xref: /DragonOS/kernel/src/driver/pci/pci.rs (revision 8d94ea66a3eb3e02039730c8d08e9bead8c344b8)
1 #![allow(dead_code)]
2 // 目前仅支持单主桥单Segment
3 
4 use super::pci_irq::{IrqType, PciIrqError};
5 use crate::arch::{PciArch, TraitPciArch};
6 use crate::include::bindings::bindings::{PAGE_2M_SIZE, VM_DONTCOPY, VM_IO};
7 use crate::libs::rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard};
8 use crate::mm::kernel_mapper::KernelMapper;
9 use crate::mm::mmio_buddy::mmio_pool;
10 use crate::mm::page::PageFlags;
11 use crate::mm::{PhysAddr, VirtAddr};
12 use crate::{kdebug, kerror, kinfo, kwarn};
13 use alloc::vec::Vec;
14 use alloc::{boxed::Box, collections::LinkedList};
15 use bitflags::bitflags;
16 
17 use core::{
18     convert::TryFrom,
19     fmt::{self, Debug, Display, Formatter},
20 };
21 // PCI_DEVICE_LINKEDLIST 添加了读写锁的全局链表,里面存储了检索到的PCI设备结构体
22 // PCI_ROOT_0 Segment为0的全局PciRoot
23 lazy_static! {
24     pub static ref PCI_DEVICE_LINKEDLIST: PciDeviceLinkedList = PciDeviceLinkedList::new();
25     pub static ref PCI_ROOT_0: Option<PciRoot> = {
26         match PciRoot::new(0) {
27             Ok(root) => Some(root),
28             Err(err) => {
29                 kerror!("Pci_root init failed because of error: {}", err);
30                 None
31             }
32         }
33     };
34 }
35 /// PCI域地址
36 #[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)]
37 #[repr(transparent)]
38 pub struct PciAddr(usize);
39 
40 impl PciAddr {
41     #[inline(always)]
42     pub const fn new(address: usize) -> Self {
43         Self(address)
44     }
45 
46     /// @brief 获取PCI域地址的值
47     #[inline(always)]
48     pub fn data(&self) -> usize {
49         self.0
50     }
51 
52     /// @brief 将PCI域地址加上一个偏移量
53     #[inline(always)]
54     pub fn add(self, offset: usize) -> Self {
55         Self(self.0 + offset)
56     }
57 
58     /// @brief 判断PCI域地址是否按照指定要求对齐
59     #[inline(always)]
60     pub fn check_aligned(&self, align: usize) -> bool {
61         return self.0 & (align - 1) == 0;
62     }
63 }
64 impl Debug for PciAddr {
65     fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
66         write!(f, "PciAddr({:#x})", self.0)
67     }
68 }
69 
70 /// 添加了读写锁的链表,存储PCI设备结构体
71 pub struct PciDeviceLinkedList {
72     list: RwLock<LinkedList<Box<dyn PciDeviceStructure>>>,
73 }
74 
75 impl PciDeviceLinkedList {
76     /// @brief 初始化结构体
77     fn new() -> Self {
78         PciDeviceLinkedList {
79             list: RwLock::new(LinkedList::new()),
80         }
81     }
82     /// @brief 获取可读的linkedlist(读锁守卫)
83     /// @return RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>>  读锁守卫
84     pub fn read(&self) -> RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>> {
85         self.list.read()
86     }
87     /// @brief 获取可写的linkedlist(写锁守卫)
88     /// @return RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>>  写锁守卫
89     pub fn write(&self) -> RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>> {
90         self.list.write()
91     }
92     /// @brief 获取链表中PCI结构体数目
93     /// @return usize 链表中PCI结构体数目
94     pub fn num(&self) -> usize {
95         let list = self.list.read();
96         list.len()
97     }
98     /// @brief 添加Pci设备结构体到链表中
99     pub fn add(&self, device: Box<dyn PciDeviceStructure>) {
100         let mut list = self.list.write();
101         list.push_back(device);
102     }
103 }
104 
105 /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其可变引用
106 /// @param list 链表的写锁守卫
107 /// @param class_code 寄存器值
108 /// @param subclass 寄存器值,与class_code一起确定设备类型
109 /// @return Vec<&'a mut Box<(dyn PciDeviceStructure)  包含链表中所有满足条件的PCI结构体的可变引用的容器
110 pub fn get_pci_device_structure_mut<'a>(
111     list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>,
112     class_code: u8,
113     subclass: u8,
114 ) -> Vec<&'a mut Box<(dyn PciDeviceStructure)>> {
115     let mut result = Vec::new();
116     for box_pci_device_structure in list.iter_mut() {
117         let common_header = (*box_pci_device_structure).common_header();
118         if (common_header.class_code == class_code) && (common_header.subclass == subclass) {
119             result.push(box_pci_device_structure);
120         }
121     }
122     result
123 }
124 /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其不可变引用
125 /// @param list 链表的读锁守卫
126 /// @param class_code 寄存器值
127 /// @param subclass 寄存器值,与class_code一起确定设备类型
128 /// @return Vec<&'a Box<(dyn PciDeviceStructure)  包含链表中所有满足条件的PCI结构体的不可变引用的容器
129 pub fn get_pci_device_structure<'a>(
130     list: &'a mut RwLockReadGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>,
131     class_code: u8,
132     subclass: u8,
133 ) -> Vec<&'a Box<(dyn PciDeviceStructure)>> {
134     let mut result = Vec::new();
135     for box_pci_device_structure in list.iter() {
136         let common_header = (*box_pci_device_structure).common_header();
137         if (common_header.class_code == class_code) && (common_header.subclass == subclass) {
138             result.push(box_pci_device_structure);
139         }
140     }
141     result
142 }
143 
144 //Bar0寄存器的offset
145 const BAR0_OFFSET: u8 = 0x10;
146 //Status、Command寄存器的offset
147 const STATUS_COMMAND_OFFSET: u8 = 0x04;
148 /// ID for vendor-specific PCI capabilities.(Virtio Capabilities)
149 pub const PCI_CAP_ID_VNDR: u8 = 0x09;
150 pub const PCI_CAP_ID_MSI: u8 = 0x05;
151 pub const PCI_CAP_ID_MSIX: u8 = 0x11;
152 pub const PORT_PCI_CONFIG_ADDRESS: u16 = 0xcf8;
153 pub const PORT_PCI_CONFIG_DATA: u16 = 0xcfc;
154 // pci设备分组的id
155 pub type SegmentGroupNumber = u16; //理论上最多支持65535个Segment_Group
156 
157 bitflags! {
158     /// The status register in PCI configuration space.
159     pub struct Status: u16 {
160         // Bits 0-2 are reserved.
161         /// The state of the device's INTx# signal.
162         const INTERRUPT_STATUS = 1 << 3;
163         /// The device has a linked list of capabilities.
164         const CAPABILITIES_LIST = 1 << 4;
165         /// The device is capabile of running at 66 MHz rather than 33 MHz.
166         const MHZ_66_CAPABLE = 1 << 5;
167         // Bit 6 is reserved.
168         /// The device can accept fast back-to-back transactions not from the same agent.
169         const FAST_BACK_TO_BACK_CAPABLE = 1 << 7;
170         /// The bus agent observed a parity error (if parity error handling is enabled).
171         const MASTER_DATA_PARITY_ERROR = 1 << 8;
172         // Bits 9-10 are DEVSEL timing.
173         /// A target device terminated a transaction with target-abort.
174         const SIGNALED_TARGET_ABORT = 1 << 11;
175         /// A master device transaction was terminated with target-abort.
176         const RECEIVED_TARGET_ABORT = 1 << 12;
177         /// A master device transaction was terminated with master-abort.
178         const RECEIVED_MASTER_ABORT = 1 << 13;
179         /// A device asserts SERR#.
180         const SIGNALED_SYSTEM_ERROR = 1 << 14;
181         /// The device detects a parity error, even if parity error handling is disabled.
182         const DETECTED_PARITY_ERROR = 1 << 15;
183     }
184 }
185 
186 bitflags! {
187     /// The command register in PCI configuration space.
188     pub struct Command: u16 {
189         /// The device can respond to I/O Space accesses.
190         const IO_SPACE = 1 << 0;
191         /// The device can respond to Memory Space accesses.
192         const MEMORY_SPACE = 1 << 1;
193         /// The device can behave as a bus master.
194         const BUS_MASTER = 1 << 2;
195         /// The device can monitor Special Cycle operations.
196         const SPECIAL_CYCLES = 1 << 3;
197         /// The device can generate the Memory Write and Invalidate command.
198         const MEMORY_WRITE_AND_INVALIDATE_ENABLE = 1 << 4;
199         /// The device will snoop palette register data.
200         const VGA_PALETTE_SNOOP = 1 << 5;
201         /// The device should take its normal action when a parity error is detected.
202         const PARITY_ERROR_RESPONSE = 1 << 6;
203         // Bit 7 is reserved.
204         /// The SERR# driver is enabled.
205         const SERR_ENABLE = 1 << 8;
206         /// The device is allowed to generate fast back-to-back transactions.
207         const FAST_BACK_TO_BACK_ENABLE = 1 << 9;
208         /// Assertion of the device's INTx# signal is disabled.
209         const INTERRUPT_DISABLE = 1 << 10;
210     }
211 }
212 
213 /// The type of a PCI device function header.
214 /// 标头类型/设备类型
215 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
216 pub enum HeaderType {
217     /// A normal PCI device.
218     Standard,
219     /// A PCI to PCI bridge.
220     PciPciBridge,
221     /// A PCI to CardBus bridge.
222     PciCardbusBridge,
223     /// Unrecognised header type.
224     Unrecognised(u8),
225 }
226 /// u8到HeaderType的转换
227 impl From<u8> for HeaderType {
228     fn from(value: u8) -> Self {
229         match value {
230             0x00 => Self::Standard,
231             0x01 => Self::PciPciBridge,
232             0x02 => Self::PciCardbusBridge,
233             _ => Self::Unrecognised(value),
234         }
235     }
236 }
237 /// Pci可能触发的各种错误
238 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
239 pub enum PciError {
240     /// The device reported an invalid BAR type.
241     InvalidBarType,
242     CreateMmioError,
243     InvalidBusDeviceFunction,
244     SegmentNotFound,
245     McfgTableNotFound,
246     GetWrongHeader,
247     UnrecognisedHeaderType,
248     PciDeviceStructureTransformError,
249     PciIrqError(PciIrqError),
250 }
251 ///实现PciError的Display trait,使其可以直接输出
252 impl Display for PciError {
253     fn fmt(&self, f: &mut Formatter) -> fmt::Result {
254         match self {
255             Self::InvalidBarType => write!(f, "Invalid PCI BAR type."),
256             Self::CreateMmioError => write!(f, "Error occurred while creating mmio."),
257             Self::InvalidBusDeviceFunction => write!(f, "Found invalid BusDeviceFunction."),
258             Self::SegmentNotFound => write!(f, "Target segment not found"),
259             Self::McfgTableNotFound => write!(f, "ACPI MCFG Table not found"),
260             Self::GetWrongHeader => write!(f, "GetWrongHeader with vendor id 0xffff"),
261             Self::UnrecognisedHeaderType => write!(f, "Found device with unrecognised header type"),
262             Self::PciDeviceStructureTransformError => {
263                 write!(f, "Found None When transform Pci device structure")
264             }
265             Self::PciIrqError(err) => write!(f, "Error occurred while setting irq :{:?}.", err),
266         }
267     }
268 }
269 
270 /// trait类型Pci_Device_Structure表示pci设备,动态绑定三种具体设备类型:Pci_Device_Structure_General_Device、Pci_Device_Structure_Pci_to_Pci_Bridge、Pci_Device_Structure_Pci_to_Cardbus_Bridge
271 pub trait PciDeviceStructure: Send + Sync {
272     /// @brief 获取设备类型
273     /// @return HeaderType 设备类型
274     fn header_type(&self) -> HeaderType;
275     /// @brief 当其为standard设备时返回&Pci_Device_Structure_General_Device,其余情况返回None
276     #[inline(always)]
277     fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> {
278         None
279     }
280     /// @brief 当其为pci to pci bridge设备时返回&Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None
281     #[inline(always)]
282     fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> {
283         None
284     }
285     /// @brief 当其为pci to cardbus bridge设备时返回&Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None
286     #[inline(always)]
287     fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> {
288         None
289     }
290     /// @brief 获取Pci设备共有的common_header
291     /// @return 返回其不可变引用
292     fn common_header(&self) -> &PciDeviceStructureHeader;
293     /// @brief 当其为standard设备时返回&mut Pci_Device_Structure_General_Device,其余情况返回None
294     #[inline(always)]
295     fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> {
296         None
297     }
298     /// @brief 当其为pci to pci bridge设备时返回&mut Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None
299     #[inline(always)]
300     fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> {
301         None
302     }
303     /// @brief 当其为pci to cardbus bridge设备时返回&mut Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None
304     #[inline(always)]
305     fn as_pci_to_carbus_bridge_device_mut(
306         &mut self,
307     ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> {
308         None
309     }
310     /// @brief 返回迭代器,遍历capabilities
311     fn capabilities(&self) -> Option<CapabilityIterator> {
312         None
313     }
314     /// @brief 获取Status、Command寄存器的值
315     fn status_command(&self) -> (Status, Command) {
316         let common_header = self.common_header();
317         let status = Status::from_bits_truncate(common_header.status);
318         let command = Command::from_bits_truncate(common_header.command);
319         (status, command)
320     }
321     /// @brief 设置Command寄存器的值
322     fn set_command(&mut self, command: Command) {
323         let common_header = self.common_header_mut();
324         let command = command.bits();
325         common_header.command = command;
326         PciArch::write_config(
327             &common_header.bus_device_function,
328             STATUS_COMMAND_OFFSET,
329             command as u32,
330         );
331     }
332     /// @brief 获取Pci设备共有的common_header
333     /// @return 返回其可变引用
334     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader;
335 
336     /// @brief 读取standard设备的bar寄存器,映射后将结果加入结构体的standard_device_bar变量
337     /// @return 只有standard设备才返回成功或者错误,其余返回None
338     #[inline(always)]
339     fn bar_ioremap(&mut self) -> Option<Result<u8, PciError>> {
340         None
341     }
342     /// @brief 获取PCI设备的bar寄存器的引用
343     /// @return
344     #[inline(always)]
345     fn bar(&mut self) -> Option<&PciStandardDeviceBar> {
346         None
347     }
348     /// @brief 通过设置该pci设备的command
349     fn enable_master(&mut self) {
350         self.set_command(Command::IO_SPACE | Command::MEMORY_SPACE | Command::BUS_MASTER);
351     }
352     /// @brief 寻找设备的msix空间的offset
353     fn msix_capability_offset(&self) -> Option<u8> {
354         for capability in self.capabilities()? {
355             if capability.id == PCI_CAP_ID_MSIX {
356                 return Some(capability.offset);
357             }
358         }
359         None
360     }
361     /// @brief 寻找设备的msi空间的offset
362     fn msi_capability_offset(&self) -> Option<u8> {
363         for capability in self.capabilities()? {
364             if capability.id == PCI_CAP_ID_MSI {
365                 return Some(capability.offset);
366             }
367         }
368         None
369     }
370     /// @brief 返回结构体中的irq_type的可变引用
371     fn irq_type_mut(&mut self) -> Option<&mut IrqType>;
372     /// @brief 返回结构体中的irq_vector的可变引用
373     fn irq_vector_mut(&mut self) -> Option<&mut Vec<u16>>;
374 }
375 
376 /// Pci_Device_Structure_Header PCI设备结构体共有的头部
377 #[derive(Clone, Debug)]
378 pub struct PciDeviceStructureHeader {
379     // ==== busdevicefunction变量表示该结构体所处的位置
380     pub bus_device_function: BusDeviceFunction,
381     pub vendor_id: u16, // 供应商ID 0xffff是一个无效值,在读取访问不存在的设备的配置空间寄存器时返回
382     pub device_id: u16, // 设备ID,标志特定设备
383     pub command: u16, // 提供对设备生成和响应pci周期的能力的控制 向该寄存器写入0时,设备与pci总线断开除配置空间访问以外的所有连接
384     pub status: u16,  // 用于记录pci总线相关时间的状态信息寄存器
385     pub revision_id: u8, // 修订ID,指定特定设备的修订标志符
386     pub prog_if: u8, // 编程接口字节,一个只读寄存器,指定设备具有的寄存器级别的编程接口(如果有的话)
387     pub subclass: u8, // 子类。指定设备执行的特定功能的只读寄存器
388     pub class_code: u8, // 类代码,一个只读寄存器,指定设备执行的功能类型
389     pub cache_line_size: u8, // 缓存线大小:以 32 位为单位指定系统缓存线大小。设备可以限制它可以支持的缓存线大小的数量,如果不支持的值写入该字段,设备将表现得好像写入了 0 值
390     pub latency_timer: u8,   // 延迟计时器:以 PCI 总线时钟为单位指定延迟计时器。
391     pub header_type: u8, // 标头类型 a value of 0x0 specifies a general device, a value of 0x1 specifies a PCI-to-PCI bridge, and a value of 0x2 specifies a CardBus bridge. If bit 7 of this register is set, the device has multiple functions; otherwise, it is a single function device.
392     pub bist: u8, // Represents that status and allows control of a devices BIST (built-in self test).
393                   // Here is the layout of the BIST register:
394                   // |     bit7     |    bit6    | Bits 5-4 |     Bits 3-0    |
395                   // | BIST Capable | Start BIST | Reserved | Completion Code |
396                   // for more details, please visit https://wiki.osdev.org/PCI
397 }
398 
399 /// Pci_Device_Structure_General_Device PCI标准设备结构体
400 #[derive(Clone, Debug)]
401 pub struct PciDeviceStructureGeneralDevice {
402     pub common_header: PciDeviceStructureHeader,
403     // 中断结构体,包括legacy,msi,msix三种情况
404     pub irq_type: IrqType,
405     // 使用的中断号的vec集合
406     pub irq_vector: Vec<u16>,
407     pub standard_device_bar: PciStandardDeviceBar,
408     pub cardbus_cis_pointer: u32, // 指向卡信息结构,供在 CardBus 和 PCI 之间共享芯片的设备使用。
409     pub subsystem_vendor_id: u16,
410     pub subsystem_id: u16,
411     pub expansion_rom_base_address: u32,
412     pub capabilities_pointer: u8,
413     pub reserved0: u8,
414     pub reserved1: u16,
415     pub reserved2: u32,
416     pub interrupt_line: u8, // 指定设备的中断引脚连接到系统中断控制器的哪个输入,并由任何使用中断引脚的设备实现。对于 x86 架构,此寄存器对应于 PIC IRQ 编号 0-15(而不是 I/O APIC IRQ 编号),并且值0xFF定义为无连接。
417     pub interrupt_pin: u8, // 指定设备使用的中断引脚。其中值为0x1INTA#、0x2INTB#、0x3INTC#、0x4INTD#,0x0表示设备不使用中断引脚。
418     pub min_grant: u8, // 一个只读寄存器,用于指定设备所需的突发周期长度(以 1/4 微秒为单位)(假设时钟速率为 33 MHz)
419     pub max_latency: u8, // 一个只读寄存器,指定设备需要多长时间访问一次 PCI 总线(以 1/4 微秒为单位)。
420 }
421 impl PciDeviceStructure for PciDeviceStructureGeneralDevice {
422     #[inline(always)]
423     fn header_type(&self) -> HeaderType {
424         HeaderType::Standard
425     }
426     #[inline(always)]
427     fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> {
428         Some(self)
429     }
430     #[inline(always)]
431     fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> {
432         Some(self)
433     }
434     #[inline(always)]
435     fn common_header(&self) -> &PciDeviceStructureHeader {
436         &self.common_header
437     }
438     #[inline(always)]
439     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader {
440         &mut self.common_header
441     }
442     fn capabilities(&self) -> Option<CapabilityIterator> {
443         Some(CapabilityIterator {
444             bus_device_function: self.common_header.bus_device_function,
445             next_capability_offset: Some(self.capabilities_pointer),
446         })
447     }
448     fn bar_ioremap(&mut self) -> Option<Result<u8, PciError>> {
449         let common_header = &self.common_header;
450         match pci_bar_init(common_header.bus_device_function) {
451             Ok(bar) => {
452                 self.standard_device_bar = bar;
453                 Some(Ok(0))
454             }
455             Err(e) => Some(Err(e)),
456         }
457     }
458     fn bar(&mut self) -> Option<&PciStandardDeviceBar> {
459         Some(&self.standard_device_bar)
460     }
461     #[inline(always)]
462     fn irq_type_mut(&mut self) -> Option<&mut IrqType> {
463         Some(&mut self.irq_type)
464     }
465     #[inline(always)]
466     fn irq_vector_mut(&mut self) -> Option<&mut Vec<u16>> {
467         Some(&mut self.irq_vector)
468     }
469 }
470 
471 /// Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci桥设备结构体
472 #[derive(Clone, Debug)]
473 pub struct PciDeviceStructurePciToPciBridge {
474     pub common_header: PciDeviceStructureHeader,
475     // 中断结构体,包括legacy,msi,msix三种情况
476     pub irq_type: IrqType,
477     // 使用的中断号的vec集合
478     pub irq_vector: Vec<u16>,
479     pub bar0: u32,
480     pub bar1: u32,
481     pub primary_bus_number: u8,
482     pub secondary_bus_number: u8,
483     pub subordinate_bus_number: u8,
484     pub secondary_latency_timer: u8,
485     pub io_base: u8,
486     pub io_limit: u8,
487     pub secondary_status: u16,
488     pub memory_base: u16,
489     pub memory_limit: u16,
490     pub prefetchable_memory_base: u16,
491     pub prefetchable_memory_limit: u16,
492     pub prefetchable_base_upper_32_bits: u32,
493     pub prefetchable_limit_upper_32_bits: u32,
494     pub io_base_upper_16_bits: u16,
495     pub io_limit_upper_16_bits: u16,
496     pub capability_pointer: u8,
497     pub reserved0: u8,
498     pub reserved1: u16,
499     pub expansion_rom_base_address: u32,
500     pub interrupt_line: u8,
501     pub interrupt_pin: u8,
502     pub bridge_control: u16,
503 }
504 impl PciDeviceStructure for PciDeviceStructurePciToPciBridge {
505     #[inline(always)]
506     fn header_type(&self) -> HeaderType {
507         HeaderType::PciPciBridge
508     }
509     #[inline(always)]
510     fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> {
511         Some(self)
512     }
513     #[inline(always)]
514     fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> {
515         Some(self)
516     }
517     #[inline(always)]
518     fn common_header(&self) -> &PciDeviceStructureHeader {
519         &self.common_header
520     }
521     #[inline(always)]
522     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader {
523         &mut self.common_header
524     }
525     #[inline(always)]
526     fn irq_type_mut(&mut self) -> Option<&mut IrqType> {
527         Some(&mut self.irq_type)
528     }
529     #[inline(always)]
530     fn irq_vector_mut(&mut self) -> Option<&mut Vec<u16>> {
531         Some(&mut self.irq_vector)
532     }
533 }
534 /// Pci_Device_Structure_Pci_to_Cardbus_Bridge Pci_to_Cardbus桥设备结构体
535 #[derive(Clone, Debug)]
536 pub struct PciDeviceStructurePciToCardbusBridge {
537     pub common_header: PciDeviceStructureHeader,
538     pub cardbus_socket_ex_ca_base_address: u32,
539     pub offset_of_capabilities_list: u8,
540     pub reserved: u8,
541     pub secondary_status: u16,
542     pub pci_bus_number: u8,
543     pub card_bus_bus_number: u8,
544     pub subordinate_bus_number: u8,
545     pub card_bus_latency_timer: u8,
546     pub memory_base_address0: u32,
547     pub memory_limit0: u32,
548     pub memory_base_address1: u32,
549     pub memory_limit1: u32,
550     pub io_base_address0: u32,
551     pub io_limit0: u32,
552     pub io_base_address1: u32,
553     pub io_limit1: u32,
554     pub interrupt_line: u8,
555     pub interrupt_pin: u8,
556     pub bridge_control: u16,
557     pub subsystem_device_id: u16,
558     pub subsystem_vendor_id: u16,
559     pub pc_card_legacy_mode_base_address_16_bit: u32,
560 }
561 impl PciDeviceStructure for PciDeviceStructurePciToCardbusBridge {
562     #[inline(always)]
563     fn header_type(&self) -> HeaderType {
564         HeaderType::PciCardbusBridge
565     }
566     #[inline(always)]
567     fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> {
568         Some(&self)
569     }
570     #[inline(always)]
571     fn as_pci_to_carbus_bridge_device_mut(
572         &mut self,
573     ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> {
574         Some(self)
575     }
576     #[inline(always)]
577     fn common_header(&self) -> &PciDeviceStructureHeader {
578         &self.common_header
579     }
580     #[inline(always)]
581     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader {
582         &mut self.common_header
583     }
584     #[inline(always)]
585     fn irq_type_mut(&mut self) -> Option<&mut IrqType> {
586         None
587     }
588     #[inline(always)]
589     fn irq_vector_mut(&mut self) -> Option<&mut Vec<u16>> {
590         None
591     }
592 }
593 
594 /// 代表一个PCI segement greoup.
595 #[derive(Copy, Clone, Debug, PartialEq)]
596 pub struct PciRoot {
597     pub physical_address_base: u64,                //物理地址,acpi获取
598     pub mmio_base: Option<*mut u32>,               //映射后的虚拟地址,为方便访问数据这里转化成指针
599     pub segement_group_number: SegmentGroupNumber, //segement greoup的id
600     pub bus_begin: u8,                             //该分组中的最小bus
601     pub bus_end: u8,                               //该分组中的最大bus
602 }
603 ///线程间共享需要,该结构体只需要在初始化时写入数据,无需读写锁保证线程安全
604 unsafe impl Send for PciRoot {}
605 unsafe impl Sync for PciRoot {}
606 ///实现PciRoot的Display trait,自定义输出
607 impl Display for PciRoot {
608     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
609         write!(
610                 f,
611                 "PCI Root with segement:{}, bus begin at {}, bus end at {}, physical address at {:#x},mapped at {:#x}",
612                 self.segement_group_number, self.bus_begin, self.bus_end, self.physical_address_base, self.mmio_base.unwrap() as usize
613             )
614     }
615 }
616 
617 impl PciRoot {
618     /// @brief 初始化结构体,获取ecam root所在物理地址后map到虚拟地址,再将该虚拟地址加入mmio_base变量
619     /// @return 成功返回结果,错误返回错误类型
620     pub fn new(segment_group_number: SegmentGroupNumber) -> Result<Self, PciError> {
621         let mut pci_root = PciArch::ecam_root(segment_group_number)?;
622         pci_root.map()?;
623         Ok(pci_root)
624     }
625     /// @brief  完成物理地址到虚拟地址的映射,并将虚拟地址加入mmio_base变量
626     /// @return 返回错误或Ok(0)
627     fn map(&mut self) -> Result<u8, PciError> {
628         //kdebug!("bus_begin={},bus_end={}", self.bus_begin,self.bus_end);
629         let bus_number = (self.bus_end - self.bus_begin) as u32 + 1;
630         let bus_number_double = (bus_number - 1) / 2 + 1; //一个bus占据1MB空间,计算全部bus占据空间相对于2MB空间的个数
631         let mut virtaddress: u64 = 0;
632         let vaddr_ptr = &mut virtaddress as *mut u64;
633         let mut virtsize: u64 = 0;
634         let virtsize_ptr = &mut virtsize as *mut u64;
635         let size = bus_number_double * PAGE_2M_SIZE;
636         unsafe {
637             if let Err(_) = mmio_pool().create_mmio(
638                 size as usize,
639                 (VM_IO | VM_DONTCOPY) as u64,
640                 vaddr_ptr,
641                 virtsize_ptr,
642             ) {
643                 kerror!("Create mmio failed when initing ecam");
644                 return Err(PciError::CreateMmioError);
645             };
646 
647             //kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize);
648             let vaddr = VirtAddr::new(virtaddress as usize);
649             let paddr = PhysAddr::new(self.physical_address_base as usize);
650             // kdebug!("pci root: map: vaddr={vaddr:?}, paddr={paddr:?}, size={size}");
651             let page_flags = PageFlags::mmio_flags();
652             let mut kernel_mapper = KernelMapper::lock();
653             // todo: 添加错误处理代码。因为内核映射器可能是只读的,所以可能会出错
654             assert!(kernel_mapper
655                 .map_phys_with_size(vaddr, paddr, size as usize, page_flags, true)
656                 .is_ok());
657             drop(kernel_mapper);
658         }
659         self.mmio_base = Some(virtaddress as *mut u32);
660         Ok(0)
661     }
662     /// @brief 获得要操作的寄存器相对于mmio_offset的偏移量
663     /// @param bus_device_function 在同一个group中pci设备的唯一标识符
664     /// @param register_offset 寄存器在设备中的offset
665     /// @return u32 要操作的寄存器相对于mmio_offset的偏移量
666     fn cam_offset(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32 {
667         assert!(bus_device_function.valid());
668         let bdf = ((bus_device_function.bus - self.bus_begin) as u32) << 8
669             | (bus_device_function.device as u32) << 3
670             | bus_device_function.function as u32;
671         let address = bdf << 12 | register_offset as u32;
672         // Ensure that address is word-aligned.
673         assert!(address & 0x3 == 0);
674         address
675     }
676     /// @brief 通过bus_device_function和offset读取相应位置寄存器的值(32位)
677     /// @param bus_device_function 在同一个group中pci设备的唯一标识符
678     /// @param register_offset 寄存器在设备中的offset
679     /// @return u32 寄存器读值结果
680     pub fn read_config(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32 {
681         let address = self.cam_offset(bus_device_function, register_offset);
682         unsafe {
683             // Right shift to convert from byte offset to word offset.
684             (self.mmio_base.unwrap().add((address >> 2) as usize)).read_volatile()
685         }
686     }
687 
688     /// @brief 通过bus_device_function和offset写入相应位置寄存器值(32位)
689     /// @param bus_device_function 在同一个group中pci设备的唯一标识符
690     /// @param register_offset 寄存器在设备中的offset
691     /// @param data 要写入的值
692     pub fn write_config(
693         &mut self,
694         bus_device_function: BusDeviceFunction,
695         register_offset: u16,
696         data: u32,
697     ) {
698         let address = self.cam_offset(bus_device_function, register_offset);
699         // Safe because both the `mmio_base` and the address offset are properly aligned, and the
700         // resulting pointer is within the MMIO range of the CAM.
701         unsafe {
702             // Right shift to convert from byte offset to word offset.
703             (self.mmio_base.unwrap().add((address >> 2) as usize)).write_volatile(data)
704         }
705     }
706     /// @brief 返回迭代器,遍历pcie设备的external_capabilities
707     pub fn external_capabilities(
708         &self,
709         bus_device_function: BusDeviceFunction,
710     ) -> ExternalCapabilityIterator {
711         ExternalCapabilityIterator {
712             root: self,
713             bus_device_function,
714             next_capability_offset: Some(0x100),
715         }
716     }
717 }
718 /// Gets the capabilities 'pointer' for the device function, if any.
719 /// @brief 获取第一个capability 的offset
720 /// @param bus_device_function PCI设备的唯一标识
721 /// @return Option<u8> offset
722 pub fn capabilities_offset(bus_device_function: BusDeviceFunction) -> Option<u8> {
723     let result = PciArch::read_config(&bus_device_function, STATUS_COMMAND_OFFSET);
724     let status: Status = Status::from_bits_truncate((result >> 16) as u16);
725     if status.contains(Status::CAPABILITIES_LIST) {
726         let cap_pointer = PciArch::read_config(&bus_device_function, 0x34) as u8 & 0xFC;
727         Some(cap_pointer)
728     } else {
729         None
730     }
731 }
732 
733 /// @brief 读取pci设备头部
734 /// @param bus_device_function PCI设备的唯一标识
735 /// @param add_to_list 是否添加到链表
736 /// @return 返回的header(trait 类型)
737 fn pci_read_header(
738     bus_device_function: BusDeviceFunction,
739     add_to_list: bool,
740 ) -> Result<Box<dyn PciDeviceStructure>, PciError> {
741     // 先读取公共header
742     let result = PciArch::read_config(&bus_device_function, 0x00);
743     let vendor_id = result as u16;
744     let device_id = (result >> 16) as u16;
745 
746     let result = PciArch::read_config(&bus_device_function, 0x04);
747     let command = result as u16;
748     let status = (result >> 16) as u16;
749 
750     let result = PciArch::read_config(&bus_device_function, 0x08);
751     let revision_id = result as u8;
752     let prog_if = (result >> 8) as u8;
753     let subclass = (result >> 16) as u8;
754     let class_code = (result >> 24) as u8;
755 
756     let result = PciArch::read_config(&bus_device_function, 0x0c);
757     let cache_line_size = result as u8;
758     let latency_timer = (result >> 8) as u8;
759     let header_type = (result >> 16) as u8;
760     let bist = (result >> 24) as u8;
761     if vendor_id == 0xffff {
762         return Err(PciError::GetWrongHeader);
763     }
764     let header = PciDeviceStructureHeader {
765         bus_device_function,
766         vendor_id,
767         device_id,
768         command,
769         status,
770         revision_id,
771         prog_if,
772         subclass,
773         class_code,
774         cache_line_size,
775         latency_timer,
776         header_type,
777         bist,
778     };
779     match HeaderType::from(header_type & 0x7f) {
780         HeaderType::Standard => {
781             let general_device = pci_read_general_device_header(header, &bus_device_function);
782             let box_general_device = Box::new(general_device);
783             let box_general_device_clone = box_general_device.clone();
784             if add_to_list {
785                 PCI_DEVICE_LINKEDLIST.add(box_general_device);
786             }
787             Ok(box_general_device_clone)
788         }
789         HeaderType::PciPciBridge => {
790             let pci_to_pci_bridge = pci_read_pci_to_pci_bridge_header(header, &bus_device_function);
791             let box_pci_to_pci_bridge = Box::new(pci_to_pci_bridge);
792             let box_pci_to_pci_bridge_clone = box_pci_to_pci_bridge.clone();
793             if add_to_list {
794                 PCI_DEVICE_LINKEDLIST.add(box_pci_to_pci_bridge);
795             }
796             Ok(box_pci_to_pci_bridge_clone)
797         }
798         HeaderType::PciCardbusBridge => {
799             let pci_cardbus_bridge =
800                 pci_read_pci_to_cardbus_bridge_header(header, &bus_device_function);
801             let box_pci_cardbus_bridge = Box::new(pci_cardbus_bridge);
802             let box_pci_cardbus_bridge_clone = box_pci_cardbus_bridge.clone();
803             if add_to_list {
804                 PCI_DEVICE_LINKEDLIST.add(box_pci_cardbus_bridge);
805             }
806             Ok(box_pci_cardbus_bridge_clone)
807         }
808         HeaderType::Unrecognised(_) => Err(PciError::UnrecognisedHeaderType),
809     }
810 }
811 
812 /// @brief 读取type为0x0的pci设备的header
813 /// 本函数只应被 pci_read_header()调用
814 /// @param common_header 共有头部
815 /// @param bus_device_function PCI设备的唯一标识
816 /// @return Pci_Device_Structure_General_Device 标准设备头部
817 fn pci_read_general_device_header(
818     common_header: PciDeviceStructureHeader,
819     bus_device_function: &BusDeviceFunction,
820 ) -> PciDeviceStructureGeneralDevice {
821     let standard_device_bar = PciStandardDeviceBar::default();
822     let cardbus_cis_pointer = PciArch::read_config(bus_device_function, 0x28);
823 
824     let result = PciArch::read_config(bus_device_function, 0x2c);
825     let subsystem_vendor_id = result as u16;
826     let subsystem_id = (result >> 16) as u16;
827 
828     let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x30);
829 
830     let result = PciArch::read_config(bus_device_function, 0x34);
831     let capabilities_pointer = result as u8;
832     let reserved0 = (result >> 8) as u8;
833     let reserved1 = (result >> 16) as u16;
834 
835     let reserved2 = PciArch::read_config(bus_device_function, 0x38);
836 
837     let result = PciArch::read_config(bus_device_function, 0x3c);
838     let interrupt_line = result as u8;
839     let interrupt_pin = (result >> 8) as u8;
840     let min_grant = (result >> 16) as u8;
841     let max_latency = (result >> 24) as u8;
842     PciDeviceStructureGeneralDevice {
843         common_header,
844         irq_type: IrqType::Unused,
845         irq_vector: Vec::new(),
846         standard_device_bar,
847         cardbus_cis_pointer,
848         subsystem_vendor_id,
849         subsystem_id,
850         expansion_rom_base_address,
851         capabilities_pointer,
852         reserved0,
853         reserved1,
854         reserved2,
855         interrupt_line,
856         interrupt_pin,
857         min_grant,
858         max_latency,
859     }
860 }
861 
862 /// @brief 读取type为0x1的pci设备的header
863 /// 本函数只应被 pci_read_header()调用
864 /// @param common_header 共有头部
865 /// @param bus_device_function PCI设备的唯一标识
866 /// @return Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci 桥设备头部
867 fn pci_read_pci_to_pci_bridge_header(
868     common_header: PciDeviceStructureHeader,
869     bus_device_function: &BusDeviceFunction,
870 ) -> PciDeviceStructurePciToPciBridge {
871     let bar0 = PciArch::read_config(bus_device_function, 0x10);
872     let bar1 = PciArch::read_config(bus_device_function, 0x14);
873 
874     let result = PciArch::read_config(bus_device_function, 0x18);
875 
876     let primary_bus_number = result as u8;
877     let secondary_bus_number = (result >> 8) as u8;
878     let subordinate_bus_number = (result >> 16) as u8;
879     let secondary_latency_timer = (result >> 24) as u8;
880 
881     let result = PciArch::read_config(bus_device_function, 0x1c);
882     let io_base = result as u8;
883     let io_limit = (result >> 8) as u8;
884     let secondary_status = (result >> 16) as u16;
885 
886     let result = PciArch::read_config(bus_device_function, 0x20);
887     let memory_base = result as u16;
888     let memory_limit = (result >> 16) as u16;
889 
890     let result = PciArch::read_config(bus_device_function, 0x24);
891     let prefetchable_memory_base = result as u16;
892     let prefetchable_memory_limit = (result >> 16) as u16;
893 
894     let prefetchable_base_upper_32_bits = PciArch::read_config(bus_device_function, 0x28);
895     let prefetchable_limit_upper_32_bits = PciArch::read_config(bus_device_function, 0x2c);
896 
897     let result = PciArch::read_config(bus_device_function, 0x30);
898     let io_base_upper_16_bits = result as u16;
899     let io_limit_upper_16_bits = (result >> 16) as u16;
900 
901     let result = PciArch::read_config(bus_device_function, 0x34);
902     let capability_pointer = result as u8;
903     let reserved0 = (result >> 8) as u8;
904     let reserved1 = (result >> 16) as u16;
905 
906     let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x38);
907 
908     let result = PciArch::read_config(bus_device_function, 0x3c);
909     let interrupt_line = result as u8;
910     let interrupt_pin = (result >> 8) as u8;
911     let bridge_control = (result >> 16) as u16;
912     PciDeviceStructurePciToPciBridge {
913         common_header,
914         irq_type: IrqType::Unused,
915         irq_vector: Vec::new(),
916         bar0,
917         bar1,
918         primary_bus_number,
919         secondary_bus_number,
920         subordinate_bus_number,
921         secondary_latency_timer,
922         io_base,
923         io_limit,
924         secondary_status,
925         memory_base,
926         memory_limit,
927         prefetchable_memory_base,
928         prefetchable_memory_limit,
929         prefetchable_base_upper_32_bits,
930         prefetchable_limit_upper_32_bits,
931         io_base_upper_16_bits,
932         io_limit_upper_16_bits,
933         capability_pointer,
934         reserved0,
935         reserved1,
936         expansion_rom_base_address,
937         interrupt_line,
938         interrupt_pin,
939         bridge_control,
940     }
941 }
942 
943 /// @brief 读取type为0x2的pci设备的header
944 /// 本函数只应被 pci_read_header()调用
945 /// @param common_header 共有头部
946 /// @param bus_device_function PCI设备的唯一标识
947 /// @return   Pci_Device_Structure_Pci_to_Cardbus_Bridge  pci-to-cardbus 桥设备头部
948 fn pci_read_pci_to_cardbus_bridge_header(
949     common_header: PciDeviceStructureHeader,
950     busdevicefunction: &BusDeviceFunction,
951 ) -> PciDeviceStructurePciToCardbusBridge {
952     let cardbus_socket_ex_ca_base_address = PciArch::read_config(busdevicefunction, 0x10);
953 
954     let result = PciArch::read_config(busdevicefunction, 0x14);
955     let offset_of_capabilities_list = result as u8;
956     let reserved = (result >> 8) as u8;
957     let secondary_status = (result >> 16) as u16;
958 
959     let result = PciArch::read_config(busdevicefunction, 0x18);
960     let pci_bus_number = result as u8;
961     let card_bus_bus_number = (result >> 8) as u8;
962     let subordinate_bus_number = (result >> 16) as u8;
963     let card_bus_latency_timer = (result >> 24) as u8;
964 
965     let memory_base_address0 = PciArch::read_config(busdevicefunction, 0x1c);
966     let memory_limit0 = PciArch::read_config(busdevicefunction, 0x20);
967     let memory_base_address1 = PciArch::read_config(busdevicefunction, 0x24);
968     let memory_limit1 = PciArch::read_config(busdevicefunction, 0x28);
969 
970     let io_base_address0 = PciArch::read_config(busdevicefunction, 0x2c);
971     let io_limit0 = PciArch::read_config(busdevicefunction, 0x30);
972     let io_base_address1 = PciArch::read_config(busdevicefunction, 0x34);
973     let io_limit1 = PciArch::read_config(busdevicefunction, 0x38);
974     let result = PciArch::read_config(busdevicefunction, 0x3c);
975     let interrupt_line = result as u8;
976     let interrupt_pin = (result >> 8) as u8;
977     let bridge_control = (result >> 16) as u16;
978 
979     let result = PciArch::read_config(busdevicefunction, 0x40);
980     let subsystem_device_id = result as u16;
981     let subsystem_vendor_id = (result >> 16) as u16;
982 
983     let pc_card_legacy_mode_base_address_16_bit = PciArch::read_config(busdevicefunction, 0x44);
984     PciDeviceStructurePciToCardbusBridge {
985         common_header,
986         cardbus_socket_ex_ca_base_address,
987         offset_of_capabilities_list,
988         reserved,
989         secondary_status,
990         pci_bus_number,
991         card_bus_bus_number,
992         subordinate_bus_number,
993         card_bus_latency_timer,
994         memory_base_address0,
995         memory_limit0,
996         memory_base_address1,
997         memory_limit1,
998         io_base_address0,
999         io_limit0,
1000         io_base_address1,
1001         io_limit1,
1002         interrupt_line,
1003         interrupt_pin,
1004         bridge_control,
1005         subsystem_device_id,
1006         subsystem_vendor_id,
1007         pc_card_legacy_mode_base_address_16_bit,
1008     }
1009 }
1010 
1011 /// @brief 检查所有bus上的设备并将其加入链表
1012 /// @return 成功返回ok(),失败返回失败原因
1013 fn pci_check_all_buses() -> Result<u8, PciError> {
1014     kinfo!("Checking all devices in PCI bus...");
1015     let busdevicefunction = BusDeviceFunction {
1016         bus: 0,
1017         device: 0,
1018         function: 0,
1019     };
1020     let header = pci_read_header(busdevicefunction, false)?;
1021     let common_header = header.common_header();
1022     pci_check_bus(0)?;
1023     if common_header.header_type & 0x80 != 0 {
1024         for function in 1..8 {
1025             pci_check_bus(function)?;
1026         }
1027     }
1028     Ok(0)
1029 }
1030 /// @brief 检查特定设备并将其加入链表
1031 /// @return 成功返回ok(),失败返回失败原因
1032 fn pci_check_function(busdevicefunction: BusDeviceFunction) -> Result<u8, PciError> {
1033     //kdebug!("PCI check function {}", busdevicefunction.function);
1034     let header = match pci_read_header(busdevicefunction, true) {
1035         Ok(header) => header,
1036         Err(PciError::GetWrongHeader) => {
1037             return Ok(255);
1038         }
1039         Err(e) => {
1040             return Err(e);
1041         }
1042     };
1043     let common_header = header.common_header();
1044     if (common_header.class_code == 0x06)
1045         && (common_header.subclass == 0x04 || common_header.subclass == 0x09)
1046     {
1047         let pci_to_pci_bridge = header
1048             .as_pci_to_pci_bridge_device()
1049             .ok_or(PciError::PciDeviceStructureTransformError)?;
1050         let secondary_bus = pci_to_pci_bridge.secondary_bus_number;
1051         pci_check_bus(secondary_bus)?;
1052     }
1053     Ok(0)
1054 }
1055 
1056 /// @brief 检查device上的设备并将其加入链表
1057 /// @return 成功返回ok(),失败返回失败原因
1058 fn pci_check_device(bus: u8, device: u8) -> Result<u8, PciError> {
1059     //kdebug!("PCI check device {}", device);
1060     let busdevicefunction = BusDeviceFunction {
1061         bus,
1062         device,
1063         function: 0,
1064     };
1065     let header = match pci_read_header(busdevicefunction, false) {
1066         Ok(header) => header,
1067         Err(PciError::GetWrongHeader) => {
1068             //设备不存在,直接返回即可,不用终止遍历
1069             return Ok(255);
1070         }
1071         Err(e) => {
1072             return Err(e);
1073         }
1074     };
1075     pci_check_function(busdevicefunction)?;
1076     let common_header = header.common_header();
1077     if common_header.header_type & 0x80 != 0 {
1078         kdebug!(
1079             "Detected multi func device in bus{},device{}",
1080             busdevicefunction.bus,
1081             busdevicefunction.device
1082         );
1083         // 这是一个多function的设备,因此查询剩余的function
1084         for function in 1..8 {
1085             let busdevicefunction = BusDeviceFunction {
1086                 bus,
1087                 device,
1088                 function,
1089             };
1090             pci_check_function(busdevicefunction)?;
1091         }
1092     }
1093     Ok(0)
1094 }
1095 /// @brief 检查该bus上的设备并将其加入链表
1096 /// @return 成功返回ok(),失败返回失败原因
1097 fn pci_check_bus(bus: u8) -> Result<u8, PciError> {
1098     //kdebug!("PCI check bus {}", bus);
1099     for device in 0..32 {
1100         pci_check_device(bus, device)?;
1101     }
1102     Ok(0)
1103 }
1104 /// @brief pci初始化函数(for c)
1105 #[no_mangle]
1106 pub extern "C" fn rs_pci_init() {
1107     pci_init();
1108     if PCI_ROOT_0.is_some() {
1109         kdebug!("{}", PCI_ROOT_0.unwrap());
1110         //以下为ecam的读取寄存器值测试,经测试可正常读取
1111         // let bus_device_function = BusDeviceFunction {
1112         //     bus: 0,
1113         //     device: 2,
1114         //     function: 0,
1115         // };
1116         // kdebug!(
1117         //     "Ecam read virtio-net device status={:#x}",
1118         //     (PCI_ROOT_0.unwrap().read_config(bus_device_function, 4)>>16) as u16
1119         // );
1120     }
1121 }
1122 /// @brief pci初始化函数
1123 pub fn pci_init() {
1124     kinfo!("Initializing PCI bus...");
1125     if let Err(e) = pci_check_all_buses() {
1126         kerror!("pci init failed when checking bus because of error: {}", e);
1127         return;
1128     }
1129     kinfo!(
1130         "Total pci device and function num = {}",
1131         PCI_DEVICE_LINKEDLIST.num()
1132     );
1133     let list = PCI_DEVICE_LINKEDLIST.read();
1134     for box_pci_device in list.iter() {
1135         let common_header = box_pci_device.common_header();
1136         match box_pci_device.header_type() {
1137             HeaderType::Standard if common_header.status & 0x10 != 0 => {
1138                 kinfo!("Found pci standard device with class code ={} subclass={} status={:#x} cap_pointer={:#x}  vendor={:#x}, device id={:#x},bdf={}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer,common_header.vendor_id, common_header.device_id,common_header.bus_device_function);
1139             }
1140             HeaderType::Standard => {
1141                 kinfo!(
1142                     "Found pci standard device with class code ={} subclass={} status={:#x} ",
1143                     common_header.class_code,
1144                     common_header.subclass,
1145                     common_header.status
1146                 );
1147             }
1148             HeaderType::PciPciBridge if common_header.status & 0x10 != 0 => {
1149                 kinfo!("Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} cap_pointer={:#x}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer);
1150             }
1151             HeaderType::PciPciBridge => {
1152                 kinfo!(
1153                     "Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} ",
1154                     common_header.class_code,
1155                     common_header.subclass,
1156                     common_header.status
1157                 );
1158             }
1159             HeaderType::PciCardbusBridge => {
1160                 kinfo!(
1161                     "Found pcicardbus bridge device with class code ={} subclass={} status={:#x} ",
1162                     common_header.class_code,
1163                     common_header.subclass,
1164                     common_header.status
1165                 );
1166             }
1167             HeaderType::Unrecognised(_) => {}
1168         }
1169     }
1170     kinfo!("PCI bus initialized.");
1171 }
1172 
1173 /// An identifier for a PCI bus, device and function.
1174 /// PCI设备的唯一标识
1175 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
1176 pub struct BusDeviceFunction {
1177     /// The PCI bus number, between 0 and 255.
1178     pub bus: u8,
1179     /// The device number on the bus, between 0 and 31.
1180     pub device: u8,
1181     /// The function number of the device, between 0 and 7.
1182     pub function: u8,
1183 }
1184 impl BusDeviceFunction {
1185     /// Returns whether the device and function numbers are valid, i.e. the device is between 0 and
1186     ///@brief 检测BusDeviceFunction实例是否有效
1187     ///@param self
1188     ///@return bool 是否有效
1189     #[allow(dead_code)]
1190     pub fn valid(&self) -> bool {
1191         self.device < 32 && self.function < 8
1192     }
1193 }
1194 ///实现BusDeviceFunction的Display trait,使其可以直接输出
1195 impl Display for BusDeviceFunction {
1196     fn fmt(&self, f: &mut Formatter) -> fmt::Result {
1197         write!(
1198             f,
1199             "bus {} device {} function{}",
1200             self.bus, self.device, self.function
1201         )
1202     }
1203 }
1204 /// The location allowed for a memory BAR.
1205 /// memory BAR的三种情况
1206 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
1207 pub enum MemoryBarType {
1208     /// The BAR has a 32-bit address and can be mapped anywhere in 32-bit address space.
1209     Width32,
1210     /// The BAR must be mapped below 1MiB.
1211     Below1MiB,
1212     /// The BAR has a 64-bit address and can be mapped anywhere in 64-bit address space.
1213     Width64,
1214 }
1215 ///实现MemoryBarType与u8的类型转换
1216 impl From<MemoryBarType> for u8 {
1217     fn from(bar_type: MemoryBarType) -> Self {
1218         match bar_type {
1219             MemoryBarType::Width32 => 0,
1220             MemoryBarType::Below1MiB => 1,
1221             MemoryBarType::Width64 => 2,
1222         }
1223     }
1224 }
1225 ///实现MemoryBarType与u8的类型转换
1226 impl TryFrom<u8> for MemoryBarType {
1227     type Error = PciError;
1228     fn try_from(value: u8) -> Result<Self, Self::Error> {
1229         match value {
1230             0 => Ok(Self::Width32),
1231             1 => Ok(Self::Below1MiB),
1232             2 => Ok(Self::Width64),
1233             _ => Err(PciError::InvalidBarType),
1234         }
1235     }
1236 }
1237 
1238 /// Information about a PCI Base Address Register.
1239 /// BAR的三种类型 Memory/IO/Unused
1240 #[derive(Clone, Debug, Eq, PartialEq)]
1241 pub enum BarInfo {
1242     /// The BAR is for a memory region.
1243     Memory {
1244         /// The size of the BAR address and where it can be located.
1245         address_type: MemoryBarType,
1246         /// If true, then reading from the region doesn't have side effects. The CPU may cache reads
1247         /// and merge repeated stores.
1248         prefetchable: bool,
1249         /// The memory address, always 16-byte aligned.
1250         address: u64,
1251         /// The size of the BAR in bytes.
1252         size: u32,
1253         /// The virtaddress for a memory bar(mapped).
1254         virtaddress: u64,
1255     },
1256     /// The BAR is for an I/O region.
1257     IO {
1258         /// The I/O address, always 4-byte aligned.
1259         address: u32,
1260         /// The size of the BAR in bytes.
1261         size: u32,
1262     },
1263     Unused,
1264 }
1265 
1266 impl BarInfo {
1267     /// Returns the address and size of this BAR if it is a memory bar, or `None` if it is an IO
1268     /// BAR.
1269     ///@brief 得到某个bar的memory_address与size(前提是他的类型为Memory Bar)
1270     ///@param self
1271     ///@return Option<(u64, u32) 是Memory Bar返回内存地址与大小,不是则返回None
1272     pub fn memory_address_size(&self) -> Option<(u64, u32)> {
1273         if let Self::Memory { address, size, .. } = self {
1274             Some((*address, *size))
1275         } else {
1276             None
1277         }
1278     }
1279     ///@brief 得到某个bar的virtaddress(前提是他的类型为Memory Bar)
1280     ///@param self
1281     ///@return Option<(u64) 是Memory Bar返回映射的虚拟地址,不是则返回None
1282     pub fn virtual_address(&self) -> Option<u64> {
1283         if let Self::Memory { virtaddress, .. } = self {
1284             Some(*virtaddress)
1285         } else {
1286             None
1287         }
1288     }
1289 }
1290 ///实现BarInfo的Display trait,自定义输出
1291 impl Display for BarInfo {
1292     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1293         match self {
1294             Self::Memory {
1295                 address_type,
1296                 prefetchable,
1297                 address,
1298                 size,
1299                 virtaddress,
1300             } => write!(
1301                 f,
1302                 "Memory space at {:#010x}, size {}, type {:?}, prefetchable {},mapped at {:#x}",
1303                 address, size, address_type, prefetchable, virtaddress
1304             ),
1305             Self::IO { address, size } => {
1306                 write!(f, "I/O space at {:#010x}, size {}", address, size)
1307             }
1308             Self::Unused => {
1309                 write!(f, "Unused bar")
1310             }
1311         }
1312     }
1313 }
1314 // todo 增加对桥的bar的支持
1315 pub trait PciDeviceBar {}
1316 
1317 ///一个普通PCI设备(非桥)有6个BAR寄存器,PciStandardDeviceBar存储其全部信息
1318 #[derive(Clone, Debug, Eq, PartialEq)]
1319 pub struct PciStandardDeviceBar {
1320     bar0: BarInfo,
1321     bar1: BarInfo,
1322     bar2: BarInfo,
1323     bar3: BarInfo,
1324     bar4: BarInfo,
1325     bar5: BarInfo,
1326 }
1327 
1328 impl PciStandardDeviceBar {
1329     ///@brief 得到某个bar的barinfo
1330     ///@param self ,bar_index(0-5)
1331     ///@return Result<&BarInfo, PciError> bar_index在0-5则返回对应的bar_info结构体,超出范围则返回错误
1332     pub fn get_bar(&self, bar_index: u8) -> Result<&BarInfo, PciError> {
1333         match bar_index {
1334             0 => Ok(&self.bar0),
1335             1 => Ok(&self.bar1),
1336             2 => Ok(&self.bar2),
1337             3 => Ok(&self.bar3),
1338             4 => Ok(&self.bar4),
1339             5 => Ok(&self.bar5),
1340             _ => Err(PciError::InvalidBarType),
1341         }
1342     }
1343 }
1344 ///实现PciStandardDeviceBar的Display trait,使其可以直接输出
1345 impl Display for PciStandardDeviceBar {
1346     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1347         write!(
1348             f,
1349             "\r\nBar0:{}\r\n Bar1:{}\r\n Bar2:{}\r\n Bar3:{}\r\nBar4:{}\r\nBar5:{}",
1350             self.bar0, self.bar1, self.bar2, self.bar3, self.bar4, self.bar5
1351         )
1352     }
1353 }
1354 ///实现PciStandardDeviceBar的Default trait,使其可以简单初始化
1355 impl Default for PciStandardDeviceBar {
1356     fn default() -> Self {
1357         PciStandardDeviceBar {
1358             bar0: BarInfo::Unused,
1359             bar1: BarInfo::Unused,
1360             bar2: BarInfo::Unused,
1361             bar3: BarInfo::Unused,
1362             bar4: BarInfo::Unused,
1363             bar5: BarInfo::Unused,
1364         }
1365     }
1366 }
1367 
1368 ///@brief 将某个pci设备的bar寄存器读取值后映射到虚拟地址
1369 ///@param self ,bus_device_function PCI设备的唯一标识符
1370 ///@return Result<PciStandardDeviceBar, PciError> 成功则返回对应的PciStandardDeviceBar结构体,失败则返回错误类型
1371 pub fn pci_bar_init(
1372     bus_device_function: BusDeviceFunction,
1373 ) -> Result<PciStandardDeviceBar, PciError> {
1374     let mut device_bar: PciStandardDeviceBar = PciStandardDeviceBar::default();
1375     let mut bar_index_ignore: u8 = 255;
1376     for bar_index in 0..6 {
1377         if bar_index == bar_index_ignore {
1378             continue;
1379         }
1380         let bar_info;
1381         let mut virtaddress: u64 = 0;
1382         let bar_orig = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index);
1383         PciArch::write_config(
1384             &bus_device_function,
1385             BAR0_OFFSET + 4 * bar_index,
1386             0xffffffff,
1387         );
1388         let size_mask = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index);
1389         // A wrapping add is necessary to correctly handle the case of unused BARs, which read back
1390         // as 0, and should be treated as size 0.
1391         let size = (!(size_mask & 0xfffffff0)).wrapping_add(1);
1392         //kdebug!("bar_orig:{:#x},size: {:#x}", bar_orig,size);
1393         // Restore the original value.
1394         PciArch::write_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index, bar_orig);
1395         if size == 0 {
1396             continue;
1397         }
1398         if bar_orig & 0x00000001 == 0x00000001 {
1399             // I/O space
1400             let address = bar_orig & 0xfffffffc;
1401             bar_info = BarInfo::IO { address, size };
1402         } else {
1403             // Memory space
1404             let mut address = u64::from(bar_orig & 0xfffffff0);
1405             let prefetchable = bar_orig & 0x00000008 != 0;
1406             let address_type = MemoryBarType::try_from(((bar_orig & 0x00000006) >> 1) as u8)?;
1407             if address_type == MemoryBarType::Width64 {
1408                 if bar_index >= 5 {
1409                     return Err(PciError::InvalidBarType);
1410                 }
1411                 let address_top =
1412                     PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * (bar_index + 1));
1413                 address |= u64::from(address_top) << 32;
1414                 bar_index_ignore = bar_index + 1; //下个bar跳过,因为64位的memory bar覆盖了两个bar
1415             }
1416             let pci_address = PciAddr::new(address as usize);
1417             address = PciArch::address_pci_to_physical(pci_address) as u64; //PCI总线域物理地址转换为存储器域物理地址
1418             unsafe {
1419                 let vaddr_ptr = &mut virtaddress as *mut u64;
1420                 let mut virtsize: u64 = 0;
1421                 let virtsize_ptr = &mut virtsize as *mut u64;
1422 
1423                 let size_want = size as usize;
1424 
1425                 if let Err(_) = mmio_pool().create_mmio(
1426                     size_want,
1427                     (VM_IO | VM_DONTCOPY) as u64,
1428                     vaddr_ptr,
1429                     virtsize_ptr,
1430                 ) {
1431                     kerror!("Create mmio failed when initing pci bar");
1432                     return Err(PciError::CreateMmioError);
1433                 };
1434                 //kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize);
1435                 let vaddr = VirtAddr::new(virtaddress as usize);
1436                 let paddr = PhysAddr::new(address as usize);
1437                 let page_flags = PageFlags::new()
1438                     .set_write(true)
1439                     .set_execute(true)
1440                     .set_page_cache_disable(true)
1441                     .set_page_write_through(true);
1442                 kdebug!("Pci bar init: vaddr={vaddr:?}, paddr={paddr:?}, size_want={size_want}, page_flags={page_flags:?}");
1443                 let mut kernel_mapper = KernelMapper::lock();
1444                 // todo: 添加错误处理代码。因为内核映射器可能是只读的,所以可能会出错
1445                 assert!(kernel_mapper
1446                     .map_phys_with_size(vaddr, paddr, size_want, page_flags, true)
1447                     .is_ok());
1448                 drop(kernel_mapper);
1449             }
1450             bar_info = BarInfo::Memory {
1451                 address_type,
1452                 prefetchable,
1453                 address,
1454                 size,
1455                 virtaddress,
1456             };
1457         }
1458         match bar_index {
1459             0 => {
1460                 device_bar.bar0 = bar_info;
1461             }
1462             1 => {
1463                 device_bar.bar1 = bar_info;
1464             }
1465             2 => {
1466                 device_bar.bar2 = bar_info;
1467             }
1468             3 => {
1469                 device_bar.bar3 = bar_info;
1470             }
1471             4 => {
1472                 device_bar.bar4 = bar_info;
1473             }
1474             5 => {
1475                 device_bar.bar5 = bar_info;
1476             }
1477             _ => {}
1478         }
1479     }
1480     kdebug!("pci_device_bar:{}", device_bar);
1481     return Ok(device_bar);
1482 }
1483 
1484 /// Information about a PCI device capability.
1485 /// PCI设备的capability的信息
1486 #[derive(Debug, Copy, Clone, Eq, PartialEq)]
1487 pub struct CapabilityInfo {
1488     /// The offset of the capability in the PCI configuration space of the device function.
1489     pub offset: u8,
1490     /// The ID of the capability.
1491     pub id: u8,
1492     /// The third and fourth bytes of the capability, to save reading them again.
1493     pub private_header: u16,
1494 }
1495 
1496 /// Iterator over capabilities for a device.
1497 /// 创建迭代器以遍历PCI设备的capability
1498 #[derive(Debug)]
1499 pub struct CapabilityIterator {
1500     pub bus_device_function: BusDeviceFunction,
1501     pub next_capability_offset: Option<u8>,
1502 }
1503 
1504 impl Iterator for CapabilityIterator {
1505     type Item = CapabilityInfo;
1506     fn next(&mut self) -> Option<Self::Item> {
1507         let offset = self.next_capability_offset?;
1508 
1509         // Read the first 4 bytes of the capability.
1510         let capability_header = PciArch::read_config(&self.bus_device_function, offset);
1511         let id = capability_header as u8;
1512         let next_offset = (capability_header >> 8) as u8;
1513         let private_header = (capability_header >> 16) as u16;
1514 
1515         self.next_capability_offset = if next_offset == 0 {
1516             None
1517         } else if next_offset < 64 || next_offset & 0x3 != 0 {
1518             kwarn!("Invalid next capability offset {:#04x}", next_offset);
1519             None
1520         } else {
1521             Some(next_offset)
1522         };
1523 
1524         Some(CapabilityInfo {
1525             offset,
1526             id,
1527             private_header,
1528         })
1529     }
1530 }
1531 
1532 /// Information about a PCIe device capability.
1533 /// PCIe设备的external capability的信息
1534 #[derive(Debug, Copy, Clone, Eq, PartialEq)]
1535 pub struct ExternalCapabilityInfo {
1536     /// The offset of the capability in the PCI configuration space of the device function.
1537     pub offset: u16,
1538     /// The ID of the capability.
1539     pub id: u16,
1540     /// The third and fourth bytes of the capability, to save reading them again.
1541     pub capability_version: u8,
1542 }
1543 
1544 /// Iterator over capabilities for a device.
1545 /// 创建迭代器以遍历PCIe设备的external capability
1546 #[derive(Debug)]
1547 pub struct ExternalCapabilityIterator<'a> {
1548     pub root: &'a PciRoot,
1549     pub bus_device_function: BusDeviceFunction,
1550     pub next_capability_offset: Option<u16>,
1551 }
1552 impl<'a> Iterator for ExternalCapabilityIterator<'a> {
1553     type Item = ExternalCapabilityInfo;
1554     fn next(&mut self) -> Option<Self::Item> {
1555         let offset = self.next_capability_offset?;
1556 
1557         // Read the first 4 bytes of the capability.
1558         let capability_header = self.root.read_config(self.bus_device_function, offset);
1559         let id = capability_header as u16;
1560         let next_offset = (capability_header >> 20) as u16;
1561         let capability_version = ((capability_header >> 16) & 0xf) as u8;
1562 
1563         self.next_capability_offset = if next_offset == 0 {
1564             None
1565         } else if next_offset < 0x100 || next_offset & 0x3 != 0 {
1566             kwarn!("Invalid next capability offset {:#04x}", next_offset);
1567             None
1568         } else {
1569             Some(next_offset)
1570         };
1571 
1572         Some(ExternalCapabilityInfo {
1573             offset,
1574             id,
1575             capability_version,
1576         })
1577     }
1578 }
1579