xref: /DragonOS/kernel/src/driver/pci/pci.rs (revision 78bf93f02f84bf5e024ddfb559f040e68ce39ccf)
1 #![allow(dead_code)]
2 // 目前仅支持单主桥单Segment
3 
4 use crate::arch::{PciArch, TraitPciArch};
5 use crate::include::bindings::bindings::{
6     initial_mm, mm_map, mm_struct, PAGE_2M_SIZE, VM_DONTCOPY, VM_IO,
7 };
8 use crate::libs::rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard};
9 use crate::mm::mmio_buddy::MMIO_POOL;
10 use crate::{kdebug, kerror, kinfo, kwarn};
11 use alloc::vec::Vec;
12 use alloc::{boxed::Box, collections::LinkedList};
13 use bitflags::bitflags;
14 use core::{
15     convert::TryFrom,
16     fmt::{self, Display, Formatter},
17 };
18 // PCI_DEVICE_LINKEDLIST 添加了读写锁的全局链表,里面存储了检索到的PCI设备结构体
19 // PCI_ROOT_0 Segment为0的全局PciRoot
20 lazy_static! {
21     pub static ref PCI_DEVICE_LINKEDLIST: PciDeviceLinkedList = PciDeviceLinkedList::new();
22     pub static ref PCI_ROOT_0: Option<PciRoot> = {
23         match PciRoot::new(0) {
24             Ok(root) => Some(root),
25             Err(err) => {
26                 kerror!("Pci_root init failed because of error: {}", err);
27                 None
28             }
29         }
30     };
31 }
32 
33 /// 添加了读写锁的链表,存储PCI设备结构体
34 pub struct PciDeviceLinkedList {
35     list: RwLock<LinkedList<Box<dyn PciDeviceStructure>>>,
36 }
37 
38 impl PciDeviceLinkedList {
39     /// @brief 初始化结构体
40     fn new() -> Self {
41         PciDeviceLinkedList {
42             list: RwLock::new(LinkedList::new()),
43         }
44     }
45     /// @brief 获取可读的linkedlist(读锁守卫)
46     /// @return RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>>  读锁守卫
47     pub fn read(
48         &self,
49     ) -> RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>> {
50         self.list.read()
51     }
52     /// @brief 获取可写的linkedlist(写锁守卫)
53     /// @return RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>>  写锁守卫
54     pub fn write(
55         &self,
56     ) -> RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>> {
57         self.list.write()
58     }
59     /// @brief 获取链表中PCI结构体数目
60     /// @return usize 链表中PCI结构体数目
61     pub fn num(&self) -> usize {
62         let list = self.list.read();
63         list.len()
64     }
65     /// @brief 添加Pci设备结构体到链表中
66     pub fn add(&self, device: Box<dyn PciDeviceStructure>) {
67         let mut list = self.list.write();
68         list.push_back(device);
69     }
70 }
71 
72 /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其可变引用
73 /// @param list 链表的写锁守卫
74 /// @param class_code 寄存器值
75 /// @param subclass 寄存器值,与class_code一起确定设备类型
76 /// @return Vec<&'a mut Box<(dyn PciDeviceStructure)  包含链表中所有满足条件的PCI结构体的可变引用的容器
77 pub fn get_pci_device_structure_mut<'a>(
78     list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>,
79     class_code: u8,
80     subclass: u8,
81 ) -> Vec<&'a mut Box<(dyn PciDeviceStructure)>> {
82     let mut result = Vec::new();
83     for box_pci_device_structure in list.iter_mut() {
84         let common_header = (*box_pci_device_structure).common_header();
85         if (common_header.class_code == class_code) && (common_header.subclass == subclass) {
86             result.push(box_pci_device_structure);
87         }
88     }
89     result
90 }
91 /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其不可变引用
92 /// @param list 链表的读锁守卫
93 /// @param class_code 寄存器值
94 /// @param subclass 寄存器值,与class_code一起确定设备类型
95 /// @return Vec<&'a Box<(dyn PciDeviceStructure)  包含链表中所有满足条件的PCI结构体的不可变引用的容器
96 pub fn get_pci_device_structure<'a>(
97     list: &'a mut RwLockReadGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>,
98     class_code: u8,
99     subclass: u8,
100 ) -> Vec<&'a Box<(dyn PciDeviceStructure)>> {
101     let mut result = Vec::new();
102     for box_pci_device_structure in list.iter() {
103         let common_header = (*box_pci_device_structure).common_header();
104         if (common_header.class_code == class_code) && (common_header.subclass == subclass) {
105             result.push(box_pci_device_structure);
106         }
107     }
108     result
109 }
110 
111 //Bar0寄存器的offset
112 const BAR0_OFFSET: u8 = 0x10;
113 //Status、Command寄存器的offset
114 const STATUS_COMMAND_OFFSET: u8 = 0x04;
115 /// ID for vendor-specific PCI capabilities.(Virtio Capabilities)
116 pub const PCI_CAP_ID_VNDR: u8 = 0x09;
117 pub const PORT_PCI_CONFIG_ADDRESS: u16 = 0xcf8;
118 pub const PORT_PCI_CONFIG_DATA: u16 = 0xcfc;
119 // pci设备分组的id
120 pub type SegmentGroupNumber = u16; //理论上最多支持65535个Segment_Group
121 
122 bitflags! {
123     /// The status register in PCI configuration space.
124     pub struct Status: u16 {
125         // Bits 0-2 are reserved.
126         /// The state of the device's INTx# signal.
127         const INTERRUPT_STATUS = 1 << 3;
128         /// The device has a linked list of capabilities.
129         const CAPABILITIES_LIST = 1 << 4;
130         /// The device is capabile of running at 66 MHz rather than 33 MHz.
131         const MHZ_66_CAPABLE = 1 << 5;
132         // Bit 6 is reserved.
133         /// The device can accept fast back-to-back transactions not from the same agent.
134         const FAST_BACK_TO_BACK_CAPABLE = 1 << 7;
135         /// The bus agent observed a parity error (if parity error handling is enabled).
136         const MASTER_DATA_PARITY_ERROR = 1 << 8;
137         // Bits 9-10 are DEVSEL timing.
138         /// A target device terminated a transaction with target-abort.
139         const SIGNALED_TARGET_ABORT = 1 << 11;
140         /// A master device transaction was terminated with target-abort.
141         const RECEIVED_TARGET_ABORT = 1 << 12;
142         /// A master device transaction was terminated with master-abort.
143         const RECEIVED_MASTER_ABORT = 1 << 13;
144         /// A device asserts SERR#.
145         const SIGNALED_SYSTEM_ERROR = 1 << 14;
146         /// The device detects a parity error, even if parity error handling is disabled.
147         const DETECTED_PARITY_ERROR = 1 << 15;
148     }
149 }
150 
151 bitflags! {
152     /// The command register in PCI configuration space.
153     pub struct Command: u16 {
154         /// The device can respond to I/O Space accesses.
155         const IO_SPACE = 1 << 0;
156         /// The device can respond to Memory Space accesses.
157         const MEMORY_SPACE = 1 << 1;
158         /// The device can behave as a bus master.
159         const BUS_MASTER = 1 << 2;
160         /// The device can monitor Special Cycle operations.
161         const SPECIAL_CYCLES = 1 << 3;
162         /// The device can generate the Memory Write and Invalidate command.
163         const MEMORY_WRITE_AND_INVALIDATE_ENABLE = 1 << 4;
164         /// The device will snoop palette register data.
165         const VGA_PALETTE_SNOOP = 1 << 5;
166         /// The device should take its normal action when a parity error is detected.
167         const PARITY_ERROR_RESPONSE = 1 << 6;
168         // Bit 7 is reserved.
169         /// The SERR# driver is enabled.
170         const SERR_ENABLE = 1 << 8;
171         /// The device is allowed to generate fast back-to-back transactions.
172         const FAST_BACK_TO_BACK_ENABLE = 1 << 9;
173         /// Assertion of the device's INTx# signal is disabled.
174         const INTERRUPT_DISABLE = 1 << 10;
175     }
176 }
177 
178 /// The type of a PCI device function header.
179 /// 标头类型/设备类型
180 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
181 pub enum HeaderType {
182     /// A normal PCI device.
183     Standard,
184     /// A PCI to PCI bridge.
185     PciPciBridge,
186     /// A PCI to CardBus bridge.
187     PciCardbusBridge,
188     /// Unrecognised header type.
189     Unrecognised(u8),
190 }
191 /// u8到HeaderType的转换
192 impl From<u8> for HeaderType {
193     fn from(value: u8) -> Self {
194         match value {
195             0x00 => Self::Standard,
196             0x01 => Self::PciPciBridge,
197             0x02 => Self::PciCardbusBridge,
198             _ => Self::Unrecognised(value),
199         }
200     }
201 }
202 /// Pci可能触发的各种错误
203 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
204 pub enum PciError {
205     /// The device reported an invalid BAR type.
206     InvalidBarType,
207     CreateMmioError,
208     InvalidBusDeviceFunction,
209     SegmentNotFound,
210     GetWrongHeader,
211     UnrecognisedHeaderType,
212     PciDeviceStructureTransformError,
213 }
214 ///实现PciError的Display trait,使其可以直接输出
215 impl Display for PciError {
216     fn fmt(&self, f: &mut Formatter) -> fmt::Result {
217         match self {
218             Self::InvalidBarType => write!(f, "Invalid PCI BAR type."),
219             Self::CreateMmioError => write!(f, "Error occurred while creating mmio."),
220             Self::InvalidBusDeviceFunction => write!(f, "Found invalid BusDeviceFunction."),
221             Self::SegmentNotFound => write!(f, "Target segment not found"),
222             Self::GetWrongHeader => write!(f, "GetWrongHeader with vendor id 0xffff"),
223             Self::UnrecognisedHeaderType => write!(f, "Found device with unrecognised header type"),
224             Self::PciDeviceStructureTransformError => {
225                 write!(f, "Found None When transform Pci device structure")
226             }
227         }
228     }
229 }
230 
231 /// trait类型Pci_Device_Structure表示pci设备,动态绑定三种具体设备类型:Pci_Device_Structure_General_Device、Pci_Device_Structure_Pci_to_Pci_Bridge、Pci_Device_Structure_Pci_to_Cardbus_Bridge
232 pub trait PciDeviceStructure: Send + Sync {
233     /// @brief 获取设备类型
234     /// @return HeaderType 设备类型
235     fn header_type(&self) -> HeaderType;
236     /// @brief 当其为standard设备时返回&Pci_Device_Structure_General_Device,其余情况返回None
237     fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> {
238         None
239     }
240     /// @brief 当其为pci to pci bridge设备时返回&Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None
241     fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> {
242         None
243     }
244     /// @brief 当其为pci to cardbus bridge设备时返回&Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None
245     fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> {
246         None
247     }
248     /// @brief 获取Pci设备共有的common_header
249     /// @return 返回其不可变引用
250     fn common_header(&self) -> &PciDeviceStructureHeader;
251     /// @brief 当其为standard设备时返回&mut Pci_Device_Structure_General_Device,其余情况返回None
252     fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> {
253         None
254     }
255     /// @brief 当其为pci to pci bridge设备时返回&mut Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None
256     fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> {
257         None
258     }
259     /// @brief 当其为pci to cardbus bridge设备时返回&mut Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None
260     fn as_pci_to_carbus_bridge_device_mut(
261         &mut self,
262     ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> {
263         None
264     }
265     /// @brief 返回迭代器,遍历capabilities
266     fn capabilities(&self) -> Option<CapabilityIterator> {
267         None
268     }
269     /// @brief 获取Status、Command寄存器的值
270     fn status_command(&self) -> (Status, Command) {
271         let common_header = self.common_header();
272         let status = Status::from_bits_truncate(common_header.status);
273         let command = Command::from_bits_truncate(common_header.command);
274         (status, command)
275     }
276     /// @brief 设置Command寄存器的值
277     fn set_command(&mut self, command: Command) {
278         let common_header = self.common_header_mut();
279         let command = command.bits();
280         common_header.command = command;
281         PciArch::write_config(
282             &common_header.bus_device_function,
283             STATUS_COMMAND_OFFSET,
284             command as u32,
285         );
286     }
287     /// @brief 获取Pci设备共有的common_header
288     /// @return 返回其可变引用
289     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader;
290     /// @brief 读取standard设备的bar寄存器,映射后将结果加入结构体的standard_device_bar变量
291     /// @return 只有standard设备才返回成功或者错误,其余返回None
292     fn bar_init(&mut self) -> Option<Result<u8, PciError>> {
293         None
294     }
295     /// todo
296     fn msix_init(&mut self) -> Option<Result<u8, PciError>> {
297         None
298     }
299     fn enable_master(&mut self) {
300         self.set_command(Command::IO_SPACE | Command::MEMORY_SPACE | Command::BUS_MASTER);
301     }
302 }
303 
304 /// Pci_Device_Structure_Header PCI设备结构体共有的头部
305 #[derive(Clone, Debug)]
306 pub struct PciDeviceStructureHeader {
307     // 包含msix table地址的bar的mmio基地址 todo:以下四个作为一个结构体统一管理
308     pub msix_mmio_vaddr: u64,
309     pub msix_mmio_size: u64,  // msix映射长度
310     pub msix_offset: u32,     // msix表的offset
311     pub msix_table_size: u16, // msix表的表项数量
312     // ==== busdevicefunction变量表示该结构体所处的位置
313     pub bus_device_function: BusDeviceFunction,
314     pub vendor_id: u16, // 供应商ID 0xffff是一个无效值,在读取访问不存在的设备的配置空间寄存器时返回
315     pub device_id: u16, // 设备ID,标志特定设备
316     pub command: u16, // 提供对设备生成和响应pci周期的能力的控制 向该寄存器写入0时,设备与pci总线断开除配置空间访问以外的所有连接
317     pub status: u16,  // 用于记录pci总线相关时间的状态信息寄存器
318     pub revision_id: u8, // 修订ID,指定特定设备的修订标志符
319     pub prog_if: u8, // 编程接口字节,一个只读寄存器,指定设备具有的寄存器级别的编程接口(如果有的话)
320     pub subclass: u8, // 子类。指定设备执行的特定功能的只读寄存器
321     pub class_code: u8, // 类代码,一个只读寄存器,指定设备执行的功能类型
322     pub cache_line_size: u8, // 缓存线大小:以 32 位为单位指定系统缓存线大小。设备可以限制它可以支持的缓存线大小的数量,如果不支持的值写入该字段,设备将表现得好像写入了 0 值
323     pub latency_timer: u8,   // 延迟计时器:以 PCI 总线时钟为单位指定延迟计时器。
324     pub header_type: u8, // 标头类型 a value of 0x0 specifies a general device, a value of 0x1 specifies a PCI-to-PCI bridge, and a value of 0x2 specifies a CardBus bridge. If bit 7 of this register is set, the device has multiple functions; otherwise, it is a single function device.
325     pub bist: u8, // Represents that status and allows control of a devices BIST (built-in self test).
326                   // Here is the layout of the BIST register:
327                   // |     bit7     |    bit6    | Bits 5-4 |     Bits 3-0    |
328                   // | BIST Capable | Start BIST | Reserved | Completion Code |
329                   // for more details, please visit https://wiki.osdev.org/PCI
330 }
331 
332 /// Pci_Device_Structure_General_Device PCI标准设备结构体
333 #[derive(Clone, Debug)]
334 pub struct PciDeviceStructureGeneralDevice {
335     pub common_header: PciDeviceStructureHeader,
336     pub standard_device_bar: PciStandardDeviceBar,
337     pub cardbus_cis_pointer: u32, // 指向卡信息结构,供在 CardBus 和 PCI 之间共享芯片的设备使用。
338     pub subsystem_vendor_id: u16,
339     pub subsystem_id: u16,
340     pub expansion_rom_base_address: u32,
341     pub capabilities_pointer: u8,
342     pub reserved0: u8,
343     pub reserved1: u16,
344     pub reserved2: u32,
345     pub interrupt_line: u8, // 指定设备的中断引脚连接到系统中断控制器的哪个输入,并由任何使用中断引脚的设备实现。对于 x86 架构,此寄存器对应于 PIC IRQ 编号 0-15(而不是 I/O APIC IRQ 编号),并且值0xFF定义为无连接。
346     pub interrupt_pin: u8, // 指定设备使用的中断引脚。其中值为0x1INTA#、0x2INTB#、0x3INTC#、0x4INTD#,0x0表示设备不使用中断引脚。
347     pub min_grant: u8, // 一个只读寄存器,用于指定设备所需的突发周期长度(以 1/4 微秒为单位)(假设时钟速率为 33 MHz)
348     pub max_latency: u8, // 一个只读寄存器,指定设备需要多长时间访问一次 PCI 总线(以 1/4 微秒为单位)。
349 }
350 impl PciDeviceStructure for PciDeviceStructureGeneralDevice {
351     fn header_type(&self) -> HeaderType {
352         HeaderType::Standard
353     }
354     fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> {
355         Some(self)
356     }
357     fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> {
358         Some(self)
359     }
360     fn common_header(&self) -> &PciDeviceStructureHeader {
361         &self.common_header
362     }
363 
364     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader {
365         &mut self.common_header
366     }
367     fn capabilities(&self) -> Option<CapabilityIterator> {
368         Some(CapabilityIterator {
369             bus_device_function: self.common_header.bus_device_function,
370             next_capability_offset: Some(self.capabilities_pointer),
371         })
372     }
373     fn bar_init(&mut self) -> Option<Result<u8, PciError>> {
374         let common_header = &self.common_header;
375         match pci_bar_init(common_header.bus_device_function) {
376             Ok(bar) => {
377                 self.standard_device_bar = bar;
378                 Some(Ok(0))
379             }
380             Err(e) => Some(Err(e)),
381         }
382     }
383 }
384 /// Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci桥设备结构体
385 #[derive(Clone, Debug)]
386 pub struct PciDeviceStructurePciToPciBridge {
387     pub common_header: PciDeviceStructureHeader,
388     pub bar0: u32,
389     pub bar1: u32,
390     pub primary_bus_number: u8,
391     pub secondary_bus_number: u8,
392     pub subordinate_bus_number: u8,
393     pub secondary_latency_timer: u8,
394     pub io_base: u8,
395     pub io_limit: u8,
396     pub secondary_status: u16,
397     pub memory_base: u16,
398     pub memory_limit: u16,
399     pub prefetchable_memory_base: u16,
400     pub prefetchable_memory_limit: u16,
401     pub prefetchable_base_upper_32_bits: u32,
402     pub prefetchable_limit_upper_32_bits: u32,
403     pub io_base_upper_16_bits: u16,
404     pub io_limit_upper_16_bits: u16,
405     pub capability_pointer: u8,
406     pub reserved0: u8,
407     pub reserved1: u16,
408     pub expansion_rom_base_address: u32,
409     pub interrupt_line: u8,
410     pub interrupt_pin: u8,
411     pub bridge_control: u16,
412 }
413 impl PciDeviceStructure for PciDeviceStructurePciToPciBridge {
414     fn header_type(&self) -> HeaderType {
415         HeaderType::PciPciBridge
416     }
417     fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> {
418         Some(self)
419     }
420     fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> {
421         Some(self)
422     }
423     fn common_header(&self) -> &PciDeviceStructureHeader {
424         &self.common_header
425     }
426 
427     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader {
428         &mut self.common_header
429     }
430 }
431 /// Pci_Device_Structure_Pci_to_Cardbus_Bridge Pci_to_Cardbus桥设备结构体
432 #[derive(Clone, Debug)]
433 pub struct PciDeviceStructurePciToCardbusBridge {
434     pub common_header: PciDeviceStructureHeader,
435     pub cardbus_socket_ex_ca_base_address: u32,
436     pub offset_of_capabilities_list: u8,
437     pub reserved: u8,
438     pub secondary_status: u16,
439     pub pci_bus_number: u8,
440     pub card_bus_bus_number: u8,
441     pub subordinate_bus_number: u8,
442     pub card_bus_latency_timer: u8,
443     pub memory_base_address0: u32,
444     pub memory_limit0: u32,
445     pub memory_base_address1: u32,
446     pub memory_limit1: u32,
447     pub io_base_address0: u32,
448     pub io_limit0: u32,
449     pub io_base_address1: u32,
450     pub io_limit1: u32,
451     pub interrupt_line: u8,
452     pub interrupt_pin: u8,
453     pub bridge_control: u16,
454     pub subsystem_device_id: u16,
455     pub subsystem_vendor_id: u16,
456     pub pc_card_legacy_mode_base_address_16_bit: u32,
457 }
458 impl PciDeviceStructure for PciDeviceStructurePciToCardbusBridge {
459     fn header_type(&self) -> HeaderType {
460         HeaderType::PciCardbusBridge
461     }
462     fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> {
463         Some(&self)
464     }
465     fn as_pci_to_carbus_bridge_device_mut(
466         &mut self,
467     ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> {
468         Some(self)
469     }
470     fn common_header(&self) -> &PciDeviceStructureHeader {
471         &self.common_header
472     }
473 
474     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader {
475         &mut self.common_header
476     }
477 }
478 
479 /// 代表一个PCI segement greoup.
480 #[derive(Copy, Clone, Debug, PartialEq)]
481 pub struct PciRoot {
482     pub physical_address_base: u64,                //物理地址,acpi获取
483     pub mmio_base: Option<*mut u32>,               //映射后的虚拟地址,为方便访问数据这里转化成指针
484     pub segement_group_number: SegmentGroupNumber, //segement greoup的id
485     pub bus_begin: u8,                             //该分组中的最小bus
486     pub bus_end: u8,                               //该分组中的最大bus
487 }
488 ///线程间共享需要,该结构体只需要在初始化时写入数据,无需读写锁保证线程安全
489 unsafe impl Send for PciRoot {}
490 unsafe impl Sync for PciRoot {}
491 ///实现PciRoot的Display trait,自定义输出
492 impl Display for PciRoot {
493     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
494         write!(
495                 f,
496                 "PCI Root with segement:{}, bus begin at {}, bus end at {}, physical address at {},mapped at {:#x}",
497                 self.segement_group_number, self.bus_begin, self.bus_end, self.physical_address_base, self.mmio_base.unwrap() as usize
498             )
499     }
500 }
501 
502 impl PciRoot {
503     /// @brief 初始化结构体,获取ecam root所在物理地址后map到虚拟地址,再将该虚拟地址加入mmio_base变量
504     /// @return 成功返回结果,错误返回错误类型
505     pub fn new(segment_group_number: SegmentGroupNumber) -> Result<Self, PciError> {
506         let mut pci_root = PciArch::ecam_root(segment_group_number)?;
507         pci_root.map()?;
508         Ok(pci_root)
509     }
510     /// @brief  完成物理地址到虚拟地址的映射,并将虚拟地址加入mmio_base变量
511     /// @return 返回错误或Ok(0)
512     fn map(&mut self) -> Result<u8, PciError> {
513         let bus_number = self.bus_end - self.bus_begin + 1;
514         let bus_number_double = (bus_number + 1) / 2;
515         let mut virtaddress: u64 = 0;
516         let vaddr_ptr = &mut virtaddress as *mut u64;
517         let mut virtsize: u64 = 0;
518         let virtsize_ptr = &mut virtsize as *mut u64;
519         let size = bus_number_double as u32 * PAGE_2M_SIZE;
520         unsafe {
521             let initial_mm_ptr = &mut initial_mm as *mut mm_struct;
522             if let Err(_) =
523                 MMIO_POOL.create_mmio(size, (VM_IO | VM_DONTCOPY) as u64, vaddr_ptr, virtsize_ptr)
524             {
525                 kerror!("Create mmio failed when initing ecam");
526                 return Err(PciError::CreateMmioError);
527             };
528             //kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize);
529             mm_map(
530                 initial_mm_ptr,
531                 virtaddress,
532                 size as u64,
533                 self.physical_address_base,
534             );
535         }
536         self.mmio_base = Some(virtaddress as *mut u32);
537         Ok(0)
538     }
539     /// @brief 获得要操作的寄存器相对于mmio_offset的偏移量
540     /// @param bus_device_function 在同一个group中pci设备的唯一标识符
541     /// @param register_offset 寄存器在设备中的offset
542     /// @return u32 要操作的寄存器相对于mmio_offset的偏移量
543     fn cam_offset(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32 {
544         assert!(bus_device_function.valid());
545         let bdf = ((bus_device_function.bus - self.bus_begin) as u32) << 8
546             | (bus_device_function.device as u32) << 3
547             | bus_device_function.function as u32;
548         let address = bdf << 12 | register_offset as u32;
549         // Ensure that address is word-aligned.
550         assert!(address & 0x3 == 0);
551         address
552     }
553     /// @brief 通过bus_device_function和offset读取相应位置寄存器的值(32位)
554     /// @param bus_device_function 在同一个group中pci设备的唯一标识符
555     /// @param register_offset 寄存器在设备中的offset
556     /// @return u32 寄存器读值结果
557     pub fn read_config(
558         &self,
559         bus_device_function: BusDeviceFunction,
560         register_offset: u16,
561     ) -> u32 {
562         let address = self.cam_offset(bus_device_function, register_offset);
563         unsafe {
564             // Right shift to convert from byte offset to word offset.
565             (self.mmio_base.unwrap().add((address >> 2) as usize)).read_volatile()
566         }
567     }
568 
569     /// @brief 通过bus_device_function和offset写入相应位置寄存器值(32位)
570     /// @param bus_device_function 在同一个group中pci设备的唯一标识符
571     /// @param register_offset 寄存器在设备中的offset
572     /// @param data 要写入的值
573     pub fn write_config(
574         &mut self,
575         bus_device_function: BusDeviceFunction,
576         register_offset: u16,
577         data: u32,
578     ) {
579         let address = self.cam_offset(bus_device_function, register_offset);
580         // Safe because both the `mmio_base` and the address offset are properly aligned, and the
581         // resulting pointer is within the MMIO range of the CAM.
582         unsafe {
583             // Right shift to convert from byte offset to word offset.
584             (self.mmio_base.unwrap().add((address >> 2) as usize)).write_volatile(data)
585         }
586     }
587     /// @brief 返回迭代器,遍历pcie设备的external_capabilities
588     pub fn external_capabilities(
589         &self,
590         bus_device_function: BusDeviceFunction,
591     ) -> ExternalCapabilityIterator {
592         ExternalCapabilityIterator {
593             root: self,
594             bus_device_function,
595             next_capability_offset: Some(0x100),
596         }
597     }
598 }
599 /// Gets the capabilities 'pointer' for the device function, if any.
600 /// @brief 获取第一个capability 的offset
601 /// @param bus_device_function PCI设备的唯一标识
602 /// @return Option<u8> offset
603 pub fn capabilities_offset(bus_device_function: BusDeviceFunction) -> Option<u8> {
604     let result = PciArch::read_config(&bus_device_function, STATUS_COMMAND_OFFSET);
605     let status: Status = Status::from_bits_truncate((result >> 16) as u16);
606     if status.contains(Status::CAPABILITIES_LIST) {
607         let cap_pointer = PciArch::read_config(&bus_device_function, 0x34) as u8 & 0xFC;
608         Some(cap_pointer)
609     } else {
610         None
611     }
612 }
613 
614 /// @brief 读取pci设备头部
615 /// @param bus_device_function PCI设备的唯一标识
616 /// @param add_to_list 是否添加到链表
617 /// @return 返回的header(trait 类型)
618 fn pci_read_header(
619     bus_device_function: BusDeviceFunction,
620     add_to_list: bool,
621 ) -> Result<Box<dyn PciDeviceStructure>, PciError> {
622     // 先读取公共header
623     let result = PciArch::read_config(&bus_device_function, 0x00);
624     let vendor_id = result as u16;
625     let device_id = (result >> 16) as u16;
626 
627     let result = PciArch::read_config(&bus_device_function, 0x04);
628     let command = result as u16;
629     let status = (result >> 16) as u16;
630 
631     let result = PciArch::read_config(&bus_device_function, 0x08);
632     let revision_id = result as u8;
633     let prog_if = (result >> 8) as u8;
634     let subclass = (result >> 16) as u8;
635     let class_code = (result >> 24) as u8;
636 
637     let result = PciArch::read_config(&bus_device_function, 0x0c);
638     let cache_line_size = result as u8;
639     let latency_timer = (result >> 8) as u8;
640     let header_type = (result >> 16) as u8;
641     let bist = (result >> 24) as u8;
642     if vendor_id == 0xffff {
643         return Err(PciError::GetWrongHeader);
644     }
645     let header = PciDeviceStructureHeader {
646         msix_mmio_vaddr: 0,
647         msix_mmio_size: 0,
648         msix_offset: 0,
649         msix_table_size: 0,
650         bus_device_function,
651         vendor_id,
652         device_id,
653         command,
654         status,
655         revision_id,
656         prog_if,
657         subclass,
658         class_code,
659         cache_line_size,
660         latency_timer,
661         header_type,
662         bist,
663     };
664     match HeaderType::from(header_type & 0x7f) {
665         HeaderType::Standard => {
666             let general_device = pci_read_general_device_header(header, &bus_device_function);
667             let box_general_device = Box::new(general_device);
668             let box_general_device_clone = box_general_device.clone();
669             if add_to_list {
670                 PCI_DEVICE_LINKEDLIST.add(box_general_device);
671             }
672             Ok(box_general_device_clone)
673         }
674         HeaderType::PciPciBridge => {
675             let pci_to_pci_bridge = pci_read_pci_to_pci_bridge_header(header, &bus_device_function);
676             let box_pci_to_pci_bridge = Box::new(pci_to_pci_bridge);
677             let box_pci_to_pci_bridge_clone = box_pci_to_pci_bridge.clone();
678             if add_to_list {
679                 PCI_DEVICE_LINKEDLIST.add(box_pci_to_pci_bridge);
680             }
681             Ok(box_pci_to_pci_bridge_clone)
682         }
683         HeaderType::PciCardbusBridge => {
684             let pci_cardbus_bridge =
685                 pci_read_pci_to_cardbus_bridge_header(header, &bus_device_function);
686             let box_pci_cardbus_bridge = Box::new(pci_cardbus_bridge);
687             let box_pci_cardbus_bridge_clone = box_pci_cardbus_bridge.clone();
688             if add_to_list {
689                 PCI_DEVICE_LINKEDLIST.add(box_pci_cardbus_bridge);
690             }
691             Ok(box_pci_cardbus_bridge_clone)
692         }
693         HeaderType::Unrecognised(_) => Err(PciError::UnrecognisedHeaderType),
694     }
695 }
696 
697 /// @brief 读取type为0x0的pci设备的header
698 /// 本函数只应被 pci_read_header()调用
699 /// @param common_header 共有头部
700 /// @param bus_device_function PCI设备的唯一标识
701 /// @return Pci_Device_Structure_General_Device 标准设备头部
702 fn pci_read_general_device_header(
703     common_header: PciDeviceStructureHeader,
704     bus_device_function: &BusDeviceFunction,
705 ) -> PciDeviceStructureGeneralDevice {
706     let standard_device_bar = PciStandardDeviceBar::default();
707     let cardbus_cis_pointer = PciArch::read_config(bus_device_function, 0x28);
708 
709     let result = PciArch::read_config(bus_device_function, 0x2c);
710     let subsystem_vendor_id = result as u16;
711     let subsystem_id = (result >> 16) as u16;
712 
713     let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x30);
714 
715     let result = PciArch::read_config(bus_device_function, 0x34);
716     let capabilities_pointer = result as u8;
717     let reserved0 = (result >> 8) as u8;
718     let reserved1 = (result >> 16) as u16;
719 
720     let reserved2 = PciArch::read_config(bus_device_function, 0x38);
721 
722     let result = PciArch::read_config(bus_device_function, 0x3c);
723     let interrupt_line = result as u8;
724     let interrupt_pin = (result >> 8) as u8;
725     let min_grant = (result >> 16) as u8;
726     let max_latency = (result >> 24) as u8;
727     PciDeviceStructureGeneralDevice {
728         common_header,
729         standard_device_bar,
730         cardbus_cis_pointer,
731         subsystem_vendor_id,
732         subsystem_id,
733         expansion_rom_base_address,
734         capabilities_pointer,
735         reserved0,
736         reserved1,
737         reserved2,
738         interrupt_line,
739         interrupt_pin,
740         min_grant,
741         max_latency,
742     }
743 }
744 
745 /// @brief 读取type为0x1的pci设备的header
746 /// 本函数只应被 pci_read_header()调用
747 /// @param common_header 共有头部
748 /// @param bus_device_function PCI设备的唯一标识
749 /// @return Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci 桥设备头部
750 fn pci_read_pci_to_pci_bridge_header(
751     common_header: PciDeviceStructureHeader,
752     bus_device_function: &BusDeviceFunction,
753 ) -> PciDeviceStructurePciToPciBridge {
754     let bar0 = PciArch::read_config(bus_device_function, 0x10);
755     let bar1 = PciArch::read_config(bus_device_function, 0x14);
756 
757     let result = PciArch::read_config(bus_device_function, 0x18);
758 
759     let primary_bus_number = result as u8;
760     let secondary_bus_number = (result >> 8) as u8;
761     let subordinate_bus_number = (result >> 16) as u8;
762     let secondary_latency_timer = (result >> 24) as u8;
763 
764     let result = PciArch::read_config(bus_device_function, 0x1c);
765     let io_base = result as u8;
766     let io_limit = (result >> 8) as u8;
767     let secondary_status = (result >> 16) as u16;
768 
769     let result = PciArch::read_config(bus_device_function, 0x20);
770     let memory_base = result as u16;
771     let memory_limit = (result >> 16) as u16;
772 
773     let result = PciArch::read_config(bus_device_function, 0x24);
774     let prefetchable_memory_base = result as u16;
775     let prefetchable_memory_limit = (result >> 16) as u16;
776 
777     let prefetchable_base_upper_32_bits = PciArch::read_config(bus_device_function, 0x28);
778     let prefetchable_limit_upper_32_bits = PciArch::read_config(bus_device_function, 0x2c);
779 
780     let result = PciArch::read_config(bus_device_function, 0x30);
781     let io_base_upper_16_bits = result as u16;
782     let io_limit_upper_16_bits = (result >> 16) as u16;
783 
784     let result = PciArch::read_config(bus_device_function, 0x34);
785     let capability_pointer = result as u8;
786     let reserved0 = (result >> 8) as u8;
787     let reserved1 = (result >> 16) as u16;
788 
789     let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x38);
790 
791     let result = PciArch::read_config(bus_device_function, 0x3c);
792     let interrupt_line = result as u8;
793     let interrupt_pin = (result >> 8) as u8;
794     let bridge_control = (result >> 16) as u16;
795     PciDeviceStructurePciToPciBridge {
796         common_header,
797         bar0,
798         bar1,
799         primary_bus_number,
800         secondary_bus_number,
801         subordinate_bus_number,
802         secondary_latency_timer,
803         io_base,
804         io_limit,
805         secondary_status,
806         memory_base,
807         memory_limit,
808         prefetchable_memory_base,
809         prefetchable_memory_limit,
810         prefetchable_base_upper_32_bits,
811         prefetchable_limit_upper_32_bits,
812         io_base_upper_16_bits,
813         io_limit_upper_16_bits,
814         capability_pointer,
815         reserved0,
816         reserved1,
817         expansion_rom_base_address,
818         interrupt_line,
819         interrupt_pin,
820         bridge_control,
821     }
822 }
823 
824 /// @brief 读取type为0x2的pci设备的header
825 /// 本函数只应被 pci_read_header()调用
826 /// @param common_header 共有头部
827 /// @param bus_device_function PCI设备的唯一标识
828 /// @return ) -> Pci_Device_Structure_Pci_to_Cardbus_Bridge  pci-to-cardbus 桥设备头部
829 fn pci_read_pci_to_cardbus_bridge_header(
830     common_header: PciDeviceStructureHeader,
831     busdevicefunction: &BusDeviceFunction,
832 ) -> PciDeviceStructurePciToCardbusBridge {
833     let cardbus_socket_ex_ca_base_address = PciArch::read_config(busdevicefunction, 0x10);
834 
835     let result = PciArch::read_config(busdevicefunction, 0x14);
836     let offset_of_capabilities_list = result as u8;
837     let reserved = (result >> 8) as u8;
838     let secondary_status = (result >> 16) as u16;
839 
840     let result = PciArch::read_config(busdevicefunction, 0x18);
841     let pci_bus_number = result as u8;
842     let card_bus_bus_number = (result >> 8) as u8;
843     let subordinate_bus_number = (result >> 16) as u8;
844     let card_bus_latency_timer = (result >> 24) as u8;
845 
846     let memory_base_address0 = PciArch::read_config(busdevicefunction, 0x1c);
847     let memory_limit0 = PciArch::read_config(busdevicefunction, 0x20);
848     let memory_base_address1 = PciArch::read_config(busdevicefunction, 0x24);
849     let memory_limit1 = PciArch::read_config(busdevicefunction, 0x28);
850 
851     let io_base_address0 = PciArch::read_config(busdevicefunction, 0x2c);
852     let io_limit0 = PciArch::read_config(busdevicefunction, 0x30);
853     let io_base_address1 = PciArch::read_config(busdevicefunction, 0x34);
854     let io_limit1 = PciArch::read_config(busdevicefunction, 0x38);
855     let result = PciArch::read_config(busdevicefunction, 0x3c);
856     let interrupt_line = result as u8;
857     let interrupt_pin = (result >> 8) as u8;
858     let bridge_control = (result >> 16) as u16;
859 
860     let result = PciArch::read_config(busdevicefunction, 0x40);
861     let subsystem_device_id = result as u16;
862     let subsystem_vendor_id = (result >> 16) as u16;
863 
864     let pc_card_legacy_mode_base_address_16_bit = PciArch::read_config(busdevicefunction, 0x44);
865     PciDeviceStructurePciToCardbusBridge {
866         common_header,
867         cardbus_socket_ex_ca_base_address,
868         offset_of_capabilities_list,
869         reserved,
870         secondary_status,
871         pci_bus_number,
872         card_bus_bus_number,
873         subordinate_bus_number,
874         card_bus_latency_timer,
875         memory_base_address0,
876         memory_limit0,
877         memory_base_address1,
878         memory_limit1,
879         io_base_address0,
880         io_limit0,
881         io_base_address1,
882         io_limit1,
883         interrupt_line,
884         interrupt_pin,
885         bridge_control,
886         subsystem_device_id,
887         subsystem_vendor_id,
888         pc_card_legacy_mode_base_address_16_bit,
889     }
890 }
891 
892 /// @brief 检查所有bus上的设备并将其加入链表
893 /// @return 成功返回ok(),失败返回失败原因
894 fn pci_check_all_buses() -> Result<u8, PciError> {
895     kinfo!("Checking all devices in PCI bus...");
896     let busdevicefunction = BusDeviceFunction {
897         bus: 0,
898         device: 0,
899         function: 0,
900     };
901     let header = pci_read_header(busdevicefunction, false)?;
902     let common_header = header.common_header();
903     pci_check_bus(0)?;
904     if common_header.header_type & 0x80 != 0 {
905         for function in 1..8 {
906             pci_check_bus(function)?;
907         }
908     }
909     Ok(0)
910 }
911 /// @brief 检查特定设备并将其加入链表
912 /// @return 成功返回ok(),失败返回失败原因
913 fn pci_check_function(busdevicefunction: BusDeviceFunction) -> Result<u8, PciError> {
914     //kdebug!("PCI check function {}", busdevicefunction.function);
915     let header = match pci_read_header(busdevicefunction, true) {
916         Ok(header) => header,
917         Err(PciError::GetWrongHeader) => {
918             return Ok(255);
919         }
920         Err(e) => {
921             return Err(e);
922         }
923     };
924     let common_header = header.common_header();
925     if (common_header.class_code == 0x06)
926         && (common_header.subclass == 0x04 || common_header.subclass == 0x09)
927     {
928         let pci_to_pci_bridge = header
929             .as_pci_to_pci_bridge_device()
930             .ok_or(PciError::PciDeviceStructureTransformError)?;
931         let secondary_bus = pci_to_pci_bridge.secondary_bus_number;
932         pci_check_bus(secondary_bus)?;
933     }
934     Ok(0)
935 }
936 
937 /// @brief 检查device上的设备并将其加入链表
938 /// @return 成功返回ok(),失败返回失败原因
939 fn pci_check_device(bus: u8, device: u8) -> Result<u8, PciError> {
940     //kdebug!("PCI check device {}", device);
941     let busdevicefunction = BusDeviceFunction {
942         bus,
943         device,
944         function: 0,
945     };
946     let header = match pci_read_header(busdevicefunction, false) {
947         Ok(header) => header,
948         Err(PciError::GetWrongHeader) => {
949             //设备不存在,直接返回即可,不用终止遍历
950             return Ok(255);
951         }
952         Err(e) => {
953             return Err(e);
954         }
955     };
956     pci_check_function(busdevicefunction)?;
957     let common_header = header.common_header();
958     if common_header.header_type & 0x80 != 0 {
959         kdebug!(
960             "Detected multi func device in bus{},device{}",
961             busdevicefunction.bus,
962             busdevicefunction.device
963         );
964         // 这是一个多function的设备,因此查询剩余的function
965         for function in 1..8 {
966             let busdevicefunction = BusDeviceFunction {
967                 bus,
968                 device,
969                 function,
970             };
971             pci_check_function(busdevicefunction)?;
972         }
973     }
974     Ok(0)
975 }
976 /// @brief 检查该bus上的设备并将其加入链表
977 /// @return 成功返回ok(),失败返回失败原因
978 fn pci_check_bus(bus: u8) -> Result<u8, PciError> {
979     //kdebug!("PCI check bus {}", bus);
980     for device in 0..32 {
981         pci_check_device(bus, device)?;
982     }
983     Ok(0)
984 }
985 /// @brief pci初始化函数(for c)
986 #[no_mangle]
987 pub extern "C" fn rs_pci_init() {
988     pci_init();
989     //kdebug!("{}",PCI_ROOT_0.unwrap());
990 }
991 /// @brief pci初始化函数
992 pub fn pci_init() {
993     kinfo!("Initializing PCI bus...");
994     if let Err(e) = pci_check_all_buses() {
995         kerror!("pci init failed when checking bus because of error: {}", e);
996         return;
997     }
998     kinfo!(
999         "Total pci device and function num = {}",
1000         PCI_DEVICE_LINKEDLIST.num()
1001     );
1002     let list = PCI_DEVICE_LINKEDLIST.read();
1003     for box_pci_device in list.iter() {
1004         let common_header = box_pci_device.common_header();
1005         match box_pci_device.header_type() {
1006             HeaderType::Standard if common_header.status & 0x10 != 0 => {
1007                 kinfo!("Found pci standard device with class code ={} subclass={} status={:#x} cap_pointer={:#x}  vendor={:#x}, device id={:#x}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer,common_header.vendor_id, common_header.device_id);
1008             }
1009             HeaderType::Standard => {
1010                 kinfo!(
1011                     "Found pci standard device with class code ={} subclass={} status={:#x} ",
1012                     common_header.class_code,
1013                     common_header.subclass,
1014                     common_header.status
1015                 );
1016             }
1017             HeaderType::PciPciBridge if common_header.status & 0x10 != 0 => {
1018                 kinfo!("Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} cap_pointer={:#x}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer);
1019             }
1020             HeaderType::PciPciBridge => {
1021                 kinfo!(
1022                     "Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} ",
1023                     common_header.class_code,
1024                     common_header.subclass,
1025                     common_header.status
1026                 );
1027             }
1028             HeaderType::PciCardbusBridge => {
1029                 kinfo!(
1030                     "Found pcicardbus bridge device with class code ={} subclass={} status={:#x} ",
1031                     common_header.class_code,
1032                     common_header.subclass,
1033                     common_header.status
1034                 );
1035             }
1036             HeaderType::Unrecognised(_) => {}
1037         }
1038     }
1039     kinfo!("PCI bus initialized.");
1040 }
1041 
1042 /// An identifier for a PCI bus, device and function.
1043 /// PCI设备的唯一标识
1044 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
1045 pub struct BusDeviceFunction {
1046     /// The PCI bus number, between 0 and 255.
1047     pub bus: u8,
1048     /// The device number on the bus, between 0 and 31.
1049     pub device: u8,
1050     /// The function number of the device, between 0 and 7.
1051     pub function: u8,
1052 }
1053 impl BusDeviceFunction {
1054     /// Returns whether the device and function numbers are valid, i.e. the device is between 0 and
1055     ///@brief 检测BusDeviceFunction实例是否有效
1056     ///@param self
1057     ///@return bool 是否有效
1058     #[allow(dead_code)]
1059     pub fn valid(&self) -> bool {
1060         self.device < 32 && self.function < 8
1061     }
1062 }
1063 ///实现BusDeviceFunction的Display trait,使其可以直接输出
1064 impl Display for BusDeviceFunction {
1065     fn fmt(&self, f: &mut Formatter) -> fmt::Result {
1066         write!(f, "{:02x}:{:02x}.{}", self.bus, self.device, self.function)
1067     }
1068 }
1069 /// The location allowed for a memory BAR.
1070 /// memory BAR的三种情况
1071 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
1072 pub enum MemoryBarType {
1073     /// The BAR has a 32-bit address and can be mapped anywhere in 32-bit address space.
1074     Width32,
1075     /// The BAR must be mapped below 1MiB.
1076     Below1MiB,
1077     /// The BAR has a 64-bit address and can be mapped anywhere in 64-bit address space.
1078     Width64,
1079 }
1080 ///实现MemoryBarType与u8的类型转换
1081 impl From<MemoryBarType> for u8 {
1082     fn from(bar_type: MemoryBarType) -> Self {
1083         match bar_type {
1084             MemoryBarType::Width32 => 0,
1085             MemoryBarType::Below1MiB => 1,
1086             MemoryBarType::Width64 => 2,
1087         }
1088     }
1089 }
1090 ///实现MemoryBarType与u8的类型转换
1091 impl TryFrom<u8> for MemoryBarType {
1092     type Error = PciError;
1093     fn try_from(value: u8) -> Result<Self, Self::Error> {
1094         match value {
1095             0 => Ok(Self::Width32),
1096             1 => Ok(Self::Below1MiB),
1097             2 => Ok(Self::Width64),
1098             _ => Err(PciError::InvalidBarType),
1099         }
1100     }
1101 }
1102 
1103 /// Information about a PCI Base Address Register.
1104 /// BAR的三种类型 Memory/IO/Unused
1105 #[derive(Clone, Debug, Eq, PartialEq)]
1106 pub enum BarInfo {
1107     /// The BAR is for a memory region.
1108     Memory {
1109         /// The size of the BAR address and where it can be located.
1110         address_type: MemoryBarType,
1111         /// If true, then reading from the region doesn't have side effects. The CPU may cache reads
1112         /// and merge repeated stores.
1113         prefetchable: bool,
1114         /// The memory address, always 16-byte aligned.
1115         address: u64,
1116         /// The size of the BAR in bytes.
1117         size: u32,
1118         /// The virtaddress for a memory bar(mapped).
1119         virtaddress: u64,
1120     },
1121     /// The BAR is for an I/O region.
1122     IO {
1123         /// The I/O address, always 4-byte aligned.
1124         address: u32,
1125         /// The size of the BAR in bytes.
1126         size: u32,
1127     },
1128     Unused,
1129 }
1130 
1131 impl BarInfo {
1132     /// Returns the address and size of this BAR if it is a memory bar, or `None` if it is an IO
1133     /// BAR.
1134     ///@brief 得到某个bar的memory_address与size(前提是他的类型为Memory Bar)
1135     ///@param self
1136     ///@return Option<(u64, u32) 是Memory Bar返回内存地址与大小,不是则返回None
1137     pub fn memory_address_size(&self) -> Option<(u64, u32)> {
1138         if let Self::Memory { address, size, .. } = self {
1139             Some((*address, *size))
1140         } else {
1141             None
1142         }
1143     }
1144     ///@brief 得到某个bar的virtaddress(前提是他的类型为Memory Bar)
1145     ///@param self
1146     ///@return Option<(u64) 是Memory Bar返回映射的虚拟地址,不是则返回None
1147     pub fn virtual_address(&self) -> Option<u64> {
1148         if let Self::Memory { virtaddress, .. } = self {
1149             Some(*virtaddress)
1150         } else {
1151             None
1152         }
1153     }
1154 }
1155 ///实现BarInfo的Display trait,自定义输出
1156 impl Display for BarInfo {
1157     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1158         match self {
1159             Self::Memory {
1160                 address_type,
1161                 prefetchable,
1162                 address,
1163                 size,
1164                 virtaddress,
1165             } => write!(
1166                 f,
1167                 "Memory space at {:#010x}, size {}, type {:?}, prefetchable {},mapped at {:#x}",
1168                 address, size, address_type, prefetchable, virtaddress
1169             ),
1170             Self::IO { address, size } => {
1171                 write!(f, "I/O space at {:#010x}, size {}", address, size)
1172             }
1173             Self::Unused => {
1174                 write!(f, "Unused bar")
1175             }
1176         }
1177     }
1178 }
1179 ///一个普通PCI设备(非桥)有6个BAR寄存器,PciStandardDeviceBar存储其全部信息
1180 #[derive(Clone, Debug, Eq, PartialEq)]
1181 pub struct PciStandardDeviceBar {
1182     bar0: BarInfo,
1183     bar1: BarInfo,
1184     bar2: BarInfo,
1185     bar3: BarInfo,
1186     bar4: BarInfo,
1187     bar5: BarInfo,
1188 }
1189 
1190 impl PciStandardDeviceBar {
1191     ///@brief 得到某个bar的barinfo
1192     ///@param self ,bar_index(0-5)
1193     ///@return Result<&BarInfo, PciError> bar_index在0-5则返回对应的bar_info结构体,超出范围则返回错误
1194     pub fn get_bar(&self, bar_index: u8) -> Result<&BarInfo, PciError> {
1195         match bar_index {
1196             0 => Ok(&self.bar0),
1197             1 => Ok(&self.bar1),
1198             2 => Ok(&self.bar2),
1199             3 => Ok(&self.bar3),
1200             4 => Ok(&self.bar4),
1201             5 => Ok(&self.bar5),
1202             _ => Err(PciError::InvalidBarType),
1203         }
1204     }
1205 }
1206 ///实现PciStandardDeviceBar的Display trait,使其可以直接输出
1207 impl Display for PciStandardDeviceBar {
1208     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1209         write!(
1210             f,
1211             "\r\nBar0:{}\r\n Bar1:{}\r\n Bar2:{}\r\n Bar3:{}\r\nBar4:{}\r\nBar5:{}",
1212             self.bar0, self.bar1, self.bar2, self.bar3, self.bar4, self.bar5
1213         )
1214     }
1215 }
1216 ///实现PciStandardDeviceBar的Default trait,使其可以简单初始化
1217 impl Default for PciStandardDeviceBar {
1218     fn default() -> Self {
1219         PciStandardDeviceBar {
1220             bar0: BarInfo::Unused,
1221             bar1: BarInfo::Unused,
1222             bar2: BarInfo::Unused,
1223             bar3: BarInfo::Unused,
1224             bar4: BarInfo::Unused,
1225             bar5: BarInfo::Unused,
1226         }
1227     }
1228 }
1229 
1230 ///@brief 将某个pci设备的bar寄存器读取值后映射到虚拟地址
1231 ///@param self ,bus_device_function PCI设备的唯一标识符
1232 ///@return Result<PciStandardDeviceBar, PciError> 成功则返回对应的PciStandardDeviceBar结构体,失败则返回错误类型
1233 pub fn pci_bar_init(
1234     bus_device_function: BusDeviceFunction,
1235 ) -> Result<PciStandardDeviceBar, PciError> {
1236     let mut device_bar: PciStandardDeviceBar = PciStandardDeviceBar::default();
1237     let mut bar_index_ignore: u8 = 255;
1238     for bar_index in 0..6 {
1239         if bar_index == bar_index_ignore {
1240             continue;
1241         }
1242         let bar_info;
1243         let mut virtaddress: u64 = 0;
1244         let bar_orig = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index);
1245         PciArch::write_config(
1246             &bus_device_function,
1247             BAR0_OFFSET + 4 * bar_index,
1248             0xffffffff,
1249         );
1250         let size_mask = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index);
1251         // A wrapping add is necessary to correctly handle the case of unused BARs, which read back
1252         // as 0, and should be treated as size 0.
1253         let size = (!(size_mask & 0xfffffff0)).wrapping_add(1);
1254         //kdebug!("bar_orig:{:#x},size: {:#x}", bar_orig,size);
1255         // Restore the original value.
1256         PciArch::write_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index, bar_orig);
1257         if size == 0 {
1258             continue;
1259         }
1260         if bar_orig & 0x00000001 == 0x00000001 {
1261             // I/O space
1262             let address = bar_orig & 0xfffffffc;
1263             bar_info = BarInfo::IO { address, size };
1264         } else {
1265             // Memory space
1266             let mut address = u64::from(bar_orig & 0xfffffff0);
1267             let prefetchable = bar_orig & 0x00000008 != 0;
1268             let address_type = MemoryBarType::try_from(((bar_orig & 0x00000006) >> 1) as u8)?;
1269             if address_type == MemoryBarType::Width64 {
1270                 if bar_index >= 5 {
1271                     return Err(PciError::InvalidBarType);
1272                 }
1273                 let address_top =
1274                     PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * (bar_index + 1));
1275                 address |= u64::from(address_top) << 32;
1276                 bar_index_ignore = bar_index + 1; //下个bar跳过,因为64位的memory bar覆盖了两个bar
1277             }
1278             //kdebug!("address={:#x},size={:#x}",address,size);
1279             unsafe {
1280                 let vaddr_ptr = &mut virtaddress as *mut u64;
1281                 let mut virtsize: u64 = 0;
1282                 let virtsize_ptr = &mut virtsize as *mut u64;
1283                 let initial_mm_ptr = &mut initial_mm as *mut mm_struct;
1284                 //kdebug!("size want={:#x}", size);
1285                 if let Err(_) = MMIO_POOL.create_mmio(
1286                     size,
1287                     (VM_IO | VM_DONTCOPY) as u64,
1288                     vaddr_ptr,
1289                     virtsize_ptr,
1290                 ) {
1291                     kerror!("Create mmio failed when initing pci bar");
1292                     return Err(PciError::CreateMmioError);
1293                 };
1294                 //kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize);
1295                 mm_map(initial_mm_ptr, virtaddress, size as u64, address);
1296             }
1297             bar_info = BarInfo::Memory {
1298                 address_type,
1299                 prefetchable,
1300                 address,
1301                 size,
1302                 virtaddress,
1303             };
1304         }
1305         match bar_index {
1306             0 => {
1307                 device_bar.bar0 = bar_info;
1308             }
1309             1 => {
1310                 device_bar.bar1 = bar_info;
1311             }
1312             2 => {
1313                 device_bar.bar2 = bar_info;
1314             }
1315             3 => {
1316                 device_bar.bar3 = bar_info;
1317             }
1318             4 => {
1319                 device_bar.bar4 = bar_info;
1320             }
1321             5 => {
1322                 device_bar.bar5 = bar_info;
1323             }
1324             _ => {}
1325         }
1326     }
1327     kdebug!("pci_device_bar:{}", device_bar);
1328     return Ok(device_bar);
1329 }
1330 
1331 /// Information about a PCI device capability.
1332 /// PCI设备的capability的信息
1333 #[derive(Debug, Copy, Clone, Eq, PartialEq)]
1334 pub struct CapabilityInfo {
1335     /// The offset of the capability in the PCI configuration space of the device function.
1336     pub offset: u8,
1337     /// The ID of the capability.
1338     pub id: u8,
1339     /// The third and fourth bytes of the capability, to save reading them again.
1340     pub private_header: u16,
1341 }
1342 
1343 /// Iterator over capabilities for a device.
1344 /// 创建迭代器以遍历PCI设备的capability
1345 #[derive(Debug)]
1346 pub struct CapabilityIterator {
1347     pub bus_device_function: BusDeviceFunction,
1348     pub next_capability_offset: Option<u8>,
1349 }
1350 
1351 impl Iterator for CapabilityIterator {
1352     type Item = CapabilityInfo;
1353     fn next(&mut self) -> Option<Self::Item> {
1354         let offset = self.next_capability_offset?;
1355 
1356         // Read the first 4 bytes of the capability.
1357         let capability_header = PciArch::read_config(&self.bus_device_function, offset);
1358         let id = capability_header as u8;
1359         let next_offset = (capability_header >> 8) as u8;
1360         let private_header = (capability_header >> 16) as u16;
1361 
1362         self.next_capability_offset = if next_offset == 0 {
1363             None
1364         } else if next_offset < 64 || next_offset & 0x3 != 0 {
1365             kwarn!("Invalid next capability offset {:#04x}", next_offset);
1366             None
1367         } else {
1368             Some(next_offset)
1369         };
1370 
1371         Some(CapabilityInfo {
1372             offset,
1373             id,
1374             private_header,
1375         })
1376     }
1377 }
1378 
1379 /// Information about a PCIe device capability.
1380 /// PCIe设备的external capability的信息
1381 #[derive(Debug, Copy, Clone, Eq, PartialEq)]
1382 pub struct ExternalCapabilityInfo {
1383     /// The offset of the capability in the PCI configuration space of the device function.
1384     pub offset: u16,
1385     /// The ID of the capability.
1386     pub id: u16,
1387     /// The third and fourth bytes of the capability, to save reading them again.
1388     pub capability_version: u8,
1389 }
1390 
1391 /// Iterator over capabilities for a device.
1392 /// 创建迭代器以遍历PCIe设备的external capability
1393 #[derive(Debug)]
1394 pub struct ExternalCapabilityIterator<'a> {
1395     pub root: &'a PciRoot,
1396     pub bus_device_function: BusDeviceFunction,
1397     pub next_capability_offset: Option<u16>,
1398 }
1399 impl<'a> Iterator for ExternalCapabilityIterator<'a> {
1400     type Item = ExternalCapabilityInfo;
1401     fn next(&mut self) -> Option<Self::Item> {
1402         let offset = self.next_capability_offset?;
1403 
1404         // Read the first 4 bytes of the capability.
1405         let capability_header = self.root.read_config(self.bus_device_function, offset);
1406         let id = capability_header as u16;
1407         let next_offset = (capability_header >> 20) as u16;
1408         let capability_version = ((capability_header >> 16) & 0xf) as u8;
1409 
1410         self.next_capability_offset = if next_offset == 0 {
1411             None
1412         } else if next_offset < 0x100 || next_offset & 0x3 != 0 {
1413             kwarn!("Invalid next capability offset {:#04x}", next_offset);
1414             None
1415         } else {
1416             Some(next_offset)
1417         };
1418 
1419         Some(ExternalCapabilityInfo {
1420             offset,
1421             id,
1422             capability_version,
1423         })
1424     }
1425 }
1426