1 #![allow(dead_code)] 2 // 目前仅支持单主桥单Segment 3 4 use super::device::pci_device_manager; 5 use super::pci_irq::{IrqType, PciIrqError}; 6 use super::raw_device::PciGeneralDevice; 7 use super::root::{pci_root_0, PciRoot}; 8 9 use crate::arch::{PciArch, TraitPciArch}; 10 use crate::driver::pci::subsys::pci_bus_subsys_init; 11 use crate::exception::IrqNumber; 12 use crate::libs::rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard}; 13 14 use crate::mm::mmio_buddy::{mmio_pool, MMIOSpaceGuard}; 15 16 use crate::mm::VirtAddr; 17 18 use alloc::string::String; 19 use alloc::sync::{Arc, Weak}; 20 use alloc::vec::Vec; 21 use alloc::{boxed::Box, collections::LinkedList}; 22 use bitflags::bitflags; 23 use log::{debug, error, info, warn}; 24 25 use core::{ 26 convert::TryFrom, 27 fmt::{self, Debug, Display, Formatter}, 28 }; 29 // PCI_DEVICE_LINKEDLIST 添加了读写锁的全局链表,里面存储了检索到的PCI设备结构体 30 lazy_static! { 31 pub static ref PCI_DEVICE_LINKEDLIST: PciDeviceLinkedList = PciDeviceLinkedList::new(); 32 } 33 34 /// PCI域地址 35 #[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)] 36 #[repr(transparent)] 37 pub struct PciAddr(usize); 38 39 impl PciAddr { 40 #[inline(always)] 41 pub const fn new(address: usize) -> Self { 42 Self(address) 43 } 44 45 /// @brief 获取PCI域地址的值 46 #[inline(always)] 47 pub fn data(&self) -> usize { 48 self.0 49 } 50 51 /// @brief 将PCI域地址加上一个偏移量 52 #[inline(always)] 53 pub fn add(self, offset: usize) -> Self { 54 Self(self.0 + offset) 55 } 56 57 /// @brief 判断PCI域地址是否按照指定要求对齐 58 #[inline(always)] 59 pub fn check_aligned(&self, align: usize) -> bool { 60 return self.0 & (align - 1) == 0; 61 } 62 } 63 impl Debug for PciAddr { 64 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { 65 write!(f, "PciAddr({:#x})", self.0) 66 } 67 } 68 69 /// 添加了读写锁的链表,存储PCI设备结构体 70 pub struct PciDeviceLinkedList { 71 list: RwLock<LinkedList<Arc<dyn PciDeviceStructure>>>, 72 } 73 74 impl PciDeviceLinkedList { 75 /// @brief 初始化结构体 76 fn new() -> Self { 77 PciDeviceLinkedList { 78 list: RwLock::new(LinkedList::new()), 79 } 80 } 81 /// @brief 获取可读的linkedlist(读锁守卫) 82 /// @return RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>> 读锁守卫 83 pub fn read(&self) -> RwLockReadGuard<LinkedList<Arc<dyn PciDeviceStructure>>> { 84 self.list.read() 85 } 86 /// @brief 获取可写的linkedlist(写锁守卫) 87 /// @return RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>> 写锁守卫 88 pub fn write(&self) -> RwLockWriteGuard<LinkedList<Arc<dyn PciDeviceStructure>>> { 89 self.list.write() 90 } 91 /// @brief 获取链表中PCI结构体数目 92 /// @return usize 链表中PCI结构体数目 93 pub fn num(&self) -> usize { 94 let list = self.list.read(); 95 list.len() 96 } 97 /// @brief 添加Pci设备结构体到链表中 98 pub fn add(&self, device: Arc<dyn PciDeviceStructure>) { 99 let mut list = self.list.write(); 100 list.push_back(device); 101 } 102 } 103 104 /// # 获取具有特定供应商ID的PCI设备结构的引用 105 /// 106 /// 这个函数通过供应商ID搜索PCI设备结构列表,并返回匹配该ID的所有设备结构的引用。 107 /// 108 /// ## 参数 109 /// 110 /// - list: 一个可变的PCI设备结构链表,类型为`&'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>`。 111 /// - vendor_id: 要查找的PCI供应商ID,类型为`u16`。 112 /// 113 /// ## 返回值 114 /// 115 /// - 返回匹配的供应商ID的PCI设备结构的引用。 116 pub fn get_pci_device_structures_mut_by_vendor_id( 117 list: &PciDeviceLinkedList, 118 vendor_id: u16, 119 ) -> Vec<Arc<(dyn PciDeviceStructure)>> { 120 let mut result: Vec<Arc<(dyn PciDeviceStructure)>> = Vec::new(); 121 for box_pci_device_structure in list.write().iter() { 122 if box_pci_device_structure.common_header().vendor_id == vendor_id { 123 result.push(box_pci_device_structure.clone()); 124 } 125 } 126 result 127 } 128 129 /// # get_pci_device_structure_mut - 在链表中寻找满足条件的PCI设备结构体并返回其可变引用 130 /// 131 /// 该函数遍历给定的PCI设备链表,寻找其common_header中class_code和subclass字段与给定值匹配的设备结构体。 132 /// 对于每一个匹配的设备结构体,函数返回一个可变引用。 133 /// 134 /// ## 参数 135 /// 136 /// - list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>> — 链表的写锁守卫,用于访问和遍历PCI设备链表。 137 /// - class_code: u8 — PCI设备class code寄存器值,用于分类设备的功能。 138 /// - subclass: u8 — PCI设备subclass寄存器值,与class_code一起确定设备的子类型。 139 /// 140 /// ## 返回值 141 /// - 包含链表中所有满足条件的PCI结构体的可变引用的容器。 142 pub fn get_pci_device_structure_mut( 143 list: &PciDeviceLinkedList, 144 class_code: u8, 145 subclass: u8, 146 ) -> Vec<Arc<dyn PciDeviceStructure>> { 147 let mut result = Vec::new(); 148 for box_pci_device_structure in list.write().iter() { 149 if (box_pci_device_structure.common_header().class_code == class_code) 150 && (box_pci_device_structure.common_header().subclass == subclass) 151 { 152 result.push(box_pci_device_structure.clone()); 153 } 154 } 155 result 156 } 157 158 /// # get_pci_device_structure - 在链表中寻找满足条件的PCI设备结构体并返回其不可变引用 159 /// 160 /// 该函数遍历给定的PCI设备链表,寻找其common_header中class_code和subclass字段与给定值匹配的设备结构体。 161 /// 对于每一个匹配的设备结构体,函数返回一个可变引用。 162 /// 163 /// ## 参数 164 /// 165 /// - list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>> — 链表的写锁守卫,用于访问和遍历PCI设备链表。 166 /// - class_code: u8 — PCI设备class code寄存器值,用于分类设备的功能。 167 /// - subclass: u8 — PCI设备subclass寄存器值,与class_code一起确定设备的子类型。 168 /// 169 /// ## 返回值 170 /// - 包含链表中所有满足条件的PCI结构体的不可变引用的容器。 171 #[allow(clippy::borrowed_box)] 172 pub fn get_pci_device_structure<'a>( 173 list: &'a mut RwLockReadGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>, 174 class_code: u8, 175 subclass: u8, 176 ) -> Vec<&'a Box<(dyn PciDeviceStructure)>> { 177 let mut result = Vec::new(); 178 for box_pci_device_structure in list.iter() { 179 let common_header = (*box_pci_device_structure).common_header(); 180 if (common_header.class_code == class_code) && (common_header.subclass == subclass) { 181 result.push(box_pci_device_structure); 182 } 183 } 184 result 185 } 186 187 //Bar0寄存器的offset 188 const BAR0_OFFSET: u8 = 0x10; 189 //Status、Command寄存器的offset 190 const STATUS_COMMAND_OFFSET: u8 = 0x04; 191 /// ID for vendor-specific PCI capabilities.(Virtio Capabilities) 192 pub const PCI_CAP_ID_VNDR: u8 = 0x09; 193 pub const PCI_CAP_ID_MSI: u8 = 0x05; 194 pub const PCI_CAP_ID_MSIX: u8 = 0x11; 195 pub const PORT_PCI_CONFIG_ADDRESS: u16 = 0xcf8; 196 pub const PORT_PCI_CONFIG_DATA: u16 = 0xcfc; 197 // pci设备分组的id 198 pub type SegmentGroupNumber = u16; //理论上最多支持65535个Segment_Group 199 200 bitflags! { 201 /// The status register in PCI configuration space. 202 pub struct Status: u16 { 203 // Bits 0-2 are reserved. 204 /// The state of the device's INTx# signal. 205 const INTERRUPT_STATUS = 1 << 3; 206 /// The device has a linked list of capabilities. 207 const CAPABILITIES_LIST = 1 << 4; 208 /// The device is capabile of running at 66 MHz rather than 33 MHz. 209 const MHZ_66_CAPABLE = 1 << 5; 210 // Bit 6 is reserved. 211 /// The device can accept fast back-to-back transactions not from the same agent. 212 const FAST_BACK_TO_BACK_CAPABLE = 1 << 7; 213 /// The bus agent observed a parity error (if parity error handling is enabled). 214 const MASTER_DATA_PARITY_ERROR = 1 << 8; 215 // Bits 9-10 are DEVSEL timing. 216 /// A target device terminated a transaction with target-abort. 217 const SIGNALED_TARGET_ABORT = 1 << 11; 218 /// A master device transaction was terminated with target-abort. 219 const RECEIVED_TARGET_ABORT = 1 << 12; 220 /// A master device transaction was terminated with master-abort. 221 const RECEIVED_MASTER_ABORT = 1 << 13; 222 /// A device asserts SERR#. 223 const SIGNALED_SYSTEM_ERROR = 1 << 14; 224 /// The device detects a parity error, even if parity error handling is disabled. 225 const DETECTED_PARITY_ERROR = 1 << 15; 226 } 227 } 228 229 bitflags! { 230 /// The command register in PCI configuration space. 231 pub struct Command: u16 { 232 /// The device can respond to I/O Space accesses. 233 const IO_SPACE = 1 << 0; 234 /// The device can respond to Memory Space accesses. 235 const MEMORY_SPACE = 1 << 1; 236 /// The device can behave as a bus master. 237 const BUS_MASTER = 1 << 2; 238 /// The device can monitor Special Cycle operations. 239 const SPECIAL_CYCLES = 1 << 3; 240 /// The device can generate the Memory Write and Invalidate command. 241 const MEMORY_WRITE_AND_INVALIDATE_ENABLE = 1 << 4; 242 /// The device will snoop palette register data. 243 const VGA_PALETTE_SNOOP = 1 << 5; 244 /// The device should take its normal action when a parity error is detected. 245 const PARITY_ERROR_RESPONSE = 1 << 6; 246 // Bit 7 is reserved. 247 /// The SERR# driver is enabled. 248 const SERR_ENABLE = 1 << 8; 249 /// The device is allowed to generate fast back-to-back transactions. 250 const FAST_BACK_TO_BACK_ENABLE = 1 << 9; 251 /// Assertion of the device's INTx# signal is disabled. 252 const INTERRUPT_DISABLE = 1 << 10; 253 } 254 } 255 256 /// The type of a PCI device function header. 257 /// 标头类型/设备类型 258 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 259 pub enum HeaderType { 260 /// A normal PCI device. 261 Standard, 262 /// A PCI to PCI bridge. 263 PciPciBridge, 264 /// A PCI to CardBus bridge. 265 PciCardbusBridge, 266 /// Unrecognised header type. 267 Unrecognised(u8), 268 } 269 /// u8到HeaderType的转换 270 impl From<u8> for HeaderType { 271 fn from(value: u8) -> Self { 272 match value { 273 0x00 => Self::Standard, 274 0x01 => Self::PciPciBridge, 275 0x02 => Self::PciCardbusBridge, 276 _ => Self::Unrecognised(value), 277 } 278 } 279 } 280 /// Pci可能触发的各种错误 281 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 282 pub enum PciError { 283 /// The device reported an invalid BAR type. 284 InvalidBarType, 285 CreateMmioError, 286 InvalidBusDeviceFunction, 287 SegmentNotFound, 288 McfgTableNotFound, 289 GetWrongHeader, 290 UnrecognisedHeaderType, 291 PciDeviceStructureTransformError, 292 PciIrqError(PciIrqError), 293 } 294 ///实现PciError的Display trait,使其可以直接输出 295 impl Display for PciError { 296 fn fmt(&self, f: &mut Formatter) -> fmt::Result { 297 match self { 298 Self::InvalidBarType => write!(f, "Invalid PCI BAR type."), 299 Self::CreateMmioError => write!(f, "Error occurred while creating mmio."), 300 Self::InvalidBusDeviceFunction => write!(f, "Found invalid BusDeviceFunction."), 301 Self::SegmentNotFound => write!(f, "Target segment not found"), 302 Self::McfgTableNotFound => write!(f, "ACPI MCFG Table not found"), 303 Self::GetWrongHeader => write!(f, "GetWrongHeader with vendor id 0xffff"), 304 Self::UnrecognisedHeaderType => write!(f, "Found device with unrecognised header type"), 305 Self::PciDeviceStructureTransformError => { 306 write!(f, "Found None When transform Pci device structure") 307 } 308 Self::PciIrqError(err) => write!(f, "Error occurred while setting irq :{:?}.", err), 309 } 310 } 311 } 312 313 /// trait类型Pci_Device_Structure表示pci设备,动态绑定三种具体设备类型:Pci_Device_Structure_General_Device、Pci_Device_Structure_Pci_to_Pci_Bridge、Pci_Device_Structure_Pci_to_Cardbus_Bridge 314 pub trait PciDeviceStructure: Send + Sync { 315 /// @brief 获取设备类型 316 /// @return HeaderType 设备类型 317 fn header_type(&self) -> HeaderType; 318 /// @brief 当其为standard设备时返回&Pci_Device_Structure_General_Device,其余情况返回None 319 #[inline(always)] 320 fn as_standard_device(&self) -> Option<Arc<PciDeviceStructureGeneralDevice>> { 321 None 322 } 323 /// @brief 当其为pci to pci bridge设备时返回&Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None 324 #[inline(always)] 325 fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> { 326 None 327 } 328 /// @brief 当其为pci to cardbus bridge设备时返回&Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None 329 #[inline(always)] 330 fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> { 331 None 332 } 333 /// @brief 获取Pci设备共有的common_header 334 /// @return 返回其不可变引用 335 fn common_header(&self) -> &PciDeviceStructureHeader; 336 /// @brief 当其为pci to pci bridge设备时返回&mut Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None 337 #[inline(always)] 338 fn as_pci_to_pci_bridge_device_mut(&self) -> Option<&PciDeviceStructurePciToPciBridge> { 339 None 340 } 341 /// @brief 当其为pci to cardbus bridge设备时返回&mut Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None 342 #[inline(always)] 343 fn as_pci_to_carbus_bridge_device_mut(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> { 344 None 345 } 346 /// @brief 返回迭代器,遍历capabilities 347 fn capabilities(&self) -> Option<CapabilityIterator> { 348 None 349 } 350 /// @brief 获取Status、Command寄存器的值 351 fn status_command(&self) -> (Status, Command) { 352 let common_header = self.common_header(); 353 let status = Status::from_bits_truncate(common_header.status); 354 let command = Command::from_bits_truncate(*common_header.command.read()); 355 (status, command) 356 } 357 /// @brief 设置Command寄存器的值 358 fn set_command(&self, command: Command) { 359 let common_header = self.common_header_mut(); 360 let command = command.bits(); 361 *common_header.command.write() = command; 362 pci_root_0().write_config( 363 common_header.bus_device_function, 364 STATUS_COMMAND_OFFSET.into(), 365 command as u32, 366 ); 367 } 368 /// @brief 获取Pci设备共有的common_header 369 /// @return 返回其可变引用 370 fn common_header_mut(&self) -> &PciDeviceStructureHeader; 371 372 /// @brief 读取standard设备的bar寄存器,映射后将结果加入结构体的standard_device_bar变量 373 /// @return 只有standard设备才返回成功或者错误,其余返回None 374 #[inline(always)] 375 fn bar_ioremap(&self) -> Option<Result<u8, PciError>> { 376 None 377 } 378 /// @brief 获取PCI设备的bar寄存器的引用 379 /// @return 380 #[inline(always)] 381 fn bar(&self) -> Option<&RwLock<PciStandardDeviceBar>> { 382 None 383 } 384 /// @brief 通过设置该pci设备的command 385 fn enable_master(&self) { 386 self.set_command(Command::IO_SPACE | Command::MEMORY_SPACE | Command::BUS_MASTER); 387 } 388 /// @brief 寻找设备的msix空间的offset 389 fn msix_capability_offset(&self) -> Option<u8> { 390 for capability in self.capabilities()? { 391 if capability.id == PCI_CAP_ID_MSIX { 392 return Some(capability.offset); 393 } 394 } 395 None 396 } 397 /// @brief 寻找设备的msi空间的offset 398 fn msi_capability_offset(&self) -> Option<u8> { 399 for capability in self.capabilities()? { 400 if capability.id == PCI_CAP_ID_MSI { 401 return Some(capability.offset); 402 } 403 } 404 None 405 } 406 /// @brief 返回结构体中的irq_type的可变引用 407 fn irq_type_mut(&self) -> Option<&RwLock<IrqType>>; 408 /// @brief 返回结构体中的irq_vector的可变引用 409 fn irq_vector_mut(&self) -> Option<&RwLock<Vec<IrqNumber>>>; 410 } 411 412 /// Pci_Device_Structure_Header PCI设备结构体共有的头部 413 #[derive(Debug)] 414 pub struct PciDeviceStructureHeader { 415 // ==== busdevicefunction变量表示该结构体所处的位置 416 pub bus_device_function: BusDeviceFunction, 417 pub vendor_id: u16, // 供应商ID 0xffff是一个无效值,在读取访问不存在的设备的配置空间寄存器时返回 418 pub device_id: u16, // 设备ID,标志特定设备 419 pub command: RwLock<u16>, // 提供对设备生成和响应pci周期的能力的控制 向该寄存器写入0时,设备与pci总线断开除配置空间访问以外的所有连接 420 pub status: u16, // 用于记录pci总线相关时间的状态信息寄存器 421 pub revision_id: u8, // 修订ID,指定特定设备的修订标志符 422 pub prog_if: u8, // 编程接口字节,一个只读寄存器,指定设备具有的寄存器级别的编程接口(如果有的话) 423 pub subclass: u8, // 子类。指定设备执行的特定功能的只读寄存器 424 pub class_code: u8, // 类代码,一个只读寄存器,指定设备执行的功能类型 425 pub cache_line_size: u8, // 缓存线大小:以 32 位为单位指定系统缓存线大小。设备可以限制它可以支持的缓存线大小的数量,如果不支持的值写入该字段,设备将表现得好像写入了 0 值 426 pub latency_timer: u8, // 延迟计时器:以 PCI 总线时钟为单位指定延迟计时器。 427 pub header_type: u8, // 标头类型 a value of 0x0 specifies a general device, a value of 0x1 specifies a PCI-to-PCI bridge, and a value of 0x2 specifies a CardBus bridge. If bit 7 of this register is set, the device has multiple functions; otherwise, it is a single function device. 428 pub bist: u8, // Represents that status and allows control of a devices BIST (built-in self test). 429 // Here is the layout of the BIST register: 430 // | bit7 | bit6 | Bits 5-4 | Bits 3-0 | 431 // | BIST Capable | Start BIST | Reserved | Completion Code | 432 // for more details, please visit https://wiki.osdev.org/PCI 433 } 434 435 /// Pci_Device_Structure_General_Device PCI标准设备结构体 436 #[derive(Debug)] 437 pub struct PciDeviceStructureGeneralDevice { 438 pub common_header: PciDeviceStructureHeader, 439 // 中断结构体,包括legacy,msi,msix三种情况 440 pub irq_type: RwLock<IrqType>, 441 // 使用的中断号的vec集合 442 pub irq_vector: RwLock<Vec<IrqNumber>>, 443 pub standard_device_bar: RwLock<PciStandardDeviceBar>, 444 pub cardbus_cis_pointer: u32, // 指向卡信息结构,供在 CardBus 和 PCI 之间共享芯片的设备使用。 445 pub subsystem_vendor_id: u16, 446 pub subsystem_id: u16, 447 pub expansion_rom_base_address: u32, 448 pub capabilities_pointer: u8, 449 pub reserved0: u8, 450 pub reserved1: u16, 451 pub reserved2: u32, 452 pub interrupt_line: u8, // 指定设备的中断引脚连接到系统中断控制器的哪个输入,并由任何使用中断引脚的设备实现。对于 x86 架构,此寄存器对应于 PIC IRQ 编号 0-15(而不是 I/O APIC IRQ 编号),并且值0xFF定义为无连接。 453 pub interrupt_pin: u8, // 指定设备使用的中断引脚。其中值为0x1INTA#、0x2INTB#、0x3INTC#、0x4INTD#,0x0表示设备不使用中断引脚。 454 pub min_grant: u8, // 一个只读寄存器,用于指定设备所需的突发周期长度(以 1/4 微秒为单位)(假设时钟速率为 33 MHz) 455 pub max_latency: u8, // 一个只读寄存器,指定设备需要多长时间访问一次 PCI 总线(以 1/4 微秒为单位)。 456 pub self_ptr: RwLock<Weak<Self>>, 457 } 458 impl PciDeviceStructure for PciDeviceStructureGeneralDevice { 459 #[inline(always)] 460 fn header_type(&self) -> HeaderType { 461 HeaderType::Standard 462 } 463 #[inline(always)] 464 fn as_standard_device(&self) -> Option<Arc<PciDeviceStructureGeneralDevice>> { 465 self.self_ptr.read().upgrade() 466 } 467 #[inline(always)] 468 fn common_header(&self) -> &PciDeviceStructureHeader { 469 &self.common_header 470 } 471 #[inline(always)] 472 fn common_header_mut(&self) -> &PciDeviceStructureHeader { 473 &self.common_header 474 } 475 fn capabilities(&self) -> Option<CapabilityIterator> { 476 Some(CapabilityIterator { 477 bus_device_function: self.common_header.bus_device_function, 478 next_capability_offset: Some(self.capabilities_pointer), 479 }) 480 } 481 fn bar_ioremap(&self) -> Option<Result<u8, PciError>> { 482 let common_header = &self.common_header; 483 match pci_bar_init(common_header.bus_device_function) { 484 Ok(bar) => { 485 *self.standard_device_bar.write() = bar; 486 Some(Ok(0)) 487 } 488 Err(e) => Some(Err(e)), 489 } 490 } 491 fn bar(&self) -> Option<&RwLock<PciStandardDeviceBar>> { 492 Some(&self.standard_device_bar) 493 } 494 #[inline(always)] 495 fn irq_type_mut(&self) -> Option<&RwLock<IrqType>> { 496 Some(&self.irq_type) 497 } 498 #[inline(always)] 499 fn irq_vector_mut(&self) -> Option<&RwLock<Vec<IrqNumber>>> { 500 Some(&self.irq_vector) 501 } 502 } 503 504 /// Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci桥设备结构体 505 #[derive(Debug)] 506 pub struct PciDeviceStructurePciToPciBridge { 507 pub common_header: PciDeviceStructureHeader, 508 // 中断结构体,包括legacy,msi,msix三种情况 509 pub irq_type: RwLock<IrqType>, 510 // 使用的中断号的vec集合 511 pub irq_vector: RwLock<Vec<IrqNumber>>, 512 pub bar0: u32, 513 pub bar1: u32, 514 pub primary_bus_number: u8, 515 pub secondary_bus_number: u8, 516 pub subordinate_bus_number: u8, 517 pub secondary_latency_timer: u8, 518 pub io_base: u8, 519 pub io_limit: u8, 520 pub secondary_status: u16, 521 pub memory_base: u16, 522 pub memory_limit: u16, 523 pub prefetchable_memory_base: u16, 524 pub prefetchable_memory_limit: u16, 525 pub prefetchable_base_upper_32_bits: u32, 526 pub prefetchable_limit_upper_32_bits: u32, 527 pub io_base_upper_16_bits: u16, 528 pub io_limit_upper_16_bits: u16, 529 pub capability_pointer: u8, 530 pub reserved0: u8, 531 pub reserved1: u16, 532 pub expansion_rom_base_address: u32, 533 pub interrupt_line: u8, 534 pub interrupt_pin: u8, 535 pub bridge_control: u16, 536 } 537 impl PciDeviceStructure for PciDeviceStructurePciToPciBridge { 538 #[inline(always)] 539 fn header_type(&self) -> HeaderType { 540 HeaderType::PciPciBridge 541 } 542 #[inline(always)] 543 fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> { 544 Some(self) 545 } 546 #[inline(always)] 547 fn as_pci_to_pci_bridge_device_mut(&self) -> Option<&PciDeviceStructurePciToPciBridge> { 548 Some(self) 549 } 550 #[inline(always)] 551 fn common_header(&self) -> &PciDeviceStructureHeader { 552 &self.common_header 553 } 554 #[inline(always)] 555 fn common_header_mut(&self) -> &PciDeviceStructureHeader { 556 &self.common_header 557 } 558 #[inline(always)] 559 fn irq_type_mut(&self) -> Option<&RwLock<IrqType>> { 560 Some(&self.irq_type) 561 } 562 #[inline(always)] 563 fn irq_vector_mut(&self) -> Option<&RwLock<Vec<IrqNumber>>> { 564 Some(&self.irq_vector) 565 } 566 } 567 /// Pci_Device_Structure_Pci_to_Cardbus_Bridge Pci_to_Cardbus桥设备结构体 568 #[derive(Debug)] 569 pub struct PciDeviceStructurePciToCardbusBridge { 570 pub common_header: PciDeviceStructureHeader, 571 pub cardbus_socket_ex_ca_base_address: u32, 572 pub offset_of_capabilities_list: u8, 573 pub reserved: u8, 574 pub secondary_status: u16, 575 pub pci_bus_number: u8, 576 pub card_bus_bus_number: u8, 577 pub subordinate_bus_number: u8, 578 pub card_bus_latency_timer: u8, 579 pub memory_base_address0: u32, 580 pub memory_limit0: u32, 581 pub memory_base_address1: u32, 582 pub memory_limit1: u32, 583 pub io_base_address0: u32, 584 pub io_limit0: u32, 585 pub io_base_address1: u32, 586 pub io_limit1: u32, 587 pub interrupt_line: u8, 588 pub interrupt_pin: u8, 589 pub bridge_control: u16, 590 pub subsystem_device_id: u16, 591 pub subsystem_vendor_id: u16, 592 pub pc_card_legacy_mode_base_address_16_bit: u32, 593 } 594 impl PciDeviceStructure for PciDeviceStructurePciToCardbusBridge { 595 #[inline(always)] 596 fn header_type(&self) -> HeaderType { 597 HeaderType::PciCardbusBridge 598 } 599 #[inline(always)] 600 fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> { 601 Some(self) 602 } 603 #[inline(always)] 604 fn as_pci_to_carbus_bridge_device_mut(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> { 605 Some(self) 606 } 607 #[inline(always)] 608 fn common_header(&self) -> &PciDeviceStructureHeader { 609 &self.common_header 610 } 611 #[inline(always)] 612 fn common_header_mut(&self) -> &PciDeviceStructureHeader { 613 &self.common_header 614 } 615 #[inline(always)] 616 fn irq_type_mut(&self) -> Option<&RwLock<IrqType>> { 617 None 618 } 619 #[inline(always)] 620 fn irq_vector_mut(&self) -> Option<&RwLock<Vec<IrqNumber>>> { 621 None 622 } 623 } 624 625 /// PCI配置空间访问机制 626 /// 627 /// 用于访问PCI设备的功能配置空间的一组机制。 628 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 629 pub enum PciCam { 630 /// PortIO配置访问机制 631 Portiocam, 632 /// PCI内存映射配置访问机制 633 /// 634 /// 为每个设备功能提供256字节的配置空间访问。 635 MmioCam, 636 /// PCIe内存映射增强配置访问机制 637 /// 638 /// 为每个设备功能提供4千字节(4096字节)的配置空间访问。 639 Ecam, 640 } 641 642 impl PciCam { 643 /// Returns the total size in bytes of the memory-mapped region. 644 pub const fn size(self) -> u32 { 645 match self { 646 Self::Portiocam => 0x100000, 647 Self::MmioCam => 0x1000000, 648 Self::Ecam => 0x10000000, 649 } 650 } 651 } 652 653 /// Gets the capabilities 'pointer' for the device function, if any. 654 /// @brief 获取第一个capability 的offset 655 /// @param bus_device_function PCI设备的唯一标识 656 /// @return Option<u8> offset 657 pub fn capabilities_offset(bus_device_function: BusDeviceFunction) -> Option<u8> { 658 let result = pci_root_0().read_config(bus_device_function, STATUS_COMMAND_OFFSET.into()); 659 let status: Status = Status::from_bits_truncate((result >> 16) as u16); 660 if status.contains(Status::CAPABILITIES_LIST) { 661 let cap_pointer = pci_root_0().read_config(bus_device_function, 0x34) as u8 & 0xFC; 662 Some(cap_pointer) 663 } else { 664 None 665 } 666 } 667 668 /// @brief 读取pci设备头部 669 /// @param bus_device_function PCI设备的唯一标识 670 /// @param add_to_list 是否添加到链表 671 /// @return 返回的header(trait 类型) 672 fn pci_read_header( 673 bus_device_function: BusDeviceFunction, 674 add_to_list: bool, 675 ) -> Result<Arc<dyn PciDeviceStructure>, PciError> { 676 // 先读取公共header 677 let result = pci_root_0().read_config(bus_device_function, 0x00); 678 let vendor_id = result as u16; 679 let device_id = (result >> 16) as u16; 680 681 let result = pci_root_0().read_config(bus_device_function, 0x04); 682 let command = RwLock::new(result as u16); 683 let status = (result >> 16) as u16; 684 685 let result = pci_root_0().read_config(bus_device_function, 0x08); 686 let revision_id = result as u8; 687 let prog_if = (result >> 8) as u8; 688 let subclass = (result >> 16) as u8; 689 let class_code = (result >> 24) as u8; 690 691 let result = pci_root_0().read_config(bus_device_function, 0x0c); 692 let cache_line_size = result as u8; 693 let latency_timer = (result >> 8) as u8; 694 let header_type = (result >> 16) as u8; 695 let bist = (result >> 24) as u8; 696 if vendor_id == 0xffff { 697 return Err(PciError::GetWrongHeader); 698 } 699 let header = PciDeviceStructureHeader { 700 bus_device_function, 701 vendor_id, 702 device_id, 703 command, 704 status, 705 revision_id, 706 prog_if, 707 subclass, 708 class_code, 709 cache_line_size, 710 latency_timer, 711 header_type, 712 bist, 713 }; 714 match HeaderType::from(header_type & 0x7f) { 715 HeaderType::Standard => { 716 let general_device: PciDeviceStructureGeneralDevice = 717 pci_read_general_device_header(header, &bus_device_function); 718 let box_general_device = Arc::new(general_device); 719 *box_general_device.self_ptr.write() = Arc::downgrade(&box_general_device); 720 if add_to_list { 721 PCI_DEVICE_LINKEDLIST.add(box_general_device.clone()); 722 //这里实际上不应该使用clone,因为raw是用于sysfs的结构,但是实际上pci设备是在PCI_DEVICE_LINKEDLIST链表上的, 723 //这就导致sysfs呈现的对pci设备的操控接口实际上操控的是pci设备描述符是一个副本 724 //但是无奈这里没有使用Arc 725 //todo:修改pci设备描述符在静态链表中存在的方式,并修改这里的clone操作 726 let raw = PciGeneralDevice::from(box_general_device.clone()); 727 let _ = pci_device_manager().device_add(Arc::new(raw)); 728 } 729 Ok(box_general_device) 730 } 731 HeaderType::PciPciBridge => { 732 let pci_to_pci_bridge = pci_read_pci_to_pci_bridge_header(header, &bus_device_function); 733 let box_pci_to_pci_bridge = Arc::new(pci_to_pci_bridge); 734 let box_pci_to_pci_bridge_clone = box_pci_to_pci_bridge.clone(); 735 if add_to_list { 736 PCI_DEVICE_LINKEDLIST.add(box_pci_to_pci_bridge); 737 } 738 Ok(box_pci_to_pci_bridge_clone) 739 } 740 HeaderType::PciCardbusBridge => { 741 let pci_cardbus_bridge = 742 pci_read_pci_to_cardbus_bridge_header(header, &bus_device_function); 743 let box_pci_cardbus_bridge = Arc::new(pci_cardbus_bridge); 744 let box_pci_cardbus_bridge_clone = box_pci_cardbus_bridge.clone(); 745 if add_to_list { 746 PCI_DEVICE_LINKEDLIST.add(box_pci_cardbus_bridge); 747 } 748 Ok(box_pci_cardbus_bridge_clone) 749 } 750 HeaderType::Unrecognised(_) => Err(PciError::UnrecognisedHeaderType), 751 } 752 } 753 754 /// @brief 读取type为0x0的pci设备的header 755 /// 本函数只应被 pci_read_header()调用 756 /// @param common_header 共有头部 757 /// @param bus_device_function PCI设备的唯一标识 758 /// @return Pci_Device_Structure_General_Device 标准设备头部 759 fn pci_read_general_device_header( 760 common_header: PciDeviceStructureHeader, 761 bus_device_function: &BusDeviceFunction, 762 ) -> PciDeviceStructureGeneralDevice { 763 let standard_device_bar = RwLock::new(PciStandardDeviceBar::default()); 764 let cardbus_cis_pointer = pci_root_0().read_config(*bus_device_function, 0x28); 765 766 let result = pci_root_0().read_config(*bus_device_function, 0x2c); 767 let subsystem_vendor_id = result as u16; 768 let subsystem_id = (result >> 16) as u16; 769 770 let expansion_rom_base_address = pci_root_0().read_config(*bus_device_function, 0x30); 771 772 let result = pci_root_0().read_config(*bus_device_function, 0x34); 773 let capabilities_pointer = result as u8; 774 let reserved0 = (result >> 8) as u8; 775 let reserved1 = (result >> 16) as u16; 776 777 let reserved2 = pci_root_0().read_config(*bus_device_function, 0x38); 778 779 let result = pci_root_0().read_config(*bus_device_function, 0x3c); 780 let interrupt_line = result as u8; 781 let interrupt_pin = (result >> 8) as u8; 782 let min_grant = (result >> 16) as u8; 783 let max_latency = (result >> 24) as u8; 784 PciDeviceStructureGeneralDevice { 785 common_header, 786 irq_type: RwLock::new(IrqType::Unused), 787 irq_vector: RwLock::new(Vec::new()), 788 standard_device_bar, 789 cardbus_cis_pointer, 790 subsystem_vendor_id, 791 subsystem_id, 792 expansion_rom_base_address, 793 capabilities_pointer, 794 reserved0, 795 reserved1, 796 reserved2, 797 interrupt_line, 798 interrupt_pin, 799 min_grant, 800 max_latency, 801 self_ptr: RwLock::new(Weak::new()), 802 } 803 } 804 805 /// @brief 读取type为0x1的pci设备的header 806 /// 本函数只应被 pci_read_header()调用 807 /// @param common_header 共有头部 808 /// @param bus_device_function PCI设备的唯一标识 809 /// @return Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci 桥设备头部 810 fn pci_read_pci_to_pci_bridge_header( 811 common_header: PciDeviceStructureHeader, 812 bus_device_function: &BusDeviceFunction, 813 ) -> PciDeviceStructurePciToPciBridge { 814 let bar0 = pci_root_0().read_config(*bus_device_function, 0x10); 815 let bar1 = pci_root_0().read_config(*bus_device_function, 0x14); 816 817 let result = pci_root_0().read_config(*bus_device_function, 0x18); 818 819 let primary_bus_number = result as u8; 820 let secondary_bus_number = (result >> 8) as u8; 821 let subordinate_bus_number = (result >> 16) as u8; 822 let secondary_latency_timer = (result >> 24) as u8; 823 824 let result = pci_root_0().read_config(*bus_device_function, 0x1c); 825 let io_base = result as u8; 826 let io_limit = (result >> 8) as u8; 827 let secondary_status = (result >> 16) as u16; 828 829 let result = pci_root_0().read_config(*bus_device_function, 0x20); 830 let memory_base = result as u16; 831 let memory_limit = (result >> 16) as u16; 832 833 let result = pci_root_0().read_config(*bus_device_function, 0x24); 834 let prefetchable_memory_base = result as u16; 835 let prefetchable_memory_limit = (result >> 16) as u16; 836 837 let prefetchable_base_upper_32_bits = pci_root_0().read_config(*bus_device_function, 0x28); 838 let prefetchable_limit_upper_32_bits = pci_root_0().read_config(*bus_device_function, 0x2c); 839 840 let result = pci_root_0().read_config(*bus_device_function, 0x30); 841 let io_base_upper_16_bits = result as u16; 842 let io_limit_upper_16_bits = (result >> 16) as u16; 843 844 let result = pci_root_0().read_config(*bus_device_function, 0x34); 845 let capability_pointer = result as u8; 846 let reserved0 = (result >> 8) as u8; 847 let reserved1 = (result >> 16) as u16; 848 849 let expansion_rom_base_address = pci_root_0().read_config(*bus_device_function, 0x38); 850 851 let result = pci_root_0().read_config(*bus_device_function, 0x3c); 852 let interrupt_line = result as u8; 853 let interrupt_pin = (result >> 8) as u8; 854 let bridge_control = (result >> 16) as u16; 855 PciDeviceStructurePciToPciBridge { 856 common_header, 857 irq_type: RwLock::new(IrqType::Unused), 858 irq_vector: RwLock::new(Vec::new()), 859 bar0, 860 bar1, 861 primary_bus_number, 862 secondary_bus_number, 863 subordinate_bus_number, 864 secondary_latency_timer, 865 io_base, 866 io_limit, 867 secondary_status, 868 memory_base, 869 memory_limit, 870 prefetchable_memory_base, 871 prefetchable_memory_limit, 872 prefetchable_base_upper_32_bits, 873 prefetchable_limit_upper_32_bits, 874 io_base_upper_16_bits, 875 io_limit_upper_16_bits, 876 capability_pointer, 877 reserved0, 878 reserved1, 879 expansion_rom_base_address, 880 interrupt_line, 881 interrupt_pin, 882 bridge_control, 883 } 884 } 885 886 /// @brief 读取type为0x2的pci设备的header 887 /// 本函数只应被 pci_read_header()调用 888 /// @param common_header 共有头部 889 /// @param bus_device_function PCI设备的唯一标识 890 /// @return Pci_Device_Structure_Pci_to_Cardbus_Bridge pci-to-cardbus 桥设备头部 891 fn pci_read_pci_to_cardbus_bridge_header( 892 common_header: PciDeviceStructureHeader, 893 busdevicefunction: &BusDeviceFunction, 894 ) -> PciDeviceStructurePciToCardbusBridge { 895 let cardbus_socket_ex_ca_base_address = pci_root_0().read_config(*busdevicefunction, 0x10); 896 897 let result = pci_root_0().read_config(*busdevicefunction, 0x14); 898 let offset_of_capabilities_list = result as u8; 899 let reserved = (result >> 8) as u8; 900 let secondary_status = (result >> 16) as u16; 901 902 let result = pci_root_0().read_config(*busdevicefunction, 0x18); 903 let pci_bus_number = result as u8; 904 let card_bus_bus_number = (result >> 8) as u8; 905 let subordinate_bus_number = (result >> 16) as u8; 906 let card_bus_latency_timer = (result >> 24) as u8; 907 908 let memory_base_address0 = pci_root_0().read_config(*busdevicefunction, 0x1c); 909 let memory_limit0 = pci_root_0().read_config(*busdevicefunction, 0x20); 910 let memory_base_address1 = pci_root_0().read_config(*busdevicefunction, 0x24); 911 let memory_limit1 = pci_root_0().read_config(*busdevicefunction, 0x28); 912 913 let io_base_address0 = pci_root_0().read_config(*busdevicefunction, 0x2c); 914 let io_limit0 = pci_root_0().read_config(*busdevicefunction, 0x30); 915 let io_base_address1 = pci_root_0().read_config(*busdevicefunction, 0x34); 916 let io_limit1 = pci_root_0().read_config(*busdevicefunction, 0x38); 917 let result = pci_root_0().read_config(*busdevicefunction, 0x3c); 918 let interrupt_line = result as u8; 919 let interrupt_pin = (result >> 8) as u8; 920 let bridge_control = (result >> 16) as u16; 921 922 let result = pci_root_0().read_config(*busdevicefunction, 0x40); 923 let subsystem_device_id = result as u16; 924 let subsystem_vendor_id = (result >> 16) as u16; 925 926 let pc_card_legacy_mode_base_address_16_bit = 927 pci_root_0().read_config(*busdevicefunction, 0x44); 928 PciDeviceStructurePciToCardbusBridge { 929 common_header, 930 cardbus_socket_ex_ca_base_address, 931 offset_of_capabilities_list, 932 reserved, 933 secondary_status, 934 pci_bus_number, 935 card_bus_bus_number, 936 subordinate_bus_number, 937 card_bus_latency_timer, 938 memory_base_address0, 939 memory_limit0, 940 memory_base_address1, 941 memory_limit1, 942 io_base_address0, 943 io_limit0, 944 io_base_address1, 945 io_limit1, 946 interrupt_line, 947 interrupt_pin, 948 bridge_control, 949 subsystem_device_id, 950 subsystem_vendor_id, 951 pc_card_legacy_mode_base_address_16_bit, 952 } 953 } 954 955 /// @brief 检查所有bus上的设备并将其加入链表 956 /// @return 成功返回ok(),失败返回失败原因 957 fn pci_check_all_buses() -> Result<u8, PciError> { 958 info!("Checking all devices in PCI bus..."); 959 let busdevicefunction = BusDeviceFunction { 960 bus: 0, 961 device: 0, 962 function: 0, 963 }; 964 let header = pci_read_header(busdevicefunction, false)?; 965 let common_header = header.common_header(); 966 pci_check_bus(0)?; 967 if common_header.header_type & 0x80 != 0 { 968 for function in 1..8 { 969 pci_check_bus(function)?; 970 } 971 } 972 Ok(0) 973 } 974 /// @brief 检查特定设备并将其加入链表 975 /// @return 成功返回ok(),失败返回失败原因 976 fn pci_check_function(busdevicefunction: BusDeviceFunction) -> Result<u8, PciError> { 977 //debug!("PCI check function {}", busdevicefunction.function); 978 let header = match pci_read_header(busdevicefunction, true) { 979 Ok(header) => header, 980 Err(PciError::GetWrongHeader) => { 981 return Ok(255); 982 } 983 Err(e) => { 984 return Err(e); 985 } 986 }; 987 let common_header = header.common_header(); 988 if (common_header.class_code == 0x06) 989 && (common_header.subclass == 0x04 || common_header.subclass == 0x09) 990 { 991 let pci_to_pci_bridge = header 992 .as_pci_to_pci_bridge_device() 993 .ok_or(PciError::PciDeviceStructureTransformError)?; 994 let secondary_bus = pci_to_pci_bridge.secondary_bus_number; 995 pci_check_bus(secondary_bus)?; 996 } 997 Ok(0) 998 } 999 1000 /// @brief 检查device上的设备并将其加入链表 1001 /// @return 成功返回ok(),失败返回失败原因 1002 fn pci_check_device(bus: u8, device: u8) -> Result<u8, PciError> { 1003 //debug!("PCI check device {}", device); 1004 let busdevicefunction = BusDeviceFunction { 1005 bus, 1006 device, 1007 function: 0, 1008 }; 1009 let header = match pci_read_header(busdevicefunction, false) { 1010 Ok(header) => header, 1011 Err(PciError::GetWrongHeader) => { 1012 //设备不存在,直接返回即可,不用终止遍历 1013 return Ok(255); 1014 } 1015 Err(e) => { 1016 return Err(e); 1017 } 1018 }; 1019 pci_check_function(busdevicefunction)?; 1020 let common_header = header.common_header(); 1021 if common_header.header_type & 0x80 != 0 { 1022 debug!( 1023 "Detected multi func device in bus{},device{}", 1024 busdevicefunction.bus, busdevicefunction.device 1025 ); 1026 // 这是一个多function的设备,因此查询剩余的function 1027 for function in 1..8 { 1028 let busdevicefunction = BusDeviceFunction { 1029 bus, 1030 device, 1031 function, 1032 }; 1033 pci_check_function(busdevicefunction)?; 1034 } 1035 } 1036 Ok(0) 1037 } 1038 /// @brief 检查该bus上的设备并将其加入链表 1039 /// @return 成功返回ok(),失败返回失败原因 1040 fn pci_check_bus(bus: u8) -> Result<u8, PciError> { 1041 //debug!("PCI check bus {}", bus); 1042 for device in 0..32 { 1043 pci_check_device(bus, device)?; 1044 } 1045 Ok(0) 1046 } 1047 1048 /// pci初始化函数 1049 #[inline(never)] 1050 pub fn pci_init() { 1051 info!("Initializing PCI bus..."); 1052 pci_bus_subsys_init().expect("Failed to init pci bus subsystem"); 1053 if let Err(e) = pci_check_all_buses() { 1054 error!("pci init failed when checking bus because of error: {}", e); 1055 return; 1056 } 1057 info!( 1058 "Total pci device and function num = {}", 1059 PCI_DEVICE_LINKEDLIST.num() 1060 ); 1061 let list = PCI_DEVICE_LINKEDLIST.read(); 1062 for box_pci_device in list.iter() { 1063 let common_header = box_pci_device.common_header(); 1064 match box_pci_device.header_type() { 1065 HeaderType::Standard if common_header.status & 0x10 != 0 => { 1066 info!("Found pci standard device with class code ={} subclass={} status={:#x} cap_pointer={:#x} vendor={:#x}, device id={:#x},bdf={}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer,common_header.vendor_id, common_header.device_id,common_header.bus_device_function); 1067 } 1068 HeaderType::Standard => { 1069 info!( 1070 "Found pci standard device with class code ={} subclass={} status={:#x} ", 1071 common_header.class_code, common_header.subclass, common_header.status 1072 ); 1073 } 1074 HeaderType::PciPciBridge if common_header.status & 0x10 != 0 => { 1075 info!("Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} cap_pointer={:#x}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_pci_to_pci_bridge_device().unwrap().capability_pointer); 1076 } 1077 HeaderType::PciPciBridge => { 1078 info!( 1079 "Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} ", 1080 common_header.class_code, common_header.subclass, common_header.status 1081 ); 1082 } 1083 HeaderType::PciCardbusBridge => { 1084 info!( 1085 "Found pcicardbus bridge device with class code ={} subclass={} status={:#x} ", 1086 common_header.class_code, common_header.subclass, common_header.status 1087 ); 1088 } 1089 HeaderType::Unrecognised(_) => {} 1090 } 1091 } 1092 1093 info!("PCI bus initialized."); 1094 } 1095 1096 /// An identifier for a PCI bus, device and function. 1097 /// PCI设备的唯一标识 1098 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 1099 pub struct BusDeviceFunction { 1100 /// The PCI bus number, between 0 and 255. 1101 pub bus: u8, 1102 /// The device number on the bus, between 0 and 31. 1103 pub device: u8, 1104 /// The function number of the device, between 0 and 7. 1105 pub function: u8, 1106 } 1107 impl BusDeviceFunction { 1108 /// Returns whether the device and function numbers are valid, i.e. the device is between 0 and 1109 ///@brief 检测BusDeviceFunction实例是否有效 1110 ///@param self 1111 ///@return bool 是否有效 1112 #[allow(dead_code)] 1113 pub fn valid(&self) -> bool { 1114 self.device < 32 && self.function < 8 1115 } 1116 } 1117 1118 impl From<BusDeviceFunction> for String { 1119 /// # 函数的功能 1120 /// 这里提供一个由BusDeviceFunction到dddd:bb:vv.f字符串的转换函数,主要用于转换成设备的名称(pci设备的名称一般是诸如0000:00:00.1这种) 1121 fn from(value: BusDeviceFunction) -> Self { 1122 //需要注意,这里的0000应该是所谓的“域号”(Domain ID),但是尚不知道是如何获得的,故硬编码在这里 1123 //todo:实现域号的获取 1124 format!( 1125 "0000:{:02x}:{:02x}.{}", 1126 value.bus, value.device, value.function 1127 ) 1128 } 1129 } 1130 ///实现BusDeviceFunction的Display trait,使其可以直接输出 1131 impl Display for BusDeviceFunction { 1132 fn fmt(&self, f: &mut Formatter) -> fmt::Result { 1133 write!( 1134 f, 1135 "bus {} device {} function{}", 1136 self.bus, self.device, self.function 1137 ) 1138 } 1139 } 1140 /// The location allowed for a memory BAR. 1141 /// memory BAR的三种情况 1142 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 1143 pub enum MemoryBarType { 1144 /// The BAR has a 32-bit address and can be mapped anywhere in 32-bit address space. 1145 Width32, 1146 /// The BAR must be mapped below 1MiB. 1147 Below1MiB, 1148 /// The BAR has a 64-bit address and can be mapped anywhere in 64-bit address space. 1149 Width64, 1150 } 1151 ///实现MemoryBarType与u8的类型转换 1152 impl From<MemoryBarType> for u8 { 1153 fn from(bar_type: MemoryBarType) -> Self { 1154 match bar_type { 1155 MemoryBarType::Width32 => 0, 1156 MemoryBarType::Below1MiB => 1, 1157 MemoryBarType::Width64 => 2, 1158 } 1159 } 1160 } 1161 ///实现MemoryBarType与u8的类型转换 1162 impl TryFrom<u8> for MemoryBarType { 1163 type Error = PciError; 1164 fn try_from(value: u8) -> Result<Self, Self::Error> { 1165 match value { 1166 0 => Ok(Self::Width32), 1167 1 => Ok(Self::Below1MiB), 1168 2 => Ok(Self::Width64), 1169 _ => Err(PciError::InvalidBarType), 1170 } 1171 } 1172 } 1173 1174 /// Information about a PCI Base Address Register. 1175 /// BAR的三种类型 Memory/IO/Unused 1176 #[derive(Clone, Debug)] 1177 pub enum BarInfo { 1178 /// The BAR is for a memory region. 1179 Memory { 1180 /// The size of the BAR address and where it can be located. 1181 address_type: MemoryBarType, 1182 /// If true, then reading from the region doesn't have side effects. The CPU may cache reads 1183 /// and merge repeated stores. 1184 prefetchable: bool, 1185 /// The memory address, always 16-byte aligned. 1186 address: u64, 1187 /// The size of the BAR in bytes. 1188 size: u32, 1189 /// The virtaddress for a memory bar(mapped). 1190 mmio_guard: Arc<MMIOSpaceGuard>, 1191 }, 1192 /// The BAR is for an I/O region. 1193 IO { 1194 /// The I/O address, always 4-byte aligned. 1195 address: u32, 1196 /// The size of the BAR in bytes. 1197 size: u32, 1198 }, 1199 Unused, 1200 } 1201 1202 impl BarInfo { 1203 /// Returns the address and size of this BAR if it is a memory bar, or `None` if it is an IO 1204 /// BAR. 1205 ///@brief 得到某个bar的memory_address与size(前提是他的类型为Memory Bar) 1206 ///@param self 1207 ///@return Option<(u64, u32) 是Memory Bar返回内存地址与大小,不是则返回None 1208 pub fn memory_address_size(&self) -> Option<(u64, u32)> { 1209 if let Self::Memory { address, size, .. } = self { 1210 Some((*address, *size)) 1211 } else { 1212 None 1213 } 1214 } 1215 ///@brief 得到某个bar的virtaddress(前提是他的类型为Memory Bar) 1216 ///@param self 1217 ///@return Option<(u64) 是Memory Bar返回映射的虚拟地址,不是则返回None 1218 pub fn virtual_address(&self) -> Option<VirtAddr> { 1219 if let Self::Memory { mmio_guard, .. } = self { 1220 Some(mmio_guard.vaddr()) 1221 } else { 1222 None 1223 } 1224 } 1225 } 1226 ///实现BarInfo的Display trait,自定义输出 1227 impl Display for BarInfo { 1228 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 1229 match self { 1230 Self::Memory { 1231 address_type, 1232 prefetchable, 1233 address, 1234 size, 1235 mmio_guard, 1236 } => write!( 1237 f, 1238 "Memory space at {:#010x}, size {}, type {:?}, prefetchable {}, mmio_guard: {:?}", 1239 address, size, address_type, prefetchable, mmio_guard 1240 ), 1241 Self::IO { address, size } => { 1242 write!(f, "I/O space at {:#010x}, size {}", address, size) 1243 } 1244 Self::Unused => { 1245 write!(f, "Unused bar") 1246 } 1247 } 1248 } 1249 } 1250 // todo 增加对桥的bar的支持 1251 pub trait PciDeviceBar {} 1252 1253 ///一个普通PCI设备(非桥)有6个BAR寄存器,PciStandardDeviceBar存储其全部信息 1254 #[derive(Clone, Debug)] 1255 pub struct PciStandardDeviceBar { 1256 bar0: BarInfo, 1257 bar1: BarInfo, 1258 bar2: BarInfo, 1259 bar3: BarInfo, 1260 bar4: BarInfo, 1261 bar5: BarInfo, 1262 } 1263 1264 impl PciStandardDeviceBar { 1265 ///@brief 得到某个bar的barinfo 1266 ///@param self ,bar_index(0-5) 1267 ///@return Result<&BarInfo, PciError> bar_index在0-5则返回对应的bar_info结构体,超出范围则返回错误 1268 pub fn get_bar(&self, bar_index: u8) -> Result<&BarInfo, PciError> { 1269 match bar_index { 1270 0 => Ok(&self.bar0), 1271 1 => Ok(&self.bar1), 1272 2 => Ok(&self.bar2), 1273 3 => Ok(&self.bar3), 1274 4 => Ok(&self.bar4), 1275 5 => Ok(&self.bar5), 1276 _ => Err(PciError::InvalidBarType), 1277 } 1278 } 1279 } 1280 ///实现PciStandardDeviceBar的Display trait,使其可以直接输出 1281 impl Display for PciStandardDeviceBar { 1282 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 1283 write!( 1284 f, 1285 "\r\nBar0:{}\r\nBar1:{}\r\nBar2:{}\r\nBar3:{}\r\nBar4:{}\r\nBar5:{}", 1286 self.bar0, self.bar1, self.bar2, self.bar3, self.bar4, self.bar5 1287 ) 1288 } 1289 } 1290 ///实现PciStandardDeviceBar的Default trait,使其可以简单初始化 1291 impl Default for PciStandardDeviceBar { 1292 fn default() -> Self { 1293 PciStandardDeviceBar { 1294 bar0: BarInfo::Unused, 1295 bar1: BarInfo::Unused, 1296 bar2: BarInfo::Unused, 1297 bar3: BarInfo::Unused, 1298 bar4: BarInfo::Unused, 1299 bar5: BarInfo::Unused, 1300 } 1301 } 1302 } 1303 1304 ///@brief 将某个pci设备的bar寄存器读取值后映射到虚拟地址 1305 ///@param self ,bus_device_function PCI设备的唯一标识符 1306 ///@return Result<PciStandardDeviceBar, PciError> 成功则返回对应的PciStandardDeviceBar结构体,失败则返回错误类型 1307 pub fn pci_bar_init( 1308 bus_device_function: BusDeviceFunction, 1309 ) -> Result<PciStandardDeviceBar, PciError> { 1310 let mut device_bar: PciStandardDeviceBar = PciStandardDeviceBar::default(); 1311 let mut bar_index_ignore: u8 = 255; 1312 for bar_index in 0..6 { 1313 if bar_index == bar_index_ignore { 1314 continue; 1315 } 1316 let bar_info; 1317 let bar_orig = 1318 pci_root_0().read_config(bus_device_function, (BAR0_OFFSET + 4 * bar_index).into()); 1319 pci_root_0().write_config( 1320 bus_device_function, 1321 (BAR0_OFFSET + 4 * bar_index).into(), 1322 0xffffffff, 1323 ); 1324 let size_mask = 1325 pci_root_0().read_config(bus_device_function, (BAR0_OFFSET + 4 * bar_index).into()); 1326 // A wrapping add is necessary to correctly handle the case of unused BARs, which read back 1327 // as 0, and should be treated as size 0. 1328 let size = (!(size_mask & 0xfffffff0)).wrapping_add(1); 1329 //debug!("bar_orig:{:#x},size: {:#x}", bar_orig,size); 1330 // Restore the original value. 1331 pci_root_0().write_config( 1332 bus_device_function, 1333 (BAR0_OFFSET + 4 * bar_index).into(), 1334 bar_orig, 1335 ); 1336 if size == 0 { 1337 continue; 1338 } 1339 if bar_orig & 0x00000001 == 0x00000001 { 1340 // I/O space 1341 let address = bar_orig & 0xfffffffc; 1342 bar_info = BarInfo::IO { address, size }; 1343 } else { 1344 // Memory space 1345 let mut address = u64::from(bar_orig & 0xfffffff0); 1346 let prefetchable = bar_orig & 0x00000008 != 0; 1347 let address_type = MemoryBarType::try_from(((bar_orig & 0x00000006) >> 1) as u8)?; 1348 if address_type == MemoryBarType::Width64 { 1349 if bar_index >= 5 { 1350 return Err(PciError::InvalidBarType); 1351 } 1352 let address_top = pci_root_0().read_config( 1353 bus_device_function, 1354 (BAR0_OFFSET + 4 * (bar_index + 1)).into(), 1355 ); 1356 address |= u64::from(address_top) << 32; 1357 bar_index_ignore = bar_index + 1; //下个bar跳过,因为64位的memory bar覆盖了两个bar 1358 } 1359 let pci_address = PciAddr::new(address as usize); 1360 let paddr = PciArch::address_pci_to_physical(pci_address); //PCI总线域物理地址转换为存储器域物理地址 1361 1362 let space_guard: Arc<MMIOSpaceGuard>; 1363 unsafe { 1364 let size_want = size as usize; 1365 let tmp = mmio_pool() 1366 .create_mmio(size_want) 1367 .map_err(|_| PciError::CreateMmioError)?; 1368 space_guard = Arc::new(tmp); 1369 //debug!("Pci bar init: mmio space: {space_guard:?}, paddr={paddr:?}, size_want={size_want}"); 1370 assert!( 1371 space_guard.map_phys(paddr, size_want).is_ok(), 1372 "pci_bar_init: map_phys failed" 1373 ); 1374 } 1375 bar_info = BarInfo::Memory { 1376 address_type, 1377 prefetchable, 1378 address, 1379 size, 1380 mmio_guard: space_guard, 1381 }; 1382 } 1383 match bar_index { 1384 0 => { 1385 device_bar.bar0 = bar_info; 1386 } 1387 1 => { 1388 device_bar.bar1 = bar_info; 1389 } 1390 2 => { 1391 device_bar.bar2 = bar_info; 1392 } 1393 3 => { 1394 device_bar.bar3 = bar_info; 1395 } 1396 4 => { 1397 device_bar.bar4 = bar_info; 1398 } 1399 5 => { 1400 device_bar.bar5 = bar_info; 1401 } 1402 _ => {} 1403 } 1404 } 1405 //debug!("pci_device_bar:{}", device_bar); 1406 return Ok(device_bar); 1407 } 1408 1409 /// Information about a PCI device capability. 1410 /// PCI设备的capability的信息 1411 #[derive(Debug, Copy, Clone, Eq, PartialEq)] 1412 pub struct CapabilityInfo { 1413 /// The offset of the capability in the PCI configuration space of the device function. 1414 pub offset: u8, 1415 /// The ID of the capability. 1416 pub id: u8, 1417 /// The third and fourth bytes of the capability, to save reading them again. 1418 pub private_header: u16, 1419 } 1420 1421 /// Iterator over capabilities for a device. 1422 /// 创建迭代器以遍历PCI设备的capability 1423 #[derive(Debug)] 1424 pub struct CapabilityIterator { 1425 pub bus_device_function: BusDeviceFunction, 1426 pub next_capability_offset: Option<u8>, 1427 } 1428 1429 impl Iterator for CapabilityIterator { 1430 type Item = CapabilityInfo; 1431 fn next(&mut self) -> Option<Self::Item> { 1432 let offset = self.next_capability_offset?; 1433 1434 // Read the first 4 bytes of the capability. 1435 let capability_header = pci_root_0().read_config(self.bus_device_function, offset.into()); 1436 let id = capability_header as u8; 1437 let next_offset = (capability_header >> 8) as u8; 1438 let private_header = (capability_header >> 16) as u16; 1439 1440 self.next_capability_offset = if next_offset == 0 { 1441 None 1442 } else if next_offset < 64 || next_offset & 0x3 != 0 { 1443 warn!("Invalid next capability offset {:#04x}", next_offset); 1444 None 1445 } else { 1446 Some(next_offset) 1447 }; 1448 1449 Some(CapabilityInfo { 1450 offset, 1451 id, 1452 private_header, 1453 }) 1454 } 1455 } 1456 1457 /// Information about a PCIe device capability. 1458 /// PCIe设备的external capability的信息 1459 #[derive(Debug, Copy, Clone, Eq, PartialEq)] 1460 pub struct ExternalCapabilityInfo { 1461 /// The offset of the capability in the PCI configuration space of the device function. 1462 pub offset: u16, 1463 /// The ID of the capability. 1464 pub id: u16, 1465 /// The third and fourth bytes of the capability, to save reading them again. 1466 pub capability_version: u8, 1467 } 1468 1469 /// Iterator over capabilities for a device. 1470 /// 创建迭代器以遍历PCIe设备的external capability 1471 #[derive(Debug)] 1472 pub struct ExternalCapabilityIterator<'a> { 1473 pub root: &'a PciRoot, 1474 pub bus_device_function: BusDeviceFunction, 1475 pub next_capability_offset: Option<u16>, 1476 } 1477 impl<'a> Iterator for ExternalCapabilityIterator<'a> { 1478 type Item = ExternalCapabilityInfo; 1479 fn next(&mut self) -> Option<Self::Item> { 1480 let offset = self.next_capability_offset?; 1481 1482 // Read the first 4 bytes of the capability. 1483 let capability_header = self.root.read_config(self.bus_device_function, offset); 1484 let id = capability_header as u16; 1485 let next_offset = (capability_header >> 20) as u16; 1486 let capability_version = ((capability_header >> 16) & 0xf) as u8; 1487 1488 self.next_capability_offset = if next_offset == 0 { 1489 None 1490 } else if next_offset < 0x100 || next_offset & 0x3 != 0 { 1491 warn!("Invalid next capability offset {:#04x}", next_offset); 1492 None 1493 } else { 1494 Some(next_offset) 1495 }; 1496 1497 Some(ExternalCapabilityInfo { 1498 offset, 1499 id, 1500 capability_version, 1501 }) 1502 } 1503 } 1504