1 #![allow(dead_code)] 2 // 目前仅支持单主桥单Segment 3 4 use super::device::pci_device_manager; 5 use super::pci_irq::{IrqType, PciIrqError}; 6 use super::raw_device::PciGeneralDevice; 7 use super::root::{pci_root_0, PciRoot}; 8 9 use crate::arch::{PciArch, TraitPciArch}; 10 use crate::driver::pci::subsys::pci_bus_subsys_init; 11 use crate::exception::IrqNumber; 12 use crate::libs::rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard}; 13 14 use crate::mm::mmio_buddy::{mmio_pool, MMIOSpaceGuard}; 15 16 use crate::mm::VirtAddr; 17 use crate::{kdebug, kerror, kinfo, kwarn}; 18 use alloc::string::String; 19 use alloc::sync::Arc; 20 use alloc::vec::Vec; 21 use alloc::{boxed::Box, collections::LinkedList}; 22 use bitflags::bitflags; 23 24 use core::{ 25 convert::TryFrom, 26 fmt::{self, Debug, Display, Formatter}, 27 }; 28 // PCI_DEVICE_LINKEDLIST 添加了读写锁的全局链表,里面存储了检索到的PCI设备结构体 29 lazy_static! { 30 pub static ref PCI_DEVICE_LINKEDLIST: PciDeviceLinkedList = PciDeviceLinkedList::new(); 31 } 32 33 /// PCI域地址 34 #[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)] 35 #[repr(transparent)] 36 pub struct PciAddr(usize); 37 38 impl PciAddr { 39 #[inline(always)] 40 pub const fn new(address: usize) -> Self { 41 Self(address) 42 } 43 44 /// @brief 获取PCI域地址的值 45 #[inline(always)] 46 pub fn data(&self) -> usize { 47 self.0 48 } 49 50 /// @brief 将PCI域地址加上一个偏移量 51 #[inline(always)] 52 pub fn add(self, offset: usize) -> Self { 53 Self(self.0 + offset) 54 } 55 56 /// @brief 判断PCI域地址是否按照指定要求对齐 57 #[inline(always)] 58 pub fn check_aligned(&self, align: usize) -> bool { 59 return self.0 & (align - 1) == 0; 60 } 61 } 62 impl Debug for PciAddr { 63 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { 64 write!(f, "PciAddr({:#x})", self.0) 65 } 66 } 67 68 /// 添加了读写锁的链表,存储PCI设备结构体 69 pub struct PciDeviceLinkedList { 70 list: RwLock<LinkedList<Box<dyn PciDeviceStructure>>>, 71 } 72 73 impl PciDeviceLinkedList { 74 /// @brief 初始化结构体 75 fn new() -> Self { 76 PciDeviceLinkedList { 77 list: RwLock::new(LinkedList::new()), 78 } 79 } 80 /// @brief 获取可读的linkedlist(读锁守卫) 81 /// @return RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>> 读锁守卫 82 pub fn read(&self) -> RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>> { 83 self.list.read() 84 } 85 /// @brief 获取可写的linkedlist(写锁守卫) 86 /// @return RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>> 写锁守卫 87 pub fn write(&self) -> RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>> { 88 self.list.write() 89 } 90 /// @brief 获取链表中PCI结构体数目 91 /// @return usize 链表中PCI结构体数目 92 pub fn num(&self) -> usize { 93 let list = self.list.read(); 94 list.len() 95 } 96 /// @brief 添加Pci设备结构体到链表中 97 pub fn add(&self, device: Box<dyn PciDeviceStructure>) { 98 let mut list = self.list.write(); 99 list.push_back(device); 100 } 101 } 102 103 /// # 获取具有特定供应商ID的PCI设备结构的引用 104 /// 105 /// 这个函数通过供应商ID搜索PCI设备结构列表,并返回匹配该ID的所有设备结构的引用。 106 /// 107 /// ## 参数 108 /// 109 /// - list: 一个可变的PCI设备结构链表,类型为`&'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>`。 110 /// - vendor_id: 要查找的PCI供应商ID,类型为`u16`。 111 /// 112 /// ## 返回值 113 /// 114 /// - 返回匹配的供应商ID的PCI设备结构的引用。 115 pub fn get_pci_device_structures_mut_by_vendor_id<'a>( 116 list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>, 117 vendor_id: u16, 118 ) -> Vec<&'a mut Box<(dyn PciDeviceStructure)>> { 119 let mut result = Vec::new(); 120 for box_pci_device_structure in list.iter_mut() { 121 let common_header = (*box_pci_device_structure).common_header(); 122 if common_header.vendor_id == vendor_id { 123 result.push(box_pci_device_structure); 124 } 125 } 126 result 127 } 128 129 /// # get_pci_device_structure_mut - 在链表中寻找满足条件的PCI设备结构体并返回其可变引用 130 /// 131 /// 该函数遍历给定的PCI设备链表,寻找其common_header中class_code和subclass字段与给定值匹配的设备结构体。 132 /// 对于每一个匹配的设备结构体,函数返回一个可变引用。 133 /// 134 /// ## 参数 135 /// 136 /// - list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>> — 链表的写锁守卫,用于访问和遍历PCI设备链表。 137 /// - class_code: u8 — PCI设备class code寄存器值,用于分类设备的功能。 138 /// - subclass: u8 — PCI设备subclass寄存器值,与class_code一起确定设备的子类型。 139 /// 140 /// ## 返回值 141 /// - 包含链表中所有满足条件的PCI结构体的可变引用的容器。 142 pub fn get_pci_device_structure_mut<'a>( 143 list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>, 144 class_code: u8, 145 subclass: u8, 146 ) -> Vec<&'a mut Box<(dyn PciDeviceStructure)>> { 147 let mut result = Vec::new(); 148 for box_pci_device_structure in list.iter_mut() { 149 let common_header = (*box_pci_device_structure).common_header(); 150 if (common_header.class_code == class_code) && (common_header.subclass == subclass) { 151 result.push(box_pci_device_structure); 152 } 153 } 154 result 155 } 156 157 /// # get_pci_device_structure - 在链表中寻找满足条件的PCI设备结构体并返回其不可变引用 158 /// 159 /// 该函数遍历给定的PCI设备链表,寻找其common_header中class_code和subclass字段与给定值匹配的设备结构体。 160 /// 对于每一个匹配的设备结构体,函数返回一个可变引用。 161 /// 162 /// ## 参数 163 /// 164 /// - list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>> — 链表的写锁守卫,用于访问和遍历PCI设备链表。 165 /// - class_code: u8 — PCI设备class code寄存器值,用于分类设备的功能。 166 /// - subclass: u8 — PCI设备subclass寄存器值,与class_code一起确定设备的子类型。 167 /// 168 /// ## 返回值 169 /// - 包含链表中所有满足条件的PCI结构体的不可变引用的容器。 170 #[allow(clippy::borrowed_box)] 171 pub fn get_pci_device_structure<'a>( 172 list: &'a mut RwLockReadGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>, 173 class_code: u8, 174 subclass: u8, 175 ) -> Vec<&'a Box<(dyn PciDeviceStructure)>> { 176 let mut result = Vec::new(); 177 for box_pci_device_structure in list.iter() { 178 let common_header = (*box_pci_device_structure).common_header(); 179 if (common_header.class_code == class_code) && (common_header.subclass == subclass) { 180 result.push(box_pci_device_structure); 181 } 182 } 183 result 184 } 185 186 //Bar0寄存器的offset 187 const BAR0_OFFSET: u8 = 0x10; 188 //Status、Command寄存器的offset 189 const STATUS_COMMAND_OFFSET: u8 = 0x04; 190 /// ID for vendor-specific PCI capabilities.(Virtio Capabilities) 191 pub const PCI_CAP_ID_VNDR: u8 = 0x09; 192 pub const PCI_CAP_ID_MSI: u8 = 0x05; 193 pub const PCI_CAP_ID_MSIX: u8 = 0x11; 194 pub const PORT_PCI_CONFIG_ADDRESS: u16 = 0xcf8; 195 pub const PORT_PCI_CONFIG_DATA: u16 = 0xcfc; 196 // pci设备分组的id 197 pub type SegmentGroupNumber = u16; //理论上最多支持65535个Segment_Group 198 199 bitflags! { 200 /// The status register in PCI configuration space. 201 pub struct Status: u16 { 202 // Bits 0-2 are reserved. 203 /// The state of the device's INTx# signal. 204 const INTERRUPT_STATUS = 1 << 3; 205 /// The device has a linked list of capabilities. 206 const CAPABILITIES_LIST = 1 << 4; 207 /// The device is capabile of running at 66 MHz rather than 33 MHz. 208 const MHZ_66_CAPABLE = 1 << 5; 209 // Bit 6 is reserved. 210 /// The device can accept fast back-to-back transactions not from the same agent. 211 const FAST_BACK_TO_BACK_CAPABLE = 1 << 7; 212 /// The bus agent observed a parity error (if parity error handling is enabled). 213 const MASTER_DATA_PARITY_ERROR = 1 << 8; 214 // Bits 9-10 are DEVSEL timing. 215 /// A target device terminated a transaction with target-abort. 216 const SIGNALED_TARGET_ABORT = 1 << 11; 217 /// A master device transaction was terminated with target-abort. 218 const RECEIVED_TARGET_ABORT = 1 << 12; 219 /// A master device transaction was terminated with master-abort. 220 const RECEIVED_MASTER_ABORT = 1 << 13; 221 /// A device asserts SERR#. 222 const SIGNALED_SYSTEM_ERROR = 1 << 14; 223 /// The device detects a parity error, even if parity error handling is disabled. 224 const DETECTED_PARITY_ERROR = 1 << 15; 225 } 226 } 227 228 bitflags! { 229 /// The command register in PCI configuration space. 230 pub struct Command: u16 { 231 /// The device can respond to I/O Space accesses. 232 const IO_SPACE = 1 << 0; 233 /// The device can respond to Memory Space accesses. 234 const MEMORY_SPACE = 1 << 1; 235 /// The device can behave as a bus master. 236 const BUS_MASTER = 1 << 2; 237 /// The device can monitor Special Cycle operations. 238 const SPECIAL_CYCLES = 1 << 3; 239 /// The device can generate the Memory Write and Invalidate command. 240 const MEMORY_WRITE_AND_INVALIDATE_ENABLE = 1 << 4; 241 /// The device will snoop palette register data. 242 const VGA_PALETTE_SNOOP = 1 << 5; 243 /// The device should take its normal action when a parity error is detected. 244 const PARITY_ERROR_RESPONSE = 1 << 6; 245 // Bit 7 is reserved. 246 /// The SERR# driver is enabled. 247 const SERR_ENABLE = 1 << 8; 248 /// The device is allowed to generate fast back-to-back transactions. 249 const FAST_BACK_TO_BACK_ENABLE = 1 << 9; 250 /// Assertion of the device's INTx# signal is disabled. 251 const INTERRUPT_DISABLE = 1 << 10; 252 } 253 } 254 255 /// The type of a PCI device function header. 256 /// 标头类型/设备类型 257 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 258 pub enum HeaderType { 259 /// A normal PCI device. 260 Standard, 261 /// A PCI to PCI bridge. 262 PciPciBridge, 263 /// A PCI to CardBus bridge. 264 PciCardbusBridge, 265 /// Unrecognised header type. 266 Unrecognised(u8), 267 } 268 /// u8到HeaderType的转换 269 impl From<u8> for HeaderType { 270 fn from(value: u8) -> Self { 271 match value { 272 0x00 => Self::Standard, 273 0x01 => Self::PciPciBridge, 274 0x02 => Self::PciCardbusBridge, 275 _ => Self::Unrecognised(value), 276 } 277 } 278 } 279 /// Pci可能触发的各种错误 280 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 281 pub enum PciError { 282 /// The device reported an invalid BAR type. 283 InvalidBarType, 284 CreateMmioError, 285 InvalidBusDeviceFunction, 286 SegmentNotFound, 287 McfgTableNotFound, 288 GetWrongHeader, 289 UnrecognisedHeaderType, 290 PciDeviceStructureTransformError, 291 PciIrqError(PciIrqError), 292 } 293 ///实现PciError的Display trait,使其可以直接输出 294 impl Display for PciError { 295 fn fmt(&self, f: &mut Formatter) -> fmt::Result { 296 match self { 297 Self::InvalidBarType => write!(f, "Invalid PCI BAR type."), 298 Self::CreateMmioError => write!(f, "Error occurred while creating mmio."), 299 Self::InvalidBusDeviceFunction => write!(f, "Found invalid BusDeviceFunction."), 300 Self::SegmentNotFound => write!(f, "Target segment not found"), 301 Self::McfgTableNotFound => write!(f, "ACPI MCFG Table not found"), 302 Self::GetWrongHeader => write!(f, "GetWrongHeader with vendor id 0xffff"), 303 Self::UnrecognisedHeaderType => write!(f, "Found device with unrecognised header type"), 304 Self::PciDeviceStructureTransformError => { 305 write!(f, "Found None When transform Pci device structure") 306 } 307 Self::PciIrqError(err) => write!(f, "Error occurred while setting irq :{:?}.", err), 308 } 309 } 310 } 311 312 /// trait类型Pci_Device_Structure表示pci设备,动态绑定三种具体设备类型:Pci_Device_Structure_General_Device、Pci_Device_Structure_Pci_to_Pci_Bridge、Pci_Device_Structure_Pci_to_Cardbus_Bridge 313 pub trait PciDeviceStructure: Send + Sync { 314 /// @brief 获取设备类型 315 /// @return HeaderType 设备类型 316 fn header_type(&self) -> HeaderType; 317 /// @brief 当其为standard设备时返回&Pci_Device_Structure_General_Device,其余情况返回None 318 #[inline(always)] 319 fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> { 320 None 321 } 322 /// @brief 当其为pci to pci bridge设备时返回&Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None 323 #[inline(always)] 324 fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> { 325 None 326 } 327 /// @brief 当其为pci to cardbus bridge设备时返回&Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None 328 #[inline(always)] 329 fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> { 330 None 331 } 332 /// @brief 获取Pci设备共有的common_header 333 /// @return 返回其不可变引用 334 fn common_header(&self) -> &PciDeviceStructureHeader; 335 /// @brief 当其为standard设备时返回&mut Pci_Device_Structure_General_Device,其余情况返回None 336 #[inline(always)] 337 fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> { 338 None 339 } 340 /// @brief 当其为pci to pci bridge设备时返回&mut Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None 341 #[inline(always)] 342 fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> { 343 None 344 } 345 /// @brief 当其为pci to cardbus bridge设备时返回&mut Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None 346 #[inline(always)] 347 fn as_pci_to_carbus_bridge_device_mut( 348 &mut self, 349 ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> { 350 None 351 } 352 /// @brief 返回迭代器,遍历capabilities 353 fn capabilities(&self) -> Option<CapabilityIterator> { 354 None 355 } 356 /// @brief 获取Status、Command寄存器的值 357 fn status_command(&self) -> (Status, Command) { 358 let common_header = self.common_header(); 359 let status = Status::from_bits_truncate(common_header.status); 360 let command = Command::from_bits_truncate(common_header.command); 361 (status, command) 362 } 363 /// @brief 设置Command寄存器的值 364 fn set_command(&mut self, command: Command) { 365 let common_header = self.common_header_mut(); 366 let command = command.bits(); 367 common_header.command = command; 368 pci_root_0().write_config( 369 common_header.bus_device_function, 370 STATUS_COMMAND_OFFSET.into(), 371 command as u32, 372 ); 373 } 374 /// @brief 获取Pci设备共有的common_header 375 /// @return 返回其可变引用 376 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader; 377 378 /// @brief 读取standard设备的bar寄存器,映射后将结果加入结构体的standard_device_bar变量 379 /// @return 只有standard设备才返回成功或者错误,其余返回None 380 #[inline(always)] 381 fn bar_ioremap(&mut self) -> Option<Result<u8, PciError>> { 382 None 383 } 384 /// @brief 获取PCI设备的bar寄存器的引用 385 /// @return 386 #[inline(always)] 387 fn bar(&mut self) -> Option<&PciStandardDeviceBar> { 388 None 389 } 390 /// @brief 通过设置该pci设备的command 391 fn enable_master(&mut self) { 392 self.set_command(Command::IO_SPACE | Command::MEMORY_SPACE | Command::BUS_MASTER); 393 } 394 /// @brief 寻找设备的msix空间的offset 395 fn msix_capability_offset(&self) -> Option<u8> { 396 for capability in self.capabilities()? { 397 if capability.id == PCI_CAP_ID_MSIX { 398 return Some(capability.offset); 399 } 400 } 401 None 402 } 403 /// @brief 寻找设备的msi空间的offset 404 fn msi_capability_offset(&self) -> Option<u8> { 405 for capability in self.capabilities()? { 406 if capability.id == PCI_CAP_ID_MSI { 407 return Some(capability.offset); 408 } 409 } 410 None 411 } 412 /// @brief 返回结构体中的irq_type的可变引用 413 fn irq_type_mut(&mut self) -> Option<&mut IrqType>; 414 /// @brief 返回结构体中的irq_vector的可变引用 415 fn irq_vector_mut(&mut self) -> Option<&mut Vec<IrqNumber>>; 416 } 417 418 /// Pci_Device_Structure_Header PCI设备结构体共有的头部 419 #[derive(Clone, Debug)] 420 pub struct PciDeviceStructureHeader { 421 // ==== busdevicefunction变量表示该结构体所处的位置 422 pub bus_device_function: BusDeviceFunction, 423 pub vendor_id: u16, // 供应商ID 0xffff是一个无效值,在读取访问不存在的设备的配置空间寄存器时返回 424 pub device_id: u16, // 设备ID,标志特定设备 425 pub command: u16, // 提供对设备生成和响应pci周期的能力的控制 向该寄存器写入0时,设备与pci总线断开除配置空间访问以外的所有连接 426 pub status: u16, // 用于记录pci总线相关时间的状态信息寄存器 427 pub revision_id: u8, // 修订ID,指定特定设备的修订标志符 428 pub prog_if: u8, // 编程接口字节,一个只读寄存器,指定设备具有的寄存器级别的编程接口(如果有的话) 429 pub subclass: u8, // 子类。指定设备执行的特定功能的只读寄存器 430 pub class_code: u8, // 类代码,一个只读寄存器,指定设备执行的功能类型 431 pub cache_line_size: u8, // 缓存线大小:以 32 位为单位指定系统缓存线大小。设备可以限制它可以支持的缓存线大小的数量,如果不支持的值写入该字段,设备将表现得好像写入了 0 值 432 pub latency_timer: u8, // 延迟计时器:以 PCI 总线时钟为单位指定延迟计时器。 433 pub header_type: u8, // 标头类型 a value of 0x0 specifies a general device, a value of 0x1 specifies a PCI-to-PCI bridge, and a value of 0x2 specifies a CardBus bridge. If bit 7 of this register is set, the device has multiple functions; otherwise, it is a single function device. 434 pub bist: u8, // Represents that status and allows control of a devices BIST (built-in self test). 435 // Here is the layout of the BIST register: 436 // | bit7 | bit6 | Bits 5-4 | Bits 3-0 | 437 // | BIST Capable | Start BIST | Reserved | Completion Code | 438 // for more details, please visit https://wiki.osdev.org/PCI 439 } 440 441 /// Pci_Device_Structure_General_Device PCI标准设备结构体 442 #[derive(Clone, Debug)] 443 pub struct PciDeviceStructureGeneralDevice { 444 pub common_header: PciDeviceStructureHeader, 445 // 中断结构体,包括legacy,msi,msix三种情况 446 pub irq_type: IrqType, 447 // 使用的中断号的vec集合 448 pub irq_vector: Vec<IrqNumber>, 449 pub standard_device_bar: PciStandardDeviceBar, 450 pub cardbus_cis_pointer: u32, // 指向卡信息结构,供在 CardBus 和 PCI 之间共享芯片的设备使用。 451 pub subsystem_vendor_id: u16, 452 pub subsystem_id: u16, 453 pub expansion_rom_base_address: u32, 454 pub capabilities_pointer: u8, 455 pub reserved0: u8, 456 pub reserved1: u16, 457 pub reserved2: u32, 458 pub interrupt_line: u8, // 指定设备的中断引脚连接到系统中断控制器的哪个输入,并由任何使用中断引脚的设备实现。对于 x86 架构,此寄存器对应于 PIC IRQ 编号 0-15(而不是 I/O APIC IRQ 编号),并且值0xFF定义为无连接。 459 pub interrupt_pin: u8, // 指定设备使用的中断引脚。其中值为0x1INTA#、0x2INTB#、0x3INTC#、0x4INTD#,0x0表示设备不使用中断引脚。 460 pub min_grant: u8, // 一个只读寄存器,用于指定设备所需的突发周期长度(以 1/4 微秒为单位)(假设时钟速率为 33 MHz) 461 pub max_latency: u8, // 一个只读寄存器,指定设备需要多长时间访问一次 PCI 总线(以 1/4 微秒为单位)。 462 } 463 impl PciDeviceStructure for PciDeviceStructureGeneralDevice { 464 #[inline(always)] 465 fn header_type(&self) -> HeaderType { 466 HeaderType::Standard 467 } 468 #[inline(always)] 469 fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> { 470 Some(self) 471 } 472 #[inline(always)] 473 fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> { 474 Some(self) 475 } 476 #[inline(always)] 477 fn common_header(&self) -> &PciDeviceStructureHeader { 478 &self.common_header 479 } 480 #[inline(always)] 481 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader { 482 &mut self.common_header 483 } 484 fn capabilities(&self) -> Option<CapabilityIterator> { 485 Some(CapabilityIterator { 486 bus_device_function: self.common_header.bus_device_function, 487 next_capability_offset: Some(self.capabilities_pointer), 488 }) 489 } 490 fn bar_ioremap(&mut self) -> Option<Result<u8, PciError>> { 491 let common_header = &self.common_header; 492 match pci_bar_init(common_header.bus_device_function) { 493 Ok(bar) => { 494 self.standard_device_bar = bar; 495 Some(Ok(0)) 496 } 497 Err(e) => Some(Err(e)), 498 } 499 } 500 fn bar(&mut self) -> Option<&PciStandardDeviceBar> { 501 Some(&self.standard_device_bar) 502 } 503 #[inline(always)] 504 fn irq_type_mut(&mut self) -> Option<&mut IrqType> { 505 Some(&mut self.irq_type) 506 } 507 #[inline(always)] 508 fn irq_vector_mut(&mut self) -> Option<&mut Vec<IrqNumber>> { 509 Some(&mut self.irq_vector) 510 } 511 } 512 513 /// Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci桥设备结构体 514 #[derive(Clone, Debug)] 515 pub struct PciDeviceStructurePciToPciBridge { 516 pub common_header: PciDeviceStructureHeader, 517 // 中断结构体,包括legacy,msi,msix三种情况 518 pub irq_type: IrqType, 519 // 使用的中断号的vec集合 520 pub irq_vector: Vec<IrqNumber>, 521 pub bar0: u32, 522 pub bar1: u32, 523 pub primary_bus_number: u8, 524 pub secondary_bus_number: u8, 525 pub subordinate_bus_number: u8, 526 pub secondary_latency_timer: u8, 527 pub io_base: u8, 528 pub io_limit: u8, 529 pub secondary_status: u16, 530 pub memory_base: u16, 531 pub memory_limit: u16, 532 pub prefetchable_memory_base: u16, 533 pub prefetchable_memory_limit: u16, 534 pub prefetchable_base_upper_32_bits: u32, 535 pub prefetchable_limit_upper_32_bits: u32, 536 pub io_base_upper_16_bits: u16, 537 pub io_limit_upper_16_bits: u16, 538 pub capability_pointer: u8, 539 pub reserved0: u8, 540 pub reserved1: u16, 541 pub expansion_rom_base_address: u32, 542 pub interrupt_line: u8, 543 pub interrupt_pin: u8, 544 pub bridge_control: u16, 545 } 546 impl PciDeviceStructure for PciDeviceStructurePciToPciBridge { 547 #[inline(always)] 548 fn header_type(&self) -> HeaderType { 549 HeaderType::PciPciBridge 550 } 551 #[inline(always)] 552 fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> { 553 Some(self) 554 } 555 #[inline(always)] 556 fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> { 557 Some(self) 558 } 559 #[inline(always)] 560 fn common_header(&self) -> &PciDeviceStructureHeader { 561 &self.common_header 562 } 563 #[inline(always)] 564 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader { 565 &mut self.common_header 566 } 567 #[inline(always)] 568 fn irq_type_mut(&mut self) -> Option<&mut IrqType> { 569 Some(&mut self.irq_type) 570 } 571 #[inline(always)] 572 fn irq_vector_mut(&mut self) -> Option<&mut Vec<IrqNumber>> { 573 Some(&mut self.irq_vector) 574 } 575 } 576 /// Pci_Device_Structure_Pci_to_Cardbus_Bridge Pci_to_Cardbus桥设备结构体 577 #[derive(Clone, Debug)] 578 pub struct PciDeviceStructurePciToCardbusBridge { 579 pub common_header: PciDeviceStructureHeader, 580 pub cardbus_socket_ex_ca_base_address: u32, 581 pub offset_of_capabilities_list: u8, 582 pub reserved: u8, 583 pub secondary_status: u16, 584 pub pci_bus_number: u8, 585 pub card_bus_bus_number: u8, 586 pub subordinate_bus_number: u8, 587 pub card_bus_latency_timer: u8, 588 pub memory_base_address0: u32, 589 pub memory_limit0: u32, 590 pub memory_base_address1: u32, 591 pub memory_limit1: u32, 592 pub io_base_address0: u32, 593 pub io_limit0: u32, 594 pub io_base_address1: u32, 595 pub io_limit1: u32, 596 pub interrupt_line: u8, 597 pub interrupt_pin: u8, 598 pub bridge_control: u16, 599 pub subsystem_device_id: u16, 600 pub subsystem_vendor_id: u16, 601 pub pc_card_legacy_mode_base_address_16_bit: u32, 602 } 603 impl PciDeviceStructure for PciDeviceStructurePciToCardbusBridge { 604 #[inline(always)] 605 fn header_type(&self) -> HeaderType { 606 HeaderType::PciCardbusBridge 607 } 608 #[inline(always)] 609 fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> { 610 Some(self) 611 } 612 #[inline(always)] 613 fn as_pci_to_carbus_bridge_device_mut( 614 &mut self, 615 ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> { 616 Some(self) 617 } 618 #[inline(always)] 619 fn common_header(&self) -> &PciDeviceStructureHeader { 620 &self.common_header 621 } 622 #[inline(always)] 623 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader { 624 &mut self.common_header 625 } 626 #[inline(always)] 627 fn irq_type_mut(&mut self) -> Option<&mut IrqType> { 628 None 629 } 630 #[inline(always)] 631 fn irq_vector_mut(&mut self) -> Option<&mut Vec<IrqNumber>> { 632 None 633 } 634 } 635 636 /// PCI配置空间访问机制 637 /// 638 /// 用于访问PCI设备的功能配置空间的一组机制。 639 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 640 pub enum PciCam { 641 /// PCI内存映射配置访问机制 642 /// 643 /// 为每个设备功能提供256字节的配置空间访问。 644 MmioCam, 645 /// PCIe内存映射增强配置访问机制 646 /// 647 /// 为每个设备功能提供4千字节(4096字节)的配置空间访问。 648 Ecam, 649 } 650 651 impl PciCam { 652 /// Returns the total size in bytes of the memory-mapped region. 653 pub const fn size(self) -> u32 { 654 match self { 655 Self::MmioCam => 0x1000000, 656 Self::Ecam => 0x10000000, 657 } 658 } 659 } 660 661 /// Gets the capabilities 'pointer' for the device function, if any. 662 /// @brief 获取第一个capability 的offset 663 /// @param bus_device_function PCI设备的唯一标识 664 /// @return Option<u8> offset 665 pub fn capabilities_offset(bus_device_function: BusDeviceFunction) -> Option<u8> { 666 let result = pci_root_0().read_config(bus_device_function, STATUS_COMMAND_OFFSET.into()); 667 let status: Status = Status::from_bits_truncate((result >> 16) as u16); 668 if status.contains(Status::CAPABILITIES_LIST) { 669 let cap_pointer = pci_root_0().read_config(bus_device_function, 0x34) as u8 & 0xFC; 670 Some(cap_pointer) 671 } else { 672 None 673 } 674 } 675 676 /// @brief 读取pci设备头部 677 /// @param bus_device_function PCI设备的唯一标识 678 /// @param add_to_list 是否添加到链表 679 /// @return 返回的header(trait 类型) 680 fn pci_read_header( 681 bus_device_function: BusDeviceFunction, 682 add_to_list: bool, 683 ) -> Result<Box<dyn PciDeviceStructure>, PciError> { 684 // 先读取公共header 685 let result = pci_root_0().read_config(bus_device_function, 0x00); 686 let vendor_id = result as u16; 687 let device_id = (result >> 16) as u16; 688 689 let result = pci_root_0().read_config(bus_device_function, 0x04); 690 let command = result as u16; 691 let status = (result >> 16) as u16; 692 693 let result = pci_root_0().read_config(bus_device_function, 0x08); 694 let revision_id = result as u8; 695 let prog_if = (result >> 8) as u8; 696 let subclass = (result >> 16) as u8; 697 let class_code = (result >> 24) as u8; 698 699 let result = pci_root_0().read_config(bus_device_function, 0x0c); 700 let cache_line_size = result as u8; 701 let latency_timer = (result >> 8) as u8; 702 let header_type = (result >> 16) as u8; 703 let bist = (result >> 24) as u8; 704 if vendor_id == 0xffff { 705 return Err(PciError::GetWrongHeader); 706 } 707 let header = PciDeviceStructureHeader { 708 bus_device_function, 709 vendor_id, 710 device_id, 711 command, 712 status, 713 revision_id, 714 prog_if, 715 subclass, 716 class_code, 717 cache_line_size, 718 latency_timer, 719 header_type, 720 bist, 721 }; 722 match HeaderType::from(header_type & 0x7f) { 723 HeaderType::Standard => { 724 let general_device: PciDeviceStructureGeneralDevice = 725 pci_read_general_device_header(header, &bus_device_function); 726 let box_general_device = Box::new(general_device.clone()); 727 let box_general_device_clone = box_general_device.clone(); 728 if add_to_list { 729 PCI_DEVICE_LINKEDLIST.add(box_general_device); 730 //这里实际上不应该使用clone,因为raw是用于sysfs的结构,但是实际上pci设备是在PCI_DEVICE_LINKEDLIST链表上的, 731 //这就导致sysfs呈现的对pci设备的操控接口实际上操控的是pci设备描述符是一个副本 732 //但是无奈这里没有使用Arc 733 //todo:修改pci设备描述符在静态链表中存在的方式,并修改这里的clone操作 734 let raw = PciGeneralDevice::from(&general_device); 735 let _ = pci_device_manager().device_add(Arc::new(raw)); 736 } 737 Ok(box_general_device_clone) 738 } 739 HeaderType::PciPciBridge => { 740 let pci_to_pci_bridge = pci_read_pci_to_pci_bridge_header(header, &bus_device_function); 741 let box_pci_to_pci_bridge = Box::new(pci_to_pci_bridge); 742 let box_pci_to_pci_bridge_clone = box_pci_to_pci_bridge.clone(); 743 if add_to_list { 744 PCI_DEVICE_LINKEDLIST.add(box_pci_to_pci_bridge); 745 } 746 Ok(box_pci_to_pci_bridge_clone) 747 } 748 HeaderType::PciCardbusBridge => { 749 let pci_cardbus_bridge = 750 pci_read_pci_to_cardbus_bridge_header(header, &bus_device_function); 751 let box_pci_cardbus_bridge = Box::new(pci_cardbus_bridge); 752 let box_pci_cardbus_bridge_clone = box_pci_cardbus_bridge.clone(); 753 if add_to_list { 754 PCI_DEVICE_LINKEDLIST.add(box_pci_cardbus_bridge); 755 } 756 Ok(box_pci_cardbus_bridge_clone) 757 } 758 HeaderType::Unrecognised(_) => Err(PciError::UnrecognisedHeaderType), 759 } 760 } 761 762 /// @brief 读取type为0x0的pci设备的header 763 /// 本函数只应被 pci_read_header()调用 764 /// @param common_header 共有头部 765 /// @param bus_device_function PCI设备的唯一标识 766 /// @return Pci_Device_Structure_General_Device 标准设备头部 767 fn pci_read_general_device_header( 768 common_header: PciDeviceStructureHeader, 769 bus_device_function: &BusDeviceFunction, 770 ) -> PciDeviceStructureGeneralDevice { 771 let standard_device_bar = PciStandardDeviceBar::default(); 772 let cardbus_cis_pointer = pci_root_0().read_config(*bus_device_function, 0x28); 773 774 let result = pci_root_0().read_config(*bus_device_function, 0x2c); 775 let subsystem_vendor_id = result as u16; 776 let subsystem_id = (result >> 16) as u16; 777 778 let expansion_rom_base_address = pci_root_0().read_config(*bus_device_function, 0x30); 779 780 let result = pci_root_0().read_config(*bus_device_function, 0x34); 781 let capabilities_pointer = result as u8; 782 let reserved0 = (result >> 8) as u8; 783 let reserved1 = (result >> 16) as u16; 784 785 let reserved2 = pci_root_0().read_config(*bus_device_function, 0x38); 786 787 let result = pci_root_0().read_config(*bus_device_function, 0x3c); 788 let interrupt_line = result as u8; 789 let interrupt_pin = (result >> 8) as u8; 790 let min_grant = (result >> 16) as u8; 791 let max_latency = (result >> 24) as u8; 792 PciDeviceStructureGeneralDevice { 793 common_header, 794 irq_type: IrqType::Unused, 795 irq_vector: Vec::new(), 796 standard_device_bar, 797 cardbus_cis_pointer, 798 subsystem_vendor_id, 799 subsystem_id, 800 expansion_rom_base_address, 801 capabilities_pointer, 802 reserved0, 803 reserved1, 804 reserved2, 805 interrupt_line, 806 interrupt_pin, 807 min_grant, 808 max_latency, 809 } 810 } 811 812 /// @brief 读取type为0x1的pci设备的header 813 /// 本函数只应被 pci_read_header()调用 814 /// @param common_header 共有头部 815 /// @param bus_device_function PCI设备的唯一标识 816 /// @return Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci 桥设备头部 817 fn pci_read_pci_to_pci_bridge_header( 818 common_header: PciDeviceStructureHeader, 819 bus_device_function: &BusDeviceFunction, 820 ) -> PciDeviceStructurePciToPciBridge { 821 let bar0 = pci_root_0().read_config(*bus_device_function, 0x10); 822 let bar1 = pci_root_0().read_config(*bus_device_function, 0x14); 823 824 let result = pci_root_0().read_config(*bus_device_function, 0x18); 825 826 let primary_bus_number = result as u8; 827 let secondary_bus_number = (result >> 8) as u8; 828 let subordinate_bus_number = (result >> 16) as u8; 829 let secondary_latency_timer = (result >> 24) as u8; 830 831 let result = pci_root_0().read_config(*bus_device_function, 0x1c); 832 let io_base = result as u8; 833 let io_limit = (result >> 8) as u8; 834 let secondary_status = (result >> 16) as u16; 835 836 let result = pci_root_0().read_config(*bus_device_function, 0x20); 837 let memory_base = result as u16; 838 let memory_limit = (result >> 16) as u16; 839 840 let result = pci_root_0().read_config(*bus_device_function, 0x24); 841 let prefetchable_memory_base = result as u16; 842 let prefetchable_memory_limit = (result >> 16) as u16; 843 844 let prefetchable_base_upper_32_bits = pci_root_0().read_config(*bus_device_function, 0x28); 845 let prefetchable_limit_upper_32_bits = pci_root_0().read_config(*bus_device_function, 0x2c); 846 847 let result = pci_root_0().read_config(*bus_device_function, 0x30); 848 let io_base_upper_16_bits = result as u16; 849 let io_limit_upper_16_bits = (result >> 16) as u16; 850 851 let result = pci_root_0().read_config(*bus_device_function, 0x34); 852 let capability_pointer = result as u8; 853 let reserved0 = (result >> 8) as u8; 854 let reserved1 = (result >> 16) as u16; 855 856 let expansion_rom_base_address = pci_root_0().read_config(*bus_device_function, 0x38); 857 858 let result = pci_root_0().read_config(*bus_device_function, 0x3c); 859 let interrupt_line = result as u8; 860 let interrupt_pin = (result >> 8) as u8; 861 let bridge_control = (result >> 16) as u16; 862 PciDeviceStructurePciToPciBridge { 863 common_header, 864 irq_type: IrqType::Unused, 865 irq_vector: Vec::new(), 866 bar0, 867 bar1, 868 primary_bus_number, 869 secondary_bus_number, 870 subordinate_bus_number, 871 secondary_latency_timer, 872 io_base, 873 io_limit, 874 secondary_status, 875 memory_base, 876 memory_limit, 877 prefetchable_memory_base, 878 prefetchable_memory_limit, 879 prefetchable_base_upper_32_bits, 880 prefetchable_limit_upper_32_bits, 881 io_base_upper_16_bits, 882 io_limit_upper_16_bits, 883 capability_pointer, 884 reserved0, 885 reserved1, 886 expansion_rom_base_address, 887 interrupt_line, 888 interrupt_pin, 889 bridge_control, 890 } 891 } 892 893 /// @brief 读取type为0x2的pci设备的header 894 /// 本函数只应被 pci_read_header()调用 895 /// @param common_header 共有头部 896 /// @param bus_device_function PCI设备的唯一标识 897 /// @return Pci_Device_Structure_Pci_to_Cardbus_Bridge pci-to-cardbus 桥设备头部 898 fn pci_read_pci_to_cardbus_bridge_header( 899 common_header: PciDeviceStructureHeader, 900 busdevicefunction: &BusDeviceFunction, 901 ) -> PciDeviceStructurePciToCardbusBridge { 902 let cardbus_socket_ex_ca_base_address = pci_root_0().read_config(*busdevicefunction, 0x10); 903 904 let result = pci_root_0().read_config(*busdevicefunction, 0x14); 905 let offset_of_capabilities_list = result as u8; 906 let reserved = (result >> 8) as u8; 907 let secondary_status = (result >> 16) as u16; 908 909 let result = pci_root_0().read_config(*busdevicefunction, 0x18); 910 let pci_bus_number = result as u8; 911 let card_bus_bus_number = (result >> 8) as u8; 912 let subordinate_bus_number = (result >> 16) as u8; 913 let card_bus_latency_timer = (result >> 24) as u8; 914 915 let memory_base_address0 = pci_root_0().read_config(*busdevicefunction, 0x1c); 916 let memory_limit0 = pci_root_0().read_config(*busdevicefunction, 0x20); 917 let memory_base_address1 = pci_root_0().read_config(*busdevicefunction, 0x24); 918 let memory_limit1 = pci_root_0().read_config(*busdevicefunction, 0x28); 919 920 let io_base_address0 = pci_root_0().read_config(*busdevicefunction, 0x2c); 921 let io_limit0 = pci_root_0().read_config(*busdevicefunction, 0x30); 922 let io_base_address1 = pci_root_0().read_config(*busdevicefunction, 0x34); 923 let io_limit1 = pci_root_0().read_config(*busdevicefunction, 0x38); 924 let result = pci_root_0().read_config(*busdevicefunction, 0x3c); 925 let interrupt_line = result as u8; 926 let interrupt_pin = (result >> 8) as u8; 927 let bridge_control = (result >> 16) as u16; 928 929 let result = pci_root_0().read_config(*busdevicefunction, 0x40); 930 let subsystem_device_id = result as u16; 931 let subsystem_vendor_id = (result >> 16) as u16; 932 933 let pc_card_legacy_mode_base_address_16_bit = 934 pci_root_0().read_config(*busdevicefunction, 0x44); 935 PciDeviceStructurePciToCardbusBridge { 936 common_header, 937 cardbus_socket_ex_ca_base_address, 938 offset_of_capabilities_list, 939 reserved, 940 secondary_status, 941 pci_bus_number, 942 card_bus_bus_number, 943 subordinate_bus_number, 944 card_bus_latency_timer, 945 memory_base_address0, 946 memory_limit0, 947 memory_base_address1, 948 memory_limit1, 949 io_base_address0, 950 io_limit0, 951 io_base_address1, 952 io_limit1, 953 interrupt_line, 954 interrupt_pin, 955 bridge_control, 956 subsystem_device_id, 957 subsystem_vendor_id, 958 pc_card_legacy_mode_base_address_16_bit, 959 } 960 } 961 962 /// @brief 检查所有bus上的设备并将其加入链表 963 /// @return 成功返回ok(),失败返回失败原因 964 fn pci_check_all_buses() -> Result<u8, PciError> { 965 kinfo!("Checking all devices in PCI bus..."); 966 let busdevicefunction = BusDeviceFunction { 967 bus: 0, 968 device: 0, 969 function: 0, 970 }; 971 let header = pci_read_header(busdevicefunction, false)?; 972 let common_header = header.common_header(); 973 pci_check_bus(0)?; 974 if common_header.header_type & 0x80 != 0 { 975 for function in 1..8 { 976 pci_check_bus(function)?; 977 } 978 } 979 Ok(0) 980 } 981 /// @brief 检查特定设备并将其加入链表 982 /// @return 成功返回ok(),失败返回失败原因 983 fn pci_check_function(busdevicefunction: BusDeviceFunction) -> Result<u8, PciError> { 984 //kdebug!("PCI check function {}", busdevicefunction.function); 985 let header = match pci_read_header(busdevicefunction, true) { 986 Ok(header) => header, 987 Err(PciError::GetWrongHeader) => { 988 return Ok(255); 989 } 990 Err(e) => { 991 return Err(e); 992 } 993 }; 994 let common_header = header.common_header(); 995 if (common_header.class_code == 0x06) 996 && (common_header.subclass == 0x04 || common_header.subclass == 0x09) 997 { 998 let pci_to_pci_bridge = header 999 .as_pci_to_pci_bridge_device() 1000 .ok_or(PciError::PciDeviceStructureTransformError)?; 1001 let secondary_bus = pci_to_pci_bridge.secondary_bus_number; 1002 pci_check_bus(secondary_bus)?; 1003 } 1004 Ok(0) 1005 } 1006 1007 /// @brief 检查device上的设备并将其加入链表 1008 /// @return 成功返回ok(),失败返回失败原因 1009 fn pci_check_device(bus: u8, device: u8) -> Result<u8, PciError> { 1010 //kdebug!("PCI check device {}", device); 1011 let busdevicefunction = BusDeviceFunction { 1012 bus, 1013 device, 1014 function: 0, 1015 }; 1016 let header = match pci_read_header(busdevicefunction, false) { 1017 Ok(header) => header, 1018 Err(PciError::GetWrongHeader) => { 1019 //设备不存在,直接返回即可,不用终止遍历 1020 return Ok(255); 1021 } 1022 Err(e) => { 1023 return Err(e); 1024 } 1025 }; 1026 pci_check_function(busdevicefunction)?; 1027 let common_header = header.common_header(); 1028 if common_header.header_type & 0x80 != 0 { 1029 kdebug!( 1030 "Detected multi func device in bus{},device{}", 1031 busdevicefunction.bus, 1032 busdevicefunction.device 1033 ); 1034 // 这是一个多function的设备,因此查询剩余的function 1035 for function in 1..8 { 1036 let busdevicefunction = BusDeviceFunction { 1037 bus, 1038 device, 1039 function, 1040 }; 1041 pci_check_function(busdevicefunction)?; 1042 } 1043 } 1044 Ok(0) 1045 } 1046 /// @brief 检查该bus上的设备并将其加入链表 1047 /// @return 成功返回ok(),失败返回失败原因 1048 fn pci_check_bus(bus: u8) -> Result<u8, PciError> { 1049 //kdebug!("PCI check bus {}", bus); 1050 for device in 0..32 { 1051 pci_check_device(bus, device)?; 1052 } 1053 Ok(0) 1054 } 1055 1056 /// pci初始化函数 1057 #[inline(never)] 1058 pub fn pci_init() { 1059 kinfo!("Initializing PCI bus..."); 1060 pci_bus_subsys_init().expect("Failed to init pci bus subsystem"); 1061 if let Err(e) = pci_check_all_buses() { 1062 kerror!("pci init failed when checking bus because of error: {}", e); 1063 return; 1064 } 1065 kinfo!( 1066 "Total pci device and function num = {}", 1067 PCI_DEVICE_LINKEDLIST.num() 1068 ); 1069 let list = PCI_DEVICE_LINKEDLIST.read(); 1070 for box_pci_device in list.iter() { 1071 let common_header = box_pci_device.common_header(); 1072 match box_pci_device.header_type() { 1073 HeaderType::Standard if common_header.status & 0x10 != 0 => { 1074 kinfo!("Found pci standard device with class code ={} subclass={} status={:#x} cap_pointer={:#x} vendor={:#x}, device id={:#x},bdf={}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer,common_header.vendor_id, common_header.device_id,common_header.bus_device_function); 1075 } 1076 HeaderType::Standard => { 1077 kinfo!( 1078 "Found pci standard device with class code ={} subclass={} status={:#x} ", 1079 common_header.class_code, 1080 common_header.subclass, 1081 common_header.status 1082 ); 1083 } 1084 HeaderType::PciPciBridge if common_header.status & 0x10 != 0 => { 1085 kinfo!("Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} cap_pointer={:#x}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_pci_to_pci_bridge_device().unwrap().capability_pointer); 1086 } 1087 HeaderType::PciPciBridge => { 1088 kinfo!( 1089 "Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} ", 1090 common_header.class_code, 1091 common_header.subclass, 1092 common_header.status 1093 ); 1094 } 1095 HeaderType::PciCardbusBridge => { 1096 kinfo!( 1097 "Found pcicardbus bridge device with class code ={} subclass={} status={:#x} ", 1098 common_header.class_code, 1099 common_header.subclass, 1100 common_header.status 1101 ); 1102 } 1103 HeaderType::Unrecognised(_) => {} 1104 } 1105 } 1106 1107 kinfo!("PCI bus initialized."); 1108 } 1109 1110 /// An identifier for a PCI bus, device and function. 1111 /// PCI设备的唯一标识 1112 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 1113 pub struct BusDeviceFunction { 1114 /// The PCI bus number, between 0 and 255. 1115 pub bus: u8, 1116 /// The device number on the bus, between 0 and 31. 1117 pub device: u8, 1118 /// The function number of the device, between 0 and 7. 1119 pub function: u8, 1120 } 1121 impl BusDeviceFunction { 1122 /// Returns whether the device and function numbers are valid, i.e. the device is between 0 and 1123 ///@brief 检测BusDeviceFunction实例是否有效 1124 ///@param self 1125 ///@return bool 是否有效 1126 #[allow(dead_code)] 1127 pub fn valid(&self) -> bool { 1128 self.device < 32 && self.function < 8 1129 } 1130 } 1131 1132 impl From<BusDeviceFunction> for String { 1133 /// # 函数的功能 1134 /// 这里提供一个由BusDeviceFunction到dddd:bb:vv.f字符串的转换函数,主要用于转换成设备的名称(pci设备的名称一般是诸如0000:00:00.1这种) 1135 fn from(value: BusDeviceFunction) -> Self { 1136 //需要注意,这里的0000应该是所谓的“域号”(Domain ID),但是尚不知道是如何获得的,故硬编码在这里 1137 //todo:实现域号的获取 1138 format!( 1139 "0000:{:02x}:{:02x}.{}", 1140 value.bus, value.device, value.function 1141 ) 1142 } 1143 } 1144 ///实现BusDeviceFunction的Display trait,使其可以直接输出 1145 impl Display for BusDeviceFunction { 1146 fn fmt(&self, f: &mut Formatter) -> fmt::Result { 1147 write!( 1148 f, 1149 "bus {} device {} function{}", 1150 self.bus, self.device, self.function 1151 ) 1152 } 1153 } 1154 /// The location allowed for a memory BAR. 1155 /// memory BAR的三种情况 1156 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 1157 pub enum MemoryBarType { 1158 /// The BAR has a 32-bit address and can be mapped anywhere in 32-bit address space. 1159 Width32, 1160 /// The BAR must be mapped below 1MiB. 1161 Below1MiB, 1162 /// The BAR has a 64-bit address and can be mapped anywhere in 64-bit address space. 1163 Width64, 1164 } 1165 ///实现MemoryBarType与u8的类型转换 1166 impl From<MemoryBarType> for u8 { 1167 fn from(bar_type: MemoryBarType) -> Self { 1168 match bar_type { 1169 MemoryBarType::Width32 => 0, 1170 MemoryBarType::Below1MiB => 1, 1171 MemoryBarType::Width64 => 2, 1172 } 1173 } 1174 } 1175 ///实现MemoryBarType与u8的类型转换 1176 impl TryFrom<u8> for MemoryBarType { 1177 type Error = PciError; 1178 fn try_from(value: u8) -> Result<Self, Self::Error> { 1179 match value { 1180 0 => Ok(Self::Width32), 1181 1 => Ok(Self::Below1MiB), 1182 2 => Ok(Self::Width64), 1183 _ => Err(PciError::InvalidBarType), 1184 } 1185 } 1186 } 1187 1188 /// Information about a PCI Base Address Register. 1189 /// BAR的三种类型 Memory/IO/Unused 1190 #[derive(Clone, Debug)] 1191 pub enum BarInfo { 1192 /// The BAR is for a memory region. 1193 Memory { 1194 /// The size of the BAR address and where it can be located. 1195 address_type: MemoryBarType, 1196 /// If true, then reading from the region doesn't have side effects. The CPU may cache reads 1197 /// and merge repeated stores. 1198 prefetchable: bool, 1199 /// The memory address, always 16-byte aligned. 1200 address: u64, 1201 /// The size of the BAR in bytes. 1202 size: u32, 1203 /// The virtaddress for a memory bar(mapped). 1204 mmio_guard: Arc<MMIOSpaceGuard>, 1205 }, 1206 /// The BAR is for an I/O region. 1207 IO { 1208 /// The I/O address, always 4-byte aligned. 1209 address: u32, 1210 /// The size of the BAR in bytes. 1211 size: u32, 1212 }, 1213 Unused, 1214 } 1215 1216 impl BarInfo { 1217 /// Returns the address and size of this BAR if it is a memory bar, or `None` if it is an IO 1218 /// BAR. 1219 ///@brief 得到某个bar的memory_address与size(前提是他的类型为Memory Bar) 1220 ///@param self 1221 ///@return Option<(u64, u32) 是Memory Bar返回内存地址与大小,不是则返回None 1222 pub fn memory_address_size(&self) -> Option<(u64, u32)> { 1223 if let Self::Memory { address, size, .. } = self { 1224 Some((*address, *size)) 1225 } else { 1226 None 1227 } 1228 } 1229 ///@brief 得到某个bar的virtaddress(前提是他的类型为Memory Bar) 1230 ///@param self 1231 ///@return Option<(u64) 是Memory Bar返回映射的虚拟地址,不是则返回None 1232 pub fn virtual_address(&self) -> Option<VirtAddr> { 1233 if let Self::Memory { mmio_guard, .. } = self { 1234 Some(mmio_guard.vaddr()) 1235 } else { 1236 None 1237 } 1238 } 1239 } 1240 ///实现BarInfo的Display trait,自定义输出 1241 impl Display for BarInfo { 1242 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 1243 match self { 1244 Self::Memory { 1245 address_type, 1246 prefetchable, 1247 address, 1248 size, 1249 mmio_guard, 1250 } => write!( 1251 f, 1252 "Memory space at {:#010x}, size {}, type {:?}, prefetchable {}, mmio_guard: {:?}", 1253 address, size, address_type, prefetchable, mmio_guard 1254 ), 1255 Self::IO { address, size } => { 1256 write!(f, "I/O space at {:#010x}, size {}", address, size) 1257 } 1258 Self::Unused => { 1259 write!(f, "Unused bar") 1260 } 1261 } 1262 } 1263 } 1264 // todo 增加对桥的bar的支持 1265 pub trait PciDeviceBar {} 1266 1267 ///一个普通PCI设备(非桥)有6个BAR寄存器,PciStandardDeviceBar存储其全部信息 1268 #[derive(Clone, Debug)] 1269 pub struct PciStandardDeviceBar { 1270 bar0: BarInfo, 1271 bar1: BarInfo, 1272 bar2: BarInfo, 1273 bar3: BarInfo, 1274 bar4: BarInfo, 1275 bar5: BarInfo, 1276 } 1277 1278 impl PciStandardDeviceBar { 1279 ///@brief 得到某个bar的barinfo 1280 ///@param self ,bar_index(0-5) 1281 ///@return Result<&BarInfo, PciError> bar_index在0-5则返回对应的bar_info结构体,超出范围则返回错误 1282 pub fn get_bar(&self, bar_index: u8) -> Result<&BarInfo, PciError> { 1283 match bar_index { 1284 0 => Ok(&self.bar0), 1285 1 => Ok(&self.bar1), 1286 2 => Ok(&self.bar2), 1287 3 => Ok(&self.bar3), 1288 4 => Ok(&self.bar4), 1289 5 => Ok(&self.bar5), 1290 _ => Err(PciError::InvalidBarType), 1291 } 1292 } 1293 } 1294 ///实现PciStandardDeviceBar的Display trait,使其可以直接输出 1295 impl Display for PciStandardDeviceBar { 1296 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 1297 write!( 1298 f, 1299 "\r\nBar0:{}\r\nBar1:{}\r\nBar2:{}\r\nBar3:{}\r\nBar4:{}\r\nBar5:{}", 1300 self.bar0, self.bar1, self.bar2, self.bar3, self.bar4, self.bar5 1301 ) 1302 } 1303 } 1304 ///实现PciStandardDeviceBar的Default trait,使其可以简单初始化 1305 impl Default for PciStandardDeviceBar { 1306 fn default() -> Self { 1307 PciStandardDeviceBar { 1308 bar0: BarInfo::Unused, 1309 bar1: BarInfo::Unused, 1310 bar2: BarInfo::Unused, 1311 bar3: BarInfo::Unused, 1312 bar4: BarInfo::Unused, 1313 bar5: BarInfo::Unused, 1314 } 1315 } 1316 } 1317 1318 ///@brief 将某个pci设备的bar寄存器读取值后映射到虚拟地址 1319 ///@param self ,bus_device_function PCI设备的唯一标识符 1320 ///@return Result<PciStandardDeviceBar, PciError> 成功则返回对应的PciStandardDeviceBar结构体,失败则返回错误类型 1321 pub fn pci_bar_init( 1322 bus_device_function: BusDeviceFunction, 1323 ) -> Result<PciStandardDeviceBar, PciError> { 1324 let mut device_bar: PciStandardDeviceBar = PciStandardDeviceBar::default(); 1325 let mut bar_index_ignore: u8 = 255; 1326 for bar_index in 0..6 { 1327 if bar_index == bar_index_ignore { 1328 continue; 1329 } 1330 let bar_info; 1331 let bar_orig = 1332 pci_root_0().read_config(bus_device_function, (BAR0_OFFSET + 4 * bar_index).into()); 1333 pci_root_0().write_config( 1334 bus_device_function, 1335 (BAR0_OFFSET + 4 * bar_index).into(), 1336 0xffffffff, 1337 ); 1338 let size_mask = 1339 pci_root_0().read_config(bus_device_function, (BAR0_OFFSET + 4 * bar_index).into()); 1340 // A wrapping add is necessary to correctly handle the case of unused BARs, which read back 1341 // as 0, and should be treated as size 0. 1342 let size = (!(size_mask & 0xfffffff0)).wrapping_add(1); 1343 //kdebug!("bar_orig:{:#x},size: {:#x}", bar_orig,size); 1344 // Restore the original value. 1345 pci_root_0().write_config( 1346 bus_device_function, 1347 (BAR0_OFFSET + 4 * bar_index).into(), 1348 bar_orig, 1349 ); 1350 if size == 0 { 1351 continue; 1352 } 1353 if bar_orig & 0x00000001 == 0x00000001 { 1354 // I/O space 1355 let address = bar_orig & 0xfffffffc; 1356 bar_info = BarInfo::IO { address, size }; 1357 } else { 1358 // Memory space 1359 let mut address = u64::from(bar_orig & 0xfffffff0); 1360 let prefetchable = bar_orig & 0x00000008 != 0; 1361 let address_type = MemoryBarType::try_from(((bar_orig & 0x00000006) >> 1) as u8)?; 1362 if address_type == MemoryBarType::Width64 { 1363 if bar_index >= 5 { 1364 return Err(PciError::InvalidBarType); 1365 } 1366 let address_top = pci_root_0().read_config( 1367 bus_device_function, 1368 (BAR0_OFFSET + 4 * (bar_index + 1)).into(), 1369 ); 1370 address |= u64::from(address_top) << 32; 1371 bar_index_ignore = bar_index + 1; //下个bar跳过,因为64位的memory bar覆盖了两个bar 1372 } 1373 let pci_address = PciAddr::new(address as usize); 1374 let paddr = PciArch::address_pci_to_physical(pci_address); //PCI总线域物理地址转换为存储器域物理地址 1375 1376 let space_guard: Arc<MMIOSpaceGuard>; 1377 unsafe { 1378 let size_want = size as usize; 1379 let tmp = mmio_pool() 1380 .create_mmio(size_want) 1381 .map_err(|_| PciError::CreateMmioError)?; 1382 space_guard = Arc::new(tmp); 1383 //kdebug!("Pci bar init: mmio space: {space_guard:?}, paddr={paddr:?}, size_want={size_want}"); 1384 assert!( 1385 space_guard.map_phys(paddr, size_want).is_ok(), 1386 "pci_bar_init: map_phys failed" 1387 ); 1388 } 1389 bar_info = BarInfo::Memory { 1390 address_type, 1391 prefetchable, 1392 address, 1393 size, 1394 mmio_guard: space_guard, 1395 }; 1396 } 1397 match bar_index { 1398 0 => { 1399 device_bar.bar0 = bar_info; 1400 } 1401 1 => { 1402 device_bar.bar1 = bar_info; 1403 } 1404 2 => { 1405 device_bar.bar2 = bar_info; 1406 } 1407 3 => { 1408 device_bar.bar3 = bar_info; 1409 } 1410 4 => { 1411 device_bar.bar4 = bar_info; 1412 } 1413 5 => { 1414 device_bar.bar5 = bar_info; 1415 } 1416 _ => {} 1417 } 1418 } 1419 //kdebug!("pci_device_bar:{}", device_bar); 1420 return Ok(device_bar); 1421 } 1422 1423 /// Information about a PCI device capability. 1424 /// PCI设备的capability的信息 1425 #[derive(Debug, Copy, Clone, Eq, PartialEq)] 1426 pub struct CapabilityInfo { 1427 /// The offset of the capability in the PCI configuration space of the device function. 1428 pub offset: u8, 1429 /// The ID of the capability. 1430 pub id: u8, 1431 /// The third and fourth bytes of the capability, to save reading them again. 1432 pub private_header: u16, 1433 } 1434 1435 /// Iterator over capabilities for a device. 1436 /// 创建迭代器以遍历PCI设备的capability 1437 #[derive(Debug)] 1438 pub struct CapabilityIterator { 1439 pub bus_device_function: BusDeviceFunction, 1440 pub next_capability_offset: Option<u8>, 1441 } 1442 1443 impl Iterator for CapabilityIterator { 1444 type Item = CapabilityInfo; 1445 fn next(&mut self) -> Option<Self::Item> { 1446 let offset = self.next_capability_offset?; 1447 1448 // Read the first 4 bytes of the capability. 1449 let capability_header = pci_root_0().read_config(self.bus_device_function, offset.into()); 1450 let id = capability_header as u8; 1451 let next_offset = (capability_header >> 8) as u8; 1452 let private_header = (capability_header >> 16) as u16; 1453 1454 self.next_capability_offset = if next_offset == 0 { 1455 None 1456 } else if next_offset < 64 || next_offset & 0x3 != 0 { 1457 kwarn!("Invalid next capability offset {:#04x}", next_offset); 1458 None 1459 } else { 1460 Some(next_offset) 1461 }; 1462 1463 Some(CapabilityInfo { 1464 offset, 1465 id, 1466 private_header, 1467 }) 1468 } 1469 } 1470 1471 /// Information about a PCIe device capability. 1472 /// PCIe设备的external capability的信息 1473 #[derive(Debug, Copy, Clone, Eq, PartialEq)] 1474 pub struct ExternalCapabilityInfo { 1475 /// The offset of the capability in the PCI configuration space of the device function. 1476 pub offset: u16, 1477 /// The ID of the capability. 1478 pub id: u16, 1479 /// The third and fourth bytes of the capability, to save reading them again. 1480 pub capability_version: u8, 1481 } 1482 1483 /// Iterator over capabilities for a device. 1484 /// 创建迭代器以遍历PCIe设备的external capability 1485 #[derive(Debug)] 1486 pub struct ExternalCapabilityIterator<'a> { 1487 pub root: &'a PciRoot, 1488 pub bus_device_function: BusDeviceFunction, 1489 pub next_capability_offset: Option<u16>, 1490 } 1491 impl<'a> Iterator for ExternalCapabilityIterator<'a> { 1492 type Item = ExternalCapabilityInfo; 1493 fn next(&mut self) -> Option<Self::Item> { 1494 let offset = self.next_capability_offset?; 1495 1496 // Read the first 4 bytes of the capability. 1497 let capability_header = self.root.read_config(self.bus_device_function, offset); 1498 let id = capability_header as u16; 1499 let next_offset = (capability_header >> 20) as u16; 1500 let capability_version = ((capability_header >> 16) & 0xf) as u8; 1501 1502 self.next_capability_offset = if next_offset == 0 { 1503 None 1504 } else if next_offset < 0x100 || next_offset & 0x3 != 0 { 1505 kwarn!("Invalid next capability offset {:#04x}", next_offset); 1506 None 1507 } else { 1508 Some(next_offset) 1509 }; 1510 1511 Some(ExternalCapabilityInfo { 1512 offset, 1513 id, 1514 capability_version, 1515 }) 1516 } 1517 } 1518