 173 /// A target device terminated a transaction with target-abort. 174 const SIGNALED_TARGET_ABORT = 1 << 11; 175 /// A master device transaction was terminated with target-abort. 176 const RECEIVED_TARGET_ABORT = 1 << 12; 177 /// A master device transaction was terminated with master-abort. 178 const RECEIVED_MASTER_ABORT = 1 << 13; 179 /// A device asserts SERR#. 180 const SIGNALED_SYSTEM_ERROR = 1 << 14; 181 /// The device detects a parity error, even if parity error handling is disabled. 182 const DETECTED_PARITY_ERROR = 1 << 15; 183 } 184 } 185 186 bitflags! { 187 /// The command register in PCI configuration space. 188 pub struct Command: u16 { 189 /// The device can respond to I/O Space accesses. 190 const IO_SPACE = 1 << 0; 191 /// The device can respond to Memory Space accesses. 192 const MEMORY_SPACE = 1 << 1; 193 /// The device can behave as a bus master. 194 const BUS_MASTER = 1 << 2; 195 /// The device can monitor Special Cycle operations. 196 const SPECIAL_CYCLES = 1 << 3; 197 /// The device can generate the Memory Write and Invalidate command. 198 const MEMORY_WRITE_AND_INVALIDATE_ENABLE = 1 << 4; 199 /// The device will snoop palette register data. 200 const VGA_PALETTE_SNOOP = 1 << 5; 201 /// The device should take its normal action when a parity error is detected. 202 const PARITY_ERROR_RESPONSE = 1 << 6; 203 // Bit 7 is reserved. 204 /// The SERR# driver is enabled. 205 const SERR_ENABLE = 1 << 8; 206 /// The device is allowed to generate fast back-to-back transactions. 207 const FAST_BACK_TO_BACK_ENABLE = 1 << 9; 208 /// Assertion of the device's INTx# signal is disabled. 209 const INTERRUPT_DISABLE = 1 << 10; 210 } 211 } 212 213 /// The type of a PCI device function header. 214 /// 标头类型/设备类型 215 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 216 pub enum HeaderType { 217 /// A normal PCI device. 218 Standard, 219 /// A PCI to PCI bridge. 220 PciPciBridge, 221 /// A PCI to CardBus bridge. 222 PciCardbusBridge, 223 /// Unrecognised header type. 224 Unrecognised(u8), 225 } 226 /// u8到HeaderType的转换 227 impl From<u8> for HeaderType { 228 fn from(value: u8) -> Self { 229 match value { 230 0x00 => Self::Standard, 231 0x01 => Self::PciPciBridge, 232 0x02 => Self::PciCardbusBridge, 233 _ => Self::Unrecognised(value), 234 } 235 } 236 } 237 /// Pci可能触发的各种错误 238 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 239 pub enum PciError { 240 /// The device reported an invalid BAR type. 241 InvalidBarType, 242 CreateMmioError, 243 InvalidBusDeviceFunction, 244 SegmentNotFound, 245 McfgTableNotFound, 246 GetWrongHeader, 247 UnrecognisedHeaderType, 248 PciDeviceStructureTransformError, 249 PciIrqError(PciIrqError), 250 } 251 ///实现PciError的Display trait,使其可以直接输出 252 impl Display for PciError { 253 fn fmt(&self, f: &mut Formatter) -> fmt::Result { 254 match self { 255 Self::InvalidBarType => write!(f, "Invalid PCI BAR type."), 256 Self::CreateMmioError => write!(f, "Error occurred while creating mmio."), 257 Self::InvalidBusDeviceFunction => write!(f, "Found invalid BusDeviceFunction."), 258 Self::SegmentNotFound => write!(f, "Target segment not found"), 259 Self::McfgTableNotFound => write!(f, "ACPI MCFG Table not found"), 260 Self::GetWrongHeader => write!(f, "GetWrongHeader with vendor id 0xffff"), 261 Self::UnrecognisedHeaderType => write!(f, "Found device with unrecognised header type"), 262 Self::PciDeviceStructureTransformError => { 263 write!(f, "Found None When transform Pci device structure") 264 } 265 Self::PciIrqError(err) => write!(f, "Error occurred while setting irq :{:?}.", err), 266 } 267 } 268 } 269 270 /// trait类型Pci_Device_Structure表示pci设备,动态绑定三种具体设备类型:Pci_Device_Structure_General_Device、Pci_Device_Structure_Pci_to_Pci_Bridge、Pci_Device_Structure_Pci_to_Cardbus_Bridge 271 pub trait PciDeviceStructure: Send + Sync { 272 /// @brief 获取设备类型 273 /// @return HeaderType 设备类型 274 fn header_type(&self) -> HeaderType; 275 /// @brief 当其为standard设备时返回&Pci_Device_Structure_General_Device,其余情况返回None 276 #[inline(always)] 277 fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> { 278 None 279 } 280 /// @brief 当其为pci to pci bridge设备时返回&Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None 281 #[inline(always)] 282 fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> { 283 None 284 } 285 /// @brief 当其为pci to cardbus bridge设备时返回&Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None 286 #[inline(always)] 287 fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> { 288 None 289 } 290 /// @brief 获取Pci设备共有的common_header 291 /// @return 返回其不可变引用 292 fn common_header(&self) -> &PciDeviceStructureHeader; 293 /// @brief 当其为standard设备时返回&mut Pci_Device_Structure_General_Device,其余情况返回None 294 #[inline(always)] 295 fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> { 296 None 297 } 298 /// @brief 当其为pci to pci bridge设备时返回&mut Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None 299 #[inline(always)] 300 fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> { 301 None 302 } 303 /// @brief 当其为pci to cardbus bridge设备时返回&mut Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None 304 #[inline(always)] 305 fn as_pci_to_carbus_bridge_device_mut( 306 &mut self, 307 ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> { 308 None 309 } 310 /// @brief 返回迭代器,遍历capabilities 311 fn capabilities(&self) -> Option<CapabilityIterator> { 312 None 313 } 314 /// @brief 获取Status、Command寄存器的值 315 fn status_command(&self) -> (Status, Command) { 316 let common_header = self.common_header(); 317 let status = Status::from_bits_truncate(common_header.status); 318 let command = Command::from_bits_truncate(common_header.command); 319 (status, command) 320 } 321 /// @brief 设置Command寄存器的值 322 fn set_command(&mut self, command: Command) { 323 let common_header = self.common_header_mut(); 324 let command = command.bits(); 325 common_header.command = command; 326 PciArch::write_config( 327 &common_header.bus_device_function, 328 STATUS_COMMAND_OFFSET, 329 command as u32, 330 ); 331 } 332 /// @brief 获取Pci设备共有的common_header 333 /// @return 返回其可变引用 334 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader; 335 336 /// @brief 读取standard设备的bar寄存器,映射后将结果加入结构体的standard_device_bar变量 337 /// @return 只有standard设备才返回成功或者错误,其余返回None 338 #[inline(always)] 339 fn bar_ioremap(&mut self) -> Option<Result<u8, PciError>> { 340 None 341 } 342 /// @brief 获取PCI设备的bar寄存器的引用 343 /// @return 344 #[inline(always)] 345 fn bar(&mut self) -> Option<&PciStandardDeviceBar> { 346 None 347 } 348 /// @brief 通过设置该pci设备的command 349 fn enable_master(&mut self) { 350 self.set_command(Command::IO_SPACE | Command::MEMORY_SPACE | Command::BUS_MASTER); 351 } 352 /// @brief 寻找设备的msix空间的offset 353 fn msix_capability_offset(&self) -> Option<u8> { 354 for capability in self.capabilities()? { 355 if capability.id == PCI_CAP_ID_MSIX { 356 return Some(capability.offset); 357 } 358 } 359 None 360 } 361 /// @brief 寻找设备的msi空间的offset 362 fn msi_capability_offset(&self) -> Option<u8> { 363 for capability in self.capabilities()? { 364 if capability.id == PCI_CAP_ID_MSI { 365 return Some(capability.offset); 366 } 367 } 368 None 369 } 370 /// @brief 返回结构体中的irq_type的可变引用 371 fn irq_type_mut(&mut self) -> Option<&mut IrqType>; 372 /// @brief 返回结构体中的irq_vector的可变引用 373 fn irq_vector_mut(&mut self) -> Option<&mut Vec<u16>>; 374 } 375 376 /// Pci_Device_Structure_Header PCI设备结构体共有的头部 377 #[derive(Clone, Debug)] 378 pub struct PciDeviceStructureHeader { 379 // ==== busdevicefunction变量表示该结构体所处的位置 380 pub bus_device_function: BusDeviceFunction, 381 pub vendor_id: u16, // 供应商ID 0xffff是一个无效值,在读取访问不存在的设备的配置空间寄存器时返回 382 pub device_id: u16, // 设备ID,标志特定设备 383 pub command: u16, // 提供对设备生成和响应pci周期的能力的控制 向该寄存器写入0时,设备与pci总线断开除配置空间访问以外的所有连接 384 pub status: u16, // 用于记录pci总线相关时间的状态信息寄存器 385 pub revision_id: u8, // 修订ID,指定特定设备的修订标志符 386 pub prog_if: u8, // 编程接口字节,一个只读寄存器,指定设备具有的寄存器级别的编程接口(如果有的话) 387 pub subclass: u8, // 子类。指定设备执行的特定功能的只读寄存器 388 pub class_code: u8, // 类代码,一个只读寄存器,指定设备执行的功能类型 389 pub cache_line_size: u8, // 缓存线大小:以 32 位为单位指定系统缓存线大小。设备可以限制它可以支持的缓存线大小的数量,如果不支持的值写入该字段,设备将表现得好像写入了 0 值 390 pub latency_timer: u8, // 延迟计时器:以 PCI 总线时钟为单位指定延迟计时器。 391 pub header_type: u8, // 标头类型 a value of 0x0 specifies a general device, a value of 0x1 specifies a PCI-to-PCI bridge, and a value of 0x2 specifies a CardBus bridge. If bit 7 of this register is set, the device has multiple functions; otherwise, it is a single function device. 392 pub bist: u8, // Represents that status and allows control of a devices BIST (built-in self test). 393 // Here is the layout of the BIST register: 394 // | bit7 | bit6 | Bits 5-4 | Bits 3-0 | 395 // | BIST Capable | Start BIST | Reserved | Completion Code | 396 // for more details, please visit https://wiki.osdev.org/PCI 397 } 398 399 /// Pci_Device_Structure_General_Device PCI标准设备结构体 400 #[derive(Clone, Debug)] 401 pub struct PciDeviceStructureGeneralDevice { 402 pub common_header: PciDeviceStructureHeader, 403 // 中断结构体,包括legacy,msi,msix三种情况 404 pub irq_type: IrqType, 405 // 使用的中断号的vec集合 406 pub irq_vector: Vec<u16>, 407 pub standard_device_bar: PciStandardDeviceBar, 408 pub cardbus_cis_pointer: u32, // 指向卡信息结构,供在 CardBus 和 PCI 之间共享芯片的设备使用。 409 pub subsystem_vendor_id: u16, 410 pub subsystem_id: u16, 411 pub expansion_rom_base_address: u32, 412 pub capabilities_pointer: u8, 413 pub reserved0: u8, 414 pub reserved1: u16, 415 pub reserved2: u32, 416 pub interrupt_line: u8, // 指定设备的中断引脚连接到系统中断控制器的哪个输入,并由任何使用中断引脚的设备实现。对于 x86 架构,此寄存器对应于 PIC IRQ 编号 0-15(而不是 I/O APIC IRQ 编号),并且值0xFF定义为无连接。 417 pub interrupt_pin: u8, // 指定设备使用的中断引脚。其中值为0x1INTA#、0x2INTB#、0x3INTC#、0x4INTD#,0x0表示设备不使用中断引脚。 418 pub min_grant: u8, // 一个只读寄存器,用于指定设备所需的突发周期长度(以 1/4 微秒为单位)(假设时钟速率为 33 MHz) 419 pub max_latency: u8, // 一个只读寄存器,指定设备需要多长时间访问一次 PCI 总线(以 1/4 微秒为单位)。 420 } 421 impl PciDeviceStructure for PciDeviceStructureGeneralDevice { 422 #[inline(always)] 423 fn header_type(&self) -> HeaderType { 424 HeaderType::Standard 425 } 426 #[inline(always)] 427 fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> { 428 Some(self) 429 } 430 #[inline(always)] 431 fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> { 432 Some(self) 433 } 434 #[inline(always)] 435 fn common_header(&self) -> &PciDeviceStructureHeader { 436 &self.common_header 437 } 438 #[inline(always)] 439 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader { 440 &mut self.common_header 441 } 442 fn capabilities(&self) -> Option<CapabilityIterator> { 443 Some(CapabilityIterator { 444 bus_device_function: self.common_header.bus_device_function, 445 next_capability_offset: Some(self.capabilities_pointer), 446 }) 447 } 448 fn bar_ioremap(&mut self) -> Option<Result<u8, PciError>> { 449 let common_header = &self.common_header; 450 match pci_bar_init(common_header.bus_device_function) { 451 Ok(bar) => { 452 self.standard_device_bar = bar; 453 Some(Ok(0)) 454 } 455 Err(e) => Some(Err(e)), 456 } 457 } 458 fn bar(&mut self) -> Option<&PciStandardDeviceBar> { 459 Some(&self.standard_device_bar) 460 } 461 #[inline(always)] 462 fn irq_type_mut(&mut self) -> Option<&mut IrqType> { 463 Some(&mut self.irq_type) 464 } 465 #[inline(always)] 466 fn irq_vector_mut(&mut self) -> Option<&mut Vec<u16>> { 467 Some(&mut self.irq_vector) 468 } 469 } 470 471 /// Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci桥设备结构体 472 #[derive(Clone, Debug)] 473 pub struct PciDeviceStructurePciToPciBridge { 474 pub common_header: PciDeviceStructureHeader, 475 // 中断结构体,包括legacy,msi,msix三种情况 476 pub irq_type: IrqType, 477 // 使用的中断号的vec集合 478 pub irq_vector: Vec<u16>, 479 pub bar0: u32, 480 pub bar1: u32, 481 pub primary_bus_number: u8, 482 pub secondary_bus_number: u8, 483 pub subordinate_bus_number: u8, 484 pub secondary_latency_timer: u8, 485 pub io_base: u8, 486 pub io_limit: u8, 487 pub secondary_status: u16, 488 pub memory_base: u16, 489 pub memory_limit: u16, 490 pub prefetchable_memory_base: u16, 491 pub prefetchable_memory_limit: u16, 492 pub prefetchable_base_upper_32_bits: u32, 493 pub prefetchable_limit_upper_32_bits: u32, 494 pub io_base_upper_16_bits: u16, 495 pub io_limit_upper_16_bits: u16, 496 pub capability_pointer: u8, 497 pub reserved0: u8, 498 pub reserved1: u16, 499 pub expansion_rom_base_address: u32, 500 pub interrupt_line: u8, 501 pub interrupt_pin: u8, 502 pub bridge_control: u16, 503 } 504 impl PciDeviceStructure for PciDeviceStructurePciToPciBridge { 505 #[inline(always)] 506 fn header_type(&self) -> HeaderType { 507 HeaderType::PciPciBridge 508 } 509 #[inline(always)] 510 fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> { 511 Some(self) 512 } 513 #[inline(always)] 514 fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> { 515 Some(self) 516 } 517 #[inline(always)] 518 fn common_header(&self) -> &PciDeviceStructureHeader { 519 &self.common_header 520 } 521 #[inline(always)] 522 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader { 523 &mut self.common_header 524 } 525 #[inline(always)] 526 fn irq_type_mut(&mut self) -> Option<&mut IrqType> { 527 Some(&mut self.irq_type) 528 } 529 #[inline(always)] 530 fn irq_vector_mut(&mut self) -> Option<&mut Vec<u16>> { 531 Some(&mut self.irq_vector) 532 } 533 } 534 /// Pci_Device_Structure_Pci_to_Cardbus_Bridge Pci_to_Cardbus桥设备结构体 535 #[derive(Clone, Debug)] 536 pub struct PciDeviceStructurePciToCardbusBridge { 537 pub common_header: PciDeviceStructureHeader, 538 pub cardbus_socket_ex_ca_base_address: u32, 539 pub offset_of_capabilities_list: u8, 540 pub reserved: u8, 541 pub secondary_status: u16, 542 pub pci_bus_number: u8, 543 pub card_bus_bus_number: u8, 544 pub subordinate_bus_number: u8, 545 pub card_bus_latency_timer: u8, 546 pub memory_base_address0: u32, 547 pub memory_limit0: u32, 548 pub memory_base_address1: u32, 549 pub memory_limit1: u32, 550 pub io_base_address0: u32, 551 pub io_limit0: u32, 552 pub io_base_address1: u32, 553 pub io_limit1: u32, 554 pub interrupt_line: u8, 555 pub interrupt_pin: u8, 556 pub bridge_control: u16, 557 pub subsystem_device_id: u16, 558 pub subsystem_vendor_id: u16, 559 pub pc_card_legacy_mode_base_address_16_bit: u32, 560 } 561 impl PciDeviceStructure for PciDeviceStructurePciToCardbusBridge { 562 #[inline(always)] 563 fn header_type(&self) -> HeaderType { 564 HeaderType::PciCardbusBridge 565 } 566 #[inline(always)] 567 fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> { 568 Some(&self) 569 } 570 #[inline(always)] 571 fn as_pci_to_carbus_bridge_device_mut( 572 &mut self, 573 ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> { 574 Some(self) 575 } 576 #[inline(always)] 577 fn common_header(&self) -> &PciDeviceStructureHeader { 578 &self.common_header 579 } 580 #[inline(always)] 581 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader { 582 &mut self.common_header 583 } 584 #[inline(always)] 585 fn irq_type_mut(&mut self) -> Option<&mut IrqType> { 586 None 587 } 588 #[inline(always)] 589 fn irq_vector_mut(&mut self) -> Option<&mut Vec<u16>> { 590 None 591 } 592 } 593 594 /// 代表一个PCI segement greoup. 595 #[derive(Copy, Clone, Debug, PartialEq)] 596 pub struct PciRoot { 597 pub physical_address_base: u64, //物理地址,acpi获取 598 pub mmio_base: Option<*mut u32>, //映射后的虚拟地址,为方便访问数据这里转化成指针 599 pub segement_group_number: SegmentGroupNumber, //segement greoup的id 600 pub bus_begin: u8, //该分组中的最小bus 601 pub bus_end: u8, //该分组中的最大bus 602 } 603 ///线程间共享需要,该结构体只需要在初始化时写入数据,无需读写锁保证线程安全 604 unsafe impl Send for PciRoot {} 605 unsafe impl Sync for PciRoot {} 606 ///实现PciRoot的Display trait,自定义输出 607 impl Display for PciRoot { 608 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 609 write!( 610 f, 611 "PCI Root with segement:{}, bus begin at {}, bus end at {}, physical address at {:#x},mapped at {:#x}", 612 self.segement_group_number, self.bus_begin, self.bus_end, self.physical_address_base, self.mmio_base.unwrap() as usize 613 ) 614 } 615 } 616 617 impl PciRoot { 618 /// @brief 初始化结构体,获取ecam root所在物理地址后map到虚拟地址,再将该虚拟地址加入mmio_base变量 619 /// @return 成功返回结果,错误返回错误类型 620 pub fn new(segment_group_number: SegmentGroupNumber) -> Result<Self, PciError> { 621 let mut pci_root = PciArch::ecam_root(segment_group_number)?; 622 pci_root.map()?; 623 Ok(pci_root) 624 } 625 /// @brief 完成物理地址到虚拟地址的映射,并将虚拟地址加入mmio_base变量 626 /// @return 返回错误或Ok(0) 627 fn map(&mut self) -> Result<u8, PciError> { 628 //kdebug!("bus_begin={},bus_end={}", self.bus_begin,self.bus_end); 629 let bus_number = (self.bus_end - self.bus_begin) as u32 + 1; 630 let bus_number_double = (bus_number - 1) / 2 + 1; //一个bus占据1MB空间,计算全部bus占据空间相对于2MB空间的个数 631 let mut virtaddress: u64 = 0; 632 let vaddr_ptr = &mut virtaddress as *mut u64; 633 let mut virtsize: u64 = 0; 634 let virtsize_ptr = &mut virtsize as *mut u64; 635 let size = bus_number_double * PAGE_2M_SIZE; 636 unsafe { 637 if let Err(_) = mmio_pool().create_mmio( 638 size as usize, 639 (VM_IO | VM_DONTCOPY) as u64, 640 vaddr_ptr, 641 virtsize_ptr, 642 ) { 643 kerror!("Create mmio failed when initing ecam"); 644 return Err(PciError::CreateMmioError); 645 }; 646 647 //kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize); 648 let vaddr = VirtAddr::new(virtaddress as usize); 649 let paddr = PhysAddr::new(self.physical_address_base as usize); 650 // kdebug!("pci root: map: vaddr={vaddr:?}, paddr={paddr:?}, size={size}"); 651 let page_flags = PageFlags::mmio_flags(); 652 let mut kernel_mapper = KernelMapper::lock(); 653 // todo: 添加错误处理代码。因为内核映射器可能是只读的,所以可能会出错 654 assert!(kernel_mapper 655 .map_phys_with_size(vaddr, paddr, size as usize, page_flags, true) 656 .is_ok()); 657 drop(kernel_mapper); 658 } 659 self.mmio_base = Some(virtaddress as *mut u32); 660 Ok(0) 661 } 662 /// @brief 获得要操作的寄存器相对于mmio_offset的偏移量 663 /// @param bus_device_function 在同一个group中pci设备的唯一标识符 664 /// @param register_offset 寄存器在设备中的offset 665 /// @return u32 要操作的寄存器相对于mmio_offset的偏移量 666 fn cam_offset(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32 { 667 assert!(bus_device_function.valid()); 668 let bdf = ((bus_device_function.bus - self.bus_begin) as u32) << 8 669 | (bus_device_function.device as u32) << 3 670 | bus_device_function.function as u32; 671 let address = bdf << 12 | register_offset as u32; 672 // Ensure that address is word-aligned. 673 assert!(address & 0x3 == 0); 674 address 675 } 676 /// @brief 通过bus_device_function和offset读取相应位置寄存器的值(32位) 677 /// @param bus_device_function 在同一个group中pci设备的唯一标识符 678 /// @param register_offset 寄存器在设备中的offset 679 /// @return u32 寄存器读值结果 680 pub fn read_config(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32 { 681 let address = self.cam_offset(bus_device_function, register_offset); 682 unsafe { 683 // Right shift to convert from byte offset to word offset. 684 (self.mmio_base.unwrap().add((address >> 2) as usize)).read_volatile() 685 } 686 } 687 688 /// @brief 通过bus_device_function和offset写入相应位置寄存器值(32位) 689 /// @param bus_device_function 在同一个group中pci设备的唯一标识符 690 /// @param register_offset 寄存器在设备中的offset 691 /// @param data 要写入的值 692 pub fn write_config( 693 &mut self, 694 bus_device_function: BusDeviceFunction, 695 register_offset: u16, 696 data: u32, 697 ) { 698 let address = self.cam_offset(bus_device_function, register_offset); 699 // Safe because both the `mmio_base` and the address offset are properly aligned, and the 700 // resulting pointer is within the MMIO range of the CAM. 701 unsafe { 702 // Right shift to convert from byte offset to word offset. 703 (self.mmio_base.unwrap().add((address >> 2) as usize)).write_volatile(data) 704 } 705 } 706 /// @brief 返回迭代器,遍历pcie设备的external_capabilities 707 pub fn external_capabilities( 708 &self, 709 bus_device_function: BusDeviceFunction, 710 ) -> ExternalCapabilityIterator { 711 ExternalCapabilityIterator { 712 root: self, 713 bus_device_function, 714 next_capability_offset: Some(0x100), 715 } 716 } 717 } 718 /// Gets the capabilities 'pointer' for the device function, if any. 719 /// @brief 获取第一个capability 的offset 720 /// @param bus_device_function PCI设备的唯一标识 721 /// @return Option<u8> offset 722 pub fn capabilities_offset(bus_device_function: BusDeviceFunction) -> Option<u8> { 723 let result = PciArch::read_config(&bus_device_function, STATUS_COMMAND_OFFSET); 724 let status: Status = Status::from_bits_truncate((result >> 16) as u16); 725 if status.contains(Status::CAPABILITIES_LIST) { 726 let cap_pointer = PciArch::read_config(&bus_device_function, 0x34) as u8 & 0xFC; 727 Some(cap_pointer) 728 } else { 729 None 730 } 731 } 732 733 /// @brief 读取pci设备头部 734 /// @param bus_device_function PCI设备的唯一标识 735 /// @param add_to_list 是否添加到链表 736 /// @return 返回的header(trait 类型) 737 fn pci_read_header( 738 bus_device_function: BusDeviceFunction, 739 add_to_list: bool, 740 ) -> Result<Box<dyn PciDeviceStructure>, PciError> { 741 // 先读取公共header 742 let result = PciArch::read_config(&bus_device_function, 0x00); 743 let vendor_id = result as u16; 744 let device_id = (result >> 16) as u16; 745 746 let result = PciArch::read_config(&bus_device_function, 0x04); 747 let command = result as u16; 748 let status = (result >> 16) as u16; 749 750 let result = PciArch::read_config(&bus_device_function, 0x08); 751 let revision_id = result as u8; 752 let prog_if = (result >> 8) as u8; 753 let subclass = (result >> 16) as u8; 754 let class_code = (result >> 24) as u8; 755 756 let result = PciArch::read_config(&bus_device_function, 0x0c); 757 let cache_line_size = result as u8; 758 let latency_timer = (result >> 8) as u8; 759 let header_type = (result >> 16) as u8; 760 let bist = (result >> 24) as u8; 761 if vendor_id == 0xffff { 762 return Err(PciError::GetWrongHeader); 763 } 764 let header = PciDeviceStructureHeader { 765 bus_device_function, 766 vendor_id, 767 device_id, 768 command, 769 status, 770 revision_id, 771 prog_if, 772 subclass, 773 class_code, 774 cache_line_size, 775 latency_timer, 776 header_type, 777 bist, 778 }; 779 match HeaderType::from(header_type & 0x7f) { 780 HeaderType::Standard => { 781 let general_device = pci_read_general_device_header(header, &bus_device_function); 782 let box_general_device = Box::new(general_device); 783 let box_general_device_clone = box_general_device.clone(); 784 if add_to_list { 785 PCI_DEVICE_LINKEDLIST.add(box_general_device); 786 } 787 Ok(box_general_device_clone) 788 } 789 HeaderType::PciPciBridge => { 790 let pci_to_pci_bridge = pci_read_pci_to_pci_bridge_header(header, &bus_device_function); 791 let box_pci_to_pci_bridge = Box::new(pci_to_pci_bridge); 792 let box_pci_to_pci_bridge_clone = box_pci_to_pci_bridge.clone(); 793 if add_to_list { 794 PCI_DEVICE_LINKEDLIST.add(box_pci_to_pci_bridge); 795 } 796 Ok(box_pci_to_pci_bridge_clone) 797 } 798 HeaderType::PciCardbusBridge => { 799 let pci_cardbus_bridge = 800 pci_read_pci_to_cardbus_bridge_header(header, &bus_device_function); 801 let box_pci_cardbus_bridge = Box::new(pci_cardbus_bridge); 802 let box_pci_cardbus_bridge_clone = box_pci_cardbus_bridge.clone(); 803 if add_to_list { 804 PCI_DEVICE_LINKEDLIST.add(box_pci_cardbus_bridge); 805 } 806 Ok(box_pci_cardbus_bridge_clone) 807 } 808 HeaderType::Unrecognised(_) => Err(PciError::UnrecognisedHeaderType), 809 } 810 } 811 812 /// @brief 读取type为0x0的pci设备的header 813 /// 本函数只应被 pci_read_header()调用 814 /// @param common_header 共有头部 815 /// @param bus_device_function PCI设备的唯一标识 816 /// @return Pci_Device_Structure_General_Device 标准设备头部 817 fn pci_read_general_device_header( 818 common_header: PciDeviceStructureHeader, 819 bus_device_function: &BusDeviceFunction, 820 ) -> PciDeviceStructureGeneralDevice { 821 let standard_device_bar = PciStandardDeviceBar::default(); 822 let cardbus_cis_pointer = PciArch::read_config(bus_device_function, 0x28); 823 824 let result = PciArch::read_config(bus_device_function, 0x2c); 825 let subsystem_vendor_id = result as u16; 826 let subsystem_id = (result >> 16) as u16; 827 828 let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x30); 829 830 let result = PciArch::read_config(bus_device_function, 0x34); 831 let capabilities_pointer = result as u8; 832 let reserved0 = (result >> 8) as u8; 833 let reserved1 = (result >> 16) as u16; 834 835 let reserved2 = PciArch::read_config(bus_device_function, 0x38); 836 837 let result = PciArch::read_config(bus_device_function, 0x3c); 838 let interrupt_line = result as u8; 839 let interrupt_pin = (result >> 8) as u8; 840 let min_grant = (result >> 16) as u8; 841 let max_latency = (result >> 24) as u8; 842 PciDeviceStructureGeneralDevice { 843 common_header, 844 irq_type: IrqType::Unused, 845 irq_vector: Vec::new(), 846 standard_device_bar, 847 cardbus_cis_pointer, 848 subsystem_vendor_id, 849 subsystem_id, 850 expansion_rom_base_address, 851 capabilities_pointer, 852 reserved0, 853 reserved1, 854 reserved2, 855 interrupt_line, 856 interrupt_pin, 857 min_grant, 858 max_latency, 859 } 860 } 861 862 /// @brief 读取type为0x1的pci设备的header 863 /// 本函数只应被 pci_read_header()调用 864 /// @param common_header 共有头部 865 /// @param bus_device_function PCI设备的唯一标识 866 /// @return Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci 桥设备头部 867 fn pci_read_pci_to_pci_bridge_header( 868 common_header: PciDeviceStructureHeader, 869 bus_device_function: &BusDeviceFunction, 870 ) -> PciDeviceStructurePciToPciBridge { 871 let bar0 = PciArch::read_config(bus_device_function, 0x10); 872 let bar1 = PciArch::read_config(bus_device_function, 0x14); 873 874 let result = PciArch::read_config(bus_device_function, 0x18); 875 876 let primary_bus_number = result as u8; 877 let secondary_bus_number = (result >> 8) as u8; 878 let subordinate_bus_number = (result >> 16) as u8; 879 let secondary_latency_timer = (result >> 24) as u8; 880 881 let result = PciArch::read_config(bus_device_function, 0x1c); 882 let io_base = result as u8; 883 let io_limit = (result >> 8) as u8; 884 let secondary_status = (result >> 16) as u16; 885 886 let result = PciArch::read_config(bus_device_function, 0x20); 887 let memory_base = result as u16; 888 let memory_limit = (result >> 16) as u16; 889 890 let result = PciArch::read_config(bus_device_function, 0x24); 891 let prefetchable_memory_base = result as u16; 892 let prefetchable_memory_limit = (result >> 16) as u16; 893 894 let prefetchable_base_upper_32_bits = PciArch::read_config(bus_device_function, 0x28); 895 let prefetchable_limit_upper_32_bits = PciArch::read_config(bus_device_function, 0x2c); 896 897 let result = PciArch::read_config(bus_device_function, 0x30); 898 let io_base_upper_16_bits = result as u16; 899 let io_limit_upper_16_bits = (result >> 16) as u16; 900 901 let result = PciArch::read_config(bus_device_function, 0x34); 902 let capability_pointer = result as u8; 903 let reserved0 = (result >> 8) as u8; 904 let reserved1 = (result >> 16) as u16; 905 906 let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x38); 907 908 let result = PciArch::read_config(bus_device_function, 0x3c); 909 let interrupt_line = result as u8; 910 let interrupt_pin = (result >> 8) as u8; 911 let bridge_control = (result >> 16) as u16; 912 PciDeviceStructurePciToPciBridge { 913 common_header, 914 irq_type: IrqType::Unused, 915 irq_vector: Vec::new(), 916 bar0, 917 bar1, 918 primary_bus_number, 919 secondary_bus_number, 920 subordinate_bus_number, 921 secondary_latency_timer, 922 io_base, 923 io_limit, 924 secondary_status, 925 memory_base, 926 memory_limit, 927 prefetchable_memory_base, 928 prefetchable_memory_limit, 929 prefetchable_base_upper_32_bits, 930 prefetchable_limit_upper_32_bits, 931 io_base_upper_16_bits, 932 io_limit_upper_16_bits, 933 capability_pointer, 934 reserved0, 935 reserved1, 936 expansion_rom_base_address, 937 interrupt_line, 938 interrupt_pin, 939 bridge_control, 940 } 941 } 942 943 /// @brief 读取type为0x2的pci设备的header 944 /// 本函数只应被 pci_read_header()调用 945 /// @param common_header 共有头部 946 /// @param bus_device_function PCI设备的唯一标识 947 /// @return Pci_Device_Structure_Pci_to_Cardbus_Bridge pci-to-cardbus 桥设备头部 948 fn pci_read_pci_to_cardbus_bridge_header( 949 common_header: PciDeviceStructureHeader, 950 busdevicefunction: &BusDeviceFunction, 951 ) -> PciDeviceStructurePciToCardbusBridge { 952 let cardbus_socket_ex_ca_base_address = PciArch::read_config(busdevicefunction, 0x10); 953 954 let result = PciArch::read_config(busdevicefunction, 0x14); 955 let offset_of_capabilities_list = result as u8; 956 let reserved = (result >> 8) as u8; 957 let secondary_status = (result >> 16) as u16; 958 959 let result = PciArch::read_config(busdevicefunction, 0x18); 960 let pci_bus_number = result as u8; 961 let card_bus_bus_number = (result >> 8) as u8; 962 let subordinate_bus_number = (result >> 16) as u8; 963 let card_bus_latency_timer = (result >> 24) as u8; 964 965 let memory_base_address0 = PciArch::read_config(busdevicefunction, 0x1c); 966 let memory_limit0 = PciArch::read_config(busdevicefunction, 0x20); 967 let memory_base_address1 = PciArch::read_config(busdevicefunction, 0x24); 968 let memory_limit1 = PciArch::read_config(busdevicefunction, 0x28); 969 970 let io_base_address0 = PciArch::read_config(busdevicefunction, 0x2c); 971 let io_limit0 = PciArch::read_config(busdevicefunction, 0x30); 972 let io_base_address1 = PciArch::read_config(busdevicefunction, 0x34); 973 let io_limit1 = PciArch::read_config(busdevicefunction, 0x38); 974 let result = PciArch::read_config(busdevicefunction, 0x3c); 975 let interrupt_line = result as u8; 976 let interrupt_pin = (result >> 8) as u8; 977 let bridge_control = (result >> 16) as u16; 978 979 let result = PciArch::read_config(busdevicefunction, 0x40); 980 let subsystem_device_id = result as u16; 981 let subsystem_vendor_id = (result >> 16) as u16; 982 983 let pc_card_legacy_mode_base_address_16_bit = PciArch::read_config(busdevicefunction, 0x44); 984 PciDeviceStructurePciToCardbusBridge { 985 common_header, 986 cardbus_socket_ex_ca_base_address, 987 offset_of_capabilities_list, 988 reserved, 989 secondary_status, 990 pci_bus_number, 991 card_bus_bus_number, 992 subordinate_bus_number, 993 card_bus_latency_timer, 994 memory_base_address0, 995 memory_limit0, 996 memory_base_address1, 997 memory_limit1, 998 io_base_address0, 999 io_limit0, 1000 io_base_address1, 1001 io_limit1, 1002 interrupt_line, 1003 interrupt_pin, 1004 bridge_control, 1005 subsystem_device_id, 1006 subsystem_vendor_id, 1007 pc_card_legacy_mode_base_address_16_bit, 1008 } 1009 } 1010 1011 /// @brief 检查所有bus上的设备并将其加入链表 1012 /// @return 成功返回ok(),失败返回失败原因 1013 fn pci_check_all_buses() -> Result<u8, PciError> { 1014 kinfo!("Checking all devices in PCI bus..."); 1015 let busdevicefunction = BusDeviceFunction { 1016 bus: 0, 1017 device: 0, 1018 function: 0, 1019 }; 1020 let header = pci_read_header(busdevicefunction, false)?; 1021 let common_header = header.common_header(); 1022 pci_check_bus(0)?; 1023 if common_header.header_type & 0x80 != 0 { 1024 for function in 1..8 { 1025 pci_check_bus(function)?; 1026 } 1027 } 1028 Ok(0) 1029 } 1030 /// @brief 检查特定设备并将其加入链表 1031 /// @return 成功返回ok(),失败返回失败原因 1032 fn pci_check_function(busdevicefunction: BusDeviceFunction) -> Result<u8, PciError> { 1033 //kdebug!("PCI check function {}", busdevicefunction.function); 1034 let header = match pci_read_header(busdevicefunction, true) { 1035 Ok(header) => header, 1036 Err(PciError::GetWrongHeader) => { 1037 return Ok(255); 1038 } 1039 Err(e) => { 1040 return Err(e); 1041 } 1042 }; 1043 let common_header = header.common_header(); 1044 if (common_header.class_code == 0x06) 1045 && (common_header.subclass == 0x04 || common_header.subclass == 0x09) 1046 { 1047 let pci_to_pci_bridge = header 1048 .as_pci_to_pci_bridge_device() 1049 .ok_or(PciError::PciDeviceStructureTransformError)?; 1050 let secondary_bus = pci_to_pci_bridge.secondary_bus_number; 1051 pci_check_bus(secondary_bus)?; 1052 } 1053 Ok(0) 1054 } 1055 1056 /// @brief 检查device上的设备并将其加入链表 1057 /// @return 成功返回ok(),失败返回失败原因 1058 fn pci_check_device(bus: u8, device: u8) -> Result<u8, PciError> { 1059 //kdebug!("PCI check device {}", device); 1060 let busdevicefunction = BusDeviceFunction { 1061 bus, 1062 device, 1063 function: 0, 1064 }; 1065 let header = match pci_read_header(busdevicefunction, false) { 1066 Ok(header) => header, 1067 Err(PciError::GetWrongHeader) => { 1068 //设备不存在,直接返回即可,不用终止遍历 1069 return Ok(255); 1070 } 1071 Err(e) => { 1072 return Err(e); 1073 } 1074 }; 1075 pci_check_function(busdevicefunction)?; 1076 let common_header = header.common_header(); 1077 if common_header.header_type & 0x80 != 0 { 1078 kdebug!( 1079 "Detected multi func device in bus{},device{}", 1080 busdevicefunction.bus, 1081 busdevicefunction.device 1082 ); 1083 // 这是一个多function的设备,因此查询剩余的function 1084 for function in 1..8 { 1085 let busdevicefunction = BusDeviceFunction { 1086 bus, 1087 device, 1088 function, 1089 }; 1090 pci_check_function(busdevicefunction)?; 1091 } 1092 } 1093 Ok(0) 1094 } 1095 /// @brief 检查该bus上的设备并将其加入链表 1096 /// @return 成功返回ok(),失败返回失败原因 1097 fn pci_check_bus(bus: u8) -> Result<u8, PciError> { 1098 //kdebug!("PCI check bus {}", bus); 1099 for device in 0..32 { 1100 pci_check_device(bus, device)?; 1101 } 1102 Ok(0) 1103 } 1104 /// @brief pci初始化函数(for c) 1105 #[no_mangle] 1106 pub extern "C" fn rs_pci_init() { 1107 pci_init(); 1108 if PCI_ROOT_0.is_some() { 1109 kdebug!("{}", PCI_ROOT_0.unwrap()); 1110 //以下为ecam的读取寄存器值测试,经测试可正常读取 1111 // let bus_device_function = BusDeviceFunction { 1112 // bus: 0, 1113 // device: 2, 1114 // function: 0, 1115 // }; 1116 // kdebug!( 1117 // "Ecam read virtio-net device status={:#x}", 1118 // (PCI_ROOT_0.unwrap().read_config(bus_device_function, 4)>>16) as u16 1119 // ); 1120 } 1121 } 1122 /// @brief pci初始化函数 1123 pub fn pci_init() { 1124 kinfo!("Initializing PCI bus..."); 1125 if let Err(e) = pci_check_all_buses() { 1126 kerror!("pci init failed when checking bus because of error: {}", e); 1127 return; 1128 } 1129 kinfo!( 1130 "Total pci device and function num = {}", 1131 PCI_DEVICE_LINKEDLIST.num() 1132 ); 1133 let list = PCI_DEVICE_LINKEDLIST.read(); 1134 for box_pci_device in list.iter() { 1135 let common_header = box_pci_device.common_header(); 1136 match box_pci_device.header_type() { 1137 HeaderType::Standard if common_header.status & 0x10 != 0 => { 1138 kinfo!("Found pci standard device with class code ={} subclass={} status={:#x} cap_pointer={:#x} vendor={:#x}, device id={:#x},bdf={}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer,common_header.vendor_id, common_header.device_id,common_header.bus_device_function); 1139 } 1140 HeaderType::Standard => { 1141 kinfo!( 1142 "Found pci standard device with class code ={} subclass={} status={:#x} ", 1143 common_header.class_code, 1144 common_header.subclass, 1145 common_header.status 1146 ); 1147 } 1148 HeaderType::PciPciBridge if common_header.status & 0x10 != 0 => { 1149 kinfo!("Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} cap_pointer={:#x}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer); 1150 } 1151 HeaderType::PciPciBridge => { 1152 kinfo!( 1153 "Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} ", 1154 common_header.class_code, 1155 common_header.subclass, 1156 common_header.status 1157 ); 1158 } 1159 HeaderType::PciCardbusBridge => { 1160 kinfo!( 1161 "Found pcicardbus bridge device with class code ={} subclass={} status={:#x} ", 1162 common_header.class_code, 1163 common_header.subclass, 1164 common_header.status 1165 ); 1166 } 1167 HeaderType::Unrecognised(_) => {} 1168 } 1169 } 1170 kinfo!("PCI bus initialized."); 1171 } 1172 1173 /// An identifier for a PCI bus, device and function. 1174 /// PCI设备的唯一标识 1175 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 1176 pub struct BusDeviceFunction { 1177 /// The PCI bus number, between 0 and 255. 1178 pub bus: u8, 1179 /// The device number on the bus, between 0 and 31. 1180 pub device: u8, 1181 /// The function number of the device, between 0 and 7. 1182 pub function: u8, 1183 } 1184 impl BusDeviceFunction { 1185 /// Returns whether the device and function numbers are valid, i.e. the device is between 0 and 1186 ///@brief 检测BusDeviceFunction实例是否有效 1187 ///@param self 1188 ///@return bool 是否有效 1189 #[allow(dead_code)] 1190 pub fn valid(&self) -> bool { 1191 self.device < 32 && self.function < 8 1192 } 1193 } 1194 ///实现BusDeviceFunction的Display trait,使其可以直接输出 1195 impl Display for BusDeviceFunction { 1196 fn fmt(&self, f: &mut Formatter) -> fmt::Result { 1197 write!( 1198 f, 1199 "bus {} device {} function{}", 1200 self.bus, self.device, self.function 1201 ) 1202 } 1203 } 1204 /// The location allowed for a memory BAR. 1205 /// memory BAR的三种情况 1206 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 1207 pub enum MemoryBarType { 1208 /// The BAR has a 32-bit address and can be mapped anywhere in 32-bit address space. 1209 Width32, 1210 /// The BAR must be mapped below 1MiB. 1211 Below1MiB, 1212 /// The BAR has a 64-bit address and can be mapped anywhere in 64-bit address space. 1213 Width64, 1214 } 1215 ///实现MemoryBarType与u8的类型转换 1216 impl From<MemoryBarType> for u8 { 1217 fn from(bar_type: MemoryBarType) -> Self { 1218 match bar_type { 1219 MemoryBarType::Width32 => 0, 1220 MemoryBarType::Below1MiB => 1, 1221 MemoryBarType::Width64 => 2, 1222 } 1223 } 1224 } 1225 ///实现MemoryBarType与u8的类型转换 1226 impl TryFrom<u8> for MemoryBarType { 1227 type Error = PciError; 1228 fn try_from(value: u8) -> Result<Self, Self::Error> { 1229 match value { 1230 0 => Ok(Self::Width32), 1231 1 => Ok(Self::Below1MiB), 1232 2 => Ok(Self::Width64), 1233 _ => Err(PciError::InvalidBarType), 1234 } 1235 } 1236 } 1237 1238 /// Information about a PCI Base Address Register. 1239 /// BAR的三种类型 Memory/IO/Unused 1240 #[derive(Clone, Debug, Eq, PartialEq)] 1241 pub enum BarInfo { 1242 /// The BAR is for a memory region. 1243 Memory { 1244 /// The size of the BAR address and where it can be located. 1245 address_type: MemoryBarType, 1246 /// If true, then reading from the region doesn't have side effects. The CPU may cache reads 1247 /// and merge repeated stores. 1248 prefetchable: bool, 1249 /// The memory address, always 16-byte aligned. 1250 address: u64, 1251 /// The size of the BAR in bytes. 1252 size: u32, 1253 /// The virtaddress for a memory bar(mapped). 1254 virtaddress: u64, 1255 }, 1256 /// The BAR is for an I/O region. 1257 IO { 1258 /// The I/O address, always 4-byte aligned. 1259 address: u32, 1260 /// The size of the BAR in bytes. 1261 size: u32, 1262 }, 1263 Unused, 1264 } 1265 1266 impl BarInfo { 1267 /// Returns the address and size of this BAR if it is a memory bar, or `None` if it is an IO 1268 /// BAR. 1269 ///@brief 得到某个bar的memory_address与size(前提是他的类型为Memory Bar) 1270 ///@param self 1271 ///@return Option<(u64, u32) 是Memory Bar返回内存地址与大小,不是则返回None 1272 pub fn memory_address_size(&self) -> Option<(u64, u32)> { 1273 if let Self::Memory { address, size, .. } = self { 1274 Some((*address, *size)) 1275 } else { 1276 None 1277 } 1278 } 1279 ///@brief 得到某个bar的virtaddress(前提是他的类型为Memory Bar) 1280 ///@param self 1281 ///@return Option<(u64) 是Memory Bar返回映射的虚拟地址,不是则返回None 1282 pub fn virtual_address(&self) -> Option<u64> { 1283 if let Self::Memory { virtaddress, .. } = self { 1284 Some(*virtaddress) 1285 } else { 1286 None 1287 } 1288 } 1289 } 1290 ///实现BarInfo的Display trait,自定义输出 1291 impl Display for BarInfo { 1292 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 1293 match self { 1294 Self::Memory { 1295 address_type, 1296 prefetchable, 1297 address, 1298 size, 1299 virtaddress, 1300 } => write!( 1301 f, 1302 "Memory space at {:#010x}, size {}, type {:?}, prefetchable {},mapped at {:#x}", 1303 address, size, address_type, prefetchable, virtaddress 1304 ), 1305 Self::IO { address, size } => { 1306 write!(f, "I/O space at {:#010x}, size {}", address, size) 1307 } 1308 Self::Unused => { 1309 write!(f, "Unused bar") 1310 } 1311 } 1312 } 1313 } 1314 // todo 增加对桥的bar的支持 1315 pub trait PciDeviceBar {} 1316 1317 ///一个普通PCI设备(非桥)有6个BAR寄存器,PciStandardDeviceBar存储其全部信息 1318 #[derive(Clone, Debug, Eq, PartialEq)] 1319 pub struct PciStandardDeviceBar { 1320 bar0: BarInfo, 1321 bar1: BarInfo, 1322 bar2: BarInfo, 1323 bar3: BarInfo, 1324 bar4: BarInfo, 1325 bar5: BarInfo, 1326 } 1327 1328 impl PciStandardDeviceBar { 1329 ///@brief 得到某个bar的barinfo 1330 ///@param self ,bar_index(0-5) 1331 ///@return Result<&BarInfo, PciError> bar_index在0-5则返回对应的bar_info结构体,超出范围则返回错误 1332 pub fn get_bar(&self, bar_index: u8) -> Result<&BarInfo, PciError> { 1333 match bar_index { 1334 0 => Ok(&self.bar0), 1335 1 => Ok(&self.bar1), 1336 2 => Ok(&self.bar2), 1337 3 => Ok(&self.bar3), 1338 4 => Ok(&self.bar4), 1339 5 => Ok(&self.bar5), 1340 _ => Err(PciError::InvalidBarType), 1341 } 1342 } 1343 } 1344 ///实现PciStandardDeviceBar的Display trait,使其可以直接输出 1345 impl Display for PciStandardDeviceBar { 1346 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 1347 write!( 1348 f, 1349 "\r\nBar0:{}\r\n Bar1:{}\r\n Bar2:{}\r\n Bar3:{}\r\nBar4:{}\r\nBar5:{}", 1350 self.bar0, self.bar1, self.bar2, self.bar3, self.bar4, self.bar5 1351 ) 1352 } 1353 } 1354 ///实现PciStandardDeviceBar的Default trait,使其可以简单初始化 1355 impl Default for PciStandardDeviceBar { 1356 fn default() -> Self { 1357 PciStandardDeviceBar { 1358 bar0: BarInfo::Unused, 1359 bar1: BarInfo::Unused, 1360 bar2: BarInfo::Unused, 1361 bar3: BarInfo::Unused, 1362 bar4: BarInfo::Unused, 1363 bar5: BarInfo::Unused, 1364 } 1365 } 1366 } 1367 1368 ///@brief 将某个pci设备的bar寄存器读取值后映射到虚拟地址 1369 ///@param self ,bus_device_function PCI设备的唯一标识符 1370 ///@return Result<PciStandardDeviceBar, PciError> 成功则返回对应的PciStandardDeviceBar结构体,失败则返回错误类型 1371 pub fn pci_bar_init( 1372 bus_device_function: BusDeviceFunction, 1373 ) -> Result<PciStandardDeviceBar, PciError> { 1374 let mut device_bar: PciStandardDeviceBar = PciStandardDeviceBar::default(); 1375 let mut bar_index_ignore: u8 = 255; 1376 for bar_index in 0..6 { 1377 if bar_index == bar_index_ignore { 1378 continue; 1379 } 1380 let bar_info; 1381 let mut virtaddress: u64 = 0; 1382 let bar_orig = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index); 1383 PciArch::write_config( 1384 &bus_device_function, 1385 BAR0_OFFSET + 4 * bar_index, 1386 0xffffffff, 1387 ); 1388 let size_mask = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index); 1389 // A wrapping add is necessary to correctly handle the case of unused BARs, which read back 1390 // as 0, and should be treated as size 0. 1391 let size = (!(size_mask & 0xfffffff0)).wrapping_add(1); 1392 //kdebug!("bar_orig:{:#x},size: {:#x}", bar_orig,size); 1393 // Restore the original value. 1394 PciArch::write_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index, bar_orig); 1395 if size == 0 { 1396 continue; 1397 } 1398 if bar_orig & 0x00000001 == 0x00000001 { 1399 // I/O space 1400 let address = bar_orig & 0xfffffffc; 1401 bar_info = BarInfo::IO { address, size }; 1402 } else { 1403 // Memory space 1404 let mut address = u64::from(bar_orig & 0xfffffff0); 1405 let prefetchable = bar_orig & 0x00000008 != 0; 1406 let address_type = MemoryBarType::try_from(((bar_orig & 0x00000006) >> 1) as u8)?; 1407 if address_type == MemoryBarType::Width64 { 1408 if bar_index >= 5 { 1409 return Err(PciError::InvalidBarType); 1410 } 1411 let address_top = 1412 PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * (bar_index + 1)); 1413 address |= u64::from(address_top) << 32; 1414 bar_index_ignore = bar_index + 1; //下个bar跳过,因为64位的memory bar覆盖了两个bar 1415 } 1416 let pci_address = PciAddr::new(address as usize); 1417 address = PciArch::address_pci_to_physical(pci_address) as u64; //PCI总线域物理地址转换为存储器域物理地址 1418 unsafe { 1419 let vaddr_ptr = &mut virtaddress as *mut u64; 1420 let mut virtsize: u64 = 0; 1421 let virtsize_ptr = &mut virtsize as *mut u64; 1422 1423 let size_want = size as usize; 1424 1425 if let Err(_) = mmio_pool().create_mmio( 1426 size_want, 1427 (VM_IO | VM_DONTCOPY) as u64, 1428 vaddr_ptr, 1429 virtsize_ptr, 1430 ) { 1431 kerror!("Create mmio failed when initing pci bar"); 1432 return Err(PciError::CreateMmioError); 1433 }; 1434 //kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize); 1435 let vaddr = VirtAddr::new(virtaddress as usize); 1436 let paddr = PhysAddr::new(address as usize); 1437 let page_flags = PageFlags::new() 1438 .set_write(true) 1439 .set_execute(true) 1440 .set_page_cache_disable(true) 1441 .set_page_write_through(true); 1442 kdebug!("Pci bar init: vaddr={vaddr:?}, paddr={paddr:?}, size_want={size_want}, page_flags={page_flags:?}"); 1443 let mut kernel_mapper = KernelMapper::lock(); 1444 // todo: 添加错误处理代码。因为内核映射器可能是只读的,所以可能会出错 1445 assert!(kernel_mapper 1446 .map_phys_with_size(vaddr, paddr, size_want, page_flags, true) 1447 .is_ok()); 1448 drop(kernel_mapper); 1449 } 1450 bar_info = BarInfo::Memory { 1451 address_type, 1452 prefetchable, 1453 address, 1454 size, 1455 virtaddress, 1456 }; 1457 } 1458 match bar_index { 1459 0 => { 1460 device_bar.bar0 = bar_info; 1461 } 1462 1 => { 1463 device_bar.bar1 = bar_info; 1464 } 1465 2 => { 1466 device_bar.bar2 = bar_info; 1467 } 1468 3 => { 1469 device_bar.bar3 = bar_info; 1470 } 1471 4 => { 1472 device_bar.bar4 = bar_info; 1473 } 1474 5 => { 1475 device_bar.bar5 = bar_info; 1476 } 1477 _ => {} 1478 } 1479 } 1480 kdebug!("pci_device_bar:{}", device_bar); 1481 return Ok(device_bar); 1482 } 1483 1484 /// Information about a PCI device capability. 1485 /// PCI设备的capability的信息 1486 #[derive(Debug, Copy, Clone, Eq, PartialEq)] 1487 pub struct CapabilityInfo { 1488 /// The offset of the capability in the PCI configuration space of the device function. 1489 pub offset: u8, 1490 /// The ID of the capability. 1491 pub id: u8, 1492 /// The third and fourth bytes of the capability, to save reading them again. 1493 pub private_header: u16, 1494 } 1495 1496 /// Iterator over capabilities for a device. 1497 /// 创建迭代器以遍历PCI设备的capability 1498 #[derive(Debug)] 1499 pub struct CapabilityIterator { 1500 pub bus_device_function: BusDeviceFunction, 1501 pub next_capability_offset: Option<u8>, 1502 } 1503 1504 impl Iterator for CapabilityIterator { 1505 type Item = CapabilityInfo; 1506 fn next(&mut self) -> Option<Self::Item> { 1507 let offset = self.next_capability_offset?; 1508 1509 // Read the first 4 bytes of the capability. 1510 let capability_header = PciArch::read_config(&self.bus_device_function, offset); 1511 let id = capability_header as u8; 1512 let next_offset = (capability_header >> 8) as u8; 1513 let private_header = (capability_header >> 16) as u16; 1514 1515 self.next_capability_offset = if next_offset == 0 { 1516 None 1517 } else if next_offset < 64 || next_offset & 0x3 != 0 { 1518 kwarn!("Invalid next capability offset {:#04x}", next_offset); 1519 None 1520 } else { 1521 Some(next_offset) 1522 }; 1523 1524 Some(CapabilityInfo { 1525 offset, 1526 id, 1527 private_header, 1528 }) 1529 } 1530 } 1531 1532 /// Information about a PCIe device capability. 1533 /// PCIe设备的external capability的信息 1534 #[derive(Debug, Copy, Clone, Eq, PartialEq)] 1535 pub struct ExternalCapabilityInfo { 1536 /// The offset of the capability in the PCI configuration space of the device function. 1537 pub offset: u16, 1538 /// The ID of the capability. 1539 pub id: u16, 1540 /// The third and fourth bytes of the capability, to save reading them again. 1541 pub capability_version: u8, 1542 } 1543 1544 /// Iterator over capabilities for a device. 1545 /// 创建迭代器以遍历PCIe设备的external capability 1546 #[derive(Debug)] 1547 pub struct ExternalCapabilityIterator<'a> { 1548 pub root: &'a PciRoot, 1549 pub bus_device_function: BusDeviceFunction, 1550 pub next_capability_offset: Option<u16>, 1551 } 1552 impl<'a> Iterator for ExternalCapabilityIterator<'a> { 1553 type Item = ExternalCapabilityInfo; 1554 fn next(&mut self) -> Option<Self::Item> { 1555 let offset = self.next_capability_offset?; 1556 1557 // Read the first 4 bytes of the capability. 1558 let capability_header = self.root.read_config(self.bus_device_function, offset); 1559 let id = capability_header as u16; 1560 let next_offset = (capability_header >> 20) as u16; 1561 let capability_version = ((capability_header >> 16) & 0xf) as u8; 1562 1563 self.next_capability_offset = if next_offset == 0 { 1564 None 1565 } else if next_offset < 0x100 || next_offset & 0x3 != 0 { 1566 kwarn!("Invalid next capability offset {:#04x}", next_offset); 1567 None 1568 } else { 1569 Some(next_offset) 1570 }; 1571 1572 Some(ExternalCapabilityInfo { 1573 offset, 1574 id, 1575 capability_version, 1576 }) 1577 } 1578 } 1579