1 #![allow(dead_code)] 2 // 目前仅支持单主桥单Segment 3 4 use super::pci_irq::{IrqType, PciIrqError}; 5 use crate::arch::{PciArch, TraitPciArch}; 6 use crate::exception::IrqNumber; 7 use crate::include::bindings::bindings::PAGE_2M_SIZE; 8 use crate::libs::rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard}; 9 10 use crate::mm::mmio_buddy::{mmio_pool, MMIOSpaceGuard}; 11 12 use crate::mm::{PhysAddr, VirtAddr}; 13 use crate::{kdebug, kerror, kinfo, kwarn}; 14 use alloc::sync::Arc; 15 use alloc::vec::Vec; 16 use alloc::{boxed::Box, collections::LinkedList}; 17 use bitflags::bitflags; 18 19 use core::{ 20 convert::TryFrom, 21 fmt::{self, Debug, Display, Formatter}, 22 }; 23 // PCI_DEVICE_LINKEDLIST 添加了读写锁的全局链表,里面存储了检索到的PCI设备结构体 24 // PCI_ROOT_0 Segment为0的全局PciRoot 25 lazy_static! { 26 pub static ref PCI_DEVICE_LINKEDLIST: PciDeviceLinkedList = PciDeviceLinkedList::new(); 27 pub static ref PCI_ROOT_0: Option<PciRoot> = { 28 match PciRoot::new(0) { 29 Ok(root) => Some(root), 30 Err(err) => { 31 kerror!("Pci_root init failed because of error: {}", err); 32 None 33 } 34 } 35 }; 36 } 37 /// PCI域地址 38 #[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)] 39 #[repr(transparent)] 40 pub struct PciAddr(usize); 41 42 impl PciAddr { 43 #[inline(always)] 44 pub const fn new(address: usize) -> Self { 45 Self(address) 46 } 47 48 /// @brief 获取PCI域地址的值 49 #[inline(always)] 50 pub fn data(&self) -> usize { 51 self.0 52 } 53 54 /// @brief 将PCI域地址加上一个偏移量 55 #[inline(always)] 56 pub fn add(self, offset: usize) -> Self { 57 Self(self.0 + offset) 58 } 59 60 /// @brief 判断PCI域地址是否按照指定要求对齐 61 #[inline(always)] 62 pub fn check_aligned(&self, align: usize) -> bool { 63 return self.0 & (align - 1) == 0; 64 } 65 } 66 impl Debug for PciAddr { 67 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { 68 write!(f, "PciAddr({:#x})", self.0) 69 } 70 } 71 72 /// 添加了读写锁的链表,存储PCI设备结构体 73 pub struct PciDeviceLinkedList { 74 list: RwLock<LinkedList<Box<dyn PciDeviceStructure>>>, 75 } 76 77 impl PciDeviceLinkedList { 78 /// @brief 初始化结构体 79 fn new() -> Self { 80 PciDeviceLinkedList { 81 list: RwLock::new(LinkedList::new()), 82 } 83 } 84 /// @brief 获取可读的linkedlist(读锁守卫) 85 /// @return RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>> 读锁守卫 86 pub fn read(&self) -> RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>> { 87 self.list.read() 88 } 89 /// @brief 获取可写的linkedlist(写锁守卫) 90 /// @return RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>> 写锁守卫 91 pub fn write(&self) -> RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>> { 92 self.list.write() 93 } 94 /// @brief 获取链表中PCI结构体数目 95 /// @return usize 链表中PCI结构体数目 96 pub fn num(&self) -> usize { 97 let list = self.list.read(); 98 list.len() 99 } 100 /// @brief 添加Pci设备结构体到链表中 101 pub fn add(&self, device: Box<dyn PciDeviceStructure>) { 102 let mut list = self.list.write(); 103 list.push_back(device); 104 } 105 } 106 107 /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其可变引用 108 /// @param list 链表的写锁守卫 109 /// @param class_code 寄存器值 110 /// @param subclass 寄存器值,与class_code一起确定设备类型 111 /// @return Vec<&'a mut Box<(dyn PciDeviceStructure) 包含链表中所有满足条件的PCI结构体的可变引用的容器 112 pub fn get_pci_device_structure_mut<'a>( 113 list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>, 114 class_code: u8, 115 subclass: u8, 116 ) -> Vec<&'a mut Box<(dyn PciDeviceStructure)>> { 117 let mut result = Vec::new(); 118 for box_pci_device_structure in list.iter_mut() { 119 let common_header = (*box_pci_device_structure).common_header(); 120 if (common_header.class_code == class_code) && (common_header.subclass == subclass) { 121 result.push(box_pci_device_structure); 122 } 123 } 124 result 125 } 126 /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其不可变引用 127 /// @param list 链表的读锁守卫 128 /// @param class_code 寄存器值 129 /// @param subclass 寄存器值,与class_code一起确定设备类型 130 /// @return Vec<&'a Box<(dyn PciDeviceStructure) 包含链表中所有满足条件的PCI结构体的不可变引用的容器 131 pub fn get_pci_device_structure<'a>( 132 list: &'a mut RwLockReadGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>, 133 class_code: u8, 134 subclass: u8, 135 ) -> Vec<&'a Box<(dyn PciDeviceStructure)>> { 136 let mut result = Vec::new(); 137 for box_pci_device_structure in list.iter() { 138 let common_header = (*box_pci_device_structure).common_header(); 139 if (common_header.class_code == class_code) && (common_header.subclass == subclass) { 140 result.push(box_pci_device_structure); 141 } 142 } 143 result 144 } 145 146 //Bar0寄存器的offset 147 const BAR0_OFFSET: u8 = 0x10; 148 //Status、Command寄存器的offset 149 const STATUS_COMMAND_OFFSET: u8 = 0x04; 150 /// ID for vendor-specific PCI capabilities.(Virtio Capabilities) 151 pub const PCI_CAP_ID_VNDR: u8 = 0x09; 152 pub const PCI_CAP_ID_MSI: u8 = 0x05; 153 pub const PCI_CAP_ID_MSIX: u8 = 0x11; 154 pub const PORT_PCI_CONFIG_ADDRESS: u16 = 0xcf8; 155 pub const PORT_PCI_CONFIG_DATA: u16 = 0xcfc; 156 // pci设备分组的id 157 pub type SegmentGroupNumber = u16; //理论上最多支持65535个Segment_Group 158 159 bitflags! { 160 /// The status register in PCI configuration space. 161 pub struct Status: u16 { 162 // Bits 0-2 are reserved. 163 /// The state of the device's INTx# signal. 164 const INTERRUPT_STATUS = 1 << 3; 165 /// The device has a linked list of capabilities. 166 const CAPABILITIES_LIST = 1 << 4; 167 /// The device is capabile of running at 66 MHz rather than 33 MHz. 168 const MHZ_66_CAPABLE = 1 << 5; 169 // Bit 6 is reserved. 170 /// The device can accept fast back-to-back transactions not from the same agent. 171 const FAST_BACK_TO_BACK_CAPABLE = 1 << 7; 172 /// The bus agent observed a parity error (if parity error handling is enabled). 173 const MASTER_DATA_PARITY_ERROR = 1 << 8; 174 // Bits 9-10 are DEVSEL timing. 175 /// A target device terminated a transaction with target-abort. 176 const SIGNALED_TARGET_ABORT = 1 << 11; 177 /// A master device transaction was terminated with target-abort. 178 const RECEIVED_TARGET_ABORT = 1 << 12; 179 /// A master device transaction was terminated with master-abort. 180 const RECEIVED_MASTER_ABORT = 1 << 13; 181 /// A device asserts SERR#. 182 const SIGNALED_SYSTEM_ERROR = 1 << 14; 183 /// The device detects a parity error, even if parity error handling is disabled. 184 const DETECTED_PARITY_ERROR = 1 << 15; 185 } 186 } 187 188 bitflags! { 189 /// The command register in PCI configuration space. 190 pub struct Command: u16 { 191 /// The device can respond to I/O Space accesses. 192 const IO_SPACE = 1 << 0; 193 /// The device can respond to Memory Space accesses. 194 const MEMORY_SPACE = 1 << 1; 195 /// The device can behave as a bus master. 196 const BUS_MASTER = 1 << 2; 197 /// The device can monitor Special Cycle operations. 198 const SPECIAL_CYCLES = 1 << 3; 199 /// The device can generate the Memory Write and Invalidate command. 200 const MEMORY_WRITE_AND_INVALIDATE_ENABLE = 1 << 4; 201 /// The device will snoop palette register data. 202 const VGA_PALETTE_SNOOP = 1 << 5; 203 /// The device should take its normal action when a parity error is detected. 204 const PARITY_ERROR_RESPONSE = 1 << 6; 205 // Bit 7 is reserved. 206 /// The SERR# driver is enabled. 207 const SERR_ENABLE = 1 << 8; 208 /// The device is allowed to generate fast back-to-back transactions. 209 const FAST_BACK_TO_BACK_ENABLE = 1 << 9; 210 /// Assertion of the device's INTx# signal is disabled. 211 const INTERRUPT_DISABLE = 1 << 10; 212 } 213 } 214 215 /// The type of a PCI device function header. 216 /// 标头类型/设备类型 217 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 218 pub enum HeaderType { 219 /// A normal PCI device. 220 Standard, 221 /// A PCI to PCI bridge. 222 PciPciBridge, 223 /// A PCI to CardBus bridge. 224 PciCardbusBridge, 225 /// Unrecognised header type. 226 Unrecognised(u8), 227 } 228 /// u8到HeaderType的转换 229 impl From<u8> for HeaderType { 230 fn from(value: u8) -> Self { 231 match value { 232 0x00 => Self::Standard, 233 0x01 => Self::PciPciBridge, 234 0x02 => Self::PciCardbusBridge, 235 _ => Self::Unrecognised(value), 236 } 237 } 238 } 239 /// Pci可能触发的各种错误 240 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 241 pub enum PciError { 242 /// The device reported an invalid BAR type. 243 InvalidBarType, 244 CreateMmioError, 245 InvalidBusDeviceFunction, 246 SegmentNotFound, 247 McfgTableNotFound, 248 GetWrongHeader, 249 UnrecognisedHeaderType, 250 PciDeviceStructureTransformError, 251 PciIrqError(PciIrqError), 252 } 253 ///实现PciError的Display trait,使其可以直接输出 254 impl Display for PciError { 255 fn fmt(&self, f: &mut Formatter) -> fmt::Result { 256 match self { 257 Self::InvalidBarType => write!(f, "Invalid PCI BAR type."), 258 Self::CreateMmioError => write!(f, "Error occurred while creating mmio."), 259 Self::InvalidBusDeviceFunction => write!(f, "Found invalid BusDeviceFunction."), 260 Self::SegmentNotFound => write!(f, "Target segment not found"), 261 Self::McfgTableNotFound => write!(f, "ACPI MCFG Table not found"), 262 Self::GetWrongHeader => write!(f, "GetWrongHeader with vendor id 0xffff"), 263 Self::UnrecognisedHeaderType => write!(f, "Found device with unrecognised header type"), 264 Self::PciDeviceStructureTransformError => { 265 write!(f, "Found None When transform Pci device structure") 266 } 267 Self::PciIrqError(err) => write!(f, "Error occurred while setting irq :{:?}.", err), 268 } 269 } 270 } 271 272 /// trait类型Pci_Device_Structure表示pci设备,动态绑定三种具体设备类型:Pci_Device_Structure_General_Device、Pci_Device_Structure_Pci_to_Pci_Bridge、Pci_Device_Structure_Pci_to_Cardbus_Bridge 273 pub trait PciDeviceStructure: Send + Sync { 274 /// @brief 获取设备类型 275 /// @return HeaderType 设备类型 276 fn header_type(&self) -> HeaderType; 277 /// @brief 当其为standard设备时返回&Pci_Device_Structure_General_Device,其余情况返回None 278 #[inline(always)] 279 fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> { 280 None 281 } 282 /// @brief 当其为pci to pci bridge设备时返回&Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None 283 #[inline(always)] 284 fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> { 285 None 286 } 287 /// @brief 当其为pci to cardbus bridge设备时返回&Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None 288 #[inline(always)] 289 fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> { 290 None 291 } 292 /// @brief 获取Pci设备共有的common_header 293 /// @return 返回其不可变引用 294 fn common_header(&self) -> &PciDeviceStructureHeader; 295 /// @brief 当其为standard设备时返回&mut Pci_Device_Structure_General_Device,其余情况返回None 296 #[inline(always)] 297 fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> { 298 None 299 } 300 /// @brief 当其为pci to pci bridge设备时返回&mut Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None 301 #[inline(always)] 302 fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> { 303 None 304 } 305 /// @brief 当其为pci to cardbus bridge设备时返回&mut Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None 306 #[inline(always)] 307 fn as_pci_to_carbus_bridge_device_mut( 308 &mut self, 309 ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> { 310 None 311 } 312 /// @brief 返回迭代器,遍历capabilities 313 fn capabilities(&self) -> Option<CapabilityIterator> { 314 None 315 } 316 /// @brief 获取Status、Command寄存器的值 317 fn status_command(&self) -> (Status, Command) { 318 let common_header = self.common_header(); 319 let status = Status::from_bits_truncate(common_header.status); 320 let command = Command::from_bits_truncate(common_header.command); 321 (status, command) 322 } 323 /// @brief 设置Command寄存器的值 324 fn set_command(&mut self, command: Command) { 325 let common_header = self.common_header_mut(); 326 let command = command.bits(); 327 common_header.command = command; 328 PciArch::write_config( 329 &common_header.bus_device_function, 330 STATUS_COMMAND_OFFSET, 331 command as u32, 332 ); 333 } 334 /// @brief 获取Pci设备共有的common_header 335 /// @return 返回其可变引用 336 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader; 337 338 /// @brief 读取standard设备的bar寄存器,映射后将结果加入结构体的standard_device_bar变量 339 /// @return 只有standard设备才返回成功或者错误,其余返回None 340 #[inline(always)] 341 fn bar_ioremap(&mut self) -> Option<Result<u8, PciError>> { 342 None 343 } 344 /// @brief 获取PCI设备的bar寄存器的引用 345 /// @return 346 #[inline(always)] 347 fn bar(&mut self) -> Option<&PciStandardDeviceBar> { 348 None 349 } 350 /// @brief 通过设置该pci设备的command 351 fn enable_master(&mut self) { 352 self.set_command(Command::IO_SPACE | Command::MEMORY_SPACE | Command::BUS_MASTER); 353 } 354 /// @brief 寻找设备的msix空间的offset 355 fn msix_capability_offset(&self) -> Option<u8> { 356 for capability in self.capabilities()? { 357 if capability.id == PCI_CAP_ID_MSIX { 358 return Some(capability.offset); 359 } 360 } 361 None 362 } 363 /// @brief 寻找设备的msi空间的offset 364 fn msi_capability_offset(&self) -> Option<u8> { 365 for capability in self.capabilities()? { 366 if capability.id == PCI_CAP_ID_MSI { 367 return Some(capability.offset); 368 } 369 } 370 None 371 } 372 /// @brief 返回结构体中的irq_type的可变引用 373 fn irq_type_mut(&mut self) -> Option<&mut IrqType>; 374 /// @brief 返回结构体中的irq_vector的可变引用 375 fn irq_vector_mut(&mut self) -> Option<&mut Vec<IrqNumber>>; 376 } 377 378 /// Pci_Device_Structure_Header PCI设备结构体共有的头部 379 #[derive(Clone, Debug)] 380 pub struct PciDeviceStructureHeader { 381 // ==== busdevicefunction变量表示该结构体所处的位置 382 pub bus_device_function: BusDeviceFunction, 383 pub vendor_id: u16, // 供应商ID 0xffff是一个无效值,在读取访问不存在的设备的配置空间寄存器时返回 384 pub device_id: u16, // 设备ID,标志特定设备 385 pub command: u16, // 提供对设备生成和响应pci周期的能力的控制 向该寄存器写入0时,设备与pci总线断开除配置空间访问以外的所有连接 386 pub status: u16, // 用于记录pci总线相关时间的状态信息寄存器 387 pub revision_id: u8, // 修订ID,指定特定设备的修订标志符 388 pub prog_if: u8, // 编程接口字节,一个只读寄存器,指定设备具有的寄存器级别的编程接口(如果有的话) 389 pub subclass: u8, // 子类。指定设备执行的特定功能的只读寄存器 390 pub class_code: u8, // 类代码,一个只读寄存器,指定设备执行的功能类型 391 pub cache_line_size: u8, // 缓存线大小:以 32 位为单位指定系统缓存线大小。设备可以限制它可以支持的缓存线大小的数量,如果不支持的值写入该字段,设备将表现得好像写入了 0 值 392 pub latency_timer: u8, // 延迟计时器:以 PCI 总线时钟为单位指定延迟计时器。 393 pub header_type: u8, // 标头类型 a value of 0x0 specifies a general device, a value of 0x1 specifies a PCI-to-PCI bridge, and a value of 0x2 specifies a CardBus bridge. If bit 7 of this register is set, the device has multiple functions; otherwise, it is a single function device. 394 pub bist: u8, // Represents that status and allows control of a devices BIST (built-in self test). 395 // Here is the layout of the BIST register: 396 // | bit7 | bit6 | Bits 5-4 | Bits 3-0 | 397 // | BIST Capable | Start BIST | Reserved | Completion Code | 398 // for more details, please visit https://wiki.osdev.org/PCI 399 } 400 401 /// Pci_Device_Structure_General_Device PCI标准设备结构体 402 #[derive(Clone, Debug)] 403 pub struct PciDeviceStructureGeneralDevice { 404 pub common_header: PciDeviceStructureHeader, 405 // 中断结构体,包括legacy,msi,msix三种情况 406 pub irq_type: IrqType, 407 // 使用的中断号的vec集合 408 pub irq_vector: Vec<IrqNumber>, 409 pub standard_device_bar: PciStandardDeviceBar, 410 pub cardbus_cis_pointer: u32, // 指向卡信息结构,供在 CardBus 和 PCI 之间共享芯片的设备使用。 411 pub subsystem_vendor_id: u16, 412 pub subsystem_id: u16, 413 pub expansion_rom_base_address: u32, 414 pub capabilities_pointer: u8, 415 pub reserved0: u8, 416 pub reserved1: u16, 417 pub reserved2: u32, 418 pub interrupt_line: u8, // 指定设备的中断引脚连接到系统中断控制器的哪个输入,并由任何使用中断引脚的设备实现。对于 x86 架构,此寄存器对应于 PIC IRQ 编号 0-15(而不是 I/O APIC IRQ 编号),并且值0xFF定义为无连接。 419 pub interrupt_pin: u8, // 指定设备使用的中断引脚。其中值为0x1INTA#、0x2INTB#、0x3INTC#、0x4INTD#,0x0表示设备不使用中断引脚。 420 pub min_grant: u8, // 一个只读寄存器,用于指定设备所需的突发周期长度(以 1/4 微秒为单位)(假设时钟速率为 33 MHz) 421 pub max_latency: u8, // 一个只读寄存器,指定设备需要多长时间访问一次 PCI 总线(以 1/4 微秒为单位)。 422 } 423 impl PciDeviceStructure for PciDeviceStructureGeneralDevice { 424 #[inline(always)] 425 fn header_type(&self) -> HeaderType { 426 HeaderType::Standard 427 } 428 #[inline(always)] 429 fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> { 430 Some(self) 431 } 432 #[inline(always)] 433 fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> { 434 Some(self) 435 } 436 #[inline(always)] 437 fn common_header(&self) -> &PciDeviceStructureHeader { 438 &self.common_header 439 } 440 #[inline(always)] 441 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader { 442 &mut self.common_header 443 } 444 fn capabilities(&self) -> Option<CapabilityIterator> { 445 Some(CapabilityIterator { 446 bus_device_function: self.common_header.bus_device_function, 447 next_capability_offset: Some(self.capabilities_pointer), 448 }) 449 } 450 fn bar_ioremap(&mut self) -> Option<Result<u8, PciError>> { 451 let common_header = &self.common_header; 452 match pci_bar_init(common_header.bus_device_function) { 453 Ok(bar) => { 454 self.standard_device_bar = bar; 455 Some(Ok(0)) 456 } 457 Err(e) => Some(Err(e)), 458 } 459 } 460 fn bar(&mut self) -> Option<&PciStandardDeviceBar> { 461 Some(&self.standard_device_bar) 462 } 463 #[inline(always)] 464 fn irq_type_mut(&mut self) -> Option<&mut IrqType> { 465 Some(&mut self.irq_type) 466 } 467 #[inline(always)] 468 fn irq_vector_mut(&mut self) -> Option<&mut Vec<IrqNumber>> { 469 Some(&mut self.irq_vector) 470 } 471 } 472 473 /// Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci桥设备结构体 474 #[derive(Clone, Debug)] 475 pub struct PciDeviceStructurePciToPciBridge { 476 pub common_header: PciDeviceStructureHeader, 477 // 中断结构体,包括legacy,msi,msix三种情况 478 pub irq_type: IrqType, 479 // 使用的中断号的vec集合 480 pub irq_vector: Vec<IrqNumber>, 481 pub bar0: u32, 482 pub bar1: u32, 483 pub primary_bus_number: u8, 484 pub secondary_bus_number: u8, 485 pub subordinate_bus_number: u8, 486 pub secondary_latency_timer: u8, 487 pub io_base: u8, 488 pub io_limit: u8, 489 pub secondary_status: u16, 490 pub memory_base: u16, 491 pub memory_limit: u16, 492 pub prefetchable_memory_base: u16, 493 pub prefetchable_memory_limit: u16, 494 pub prefetchable_base_upper_32_bits: u32, 495 pub prefetchable_limit_upper_32_bits: u32, 496 pub io_base_upper_16_bits: u16, 497 pub io_limit_upper_16_bits: u16, 498 pub capability_pointer: u8, 499 pub reserved0: u8, 500 pub reserved1: u16, 501 pub expansion_rom_base_address: u32, 502 pub interrupt_line: u8, 503 pub interrupt_pin: u8, 504 pub bridge_control: u16, 505 } 506 impl PciDeviceStructure for PciDeviceStructurePciToPciBridge { 507 #[inline(always)] 508 fn header_type(&self) -> HeaderType { 509 HeaderType::PciPciBridge 510 } 511 #[inline(always)] 512 fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> { 513 Some(self) 514 } 515 #[inline(always)] 516 fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> { 517 Some(self) 518 } 519 #[inline(always)] 520 fn common_header(&self) -> &PciDeviceStructureHeader { 521 &self.common_header 522 } 523 #[inline(always)] 524 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader { 525 &mut self.common_header 526 } 527 #[inline(always)] 528 fn irq_type_mut(&mut self) -> Option<&mut IrqType> { 529 Some(&mut self.irq_type) 530 } 531 #[inline(always)] 532 fn irq_vector_mut(&mut self) -> Option<&mut Vec<IrqNumber>> { 533 Some(&mut self.irq_vector) 534 } 535 } 536 /// Pci_Device_Structure_Pci_to_Cardbus_Bridge Pci_to_Cardbus桥设备结构体 537 #[derive(Clone, Debug)] 538 pub struct PciDeviceStructurePciToCardbusBridge { 539 pub common_header: PciDeviceStructureHeader, 540 pub cardbus_socket_ex_ca_base_address: u32, 541 pub offset_of_capabilities_list: u8, 542 pub reserved: u8, 543 pub secondary_status: u16, 544 pub pci_bus_number: u8, 545 pub card_bus_bus_number: u8, 546 pub subordinate_bus_number: u8, 547 pub card_bus_latency_timer: u8, 548 pub memory_base_address0: u32, 549 pub memory_limit0: u32, 550 pub memory_base_address1: u32, 551 pub memory_limit1: u32, 552 pub io_base_address0: u32, 553 pub io_limit0: u32, 554 pub io_base_address1: u32, 555 pub io_limit1: u32, 556 pub interrupt_line: u8, 557 pub interrupt_pin: u8, 558 pub bridge_control: u16, 559 pub subsystem_device_id: u16, 560 pub subsystem_vendor_id: u16, 561 pub pc_card_legacy_mode_base_address_16_bit: u32, 562 } 563 impl PciDeviceStructure for PciDeviceStructurePciToCardbusBridge { 564 #[inline(always)] 565 fn header_type(&self) -> HeaderType { 566 HeaderType::PciCardbusBridge 567 } 568 #[inline(always)] 569 fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> { 570 Some(&self) 571 } 572 #[inline(always)] 573 fn as_pci_to_carbus_bridge_device_mut( 574 &mut self, 575 ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> { 576 Some(self) 577 } 578 #[inline(always)] 579 fn common_header(&self) -> &PciDeviceStructureHeader { 580 &self.common_header 581 } 582 #[inline(always)] 583 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader { 584 &mut self.common_header 585 } 586 #[inline(always)] 587 fn irq_type_mut(&mut self) -> Option<&mut IrqType> { 588 None 589 } 590 #[inline(always)] 591 fn irq_vector_mut(&mut self) -> Option<&mut Vec<IrqNumber>> { 592 None 593 } 594 } 595 596 /// 代表一个PCI segement greoup. 597 #[derive(Clone, Debug)] 598 pub struct PciRoot { 599 pub physical_address_base: PhysAddr, //物理地址,acpi获取 600 pub mmio_guard: Option<Arc<MMIOSpaceGuard>>, //映射后的虚拟地址,为方便访问数据这里转化成指针 601 pub segement_group_number: SegmentGroupNumber, //segement greoup的id 602 pub bus_begin: u8, //该分组中的最小bus 603 pub bus_end: u8, //该分组中的最大bus 604 } 605 ///线程间共享需要,该结构体只需要在初始化时写入数据,无需读写锁保证线程安全 606 unsafe impl Send for PciRoot {} 607 unsafe impl Sync for PciRoot {} 608 ///实现PciRoot的Display trait,自定义输出 609 impl Display for PciRoot { 610 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 611 write!( 612 f, 613 "PCI Root with segement:{}, bus begin at {}, bus end at {}, physical address at {:?},mapped at {:?}", 614 self.segement_group_number, self.bus_begin, self.bus_end, self.physical_address_base, self.mmio_guard 615 ) 616 } 617 } 618 619 impl PciRoot { 620 /// @brief 初始化结构体,获取ecam root所在物理地址后map到虚拟地址,再将该虚拟地址加入mmio_base变量 621 /// @return 成功返回结果,错误返回错误类型 622 pub fn new(segment_group_number: SegmentGroupNumber) -> Result<Self, PciError> { 623 let mut pci_root = PciArch::ecam_root(segment_group_number)?; 624 pci_root.map()?; 625 Ok(pci_root) 626 } 627 /// @brief 完成物理地址到虚拟地址的映射,并将虚拟地址加入mmio_base变量 628 /// @return 返回错误或Ok(0) 629 fn map(&mut self) -> Result<u8, PciError> { 630 //kdebug!("bus_begin={},bus_end={}", self.bus_begin,self.bus_end); 631 let bus_number = (self.bus_end - self.bus_begin) as u32 + 1; 632 let bus_number_double = (bus_number - 1) / 2 + 1; //一个bus占据1MB空间,计算全部bus占据空间相对于2MB空间的个数 633 634 let size = (bus_number_double as usize) * (PAGE_2M_SIZE as usize); 635 unsafe { 636 let space_guard = mmio_pool() 637 .create_mmio(size as usize) 638 .map_err(|_| PciError::CreateMmioError)?; 639 let space_guard = Arc::new(space_guard); 640 self.mmio_guard = Some(space_guard.clone()); 641 642 assert!(space_guard 643 .map_phys(self.physical_address_base, size) 644 .is_ok()); 645 } 646 return Ok(0); 647 } 648 /// @brief 获得要操作的寄存器相对于mmio_offset的偏移量 649 /// @param bus_device_function 在同一个group中pci设备的唯一标识符 650 /// @param register_offset 寄存器在设备中的offset 651 /// @return u32 要操作的寄存器相对于mmio_offset的偏移量 652 fn cam_offset(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32 { 653 assert!(bus_device_function.valid()); 654 let bdf = ((bus_device_function.bus - self.bus_begin) as u32) << 8 655 | (bus_device_function.device as u32) << 3 656 | bus_device_function.function as u32; 657 let address = bdf << 12 | register_offset as u32; 658 // Ensure that address is word-aligned. 659 assert!(address & 0x3 == 0); 660 address 661 } 662 /// @brief 通过bus_device_function和offset读取相应位置寄存器的值(32位) 663 /// @param bus_device_function 在同一个group中pci设备的唯一标识符 664 /// @param register_offset 寄存器在设备中的offset 665 /// @return u32 寄存器读值结果 666 pub fn read_config(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32 { 667 let address = self.cam_offset(bus_device_function, register_offset); 668 unsafe { 669 // Right shift to convert from byte offset to word offset. 670 ((self.mmio_guard.as_ref().unwrap().vaddr().data() as *mut u32) 671 .add((address >> 2) as usize)) 672 .read_volatile() 673 } 674 } 675 676 /// @brief 通过bus_device_function和offset写入相应位置寄存器值(32位) 677 /// @param bus_device_function 在同一个group中pci设备的唯一标识符 678 /// @param register_offset 寄存器在设备中的offset 679 /// @param data 要写入的值 680 pub fn write_config( 681 &mut self, 682 bus_device_function: BusDeviceFunction, 683 register_offset: u16, 684 data: u32, 685 ) { 686 let address = self.cam_offset(bus_device_function, register_offset); 687 // Safe because both the `mmio_base` and the address offset are properly aligned, and the 688 // resulting pointer is within the MMIO range of the CAM. 689 unsafe { 690 // Right shift to convert from byte offset to word offset. 691 ((self.mmio_guard.as_ref().unwrap().vaddr().data() as *mut u32) 692 .add((address >> 2) as usize)) 693 .write_volatile(data) 694 } 695 } 696 /// @brief 返回迭代器,遍历pcie设备的external_capabilities 697 pub fn external_capabilities( 698 &self, 699 bus_device_function: BusDeviceFunction, 700 ) -> ExternalCapabilityIterator { 701 ExternalCapabilityIterator { 702 root: self, 703 bus_device_function, 704 next_capability_offset: Some(0x100), 705 } 706 } 707 } 708 /// Gets the capabilities 'pointer' for the device function, if any. 709 /// @brief 获取第一个capability 的offset 710 /// @param bus_device_function PCI设备的唯一标识 711 /// @return Option<u8> offset 712 pub fn capabilities_offset(bus_device_function: BusDeviceFunction) -> Option<u8> { 713 let result = PciArch::read_config(&bus_device_function, STATUS_COMMAND_OFFSET); 714 let status: Status = Status::from_bits_truncate((result >> 16) as u16); 715 if status.contains(Status::CAPABILITIES_LIST) { 716 let cap_pointer = PciArch::read_config(&bus_device_function, 0x34) as u8 & 0xFC; 717 Some(cap_pointer) 718 } else { 719 None 720 } 721 } 722 723 /// @brief 读取pci设备头部 724 /// @param bus_device_function PCI设备的唯一标识 725 /// @param add_to_list 是否添加到链表 726 /// @return 返回的header(trait 类型) 727 fn pci_read_header( 728 bus_device_function: BusDeviceFunction, 729 add_to_list: bool, 730 ) -> Result<Box<dyn PciDeviceStructure>, PciError> { 731 // 先读取公共header 732 let result = PciArch::read_config(&bus_device_function, 0x00); 733 let vendor_id = result as u16; 734 let device_id = (result >> 16) as u16; 735 736 let result = PciArch::read_config(&bus_device_function, 0x04); 737 let command = result as u16; 738 let status = (result >> 16) as u16; 739 740 let result = PciArch::read_config(&bus_device_function, 0x08); 741 let revision_id = result as u8; 742 let prog_if = (result >> 8) as u8; 743 let subclass = (result >> 16) as u8; 744 let class_code = (result >> 24) as u8; 745 746 let result = PciArch::read_config(&bus_device_function, 0x0c); 747 let cache_line_size = result as u8; 748 let latency_timer = (result >> 8) as u8; 749 let header_type = (result >> 16) as u8; 750 let bist = (result >> 24) as u8; 751 if vendor_id == 0xffff { 752 return Err(PciError::GetWrongHeader); 753 } 754 let header = PciDeviceStructureHeader { 755 bus_device_function, 756 vendor_id, 757 device_id, 758 command, 759 status, 760 revision_id, 761 prog_if, 762 subclass, 763 class_code, 764 cache_line_size, 765 latency_timer, 766 header_type, 767 bist, 768 }; 769 match HeaderType::from(header_type & 0x7f) { 770 HeaderType::Standard => { 771 let general_device = pci_read_general_device_header(header, &bus_device_function); 772 let box_general_device = Box::new(general_device); 773 let box_general_device_clone = box_general_device.clone(); 774 if add_to_list { 775 PCI_DEVICE_LINKEDLIST.add(box_general_device); 776 } 777 Ok(box_general_device_clone) 778 } 779 HeaderType::PciPciBridge => { 780 let pci_to_pci_bridge = pci_read_pci_to_pci_bridge_header(header, &bus_device_function); 781 let box_pci_to_pci_bridge = Box::new(pci_to_pci_bridge); 782 let box_pci_to_pci_bridge_clone = box_pci_to_pci_bridge.clone(); 783 if add_to_list { 784 PCI_DEVICE_LINKEDLIST.add(box_pci_to_pci_bridge); 785 } 786 Ok(box_pci_to_pci_bridge_clone) 787 } 788 HeaderType::PciCardbusBridge => { 789 let pci_cardbus_bridge = 790 pci_read_pci_to_cardbus_bridge_header(header, &bus_device_function); 791 let box_pci_cardbus_bridge = Box::new(pci_cardbus_bridge); 792 let box_pci_cardbus_bridge_clone = box_pci_cardbus_bridge.clone(); 793 if add_to_list { 794 PCI_DEVICE_LINKEDLIST.add(box_pci_cardbus_bridge); 795 } 796 Ok(box_pci_cardbus_bridge_clone) 797 } 798 HeaderType::Unrecognised(_) => Err(PciError::UnrecognisedHeaderType), 799 } 800 } 801 802 /// @brief 读取type为0x0的pci设备的header 803 /// 本函数只应被 pci_read_header()调用 804 /// @param common_header 共有头部 805 /// @param bus_device_function PCI设备的唯一标识 806 /// @return Pci_Device_Structure_General_Device 标准设备头部 807 fn pci_read_general_device_header( 808 common_header: PciDeviceStructureHeader, 809 bus_device_function: &BusDeviceFunction, 810 ) -> PciDeviceStructureGeneralDevice { 811 let standard_device_bar = PciStandardDeviceBar::default(); 812 let cardbus_cis_pointer = PciArch::read_config(bus_device_function, 0x28); 813 814 let result = PciArch::read_config(bus_device_function, 0x2c); 815 let subsystem_vendor_id = result as u16; 816 let subsystem_id = (result >> 16) as u16; 817 818 let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x30); 819 820 let result = PciArch::read_config(bus_device_function, 0x34); 821 let capabilities_pointer = result as u8; 822 let reserved0 = (result >> 8) as u8; 823 let reserved1 = (result >> 16) as u16; 824 825 let reserved2 = PciArch::read_config(bus_device_function, 0x38); 826 827 let result = PciArch::read_config(bus_device_function, 0x3c); 828 let interrupt_line = result as u8; 829 let interrupt_pin = (result >> 8) as u8; 830 let min_grant = (result >> 16) as u8; 831 let max_latency = (result >> 24) as u8; 832 PciDeviceStructureGeneralDevice { 833 common_header, 834 irq_type: IrqType::Unused, 835 irq_vector: Vec::new(), 836 standard_device_bar, 837 cardbus_cis_pointer, 838 subsystem_vendor_id, 839 subsystem_id, 840 expansion_rom_base_address, 841 capabilities_pointer, 842 reserved0, 843 reserved1, 844 reserved2, 845 interrupt_line, 846 interrupt_pin, 847 min_grant, 848 max_latency, 849 } 850 } 851 852 /// @brief 读取type为0x1的pci设备的header 853 /// 本函数只应被 pci_read_header()调用 854 /// @param common_header 共有头部 855 /// @param bus_device_function PCI设备的唯一标识 856 /// @return Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci 桥设备头部 857 fn pci_read_pci_to_pci_bridge_header( 858 common_header: PciDeviceStructureHeader, 859 bus_device_function: &BusDeviceFunction, 860 ) -> PciDeviceStructurePciToPciBridge { 861 let bar0 = PciArch::read_config(bus_device_function, 0x10); 862 let bar1 = PciArch::read_config(bus_device_function, 0x14); 863 864 let result = PciArch::read_config(bus_device_function, 0x18); 865 866 let primary_bus_number = result as u8; 867 let secondary_bus_number = (result >> 8) as u8; 868 let subordinate_bus_number = (result >> 16) as u8; 869 let secondary_latency_timer = (result >> 24) as u8; 870 871 let result = PciArch::read_config(bus_device_function, 0x1c); 872 let io_base = result as u8; 873 let io_limit = (result >> 8) as u8; 874 let secondary_status = (result >> 16) as u16; 875 876 let result = PciArch::read_config(bus_device_function, 0x20); 877 let memory_base = result as u16; 878 let memory_limit = (result >> 16) as u16; 879 880 let result = PciArch::read_config(bus_device_function, 0x24); 881 let prefetchable_memory_base = result as u16; 882 let prefetchable_memory_limit = (result >> 16) as u16; 883 884 let prefetchable_base_upper_32_bits = PciArch::read_config(bus_device_function, 0x28); 885 let prefetchable_limit_upper_32_bits = PciArch::read_config(bus_device_function, 0x2c); 886 887 let result = PciArch::read_config(bus_device_function, 0x30); 888 let io_base_upper_16_bits = result as u16; 889 let io_limit_upper_16_bits = (result >> 16) as u16; 890 891 let result = PciArch::read_config(bus_device_function, 0x34); 892 let capability_pointer = result as u8; 893 let reserved0 = (result >> 8) as u8; 894 let reserved1 = (result >> 16) as u16; 895 896 let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x38); 897 898 let result = PciArch::read_config(bus_device_function, 0x3c); 899 let interrupt_line = result as u8; 900 let interrupt_pin = (result >> 8) as u8; 901 let bridge_control = (result >> 16) as u16; 902 PciDeviceStructurePciToPciBridge { 903 common_header, 904 irq_type: IrqType::Unused, 905 irq_vector: Vec::new(), 906 bar0, 907 bar1, 908 primary_bus_number, 909 secondary_bus_number, 910 subordinate_bus_number, 911 secondary_latency_timer, 912 io_base, 913 io_limit, 914 secondary_status, 915 memory_base, 916 memory_limit, 917 prefetchable_memory_base, 918 prefetchable_memory_limit, 919 prefetchable_base_upper_32_bits, 920 prefetchable_limit_upper_32_bits, 921 io_base_upper_16_bits, 922 io_limit_upper_16_bits, 923 capability_pointer, 924 reserved0, 925 reserved1, 926 expansion_rom_base_address, 927 interrupt_line, 928 interrupt_pin, 929 bridge_control, 930 } 931 } 932 933 /// @brief 读取type为0x2的pci设备的header 934 /// 本函数只应被 pci_read_header()调用 935 /// @param common_header 共有头部 936 /// @param bus_device_function PCI设备的唯一标识 937 /// @return Pci_Device_Structure_Pci_to_Cardbus_Bridge pci-to-cardbus 桥设备头部 938 fn pci_read_pci_to_cardbus_bridge_header( 939 common_header: PciDeviceStructureHeader, 940 busdevicefunction: &BusDeviceFunction, 941 ) -> PciDeviceStructurePciToCardbusBridge { 942 let cardbus_socket_ex_ca_base_address = PciArch::read_config(busdevicefunction, 0x10); 943 944 let result = PciArch::read_config(busdevicefunction, 0x14); 945 let offset_of_capabilities_list = result as u8; 946 let reserved = (result >> 8) as u8; 947 let secondary_status = (result >> 16) as u16; 948 949 let result = PciArch::read_config(busdevicefunction, 0x18); 950 let pci_bus_number = result as u8; 951 let card_bus_bus_number = (result >> 8) as u8; 952 let subordinate_bus_number = (result >> 16) as u8; 953 let card_bus_latency_timer = (result >> 24) as u8; 954 955 let memory_base_address0 = PciArch::read_config(busdevicefunction, 0x1c); 956 let memory_limit0 = PciArch::read_config(busdevicefunction, 0x20); 957 let memory_base_address1 = PciArch::read_config(busdevicefunction, 0x24); 958 let memory_limit1 = PciArch::read_config(busdevicefunction, 0x28); 959 960 let io_base_address0 = PciArch::read_config(busdevicefunction, 0x2c); 961 let io_limit0 = PciArch::read_config(busdevicefunction, 0x30); 962 let io_base_address1 = PciArch::read_config(busdevicefunction, 0x34); 963 let io_limit1 = PciArch::read_config(busdevicefunction, 0x38); 964 let result = PciArch::read_config(busdevicefunction, 0x3c); 965 let interrupt_line = result as u8; 966 let interrupt_pin = (result >> 8) as u8; 967 let bridge_control = (result >> 16) as u16; 968 969 let result = PciArch::read_config(busdevicefunction, 0x40); 970 let subsystem_device_id = result as u16; 971 let subsystem_vendor_id = (result >> 16) as u16; 972 973 let pc_card_legacy_mode_base_address_16_bit = PciArch::read_config(busdevicefunction, 0x44); 974 PciDeviceStructurePciToCardbusBridge { 975 common_header, 976 cardbus_socket_ex_ca_base_address, 977 offset_of_capabilities_list, 978 reserved, 979 secondary_status, 980 pci_bus_number, 981 card_bus_bus_number, 982 subordinate_bus_number, 983 card_bus_latency_timer, 984 memory_base_address0, 985 memory_limit0, 986 memory_base_address1, 987 memory_limit1, 988 io_base_address0, 989 io_limit0, 990 io_base_address1, 991 io_limit1, 992 interrupt_line, 993 interrupt_pin, 994 bridge_control, 995 subsystem_device_id, 996 subsystem_vendor_id, 997 pc_card_legacy_mode_base_address_16_bit, 998 } 999 } 1000 1001 /// @brief 检查所有bus上的设备并将其加入链表 1002 /// @return 成功返回ok(),失败返回失败原因 1003 fn pci_check_all_buses() -> Result<u8, PciError> { 1004 kinfo!("Checking all devices in PCI bus..."); 1005 let busdevicefunction = BusDeviceFunction { 1006 bus: 0, 1007 device: 0, 1008 function: 0, 1009 }; 1010 let header = pci_read_header(busdevicefunction, false)?; 1011 let common_header = header.common_header(); 1012 pci_check_bus(0)?; 1013 if common_header.header_type & 0x80 != 0 { 1014 for function in 1..8 { 1015 pci_check_bus(function)?; 1016 } 1017 } 1018 Ok(0) 1019 } 1020 /// @brief 检查特定设备并将其加入链表 1021 /// @return 成功返回ok(),失败返回失败原因 1022 fn pci_check_function(busdevicefunction: BusDeviceFunction) -> Result<u8, PciError> { 1023 //kdebug!("PCI check function {}", busdevicefunction.function); 1024 let header = match pci_read_header(busdevicefunction, true) { 1025 Ok(header) => header, 1026 Err(PciError::GetWrongHeader) => { 1027 return Ok(255); 1028 } 1029 Err(e) => { 1030 return Err(e); 1031 } 1032 }; 1033 let common_header = header.common_header(); 1034 if (common_header.class_code == 0x06) 1035 && (common_header.subclass == 0x04 || common_header.subclass == 0x09) 1036 { 1037 let pci_to_pci_bridge = header 1038 .as_pci_to_pci_bridge_device() 1039 .ok_or(PciError::PciDeviceStructureTransformError)?; 1040 let secondary_bus = pci_to_pci_bridge.secondary_bus_number; 1041 pci_check_bus(secondary_bus)?; 1042 } 1043 Ok(0) 1044 } 1045 1046 /// @brief 检查device上的设备并将其加入链表 1047 /// @return 成功返回ok(),失败返回失败原因 1048 fn pci_check_device(bus: u8, device: u8) -> Result<u8, PciError> { 1049 //kdebug!("PCI check device {}", device); 1050 let busdevicefunction = BusDeviceFunction { 1051 bus, 1052 device, 1053 function: 0, 1054 }; 1055 let header = match pci_read_header(busdevicefunction, false) { 1056 Ok(header) => header, 1057 Err(PciError::GetWrongHeader) => { 1058 //设备不存在,直接返回即可,不用终止遍历 1059 return Ok(255); 1060 } 1061 Err(e) => { 1062 return Err(e); 1063 } 1064 }; 1065 pci_check_function(busdevicefunction)?; 1066 let common_header = header.common_header(); 1067 if common_header.header_type & 0x80 != 0 { 1068 kdebug!( 1069 "Detected multi func device in bus{},device{}", 1070 busdevicefunction.bus, 1071 busdevicefunction.device 1072 ); 1073 // 这是一个多function的设备,因此查询剩余的function 1074 for function in 1..8 { 1075 let busdevicefunction = BusDeviceFunction { 1076 bus, 1077 device, 1078 function, 1079 }; 1080 pci_check_function(busdevicefunction)?; 1081 } 1082 } 1083 Ok(0) 1084 } 1085 /// @brief 检查该bus上的设备并将其加入链表 1086 /// @return 成功返回ok(),失败返回失败原因 1087 fn pci_check_bus(bus: u8) -> Result<u8, PciError> { 1088 //kdebug!("PCI check bus {}", bus); 1089 for device in 0..32 { 1090 pci_check_device(bus, device)?; 1091 } 1092 Ok(0) 1093 } 1094 1095 /// pci初始化函数 1096 #[inline(never)] 1097 pub fn pci_init() { 1098 kinfo!("Initializing PCI bus..."); 1099 if let Err(e) = pci_check_all_buses() { 1100 kerror!("pci init failed when checking bus because of error: {}", e); 1101 return; 1102 } 1103 kinfo!( 1104 "Total pci device and function num = {}", 1105 PCI_DEVICE_LINKEDLIST.num() 1106 ); 1107 let list = PCI_DEVICE_LINKEDLIST.read(); 1108 for box_pci_device in list.iter() { 1109 let common_header = box_pci_device.common_header(); 1110 match box_pci_device.header_type() { 1111 HeaderType::Standard if common_header.status & 0x10 != 0 => { 1112 kinfo!("Found pci standard device with class code ={} subclass={} status={:#x} cap_pointer={:#x} vendor={:#x}, device id={:#x},bdf={}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer,common_header.vendor_id, common_header.device_id,common_header.bus_device_function); 1113 } 1114 HeaderType::Standard => { 1115 kinfo!( 1116 "Found pci standard device with class code ={} subclass={} status={:#x} ", 1117 common_header.class_code, 1118 common_header.subclass, 1119 common_header.status 1120 ); 1121 } 1122 HeaderType::PciPciBridge if common_header.status & 0x10 != 0 => { 1123 kinfo!("Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} cap_pointer={:#x}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer); 1124 } 1125 HeaderType::PciPciBridge => { 1126 kinfo!( 1127 "Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} ", 1128 common_header.class_code, 1129 common_header.subclass, 1130 common_header.status 1131 ); 1132 } 1133 HeaderType::PciCardbusBridge => { 1134 kinfo!( 1135 "Found pcicardbus bridge device with class code ={} subclass={} status={:#x} ", 1136 common_header.class_code, 1137 common_header.subclass, 1138 common_header.status 1139 ); 1140 } 1141 HeaderType::Unrecognised(_) => {} 1142 } 1143 } 1144 kinfo!("PCI bus initialized."); 1145 } 1146 1147 /// An identifier for a PCI bus, device and function. 1148 /// PCI设备的唯一标识 1149 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 1150 pub struct BusDeviceFunction { 1151 /// The PCI bus number, between 0 and 255. 1152 pub bus: u8, 1153 /// The device number on the bus, between 0 and 31. 1154 pub device: u8, 1155 /// The function number of the device, between 0 and 7. 1156 pub function: u8, 1157 } 1158 impl BusDeviceFunction { 1159 /// Returns whether the device and function numbers are valid, i.e. the device is between 0 and 1160 ///@brief 检测BusDeviceFunction实例是否有效 1161 ///@param self 1162 ///@return bool 是否有效 1163 #[allow(dead_code)] 1164 pub fn valid(&self) -> bool { 1165 self.device < 32 && self.function < 8 1166 } 1167 } 1168 ///实现BusDeviceFunction的Display trait,使其可以直接输出 1169 impl Display for BusDeviceFunction { 1170 fn fmt(&self, f: &mut Formatter) -> fmt::Result { 1171 write!( 1172 f, 1173 "bus {} device {} function{}", 1174 self.bus, self.device, self.function 1175 ) 1176 } 1177 } 1178 /// The location allowed for a memory BAR. 1179 /// memory BAR的三种情况 1180 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 1181 pub enum MemoryBarType { 1182 /// The BAR has a 32-bit address and can be mapped anywhere in 32-bit address space. 1183 Width32, 1184 /// The BAR must be mapped below 1MiB. 1185 Below1MiB, 1186 /// The BAR has a 64-bit address and can be mapped anywhere in 64-bit address space. 1187 Width64, 1188 } 1189 ///实现MemoryBarType与u8的类型转换 1190 impl From<MemoryBarType> for u8 { 1191 fn from(bar_type: MemoryBarType) -> Self { 1192 match bar_type { 1193 MemoryBarType::Width32 => 0, 1194 MemoryBarType::Below1MiB => 1, 1195 MemoryBarType::Width64 => 2, 1196 } 1197 } 1198 } 1199 ///实现MemoryBarType与u8的类型转换 1200 impl TryFrom<u8> for MemoryBarType { 1201 type Error = PciError; 1202 fn try_from(value: u8) -> Result<Self, Self::Error> { 1203 match value { 1204 0 => Ok(Self::Width32), 1205 1 => Ok(Self::Below1MiB), 1206 2 => Ok(Self::Width64), 1207 _ => Err(PciError::InvalidBarType), 1208 } 1209 } 1210 } 1211 1212 /// Information about a PCI Base Address Register. 1213 /// BAR的三种类型 Memory/IO/Unused 1214 #[derive(Clone, Debug)] 1215 pub enum BarInfo { 1216 /// The BAR is for a memory region. 1217 Memory { 1218 /// The size of the BAR address and where it can be located. 1219 address_type: MemoryBarType, 1220 /// If true, then reading from the region doesn't have side effects. The CPU may cache reads 1221 /// and merge repeated stores. 1222 prefetchable: bool, 1223 /// The memory address, always 16-byte aligned. 1224 address: u64, 1225 /// The size of the BAR in bytes. 1226 size: u32, 1227 /// The virtaddress for a memory bar(mapped). 1228 mmio_guard: Arc<MMIOSpaceGuard>, 1229 }, 1230 /// The BAR is for an I/O region. 1231 IO { 1232 /// The I/O address, always 4-byte aligned. 1233 address: u32, 1234 /// The size of the BAR in bytes. 1235 size: u32, 1236 }, 1237 Unused, 1238 } 1239 1240 impl BarInfo { 1241 /// Returns the address and size of this BAR if it is a memory bar, or `None` if it is an IO 1242 /// BAR. 1243 ///@brief 得到某个bar的memory_address与size(前提是他的类型为Memory Bar) 1244 ///@param self 1245 ///@return Option<(u64, u32) 是Memory Bar返回内存地址与大小,不是则返回None 1246 pub fn memory_address_size(&self) -> Option<(u64, u32)> { 1247 if let Self::Memory { address, size, .. } = self { 1248 Some((*address, *size)) 1249 } else { 1250 None 1251 } 1252 } 1253 ///@brief 得到某个bar的virtaddress(前提是他的类型为Memory Bar) 1254 ///@param self 1255 ///@return Option<(u64) 是Memory Bar返回映射的虚拟地址,不是则返回None 1256 pub fn virtual_address(&self) -> Option<VirtAddr> { 1257 if let Self::Memory { mmio_guard, .. } = self { 1258 Some(mmio_guard.vaddr()) 1259 } else { 1260 None 1261 } 1262 } 1263 } 1264 ///实现BarInfo的Display trait,自定义输出 1265 impl Display for BarInfo { 1266 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 1267 match self { 1268 Self::Memory { 1269 address_type, 1270 prefetchable, 1271 address, 1272 size, 1273 mmio_guard, 1274 } => write!( 1275 f, 1276 "Memory space at {:#010x}, size {}, type {:?}, prefetchable {}, mmio_guard: {:?}", 1277 address, size, address_type, prefetchable, mmio_guard 1278 ), 1279 Self::IO { address, size } => { 1280 write!(f, "I/O space at {:#010x}, size {}", address, size) 1281 } 1282 Self::Unused => { 1283 write!(f, "Unused bar") 1284 } 1285 } 1286 } 1287 } 1288 // todo 增加对桥的bar的支持 1289 pub trait PciDeviceBar {} 1290 1291 ///一个普通PCI设备(非桥)有6个BAR寄存器,PciStandardDeviceBar存储其全部信息 1292 #[derive(Clone, Debug)] 1293 pub struct PciStandardDeviceBar { 1294 bar0: BarInfo, 1295 bar1: BarInfo, 1296 bar2: BarInfo, 1297 bar3: BarInfo, 1298 bar4: BarInfo, 1299 bar5: BarInfo, 1300 } 1301 1302 impl PciStandardDeviceBar { 1303 ///@brief 得到某个bar的barinfo 1304 ///@param self ,bar_index(0-5) 1305 ///@return Result<&BarInfo, PciError> bar_index在0-5则返回对应的bar_info结构体,超出范围则返回错误 1306 pub fn get_bar(&self, bar_index: u8) -> Result<&BarInfo, PciError> { 1307 match bar_index { 1308 0 => Ok(&self.bar0), 1309 1 => Ok(&self.bar1), 1310 2 => Ok(&self.bar2), 1311 3 => Ok(&self.bar3), 1312 4 => Ok(&self.bar4), 1313 5 => Ok(&self.bar5), 1314 _ => Err(PciError::InvalidBarType), 1315 } 1316 } 1317 } 1318 ///实现PciStandardDeviceBar的Display trait,使其可以直接输出 1319 impl Display for PciStandardDeviceBar { 1320 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 1321 write!( 1322 f, 1323 "\r\nBar0:{}\r\nBar1:{}\r\nBar2:{}\r\nBar3:{}\r\nBar4:{}\r\nBar5:{}", 1324 self.bar0, self.bar1, self.bar2, self.bar3, self.bar4, self.bar5 1325 ) 1326 } 1327 } 1328 ///实现PciStandardDeviceBar的Default trait,使其可以简单初始化 1329 impl Default for PciStandardDeviceBar { 1330 fn default() -> Self { 1331 PciStandardDeviceBar { 1332 bar0: BarInfo::Unused, 1333 bar1: BarInfo::Unused, 1334 bar2: BarInfo::Unused, 1335 bar3: BarInfo::Unused, 1336 bar4: BarInfo::Unused, 1337 bar5: BarInfo::Unused, 1338 } 1339 } 1340 } 1341 1342 ///@brief 将某个pci设备的bar寄存器读取值后映射到虚拟地址 1343 ///@param self ,bus_device_function PCI设备的唯一标识符 1344 ///@return Result<PciStandardDeviceBar, PciError> 成功则返回对应的PciStandardDeviceBar结构体,失败则返回错误类型 1345 pub fn pci_bar_init( 1346 bus_device_function: BusDeviceFunction, 1347 ) -> Result<PciStandardDeviceBar, PciError> { 1348 let mut device_bar: PciStandardDeviceBar = PciStandardDeviceBar::default(); 1349 let mut bar_index_ignore: u8 = 255; 1350 for bar_index in 0..6 { 1351 if bar_index == bar_index_ignore { 1352 continue; 1353 } 1354 let bar_info; 1355 let bar_orig = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index); 1356 PciArch::write_config( 1357 &bus_device_function, 1358 BAR0_OFFSET + 4 * bar_index, 1359 0xffffffff, 1360 ); 1361 let size_mask = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index); 1362 // A wrapping add is necessary to correctly handle the case of unused BARs, which read back 1363 // as 0, and should be treated as size 0. 1364 let size = (!(size_mask & 0xfffffff0)).wrapping_add(1); 1365 //kdebug!("bar_orig:{:#x},size: {:#x}", bar_orig,size); 1366 // Restore the original value. 1367 PciArch::write_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index, bar_orig); 1368 if size == 0 { 1369 continue; 1370 } 1371 if bar_orig & 0x00000001 == 0x00000001 { 1372 // I/O space 1373 let address = bar_orig & 0xfffffffc; 1374 bar_info = BarInfo::IO { address, size }; 1375 } else { 1376 // Memory space 1377 let mut address = u64::from(bar_orig & 0xfffffff0); 1378 let prefetchable = bar_orig & 0x00000008 != 0; 1379 let address_type = MemoryBarType::try_from(((bar_orig & 0x00000006) >> 1) as u8)?; 1380 if address_type == MemoryBarType::Width64 { 1381 if bar_index >= 5 { 1382 return Err(PciError::InvalidBarType); 1383 } 1384 let address_top = 1385 PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * (bar_index + 1)); 1386 address |= u64::from(address_top) << 32; 1387 bar_index_ignore = bar_index + 1; //下个bar跳过,因为64位的memory bar覆盖了两个bar 1388 } 1389 let pci_address = PciAddr::new(address as usize); 1390 let paddr = PciArch::address_pci_to_physical(pci_address); //PCI总线域物理地址转换为存储器域物理地址 1391 1392 let space_guard: Arc<MMIOSpaceGuard>; 1393 unsafe { 1394 let size_want = size as usize; 1395 let tmp = mmio_pool() 1396 .create_mmio(size_want) 1397 .map_err(|_| PciError::CreateMmioError)?; 1398 space_guard = Arc::new(tmp); 1399 //kdebug!("Pci bar init: mmio space: {space_guard:?}, paddr={paddr:?}, size_want={size_want}"); 1400 assert!( 1401 space_guard.map_phys(paddr, size_want).is_ok(), 1402 "pci_bar_init: map_phys failed" 1403 ); 1404 } 1405 bar_info = BarInfo::Memory { 1406 address_type, 1407 prefetchable, 1408 address, 1409 size, 1410 mmio_guard: space_guard, 1411 }; 1412 } 1413 match bar_index { 1414 0 => { 1415 device_bar.bar0 = bar_info; 1416 } 1417 1 => { 1418 device_bar.bar1 = bar_info; 1419 } 1420 2 => { 1421 device_bar.bar2 = bar_info; 1422 } 1423 3 => { 1424 device_bar.bar3 = bar_info; 1425 } 1426 4 => { 1427 device_bar.bar4 = bar_info; 1428 } 1429 5 => { 1430 device_bar.bar5 = bar_info; 1431 } 1432 _ => {} 1433 } 1434 } 1435 //kdebug!("pci_device_bar:{}", device_bar); 1436 return Ok(device_bar); 1437 } 1438 1439 /// Information about a PCI device capability. 1440 /// PCI设备的capability的信息 1441 #[derive(Debug, Copy, Clone, Eq, PartialEq)] 1442 pub struct CapabilityInfo { 1443 /// The offset of the capability in the PCI configuration space of the device function. 1444 pub offset: u8, 1445 /// The ID of the capability. 1446 pub id: u8, 1447 /// The third and fourth bytes of the capability, to save reading them again. 1448 pub private_header: u16, 1449 } 1450 1451 /// Iterator over capabilities for a device. 1452 /// 创建迭代器以遍历PCI设备的capability 1453 #[derive(Debug)] 1454 pub struct CapabilityIterator { 1455 pub bus_device_function: BusDeviceFunction, 1456 pub next_capability_offset: Option<u8>, 1457 } 1458 1459 impl Iterator for CapabilityIterator { 1460 type Item = CapabilityInfo; 1461 fn next(&mut self) -> Option<Self::Item> { 1462 let offset = self.next_capability_offset?; 1463 1464 // Read the first 4 bytes of the capability. 1465 let capability_header = PciArch::read_config(&self.bus_device_function, offset); 1466 let id = capability_header as u8; 1467 let next_offset = (capability_header >> 8) as u8; 1468 let private_header = (capability_header >> 16) as u16; 1469 1470 self.next_capability_offset = if next_offset == 0 { 1471 None 1472 } else if next_offset < 64 || next_offset & 0x3 != 0 { 1473 kwarn!("Invalid next capability offset {:#04x}", next_offset); 1474 None 1475 } else { 1476 Some(next_offset) 1477 }; 1478 1479 Some(CapabilityInfo { 1480 offset, 1481 id, 1482 private_header, 1483 }) 1484 } 1485 } 1486 1487 /// Information about a PCIe device capability. 1488 /// PCIe设备的external capability的信息 1489 #[derive(Debug, Copy, Clone, Eq, PartialEq)] 1490 pub struct ExternalCapabilityInfo { 1491 /// The offset of the capability in the PCI configuration space of the device function. 1492 pub offset: u16, 1493 /// The ID of the capability. 1494 pub id: u16, 1495 /// The third and fourth bytes of the capability, to save reading them again. 1496 pub capability_version: u8, 1497 } 1498 1499 /// Iterator over capabilities for a device. 1500 /// 创建迭代器以遍历PCIe设备的external capability 1501 #[derive(Debug)] 1502 pub struct ExternalCapabilityIterator<'a> { 1503 pub root: &'a PciRoot, 1504 pub bus_device_function: BusDeviceFunction, 1505 pub next_capability_offset: Option<u16>, 1506 } 1507 impl<'a> Iterator for ExternalCapabilityIterator<'a> { 1508 type Item = ExternalCapabilityInfo; 1509 fn next(&mut self) -> Option<Self::Item> { 1510 let offset = self.next_capability_offset?; 1511 1512 // Read the first 4 bytes of the capability. 1513 let capability_header = self.root.read_config(self.bus_device_function, offset); 1514 let id = capability_header as u16; 1515 let next_offset = (capability_header >> 20) as u16; 1516 let capability_version = ((capability_header >> 16) & 0xf) as u8; 1517 1518 self.next_capability_offset = if next_offset == 0 { 1519 None 1520 } else if next_offset < 0x100 || next_offset & 0x3 != 0 { 1521 kwarn!("Invalid next capability offset {:#04x}", next_offset); 1522 None 1523 } else { 1524 Some(next_offset) 1525 }; 1526 1527 Some(ExternalCapabilityInfo { 1528 offset, 1529 id, 1530 capability_version, 1531 }) 1532 } 1533 } 1534