xref: /DragonOS/kernel/src/driver/pci/pci.rs (revision bb5f098a864cee36b7d2c1ab9c029c0280d94a8a)
1 #![allow(dead_code)]
2 // 目前仅支持单主桥单Segment
3 
4 use super::pci_irq::{IrqType, PciIrqError};
5 use crate::arch::{PciArch, TraitPciArch};
6 use crate::include::bindings::bindings::{
7     initial_mm, mm_map, mm_struct, PAGE_2M_SIZE, VM_DONTCOPY, VM_IO,
8 };
9 use crate::libs::rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard};
10 use crate::mm::mmio_buddy::MMIO_POOL;
11 use crate::{kdebug, kerror, kinfo, kwarn};
12 use alloc::vec::Vec;
13 use alloc::{boxed::Box, collections::LinkedList};
14 use bitflags::bitflags;
15 use core::{
16     convert::TryFrom,
17     fmt::{self, Debug, Display, Formatter},
18 };
19 // PCI_DEVICE_LINKEDLIST 添加了读写锁的全局链表,里面存储了检索到的PCI设备结构体
20 // PCI_ROOT_0 Segment为0的全局PciRoot
21 lazy_static! {
22     pub static ref PCI_DEVICE_LINKEDLIST: PciDeviceLinkedList = PciDeviceLinkedList::new();
23     pub static ref PCI_ROOT_0: Option<PciRoot> = {
24         match PciRoot::new(0) {
25             Ok(root) => Some(root),
26             Err(err) => {
27                 kerror!("Pci_root init failed because of error: {}", err);
28                 None
29             }
30         }
31     };
32 }
33 /// PCI域地址
34 #[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)]
35 #[repr(transparent)]
36 pub struct PciAddr(usize);
37 
38 impl PciAddr {
39     #[inline(always)]
40     pub const fn new(address: usize) -> Self {
41         Self(address)
42     }
43 
44     /// @brief 获取PCI域地址的值
45     #[inline(always)]
46     pub fn data(&self) -> usize {
47         self.0
48     }
49 
50     /// @brief 将PCI域地址加上一个偏移量
51     #[inline(always)]
52     pub fn add(self, offset: usize) -> Self {
53         Self(self.0 + offset)
54     }
55 
56     /// @brief 判断PCI域地址是否按照指定要求对齐
57     #[inline(always)]
58     pub fn check_aligned(&self, align: usize) -> bool {
59         return self.0 & (align - 1) == 0;
60     }
61 }
62 impl Debug for PciAddr {
63     fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
64         write!(f, "PciAddr({:#x})", self.0)
65     }
66 }
67 
68 /// 添加了读写锁的链表,存储PCI设备结构体
69 pub struct PciDeviceLinkedList {
70     list: RwLock<LinkedList<Box<dyn PciDeviceStructure>>>,
71 }
72 
73 impl PciDeviceLinkedList {
74     /// @brief 初始化结构体
75     fn new() -> Self {
76         PciDeviceLinkedList {
77             list: RwLock::new(LinkedList::new()),
78         }
79     }
80     /// @brief 获取可读的linkedlist(读锁守卫)
81     /// @return RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>>  读锁守卫
82     pub fn read(&self) -> RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>> {
83         self.list.read()
84     }
85     /// @brief 获取可写的linkedlist(写锁守卫)
86     /// @return RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>>  写锁守卫
87     pub fn write(&self) -> RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>> {
88         self.list.write()
89     }
90     /// @brief 获取链表中PCI结构体数目
91     /// @return usize 链表中PCI结构体数目
92     pub fn num(&self) -> usize {
93         let list = self.list.read();
94         list.len()
95     }
96     /// @brief 添加Pci设备结构体到链表中
97     pub fn add(&self, device: Box<dyn PciDeviceStructure>) {
98         let mut list = self.list.write();
99         list.push_back(device);
100     }
101 }
102 
103 /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其可变引用
104 /// @param list 链表的写锁守卫
105 /// @param class_code 寄存器值
106 /// @param subclass 寄存器值,与class_code一起确定设备类型
107 /// @return Vec<&'a mut Box<(dyn PciDeviceStructure)  包含链表中所有满足条件的PCI结构体的可变引用的容器
108 pub fn get_pci_device_structure_mut<'a>(
109     list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>,
110     class_code: u8,
111     subclass: u8,
112 ) -> Vec<&'a mut Box<(dyn PciDeviceStructure)>> {
113     let mut result = Vec::new();
114     for box_pci_device_structure in list.iter_mut() {
115         let common_header = (*box_pci_device_structure).common_header();
116         if (common_header.class_code == class_code) && (common_header.subclass == subclass) {
117             result.push(box_pci_device_structure);
118         }
119     }
120     result
121 }
122 /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其不可变引用
123 /// @param list 链表的读锁守卫
124 /// @param class_code 寄存器值
125 /// @param subclass 寄存器值,与class_code一起确定设备类型
126 /// @return Vec<&'a Box<(dyn PciDeviceStructure)  包含链表中所有满足条件的PCI结构体的不可变引用的容器
127 pub fn get_pci_device_structure<'a>(
128     list: &'a mut RwLockReadGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>,
129     class_code: u8,
130     subclass: u8,
131 ) -> Vec<&'a Box<(dyn PciDeviceStructure)>> {
132     let mut result = Vec::new();
133     for box_pci_device_structure in list.iter() {
134         let common_header = (*box_pci_device_structure).common_header();
135         if (common_header.class_code == class_code) && (common_header.subclass == subclass) {
136             result.push(box_pci_device_structure);
137         }
138     }
139     result
140 }
141 
142 //Bar0寄存器的offset
143 const BAR0_OFFSET: u8 = 0x10;
144 //Status、Command寄存器的offset
145 const STATUS_COMMAND_OFFSET: u8 = 0x04;
146 /// ID for vendor-specific PCI capabilities.(Virtio Capabilities)
147 pub const PCI_CAP_ID_VNDR: u8 = 0x09;
148 pub const PCI_CAP_ID_MSI: u8 = 0x05;
149 pub const PCI_CAP_ID_MSIX: u8 = 0x11;
150 pub const PORT_PCI_CONFIG_ADDRESS: u16 = 0xcf8;
151 pub const PORT_PCI_CONFIG_DATA: u16 = 0xcfc;
152 // pci设备分组的id
153 pub type SegmentGroupNumber = u16; //理论上最多支持65535个Segment_Group
154 
155 bitflags! {
156     /// The status register in PCI configuration space.
157     pub struct Status: u16 {
158         // Bits 0-2 are reserved.
159         /// The state of the device's INTx# signal.
160         const INTERRUPT_STATUS = 1 << 3;
161         /// The device has a linked list of capabilities.
162         const CAPABILITIES_LIST = 1 << 4;
163         /// The device is capabile of running at 66 MHz rather than 33 MHz.
164         const MHZ_66_CAPABLE = 1 << 5;
165         // Bit 6 is reserved.
166         /// The device can accept fast back-to-back transactions not from the same agent.
167         const FAST_BACK_TO_BACK_CAPABLE = 1 << 7;
168         /// The bus agent observed a parity error (if parity error handling is enabled).
169         const MASTER_DATA_PARITY_ERROR = 1 << 8;
170         // Bits 9-10 are DEVSEL timing.
171         /// A target device terminated a transaction with target-abort.
172         const SIGNALED_TARGET_ABORT = 1 << 11;
173         /// A master device transaction was terminated with target-abort.
174         const RECEIVED_TARGET_ABORT = 1 << 12;
175         /// A master device transaction was terminated with master-abort.
176         const RECEIVED_MASTER_ABORT = 1 << 13;
177         /// A device asserts SERR#.
178         const SIGNALED_SYSTEM_ERROR = 1 << 14;
179         /// The device detects a parity error, even if parity error handling is disabled.
180         const DETECTED_PARITY_ERROR = 1 << 15;
181     }
182 }
183 
184 bitflags! {
185     /// The command register in PCI configuration space.
186     pub struct Command: u16 {
187         /// The device can respond to I/O Space accesses.
188         const IO_SPACE = 1 << 0;
189         /// The device can respond to Memory Space accesses.
190         const MEMORY_SPACE = 1 << 1;
191         /// The device can behave as a bus master.
192         const BUS_MASTER = 1 << 2;
193         /// The device can monitor Special Cycle operations.
194         const SPECIAL_CYCLES = 1 << 3;
195         /// The device can generate the Memory Write and Invalidate command.
196         const MEMORY_WRITE_AND_INVALIDATE_ENABLE = 1 << 4;
197         /// The device will snoop palette register data.
198         const VGA_PALETTE_SNOOP = 1 << 5;
199         /// The device should take its normal action when a parity error is detected.
200         const PARITY_ERROR_RESPONSE = 1 << 6;
201         // Bit 7 is reserved.
202         /// The SERR# driver is enabled.
203         const SERR_ENABLE = 1 << 8;
204         /// The device is allowed to generate fast back-to-back transactions.
205         const FAST_BACK_TO_BACK_ENABLE = 1 << 9;
206         /// Assertion of the device's INTx# signal is disabled.
207         const INTERRUPT_DISABLE = 1 << 10;
208     }
209 }
210 
211 /// The type of a PCI device function header.
212 /// 标头类型/设备类型
213 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
214 pub enum HeaderType {
215     /// A normal PCI device.
216     Standard,
217     /// A PCI to PCI bridge.
218     PciPciBridge,
219     /// A PCI to CardBus bridge.
220     PciCardbusBridge,
221     /// Unrecognised header type.
222     Unrecognised(u8),
223 }
224 /// u8到HeaderType的转换
225 impl From<u8> for HeaderType {
226     fn from(value: u8) -> Self {
227         match value {
228             0x00 => Self::Standard,
229             0x01 => Self::PciPciBridge,
230             0x02 => Self::PciCardbusBridge,
231             _ => Self::Unrecognised(value),
232         }
233     }
234 }
235 /// Pci可能触发的各种错误
236 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
237 pub enum PciError {
238     /// The device reported an invalid BAR type.
239     InvalidBarType,
240     CreateMmioError,
241     InvalidBusDeviceFunction,
242     SegmentNotFound,
243     McfgTableNotFound,
244     GetWrongHeader,
245     UnrecognisedHeaderType,
246     PciDeviceStructureTransformError,
247     PciIrqError(PciIrqError),
248 }
249 ///实现PciError的Display trait,使其可以直接输出
250 impl Display for PciError {
251     fn fmt(&self, f: &mut Formatter) -> fmt::Result {
252         match self {
253             Self::InvalidBarType => write!(f, "Invalid PCI BAR type."),
254             Self::CreateMmioError => write!(f, "Error occurred while creating mmio."),
255             Self::InvalidBusDeviceFunction => write!(f, "Found invalid BusDeviceFunction."),
256             Self::SegmentNotFound => write!(f, "Target segment not found"),
257             Self::McfgTableNotFound => write!(f, "ACPI MCFG Table not found"),
258             Self::GetWrongHeader => write!(f, "GetWrongHeader with vendor id 0xffff"),
259             Self::UnrecognisedHeaderType => write!(f, "Found device with unrecognised header type"),
260             Self::PciDeviceStructureTransformError => {
261                 write!(f, "Found None When transform Pci device structure")
262             }
263             Self::PciIrqError(err) => write!(f, "Error occurred while setting irq :{:?}.", err),
264         }
265     }
266 }
267 
268 /// trait类型Pci_Device_Structure表示pci设备,动态绑定三种具体设备类型:Pci_Device_Structure_General_Device、Pci_Device_Structure_Pci_to_Pci_Bridge、Pci_Device_Structure_Pci_to_Cardbus_Bridge
269 pub trait PciDeviceStructure: Send + Sync {
270     /// @brief 获取设备类型
271     /// @return HeaderType 设备类型
272     fn header_type(&self) -> HeaderType;
273     /// @brief 当其为standard设备时返回&Pci_Device_Structure_General_Device,其余情况返回None
274     #[inline(always)]
275     fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> {
276         None
277     }
278     /// @brief 当其为pci to pci bridge设备时返回&Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None
279     #[inline(always)]
280     fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> {
281         None
282     }
283     /// @brief 当其为pci to cardbus bridge设备时返回&Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None
284     #[inline(always)]
285     fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> {
286         None
287     }
288     /// @brief 获取Pci设备共有的common_header
289     /// @return 返回其不可变引用
290     fn common_header(&self) -> &PciDeviceStructureHeader;
291     /// @brief 当其为standard设备时返回&mut Pci_Device_Structure_General_Device,其余情况返回None
292     #[inline(always)]
293     fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> {
294         None
295     }
296     /// @brief 当其为pci to pci bridge设备时返回&mut Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None
297     #[inline(always)]
298     fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> {
299         None
300     }
301     /// @brief 当其为pci to cardbus bridge设备时返回&mut Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None
302     #[inline(always)]
303     fn as_pci_to_carbus_bridge_device_mut(
304         &mut self,
305     ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> {
306         None
307     }
308     /// @brief 返回迭代器,遍历capabilities
309     fn capabilities(&self) -> Option<CapabilityIterator> {
310         None
311     }
312     /// @brief 获取Status、Command寄存器的值
313     fn status_command(&self) -> (Status, Command) {
314         let common_header = self.common_header();
315         let status = Status::from_bits_truncate(common_header.status);
316         let command = Command::from_bits_truncate(common_header.command);
317         (status, command)
318     }
319     /// @brief 设置Command寄存器的值
320     fn set_command(&mut self, command: Command) {
321         let common_header = self.common_header_mut();
322         let command = command.bits();
323         common_header.command = command;
324         PciArch::write_config(
325             &common_header.bus_device_function,
326             STATUS_COMMAND_OFFSET,
327             command as u32,
328         );
329     }
330     /// @brief 获取Pci设备共有的common_header
331     /// @return 返回其可变引用
332     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader;
333 
334     /// @brief 读取standard设备的bar寄存器,映射后将结果加入结构体的standard_device_bar变量
335     /// @return 只有standard设备才返回成功或者错误,其余返回None
336     #[inline(always)]
337     fn bar_ioremap(&mut self) -> Option<Result<u8, PciError>> {
338         None
339     }
340     /// @brief 获取PCI设备的bar寄存器的引用
341     /// @return
342     #[inline(always)]
343     fn bar(&mut self) -> Option<&PciStandardDeviceBar> {
344         None
345     }
346     /// @brief 通过设置该pci设备的command
347     fn enable_master(&mut self) {
348         self.set_command(Command::IO_SPACE | Command::MEMORY_SPACE | Command::BUS_MASTER);
349     }
350     /// @brief 寻找设备的msix空间的offset
351     fn msix_capability_offset(&self) -> Option<u8> {
352         for capability in self.capabilities()? {
353             if capability.id == PCI_CAP_ID_MSIX {
354                 return Some(capability.offset);
355             }
356         }
357         None
358     }
359     /// @brief 寻找设备的msi空间的offset
360     fn msi_capability_offset(&self) -> Option<u8> {
361         for capability in self.capabilities()? {
362             if capability.id == PCI_CAP_ID_MSI {
363                 return Some(capability.offset);
364             }
365         }
366         None
367     }
368     /// @brief 返回结构体中的irq_type的可变引用
369     fn irq_type_mut(&mut self) -> Option<&mut IrqType>;
370     /// @brief 返回结构体中的irq_vector的可变引用
371     fn irq_vector_mut(&mut self) -> Option<&mut Vec<u16>>;
372 }
373 
374 /// Pci_Device_Structure_Header PCI设备结构体共有的头部
375 #[derive(Clone, Debug)]
376 pub struct PciDeviceStructureHeader {
377     // ==== busdevicefunction变量表示该结构体所处的位置
378     pub bus_device_function: BusDeviceFunction,
379     pub vendor_id: u16, // 供应商ID 0xffff是一个无效值,在读取访问不存在的设备的配置空间寄存器时返回
380     pub device_id: u16, // 设备ID,标志特定设备
381     pub command: u16, // 提供对设备生成和响应pci周期的能力的控制 向该寄存器写入0时,设备与pci总线断开除配置空间访问以外的所有连接
382     pub status: u16,  // 用于记录pci总线相关时间的状态信息寄存器
383     pub revision_id: u8, // 修订ID,指定特定设备的修订标志符
384     pub prog_if: u8, // 编程接口字节,一个只读寄存器,指定设备具有的寄存器级别的编程接口(如果有的话)
385     pub subclass: u8, // 子类。指定设备执行的特定功能的只读寄存器
386     pub class_code: u8, // 类代码,一个只读寄存器,指定设备执行的功能类型
387     pub cache_line_size: u8, // 缓存线大小:以 32 位为单位指定系统缓存线大小。设备可以限制它可以支持的缓存线大小的数量,如果不支持的值写入该字段,设备将表现得好像写入了 0 值
388     pub latency_timer: u8,   // 延迟计时器:以 PCI 总线时钟为单位指定延迟计时器。
389     pub header_type: u8, // 标头类型 a value of 0x0 specifies a general device, a value of 0x1 specifies a PCI-to-PCI bridge, and a value of 0x2 specifies a CardBus bridge. If bit 7 of this register is set, the device has multiple functions; otherwise, it is a single function device.
390     pub bist: u8, // Represents that status and allows control of a devices BIST (built-in self test).
391                   // Here is the layout of the BIST register:
392                   // |     bit7     |    bit6    | Bits 5-4 |     Bits 3-0    |
393                   // | BIST Capable | Start BIST | Reserved | Completion Code |
394                   // for more details, please visit https://wiki.osdev.org/PCI
395 }
396 
397 /// Pci_Device_Structure_General_Device PCI标准设备结构体
398 #[derive(Clone, Debug)]
399 pub struct PciDeviceStructureGeneralDevice {
400     pub common_header: PciDeviceStructureHeader,
401     // 中断结构体,包括legacy,msi,msix三种情况
402     pub irq_type: IrqType,
403     // 使用的中断号的vec集合
404     pub irq_vector: Vec<u16>,
405     pub standard_device_bar: PciStandardDeviceBar,
406     pub cardbus_cis_pointer: u32, // 指向卡信息结构,供在 CardBus 和 PCI 之间共享芯片的设备使用。
407     pub subsystem_vendor_id: u16,
408     pub subsystem_id: u16,
409     pub expansion_rom_base_address: u32,
410     pub capabilities_pointer: u8,
411     pub reserved0: u8,
412     pub reserved1: u16,
413     pub reserved2: u32,
414     pub interrupt_line: u8, // 指定设备的中断引脚连接到系统中断控制器的哪个输入,并由任何使用中断引脚的设备实现。对于 x86 架构,此寄存器对应于 PIC IRQ 编号 0-15(而不是 I/O APIC IRQ 编号),并且值0xFF定义为无连接。
415     pub interrupt_pin: u8, // 指定设备使用的中断引脚。其中值为0x1INTA#、0x2INTB#、0x3INTC#、0x4INTD#,0x0表示设备不使用中断引脚。
416     pub min_grant: u8, // 一个只读寄存器,用于指定设备所需的突发周期长度(以 1/4 微秒为单位)(假设时钟速率为 33 MHz)
417     pub max_latency: u8, // 一个只读寄存器,指定设备需要多长时间访问一次 PCI 总线(以 1/4 微秒为单位)。
418 }
419 impl PciDeviceStructure for PciDeviceStructureGeneralDevice {
420     #[inline(always)]
421     fn header_type(&self) -> HeaderType {
422         HeaderType::Standard
423     }
424     #[inline(always)]
425     fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> {
426         Some(self)
427     }
428     #[inline(always)]
429     fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> {
430         Some(self)
431     }
432     #[inline(always)]
433     fn common_header(&self) -> &PciDeviceStructureHeader {
434         &self.common_header
435     }
436     #[inline(always)]
437     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader {
438         &mut self.common_header
439     }
440     fn capabilities(&self) -> Option<CapabilityIterator> {
441         Some(CapabilityIterator {
442             bus_device_function: self.common_header.bus_device_function,
443             next_capability_offset: Some(self.capabilities_pointer),
444         })
445     }
446     fn bar_ioremap(&mut self) -> Option<Result<u8, PciError>> {
447         let common_header = &self.common_header;
448         match pci_bar_init(common_header.bus_device_function) {
449             Ok(bar) => {
450                 self.standard_device_bar = bar;
451                 Some(Ok(0))
452             }
453             Err(e) => Some(Err(e)),
454         }
455     }
456     fn bar(&mut self) -> Option<&PciStandardDeviceBar> {
457         Some(&self.standard_device_bar)
458     }
459     #[inline(always)]
460     fn irq_type_mut(&mut self) -> Option<&mut IrqType> {
461         Some(&mut self.irq_type)
462     }
463     #[inline(always)]
464     fn irq_vector_mut(&mut self) -> Option<&mut Vec<u16>> {
465         Some(&mut self.irq_vector)
466     }
467 }
468 
469 /// Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci桥设备结构体
470 #[derive(Clone, Debug)]
471 pub struct PciDeviceStructurePciToPciBridge {
472     pub common_header: PciDeviceStructureHeader,
473     // 中断结构体,包括legacy,msi,msix三种情况
474     pub irq_type: IrqType,
475     // 使用的中断号的vec集合
476     pub irq_vector: Vec<u16>,
477     pub bar0: u32,
478     pub bar1: u32,
479     pub primary_bus_number: u8,
480     pub secondary_bus_number: u8,
481     pub subordinate_bus_number: u8,
482     pub secondary_latency_timer: u8,
483     pub io_base: u8,
484     pub io_limit: u8,
485     pub secondary_status: u16,
486     pub memory_base: u16,
487     pub memory_limit: u16,
488     pub prefetchable_memory_base: u16,
489     pub prefetchable_memory_limit: u16,
490     pub prefetchable_base_upper_32_bits: u32,
491     pub prefetchable_limit_upper_32_bits: u32,
492     pub io_base_upper_16_bits: u16,
493     pub io_limit_upper_16_bits: u16,
494     pub capability_pointer: u8,
495     pub reserved0: u8,
496     pub reserved1: u16,
497     pub expansion_rom_base_address: u32,
498     pub interrupt_line: u8,
499     pub interrupt_pin: u8,
500     pub bridge_control: u16,
501 }
502 impl PciDeviceStructure for PciDeviceStructurePciToPciBridge {
503     #[inline(always)]
504     fn header_type(&self) -> HeaderType {
505         HeaderType::PciPciBridge
506     }
507     #[inline(always)]
508     fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> {
509         Some(self)
510     }
511     #[inline(always)]
512     fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> {
513         Some(self)
514     }
515     #[inline(always)]
516     fn common_header(&self) -> &PciDeviceStructureHeader {
517         &self.common_header
518     }
519     #[inline(always)]
520     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader {
521         &mut self.common_header
522     }
523     #[inline(always)]
524     fn irq_type_mut(&mut self) -> Option<&mut IrqType> {
525         Some(&mut self.irq_type)
526     }
527     #[inline(always)]
528     fn irq_vector_mut(&mut self) -> Option<&mut Vec<u16>> {
529         Some(&mut self.irq_vector)
530     }
531 }
532 /// Pci_Device_Structure_Pci_to_Cardbus_Bridge Pci_to_Cardbus桥设备结构体
533 #[derive(Clone, Debug)]
534 pub struct PciDeviceStructurePciToCardbusBridge {
535     pub common_header: PciDeviceStructureHeader,
536     pub cardbus_socket_ex_ca_base_address: u32,
537     pub offset_of_capabilities_list: u8,
538     pub reserved: u8,
539     pub secondary_status: u16,
540     pub pci_bus_number: u8,
541     pub card_bus_bus_number: u8,
542     pub subordinate_bus_number: u8,
543     pub card_bus_latency_timer: u8,
544     pub memory_base_address0: u32,
545     pub memory_limit0: u32,
546     pub memory_base_address1: u32,
547     pub memory_limit1: u32,
548     pub io_base_address0: u32,
549     pub io_limit0: u32,
550     pub io_base_address1: u32,
551     pub io_limit1: u32,
552     pub interrupt_line: u8,
553     pub interrupt_pin: u8,
554     pub bridge_control: u16,
555     pub subsystem_device_id: u16,
556     pub subsystem_vendor_id: u16,
557     pub pc_card_legacy_mode_base_address_16_bit: u32,
558 }
559 impl PciDeviceStructure for PciDeviceStructurePciToCardbusBridge {
560     #[inline(always)]
561     fn header_type(&self) -> HeaderType {
562         HeaderType::PciCardbusBridge
563     }
564     #[inline(always)]
565     fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> {
566         Some(&self)
567     }
568     #[inline(always)]
569     fn as_pci_to_carbus_bridge_device_mut(
570         &mut self,
571     ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> {
572         Some(self)
573     }
574     #[inline(always)]
575     fn common_header(&self) -> &PciDeviceStructureHeader {
576         &self.common_header
577     }
578     #[inline(always)]
579     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader {
580         &mut self.common_header
581     }
582     #[inline(always)]
583     fn irq_type_mut(&mut self) -> Option<&mut IrqType> {
584         None
585     }
586     #[inline(always)]
587     fn irq_vector_mut(&mut self) -> Option<&mut Vec<u16>> {
588         None
589     }
590 }
591 
592 /// 代表一个PCI segement greoup.
593 #[derive(Copy, Clone, Debug, PartialEq)]
594 pub struct PciRoot {
595     pub physical_address_base: u64,                //物理地址,acpi获取
596     pub mmio_base: Option<*mut u32>,               //映射后的虚拟地址,为方便访问数据这里转化成指针
597     pub segement_group_number: SegmentGroupNumber, //segement greoup的id
598     pub bus_begin: u8,                             //该分组中的最小bus
599     pub bus_end: u8,                               //该分组中的最大bus
600 }
601 ///线程间共享需要,该结构体只需要在初始化时写入数据,无需读写锁保证线程安全
602 unsafe impl Send for PciRoot {}
603 unsafe impl Sync for PciRoot {}
604 ///实现PciRoot的Display trait,自定义输出
605 impl Display for PciRoot {
606     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
607         write!(
608                 f,
609                 "PCI Root with segement:{}, bus begin at {}, bus end at {}, physical address at {:#x},mapped at {:#x}",
610                 self.segement_group_number, self.bus_begin, self.bus_end, self.physical_address_base, self.mmio_base.unwrap() as usize
611             )
612     }
613 }
614 
615 impl PciRoot {
616     /// @brief 初始化结构体,获取ecam root所在物理地址后map到虚拟地址,再将该虚拟地址加入mmio_base变量
617     /// @return 成功返回结果,错误返回错误类型
618     pub fn new(segment_group_number: SegmentGroupNumber) -> Result<Self, PciError> {
619         let mut pci_root = PciArch::ecam_root(segment_group_number)?;
620         pci_root.map()?;
621         Ok(pci_root)
622     }
623     /// @brief  完成物理地址到虚拟地址的映射,并将虚拟地址加入mmio_base变量
624     /// @return 返回错误或Ok(0)
625     fn map(&mut self) -> Result<u8, PciError> {
626         //kdebug!("bus_begin={},bus_end={}", self.bus_begin,self.bus_end);
627         let bus_number = (self.bus_end - self.bus_begin) as u32 + 1;
628         let bus_number_double = (bus_number - 1) / 2 + 1; //一个bus占据1MB空间,计算全部bus占据空间相对于2MB空间的个数
629         let mut virtaddress: u64 = 0;
630         let vaddr_ptr = &mut virtaddress as *mut u64;
631         let mut virtsize: u64 = 0;
632         let virtsize_ptr = &mut virtsize as *mut u64;
633         let size = bus_number_double * PAGE_2M_SIZE;
634         unsafe {
635             let initial_mm_ptr = &mut initial_mm as *mut mm_struct;
636             if let Err(_) =
637                 MMIO_POOL.create_mmio(size, (VM_IO | VM_DONTCOPY) as u64, vaddr_ptr, virtsize_ptr)
638             {
639                 kerror!("Create mmio failed when initing ecam");
640                 return Err(PciError::CreateMmioError);
641             };
642             //kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize);
643             mm_map(
644                 initial_mm_ptr,
645                 virtaddress,
646                 size as u64,
647                 self.physical_address_base,
648             );
649         }
650         self.mmio_base = Some(virtaddress as *mut u32);
651         Ok(0)
652     }
653     /// @brief 获得要操作的寄存器相对于mmio_offset的偏移量
654     /// @param bus_device_function 在同一个group中pci设备的唯一标识符
655     /// @param register_offset 寄存器在设备中的offset
656     /// @return u32 要操作的寄存器相对于mmio_offset的偏移量
657     fn cam_offset(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32 {
658         assert!(bus_device_function.valid());
659         let bdf = ((bus_device_function.bus - self.bus_begin) as u32) << 8
660             | (bus_device_function.device as u32) << 3
661             | bus_device_function.function as u32;
662         let address = bdf << 12 | register_offset as u32;
663         // Ensure that address is word-aligned.
664         assert!(address & 0x3 == 0);
665         address
666     }
667     /// @brief 通过bus_device_function和offset读取相应位置寄存器的值(32位)
668     /// @param bus_device_function 在同一个group中pci设备的唯一标识符
669     /// @param register_offset 寄存器在设备中的offset
670     /// @return u32 寄存器读值结果
671     pub fn read_config(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32 {
672         let address = self.cam_offset(bus_device_function, register_offset);
673         unsafe {
674             // Right shift to convert from byte offset to word offset.
675             (self.mmio_base.unwrap().add((address >> 2) as usize)).read_volatile()
676         }
677     }
678 
679     /// @brief 通过bus_device_function和offset写入相应位置寄存器值(32位)
680     /// @param bus_device_function 在同一个group中pci设备的唯一标识符
681     /// @param register_offset 寄存器在设备中的offset
682     /// @param data 要写入的值
683     pub fn write_config(
684         &mut self,
685         bus_device_function: BusDeviceFunction,
686         register_offset: u16,
687         data: u32,
688     ) {
689         let address = self.cam_offset(bus_device_function, register_offset);
690         // Safe because both the `mmio_base` and the address offset are properly aligned, and the
691         // resulting pointer is within the MMIO range of the CAM.
692         unsafe {
693             // Right shift to convert from byte offset to word offset.
694             (self.mmio_base.unwrap().add((address >> 2) as usize)).write_volatile(data)
695         }
696     }
697     /// @brief 返回迭代器,遍历pcie设备的external_capabilities
698     pub fn external_capabilities(
699         &self,
700         bus_device_function: BusDeviceFunction,
701     ) -> ExternalCapabilityIterator {
702         ExternalCapabilityIterator {
703             root: self,
704             bus_device_function,
705             next_capability_offset: Some(0x100),
706         }
707     }
708 }
709 /// Gets the capabilities 'pointer' for the device function, if any.
710 /// @brief 获取第一个capability 的offset
711 /// @param bus_device_function PCI设备的唯一标识
712 /// @return Option<u8> offset
713 pub fn capabilities_offset(bus_device_function: BusDeviceFunction) -> Option<u8> {
714     let result = PciArch::read_config(&bus_device_function, STATUS_COMMAND_OFFSET);
715     let status: Status = Status::from_bits_truncate((result >> 16) as u16);
716     if status.contains(Status::CAPABILITIES_LIST) {
717         let cap_pointer = PciArch::read_config(&bus_device_function, 0x34) as u8 & 0xFC;
718         Some(cap_pointer)
719     } else {
720         None
721     }
722 }
723 
724 /// @brief 读取pci设备头部
725 /// @param bus_device_function PCI设备的唯一标识
726 /// @param add_to_list 是否添加到链表
727 /// @return 返回的header(trait 类型)
728 fn pci_read_header(
729     bus_device_function: BusDeviceFunction,
730     add_to_list: bool,
731 ) -> Result<Box<dyn PciDeviceStructure>, PciError> {
732     // 先读取公共header
733     let result = PciArch::read_config(&bus_device_function, 0x00);
734     let vendor_id = result as u16;
735     let device_id = (result >> 16) as u16;
736 
737     let result = PciArch::read_config(&bus_device_function, 0x04);
738     let command = result as u16;
739     let status = (result >> 16) as u16;
740 
741     let result = PciArch::read_config(&bus_device_function, 0x08);
742     let revision_id = result as u8;
743     let prog_if = (result >> 8) as u8;
744     let subclass = (result >> 16) as u8;
745     let class_code = (result >> 24) as u8;
746 
747     let result = PciArch::read_config(&bus_device_function, 0x0c);
748     let cache_line_size = result as u8;
749     let latency_timer = (result >> 8) as u8;
750     let header_type = (result >> 16) as u8;
751     let bist = (result >> 24) as u8;
752     if vendor_id == 0xffff {
753         return Err(PciError::GetWrongHeader);
754     }
755     let header = PciDeviceStructureHeader {
756         bus_device_function,
757         vendor_id,
758         device_id,
759         command,
760         status,
761         revision_id,
762         prog_if,
763         subclass,
764         class_code,
765         cache_line_size,
766         latency_timer,
767         header_type,
768         bist,
769     };
770     match HeaderType::from(header_type & 0x7f) {
771         HeaderType::Standard => {
772             let general_device = pci_read_general_device_header(header, &bus_device_function);
773             let box_general_device = Box::new(general_device);
774             let box_general_device_clone = box_general_device.clone();
775             if add_to_list {
776                 PCI_DEVICE_LINKEDLIST.add(box_general_device);
777             }
778             Ok(box_general_device_clone)
779         }
780         HeaderType::PciPciBridge => {
781             let pci_to_pci_bridge = pci_read_pci_to_pci_bridge_header(header, &bus_device_function);
782             let box_pci_to_pci_bridge = Box::new(pci_to_pci_bridge);
783             let box_pci_to_pci_bridge_clone = box_pci_to_pci_bridge.clone();
784             if add_to_list {
785                 PCI_DEVICE_LINKEDLIST.add(box_pci_to_pci_bridge);
786             }
787             Ok(box_pci_to_pci_bridge_clone)
788         }
789         HeaderType::PciCardbusBridge => {
790             let pci_cardbus_bridge =
791                 pci_read_pci_to_cardbus_bridge_header(header, &bus_device_function);
792             let box_pci_cardbus_bridge = Box::new(pci_cardbus_bridge);
793             let box_pci_cardbus_bridge_clone = box_pci_cardbus_bridge.clone();
794             if add_to_list {
795                 PCI_DEVICE_LINKEDLIST.add(box_pci_cardbus_bridge);
796             }
797             Ok(box_pci_cardbus_bridge_clone)
798         }
799         HeaderType::Unrecognised(_) => Err(PciError::UnrecognisedHeaderType),
800     }
801 }
802 
803 /// @brief 读取type为0x0的pci设备的header
804 /// 本函数只应被 pci_read_header()调用
805 /// @param common_header 共有头部
806 /// @param bus_device_function PCI设备的唯一标识
807 /// @return Pci_Device_Structure_General_Device 标准设备头部
808 fn pci_read_general_device_header(
809     common_header: PciDeviceStructureHeader,
810     bus_device_function: &BusDeviceFunction,
811 ) -> PciDeviceStructureGeneralDevice {
812     let standard_device_bar = PciStandardDeviceBar::default();
813     let cardbus_cis_pointer = PciArch::read_config(bus_device_function, 0x28);
814 
815     let result = PciArch::read_config(bus_device_function, 0x2c);
816     let subsystem_vendor_id = result as u16;
817     let subsystem_id = (result >> 16) as u16;
818 
819     let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x30);
820 
821     let result = PciArch::read_config(bus_device_function, 0x34);
822     let capabilities_pointer = result as u8;
823     let reserved0 = (result >> 8) as u8;
824     let reserved1 = (result >> 16) as u16;
825 
826     let reserved2 = PciArch::read_config(bus_device_function, 0x38);
827 
828     let result = PciArch::read_config(bus_device_function, 0x3c);
829     let interrupt_line = result as u8;
830     let interrupt_pin = (result >> 8) as u8;
831     let min_grant = (result >> 16) as u8;
832     let max_latency = (result >> 24) as u8;
833     PciDeviceStructureGeneralDevice {
834         common_header,
835         irq_type: IrqType::Unused,
836         irq_vector: Vec::new(),
837         standard_device_bar,
838         cardbus_cis_pointer,
839         subsystem_vendor_id,
840         subsystem_id,
841         expansion_rom_base_address,
842         capabilities_pointer,
843         reserved0,
844         reserved1,
845         reserved2,
846         interrupt_line,
847         interrupt_pin,
848         min_grant,
849         max_latency,
850     }
851 }
852 
853 /// @brief 读取type为0x1的pci设备的header
854 /// 本函数只应被 pci_read_header()调用
855 /// @param common_header 共有头部
856 /// @param bus_device_function PCI设备的唯一标识
857 /// @return Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci 桥设备头部
858 fn pci_read_pci_to_pci_bridge_header(
859     common_header: PciDeviceStructureHeader,
860     bus_device_function: &BusDeviceFunction,
861 ) -> PciDeviceStructurePciToPciBridge {
862     let bar0 = PciArch::read_config(bus_device_function, 0x10);
863     let bar1 = PciArch::read_config(bus_device_function, 0x14);
864 
865     let result = PciArch::read_config(bus_device_function, 0x18);
866 
867     let primary_bus_number = result as u8;
868     let secondary_bus_number = (result >> 8) as u8;
869     let subordinate_bus_number = (result >> 16) as u8;
870     let secondary_latency_timer = (result >> 24) as u8;
871 
872     let result = PciArch::read_config(bus_device_function, 0x1c);
873     let io_base = result as u8;
874     let io_limit = (result >> 8) as u8;
875     let secondary_status = (result >> 16) as u16;
876 
877     let result = PciArch::read_config(bus_device_function, 0x20);
878     let memory_base = result as u16;
879     let memory_limit = (result >> 16) as u16;
880 
881     let result = PciArch::read_config(bus_device_function, 0x24);
882     let prefetchable_memory_base = result as u16;
883     let prefetchable_memory_limit = (result >> 16) as u16;
884 
885     let prefetchable_base_upper_32_bits = PciArch::read_config(bus_device_function, 0x28);
886     let prefetchable_limit_upper_32_bits = PciArch::read_config(bus_device_function, 0x2c);
887 
888     let result = PciArch::read_config(bus_device_function, 0x30);
889     let io_base_upper_16_bits = result as u16;
890     let io_limit_upper_16_bits = (result >> 16) as u16;
891 
892     let result = PciArch::read_config(bus_device_function, 0x34);
893     let capability_pointer = result as u8;
894     let reserved0 = (result >> 8) as u8;
895     let reserved1 = (result >> 16) as u16;
896 
897     let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x38);
898 
899     let result = PciArch::read_config(bus_device_function, 0x3c);
900     let interrupt_line = result as u8;
901     let interrupt_pin = (result >> 8) as u8;
902     let bridge_control = (result >> 16) as u16;
903     PciDeviceStructurePciToPciBridge {
904         common_header,
905         irq_type: IrqType::Unused,
906         irq_vector: Vec::new(),
907         bar0,
908         bar1,
909         primary_bus_number,
910         secondary_bus_number,
911         subordinate_bus_number,
912         secondary_latency_timer,
913         io_base,
914         io_limit,
915         secondary_status,
916         memory_base,
917         memory_limit,
918         prefetchable_memory_base,
919         prefetchable_memory_limit,
920         prefetchable_base_upper_32_bits,
921         prefetchable_limit_upper_32_bits,
922         io_base_upper_16_bits,
923         io_limit_upper_16_bits,
924         capability_pointer,
925         reserved0,
926         reserved1,
927         expansion_rom_base_address,
928         interrupt_line,
929         interrupt_pin,
930         bridge_control,
931     }
932 }
933 
934 /// @brief 读取type为0x2的pci设备的header
935 /// 本函数只应被 pci_read_header()调用
936 /// @param common_header 共有头部
937 /// @param bus_device_function PCI设备的唯一标识
938 /// @return   Pci_Device_Structure_Pci_to_Cardbus_Bridge  pci-to-cardbus 桥设备头部
939 fn pci_read_pci_to_cardbus_bridge_header(
940     common_header: PciDeviceStructureHeader,
941     busdevicefunction: &BusDeviceFunction,
942 ) -> PciDeviceStructurePciToCardbusBridge {
943     let cardbus_socket_ex_ca_base_address = PciArch::read_config(busdevicefunction, 0x10);
944 
945     let result = PciArch::read_config(busdevicefunction, 0x14);
946     let offset_of_capabilities_list = result as u8;
947     let reserved = (result >> 8) as u8;
948     let secondary_status = (result >> 16) as u16;
949 
950     let result = PciArch::read_config(busdevicefunction, 0x18);
951     let pci_bus_number = result as u8;
952     let card_bus_bus_number = (result >> 8) as u8;
953     let subordinate_bus_number = (result >> 16) as u8;
954     let card_bus_latency_timer = (result >> 24) as u8;
955 
956     let memory_base_address0 = PciArch::read_config(busdevicefunction, 0x1c);
957     let memory_limit0 = PciArch::read_config(busdevicefunction, 0x20);
958     let memory_base_address1 = PciArch::read_config(busdevicefunction, 0x24);
959     let memory_limit1 = PciArch::read_config(busdevicefunction, 0x28);
960 
961     let io_base_address0 = PciArch::read_config(busdevicefunction, 0x2c);
962     let io_limit0 = PciArch::read_config(busdevicefunction, 0x30);
963     let io_base_address1 = PciArch::read_config(busdevicefunction, 0x34);
964     let io_limit1 = PciArch::read_config(busdevicefunction, 0x38);
965     let result = PciArch::read_config(busdevicefunction, 0x3c);
966     let interrupt_line = result as u8;
967     let interrupt_pin = (result >> 8) as u8;
968     let bridge_control = (result >> 16) as u16;
969 
970     let result = PciArch::read_config(busdevicefunction, 0x40);
971     let subsystem_device_id = result as u16;
972     let subsystem_vendor_id = (result >> 16) as u16;
973 
974     let pc_card_legacy_mode_base_address_16_bit = PciArch::read_config(busdevicefunction, 0x44);
975     PciDeviceStructurePciToCardbusBridge {
976         common_header,
977         cardbus_socket_ex_ca_base_address,
978         offset_of_capabilities_list,
979         reserved,
980         secondary_status,
981         pci_bus_number,
982         card_bus_bus_number,
983         subordinate_bus_number,
984         card_bus_latency_timer,
985         memory_base_address0,
986         memory_limit0,
987         memory_base_address1,
988         memory_limit1,
989         io_base_address0,
990         io_limit0,
991         io_base_address1,
992         io_limit1,
993         interrupt_line,
994         interrupt_pin,
995         bridge_control,
996         subsystem_device_id,
997         subsystem_vendor_id,
998         pc_card_legacy_mode_base_address_16_bit,
999     }
1000 }
1001 
1002 /// @brief 检查所有bus上的设备并将其加入链表
1003 /// @return 成功返回ok(),失败返回失败原因
1004 fn pci_check_all_buses() -> Result<u8, PciError> {
1005     kinfo!("Checking all devices in PCI bus...");
1006     let busdevicefunction = BusDeviceFunction {
1007         bus: 0,
1008         device: 0,
1009         function: 0,
1010     };
1011     let header = pci_read_header(busdevicefunction, false)?;
1012     let common_header = header.common_header();
1013     pci_check_bus(0)?;
1014     if common_header.header_type & 0x80 != 0 {
1015         for function in 1..8 {
1016             pci_check_bus(function)?;
1017         }
1018     }
1019     Ok(0)
1020 }
1021 /// @brief 检查特定设备并将其加入链表
1022 /// @return 成功返回ok(),失败返回失败原因
1023 fn pci_check_function(busdevicefunction: BusDeviceFunction) -> Result<u8, PciError> {
1024     //kdebug!("PCI check function {}", busdevicefunction.function);
1025     let header = match pci_read_header(busdevicefunction, true) {
1026         Ok(header) => header,
1027         Err(PciError::GetWrongHeader) => {
1028             return Ok(255);
1029         }
1030         Err(e) => {
1031             return Err(e);
1032         }
1033     };
1034     let common_header = header.common_header();
1035     if (common_header.class_code == 0x06)
1036         && (common_header.subclass == 0x04 || common_header.subclass == 0x09)
1037     {
1038         let pci_to_pci_bridge = header
1039             .as_pci_to_pci_bridge_device()
1040             .ok_or(PciError::PciDeviceStructureTransformError)?;
1041         let secondary_bus = pci_to_pci_bridge.secondary_bus_number;
1042         pci_check_bus(secondary_bus)?;
1043     }
1044     Ok(0)
1045 }
1046 
1047 /// @brief 检查device上的设备并将其加入链表
1048 /// @return 成功返回ok(),失败返回失败原因
1049 fn pci_check_device(bus: u8, device: u8) -> Result<u8, PciError> {
1050     //kdebug!("PCI check device {}", device);
1051     let busdevicefunction = BusDeviceFunction {
1052         bus,
1053         device,
1054         function: 0,
1055     };
1056     let header = match pci_read_header(busdevicefunction, false) {
1057         Ok(header) => header,
1058         Err(PciError::GetWrongHeader) => {
1059             //设备不存在,直接返回即可,不用终止遍历
1060             return Ok(255);
1061         }
1062         Err(e) => {
1063             return Err(e);
1064         }
1065     };
1066     pci_check_function(busdevicefunction)?;
1067     let common_header = header.common_header();
1068     if common_header.header_type & 0x80 != 0 {
1069         kdebug!(
1070             "Detected multi func device in bus{},device{}",
1071             busdevicefunction.bus,
1072             busdevicefunction.device
1073         );
1074         // 这是一个多function的设备,因此查询剩余的function
1075         for function in 1..8 {
1076             let busdevicefunction = BusDeviceFunction {
1077                 bus,
1078                 device,
1079                 function,
1080             };
1081             pci_check_function(busdevicefunction)?;
1082         }
1083     }
1084     Ok(0)
1085 }
1086 /// @brief 检查该bus上的设备并将其加入链表
1087 /// @return 成功返回ok(),失败返回失败原因
1088 fn pci_check_bus(bus: u8) -> Result<u8, PciError> {
1089     //kdebug!("PCI check bus {}", bus);
1090     for device in 0..32 {
1091         pci_check_device(bus, device)?;
1092     }
1093     Ok(0)
1094 }
1095 /// @brief pci初始化函数(for c)
1096 #[no_mangle]
1097 pub extern "C" fn rs_pci_init() {
1098     pci_init();
1099     if PCI_ROOT_0.is_some() {
1100         kdebug!("{}", PCI_ROOT_0.unwrap());
1101         //以下为ecam的读取寄存器值测试,经测试可正常读取
1102         // let bus_device_function = BusDeviceFunction {
1103         //     bus: 0,
1104         //     device: 2,
1105         //     function: 0,
1106         // };
1107         // kdebug!(
1108         //     "Ecam read virtio-net device status={:#x}",
1109         //     (PCI_ROOT_0.unwrap().read_config(bus_device_function, 4)>>16) as u16
1110         // );
1111     }
1112 }
1113 /// @brief pci初始化函数
1114 pub fn pci_init() {
1115     kinfo!("Initializing PCI bus...");
1116     if let Err(e) = pci_check_all_buses() {
1117         kerror!("pci init failed when checking bus because of error: {}", e);
1118         return;
1119     }
1120     kinfo!(
1121         "Total pci device and function num = {}",
1122         PCI_DEVICE_LINKEDLIST.num()
1123     );
1124     let list = PCI_DEVICE_LINKEDLIST.read();
1125     for box_pci_device in list.iter() {
1126         let common_header = box_pci_device.common_header();
1127         match box_pci_device.header_type() {
1128             HeaderType::Standard if common_header.status & 0x10 != 0 => {
1129                 kinfo!("Found pci standard device with class code ={} subclass={} status={:#x} cap_pointer={:#x}  vendor={:#x}, device id={:#x},bdf={}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer,common_header.vendor_id, common_header.device_id,common_header.bus_device_function);
1130             }
1131             HeaderType::Standard => {
1132                 kinfo!(
1133                     "Found pci standard device with class code ={} subclass={} status={:#x} ",
1134                     common_header.class_code,
1135                     common_header.subclass,
1136                     common_header.status
1137                 );
1138             }
1139             HeaderType::PciPciBridge if common_header.status & 0x10 != 0 => {
1140                 kinfo!("Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} cap_pointer={:#x}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer);
1141             }
1142             HeaderType::PciPciBridge => {
1143                 kinfo!(
1144                     "Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} ",
1145                     common_header.class_code,
1146                     common_header.subclass,
1147                     common_header.status
1148                 );
1149             }
1150             HeaderType::PciCardbusBridge => {
1151                 kinfo!(
1152                     "Found pcicardbus bridge device with class code ={} subclass={} status={:#x} ",
1153                     common_header.class_code,
1154                     common_header.subclass,
1155                     common_header.status
1156                 );
1157             }
1158             HeaderType::Unrecognised(_) => {}
1159         }
1160     }
1161     kinfo!("PCI bus initialized.");
1162 }
1163 
1164 /// An identifier for a PCI bus, device and function.
1165 /// PCI设备的唯一标识
1166 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
1167 pub struct BusDeviceFunction {
1168     /// The PCI bus number, between 0 and 255.
1169     pub bus: u8,
1170     /// The device number on the bus, between 0 and 31.
1171     pub device: u8,
1172     /// The function number of the device, between 0 and 7.
1173     pub function: u8,
1174 }
1175 impl BusDeviceFunction {
1176     /// Returns whether the device and function numbers are valid, i.e. the device is between 0 and
1177     ///@brief 检测BusDeviceFunction实例是否有效
1178     ///@param self
1179     ///@return bool 是否有效
1180     #[allow(dead_code)]
1181     pub fn valid(&self) -> bool {
1182         self.device < 32 && self.function < 8
1183     }
1184 }
1185 ///实现BusDeviceFunction的Display trait,使其可以直接输出
1186 impl Display for BusDeviceFunction {
1187     fn fmt(&self, f: &mut Formatter) -> fmt::Result {
1188         write!(
1189             f,
1190             "bus {} device {} function{}",
1191             self.bus, self.device, self.function
1192         )
1193     }
1194 }
1195 /// The location allowed for a memory BAR.
1196 /// memory BAR的三种情况
1197 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
1198 pub enum MemoryBarType {
1199     /// The BAR has a 32-bit address and can be mapped anywhere in 32-bit address space.
1200     Width32,
1201     /// The BAR must be mapped below 1MiB.
1202     Below1MiB,
1203     /// The BAR has a 64-bit address and can be mapped anywhere in 64-bit address space.
1204     Width64,
1205 }
1206 ///实现MemoryBarType与u8的类型转换
1207 impl From<MemoryBarType> for u8 {
1208     fn from(bar_type: MemoryBarType) -> Self {
1209         match bar_type {
1210             MemoryBarType::Width32 => 0,
1211             MemoryBarType::Below1MiB => 1,
1212             MemoryBarType::Width64 => 2,
1213         }
1214     }
1215 }
1216 ///实现MemoryBarType与u8的类型转换
1217 impl TryFrom<u8> for MemoryBarType {
1218     type Error = PciError;
1219     fn try_from(value: u8) -> Result<Self, Self::Error> {
1220         match value {
1221             0 => Ok(Self::Width32),
1222             1 => Ok(Self::Below1MiB),
1223             2 => Ok(Self::Width64),
1224             _ => Err(PciError::InvalidBarType),
1225         }
1226     }
1227 }
1228 
1229 /// Information about a PCI Base Address Register.
1230 /// BAR的三种类型 Memory/IO/Unused
1231 #[derive(Clone, Debug, Eq, PartialEq)]
1232 pub enum BarInfo {
1233     /// The BAR is for a memory region.
1234     Memory {
1235         /// The size of the BAR address and where it can be located.
1236         address_type: MemoryBarType,
1237         /// If true, then reading from the region doesn't have side effects. The CPU may cache reads
1238         /// and merge repeated stores.
1239         prefetchable: bool,
1240         /// The memory address, always 16-byte aligned.
1241         address: u64,
1242         /// The size of the BAR in bytes.
1243         size: u32,
1244         /// The virtaddress for a memory bar(mapped).
1245         virtaddress: u64,
1246     },
1247     /// The BAR is for an I/O region.
1248     IO {
1249         /// The I/O address, always 4-byte aligned.
1250         address: u32,
1251         /// The size of the BAR in bytes.
1252         size: u32,
1253     },
1254     Unused,
1255 }
1256 
1257 impl BarInfo {
1258     /// Returns the address and size of this BAR if it is a memory bar, or `None` if it is an IO
1259     /// BAR.
1260     ///@brief 得到某个bar的memory_address与size(前提是他的类型为Memory Bar)
1261     ///@param self
1262     ///@return Option<(u64, u32) 是Memory Bar返回内存地址与大小,不是则返回None
1263     pub fn memory_address_size(&self) -> Option<(u64, u32)> {
1264         if let Self::Memory { address, size, .. } = self {
1265             Some((*address, *size))
1266         } else {
1267             None
1268         }
1269     }
1270     ///@brief 得到某个bar的virtaddress(前提是他的类型为Memory Bar)
1271     ///@param self
1272     ///@return Option<(u64) 是Memory Bar返回映射的虚拟地址,不是则返回None
1273     pub fn virtual_address(&self) -> Option<u64> {
1274         if let Self::Memory { virtaddress, .. } = self {
1275             Some(*virtaddress)
1276         } else {
1277             None
1278         }
1279     }
1280 }
1281 ///实现BarInfo的Display trait,自定义输出
1282 impl Display for BarInfo {
1283     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1284         match self {
1285             Self::Memory {
1286                 address_type,
1287                 prefetchable,
1288                 address,
1289                 size,
1290                 virtaddress,
1291             } => write!(
1292                 f,
1293                 "Memory space at {:#010x}, size {}, type {:?}, prefetchable {},mapped at {:#x}",
1294                 address, size, address_type, prefetchable, virtaddress
1295             ),
1296             Self::IO { address, size } => {
1297                 write!(f, "I/O space at {:#010x}, size {}", address, size)
1298             }
1299             Self::Unused => {
1300                 write!(f, "Unused bar")
1301             }
1302         }
1303     }
1304 }
1305 //todo 增加对桥的bar的支持
1306 pub trait PciDeviceBar {}
1307 ///一个普通PCI设备(非桥)有6个BAR寄存器,PciStandardDeviceBar存储其全部信息
1308 #[derive(Clone, Debug, Eq, PartialEq)]
1309 pub struct PciStandardDeviceBar {
1310     bar0: BarInfo,
1311     bar1: BarInfo,
1312     bar2: BarInfo,
1313     bar3: BarInfo,
1314     bar4: BarInfo,
1315     bar5: BarInfo,
1316 }
1317 
1318 impl PciStandardDeviceBar {
1319     ///@brief 得到某个bar的barinfo
1320     ///@param self ,bar_index(0-5)
1321     ///@return Result<&BarInfo, PciError> bar_index在0-5则返回对应的bar_info结构体,超出范围则返回错误
1322     pub fn get_bar(&self, bar_index: u8) -> Result<&BarInfo, PciError> {
1323         match bar_index {
1324             0 => Ok(&self.bar0),
1325             1 => Ok(&self.bar1),
1326             2 => Ok(&self.bar2),
1327             3 => Ok(&self.bar3),
1328             4 => Ok(&self.bar4),
1329             5 => Ok(&self.bar5),
1330             _ => Err(PciError::InvalidBarType),
1331         }
1332     }
1333 }
1334 ///实现PciStandardDeviceBar的Display trait,使其可以直接输出
1335 impl Display for PciStandardDeviceBar {
1336     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1337         write!(
1338             f,
1339             "\r\nBar0:{}\r\n Bar1:{}\r\n Bar2:{}\r\n Bar3:{}\r\nBar4:{}\r\nBar5:{}",
1340             self.bar0, self.bar1, self.bar2, self.bar3, self.bar4, self.bar5
1341         )
1342     }
1343 }
1344 ///实现PciStandardDeviceBar的Default trait,使其可以简单初始化
1345 impl Default for PciStandardDeviceBar {
1346     fn default() -> Self {
1347         PciStandardDeviceBar {
1348             bar0: BarInfo::Unused,
1349             bar1: BarInfo::Unused,
1350             bar2: BarInfo::Unused,
1351             bar3: BarInfo::Unused,
1352             bar4: BarInfo::Unused,
1353             bar5: BarInfo::Unused,
1354         }
1355     }
1356 }
1357 
1358 ///@brief 将某个pci设备的bar寄存器读取值后映射到虚拟地址
1359 ///@param self ,bus_device_function PCI设备的唯一标识符
1360 ///@return Result<PciStandardDeviceBar, PciError> 成功则返回对应的PciStandardDeviceBar结构体,失败则返回错误类型
1361 pub fn pci_bar_init(
1362     bus_device_function: BusDeviceFunction,
1363 ) -> Result<PciStandardDeviceBar, PciError> {
1364     let mut device_bar: PciStandardDeviceBar = PciStandardDeviceBar::default();
1365     let mut bar_index_ignore: u8 = 255;
1366     for bar_index in 0..6 {
1367         if bar_index == bar_index_ignore {
1368             continue;
1369         }
1370         let bar_info;
1371         let mut virtaddress: u64 = 0;
1372         let bar_orig = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index);
1373         PciArch::write_config(
1374             &bus_device_function,
1375             BAR0_OFFSET + 4 * bar_index,
1376             0xffffffff,
1377         );
1378         let size_mask = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index);
1379         // A wrapping add is necessary to correctly handle the case of unused BARs, which read back
1380         // as 0, and should be treated as size 0.
1381         let size = (!(size_mask & 0xfffffff0)).wrapping_add(1);
1382         //kdebug!("bar_orig:{:#x},size: {:#x}", bar_orig,size);
1383         // Restore the original value.
1384         PciArch::write_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index, bar_orig);
1385         if size == 0 {
1386             continue;
1387         }
1388         if bar_orig & 0x00000001 == 0x00000001 {
1389             // I/O space
1390             let address = bar_orig & 0xfffffffc;
1391             bar_info = BarInfo::IO { address, size };
1392         } else {
1393             // Memory space
1394             let mut address = u64::from(bar_orig & 0xfffffff0);
1395             let prefetchable = bar_orig & 0x00000008 != 0;
1396             let address_type = MemoryBarType::try_from(((bar_orig & 0x00000006) >> 1) as u8)?;
1397             if address_type == MemoryBarType::Width64 {
1398                 if bar_index >= 5 {
1399                     return Err(PciError::InvalidBarType);
1400                 }
1401                 let address_top =
1402                     PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * (bar_index + 1));
1403                 address |= u64::from(address_top) << 32;
1404                 bar_index_ignore = bar_index + 1; //下个bar跳过,因为64位的memory bar覆盖了两个bar
1405             }
1406             let pci_address = PciAddr::new(address as usize);
1407             address = PciArch::address_pci_to_physical(pci_address) as u64; //PCI总线域物理地址转换为存储器域物理地址
1408             unsafe {
1409                 let vaddr_ptr = &mut virtaddress as *mut u64;
1410                 let mut virtsize: u64 = 0;
1411                 let virtsize_ptr = &mut virtsize as *mut u64;
1412                 let initial_mm_ptr = &mut initial_mm as *mut mm_struct;
1413                 //kdebug!("size want={:#x}", size);
1414                 if let Err(_) = MMIO_POOL.create_mmio(
1415                     size,
1416                     (VM_IO | VM_DONTCOPY) as u64,
1417                     vaddr_ptr,
1418                     virtsize_ptr,
1419                 ) {
1420                     kerror!("Create mmio failed when initing pci bar");
1421                     return Err(PciError::CreateMmioError);
1422                 };
1423                 //kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize);
1424                 mm_map(initial_mm_ptr, virtaddress, size as u64, address);
1425             }
1426             bar_info = BarInfo::Memory {
1427                 address_type,
1428                 prefetchable,
1429                 address,
1430                 size,
1431                 virtaddress,
1432             };
1433         }
1434         match bar_index {
1435             0 => {
1436                 device_bar.bar0 = bar_info;
1437             }
1438             1 => {
1439                 device_bar.bar1 = bar_info;
1440             }
1441             2 => {
1442                 device_bar.bar2 = bar_info;
1443             }
1444             3 => {
1445                 device_bar.bar3 = bar_info;
1446             }
1447             4 => {
1448                 device_bar.bar4 = bar_info;
1449             }
1450             5 => {
1451                 device_bar.bar5 = bar_info;
1452             }
1453             _ => {}
1454         }
1455     }
1456     kdebug!("pci_device_bar:{}", device_bar);
1457     return Ok(device_bar);
1458 }
1459 
1460 /// Information about a PCI device capability.
1461 /// PCI设备的capability的信息
1462 #[derive(Debug, Copy, Clone, Eq, PartialEq)]
1463 pub struct CapabilityInfo {
1464     /// The offset of the capability in the PCI configuration space of the device function.
1465     pub offset: u8,
1466     /// The ID of the capability.
1467     pub id: u8,
1468     /// The third and fourth bytes of the capability, to save reading them again.
1469     pub private_header: u16,
1470 }
1471 
1472 /// Iterator over capabilities for a device.
1473 /// 创建迭代器以遍历PCI设备的capability
1474 #[derive(Debug)]
1475 pub struct CapabilityIterator {
1476     pub bus_device_function: BusDeviceFunction,
1477     pub next_capability_offset: Option<u8>,
1478 }
1479 
1480 impl Iterator for CapabilityIterator {
1481     type Item = CapabilityInfo;
1482     fn next(&mut self) -> Option<Self::Item> {
1483         let offset = self.next_capability_offset?;
1484 
1485         // Read the first 4 bytes of the capability.
1486         let capability_header = PciArch::read_config(&self.bus_device_function, offset);
1487         let id = capability_header as u8;
1488         let next_offset = (capability_header >> 8) as u8;
1489         let private_header = (capability_header >> 16) as u16;
1490 
1491         self.next_capability_offset = if next_offset == 0 {
1492             None
1493         } else if next_offset < 64 || next_offset & 0x3 != 0 {
1494             kwarn!("Invalid next capability offset {:#04x}", next_offset);
1495             None
1496         } else {
1497             Some(next_offset)
1498         };
1499 
1500         Some(CapabilityInfo {
1501             offset,
1502             id,
1503             private_header,
1504         })
1505     }
1506 }
1507 
1508 /// Information about a PCIe device capability.
1509 /// PCIe设备的external capability的信息
1510 #[derive(Debug, Copy, Clone, Eq, PartialEq)]
1511 pub struct ExternalCapabilityInfo {
1512     /// The offset of the capability in the PCI configuration space of the device function.
1513     pub offset: u16,
1514     /// The ID of the capability.
1515     pub id: u16,
1516     /// The third and fourth bytes of the capability, to save reading them again.
1517     pub capability_version: u8,
1518 }
1519 
1520 /// Iterator over capabilities for a device.
1521 /// 创建迭代器以遍历PCIe设备的external capability
1522 #[derive(Debug)]
1523 pub struct ExternalCapabilityIterator<'a> {
1524     pub root: &'a PciRoot,
1525     pub bus_device_function: BusDeviceFunction,
1526     pub next_capability_offset: Option<u16>,
1527 }
1528 impl<'a> Iterator for ExternalCapabilityIterator<'a> {
1529     type Item = ExternalCapabilityInfo;
1530     fn next(&mut self) -> Option<Self::Item> {
1531         let offset = self.next_capability_offset?;
1532 
1533         // Read the first 4 bytes of the capability.
1534         let capability_header = self.root.read_config(self.bus_device_function, offset);
1535         let id = capability_header as u16;
1536         let next_offset = (capability_header >> 20) as u16;
1537         let capability_version = ((capability_header >> 16) & 0xf) as u8;
1538 
1539         self.next_capability_offset = if next_offset == 0 {
1540             None
1541         } else if next_offset < 0x100 || next_offset & 0x3 != 0 {
1542             kwarn!("Invalid next capability offset {:#04x}", next_offset);
1543             None
1544         } else {
1545             Some(next_offset)
1546         };
1547 
1548         Some(ExternalCapabilityInfo {
1549             offset,
1550             id,
1551             capability_version,
1552         })
1553     }
1554 }
1555