xref: /DragonOS/kernel/src/driver/pci/pci.rs (revision 5c1e552cc7f0a6ad75c8a1fa2928e3b9cc619657)
1 #![allow(dead_code)]
2 // 目前仅支持单主桥单Segment
3 
4 use crate::arch::{PciArch, TraitPciArch};
5 use crate::include::bindings::bindings::{
6     initial_mm, mm_map, mm_struct, PAGE_2M_SIZE, VM_DONTCOPY, VM_IO,
7 };
8 use crate::libs::rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard};
9 use crate::mm::mmio_buddy::MMIO_POOL;
10 use crate::{kdebug, kerror, kinfo, kwarn};
11 use alloc::vec::Vec;
12 use alloc::{boxed::Box, collections::LinkedList};
13 use bitflags::bitflags;
14 
15 use core::{
16     convert::TryFrom,
17     fmt::{self, Debug, Display, Formatter},
18 };
19 
20 // PCI_DEVICE_LINKEDLIST 添加了读写锁的全局链表,里面存储了检索到的PCI设备结构体
21 // PCI_ROOT_0 Segment为0的全局PciRoot
22 lazy_static! {
23     pub static ref PCI_DEVICE_LINKEDLIST: PciDeviceLinkedList = PciDeviceLinkedList::new();
24     pub static ref PCI_ROOT_0: Option<PciRoot> = {
25         match PciRoot::new(0) {
26             Ok(root) => Some(root),
27             Err(err) => {
28                 kerror!("Pci_root init failed because of error: {}", err);
29                 None
30             }
31         }
32     };
33 }
34 /// PCI域地址
35 #[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)]
36 #[repr(transparent)]
37 pub struct PciAddr(usize);
38 
39 impl PciAddr {
40     #[inline(always)]
41     pub const fn new(address: usize) -> Self {
42         Self(address)
43     }
44 
45     /// @brief 获取PCI域地址的值
46     #[inline(always)]
47     pub fn data(&self) -> usize {
48         self.0
49     }
50 
51     /// @brief 将PCI域地址加上一个偏移量
52     #[inline(always)]
53     pub fn add(self, offset: usize) -> Self {
54         Self(self.0 + offset)
55     }
56 
57     /// @brief 判断PCI域地址是否按照指定要求对齐
58     #[inline(always)]
59     pub fn check_aligned(&self, align: usize) -> bool {
60         return self.0 & (align - 1) == 0;
61     }
62 }
63 impl Debug for PciAddr {
64     fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
65         write!(f, "PciAddr({:#x})", self.0)
66     }
67 }
68 
69 /// 添加了读写锁的链表,存储PCI设备结构体
70 pub struct PciDeviceLinkedList {
71     list: RwLock<LinkedList<Box<dyn PciDeviceStructure>>>,
72 }
73 
74 impl PciDeviceLinkedList {
75     /// @brief 初始化结构体
76     fn new() -> Self {
77         PciDeviceLinkedList {
78             list: RwLock::new(LinkedList::new()),
79         }
80     }
81     /// @brief 获取可读的linkedlist(读锁守卫)
82     /// @return RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>>  读锁守卫
83     pub fn read(&self) -> RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>> {
84         self.list.read()
85     }
86     /// @brief 获取可写的linkedlist(写锁守卫)
87     /// @return RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>>  写锁守卫
88     pub fn write(&self) -> RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>> {
89         self.list.write()
90     }
91     /// @brief 获取链表中PCI结构体数目
92     /// @return usize 链表中PCI结构体数目
93     pub fn num(&self) -> usize {
94         let list = self.list.read();
95         list.len()
96     }
97     /// @brief 添加Pci设备结构体到链表中
98     pub fn add(&self, device: Box<dyn PciDeviceStructure>) {
99         let mut list = self.list.write();
100         list.push_back(device);
101     }
102 }
103 
104 /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其可变引用
105 /// @param list 链表的写锁守卫
106 /// @param class_code 寄存器值
107 /// @param subclass 寄存器值,与class_code一起确定设备类型
108 /// @return Vec<&'a mut Box<(dyn PciDeviceStructure)  包含链表中所有满足条件的PCI结构体的可变引用的容器
109 pub fn get_pci_device_structure_mut<'a>(
110     list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>,
111     class_code: u8,
112     subclass: u8,
113 ) -> Vec<&'a mut Box<(dyn PciDeviceStructure)>> {
114     let mut result = Vec::new();
115     for box_pci_device_structure in list.iter_mut() {
116         let common_header = (*box_pci_device_structure).common_header();
117         if (common_header.class_code == class_code) && (common_header.subclass == subclass) {
118             result.push(box_pci_device_structure);
119         }
120     }
121     result
122 }
123 /// @brief 在链表中寻找满足条件的PCI设备结构体并返回其不可变引用
124 /// @param list 链表的读锁守卫
125 /// @param class_code 寄存器值
126 /// @param subclass 寄存器值,与class_code一起确定设备类型
127 /// @return Vec<&'a Box<(dyn PciDeviceStructure)  包含链表中所有满足条件的PCI结构体的不可变引用的容器
128 pub fn get_pci_device_structure<'a>(
129     list: &'a mut RwLockReadGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>,
130     class_code: u8,
131     subclass: u8,
132 ) -> Vec<&'a Box<(dyn PciDeviceStructure)>> {
133     let mut result = Vec::new();
134     for box_pci_device_structure in list.iter() {
135         let common_header = (*box_pci_device_structure).common_header();
136         if (common_header.class_code == class_code) && (common_header.subclass == subclass) {
137             result.push(box_pci_device_structure);
138         }
139     }
140     result
141 }
142 
143 //Bar0寄存器的offset
144 const BAR0_OFFSET: u8 = 0x10;
145 //Status、Command寄存器的offset
146 const STATUS_COMMAND_OFFSET: u8 = 0x04;
147 /// ID for vendor-specific PCI capabilities.(Virtio Capabilities)
148 pub const PCI_CAP_ID_VNDR: u8 = 0x09;
149 pub const PORT_PCI_CONFIG_ADDRESS: u16 = 0xcf8;
150 pub const PORT_PCI_CONFIG_DATA: u16 = 0xcfc;
151 // pci设备分组的id
152 pub type SegmentGroupNumber = u16; //理论上最多支持65535个Segment_Group
153 
154 bitflags! {
155     /// The status register in PCI configuration space.
156     pub struct Status: u16 {
157         // Bits 0-2 are reserved.
158         /// The state of the device's INTx# signal.
159         const INTERRUPT_STATUS = 1 << 3;
160         /// The device has a linked list of capabilities.
161         const CAPABILITIES_LIST = 1 << 4;
162         /// The device is capabile of running at 66 MHz rather than 33 MHz.
163         const MHZ_66_CAPABLE = 1 << 5;
164         // Bit 6 is reserved.
165         /// The device can accept fast back-to-back transactions not from the same agent.
166         const FAST_BACK_TO_BACK_CAPABLE = 1 << 7;
167         /// The bus agent observed a parity error (if parity error handling is enabled).
168         const MASTER_DATA_PARITY_ERROR = 1 << 8;
169         // Bits 9-10 are DEVSEL timing.
170         /// A target device terminated a transaction with target-abort.
171         const SIGNALED_TARGET_ABORT = 1 << 11;
172         /// A master device transaction was terminated with target-abort.
173         const RECEIVED_TARGET_ABORT = 1 << 12;
174         /// A master device transaction was terminated with master-abort.
175         const RECEIVED_MASTER_ABORT = 1 << 13;
176         /// A device asserts SERR#.
177         const SIGNALED_SYSTEM_ERROR = 1 << 14;
178         /// The device detects a parity error, even if parity error handling is disabled.
179         const DETECTED_PARITY_ERROR = 1 << 15;
180     }
181 }
182 
183 bitflags! {
184     /// The command register in PCI configuration space.
185     pub struct Command: u16 {
186         /// The device can respond to I/O Space accesses.
187         const IO_SPACE = 1 << 0;
188         /// The device can respond to Memory Space accesses.
189         const MEMORY_SPACE = 1 << 1;
190         /// The device can behave as a bus master.
191         const BUS_MASTER = 1 << 2;
192         /// The device can monitor Special Cycle operations.
193         const SPECIAL_CYCLES = 1 << 3;
194         /// The device can generate the Memory Write and Invalidate command.
195         const MEMORY_WRITE_AND_INVALIDATE_ENABLE = 1 << 4;
196         /// The device will snoop palette register data.
197         const VGA_PALETTE_SNOOP = 1 << 5;
198         /// The device should take its normal action when a parity error is detected.
199         const PARITY_ERROR_RESPONSE = 1 << 6;
200         // Bit 7 is reserved.
201         /// The SERR# driver is enabled.
202         const SERR_ENABLE = 1 << 8;
203         /// The device is allowed to generate fast back-to-back transactions.
204         const FAST_BACK_TO_BACK_ENABLE = 1 << 9;
205         /// Assertion of the device's INTx# signal is disabled.
206         const INTERRUPT_DISABLE = 1 << 10;
207     }
208 }
209 
210 /// The type of a PCI device function header.
211 /// 标头类型/设备类型
212 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
213 pub enum HeaderType {
214     /// A normal PCI device.
215     Standard,
216     /// A PCI to PCI bridge.
217     PciPciBridge,
218     /// A PCI to CardBus bridge.
219     PciCardbusBridge,
220     /// Unrecognised header type.
221     Unrecognised(u8),
222 }
223 /// u8到HeaderType的转换
224 impl From<u8> for HeaderType {
225     fn from(value: u8) -> Self {
226         match value {
227             0x00 => Self::Standard,
228             0x01 => Self::PciPciBridge,
229             0x02 => Self::PciCardbusBridge,
230             _ => Self::Unrecognised(value),
231         }
232     }
233 }
234 /// Pci可能触发的各种错误
235 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
236 pub enum PciError {
237     /// The device reported an invalid BAR type.
238     InvalidBarType,
239     CreateMmioError,
240     InvalidBusDeviceFunction,
241     SegmentNotFound,
242     GetWrongHeader,
243     UnrecognisedHeaderType,
244     PciDeviceStructureTransformError,
245 }
246 ///实现PciError的Display trait,使其可以直接输出
247 impl Display for PciError {
248     fn fmt(&self, f: &mut Formatter) -> fmt::Result {
249         match self {
250             Self::InvalidBarType => write!(f, "Invalid PCI BAR type."),
251             Self::CreateMmioError => write!(f, "Error occurred while creating mmio."),
252             Self::InvalidBusDeviceFunction => write!(f, "Found invalid BusDeviceFunction."),
253             Self::SegmentNotFound => write!(f, "Target segment not found"),
254             Self::GetWrongHeader => write!(f, "GetWrongHeader with vendor id 0xffff"),
255             Self::UnrecognisedHeaderType => write!(f, "Found device with unrecognised header type"),
256             Self::PciDeviceStructureTransformError => {
257                 write!(f, "Found None When transform Pci device structure")
258             }
259         }
260     }
261 }
262 
263 /// trait类型Pci_Device_Structure表示pci设备,动态绑定三种具体设备类型:Pci_Device_Structure_General_Device、Pci_Device_Structure_Pci_to_Pci_Bridge、Pci_Device_Structure_Pci_to_Cardbus_Bridge
264 pub trait PciDeviceStructure: Send + Sync {
265     /// @brief 获取设备类型
266     /// @return HeaderType 设备类型
267     fn header_type(&self) -> HeaderType;
268     /// @brief 当其为standard设备时返回&Pci_Device_Structure_General_Device,其余情况返回None
269     fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> {
270         None
271     }
272     /// @brief 当其为pci to pci bridge设备时返回&Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None
273     fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> {
274         None
275     }
276     /// @brief 当其为pci to cardbus bridge设备时返回&Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None
277     fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> {
278         None
279     }
280     /// @brief 获取Pci设备共有的common_header
281     /// @return 返回其不可变引用
282     fn common_header(&self) -> &PciDeviceStructureHeader;
283     /// @brief 当其为standard设备时返回&mut Pci_Device_Structure_General_Device,其余情况返回None
284     fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> {
285         None
286     }
287     /// @brief 当其为pci to pci bridge设备时返回&mut Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None
288     fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> {
289         None
290     }
291     /// @brief 当其为pci to cardbus bridge设备时返回&mut Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None
292     fn as_pci_to_carbus_bridge_device_mut(
293         &mut self,
294     ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> {
295         None
296     }
297     /// @brief 返回迭代器,遍历capabilities
298     fn capabilities(&self) -> Option<CapabilityIterator> {
299         None
300     }
301     /// @brief 获取Status、Command寄存器的值
302     fn status_command(&self) -> (Status, Command) {
303         let common_header = self.common_header();
304         let status = Status::from_bits_truncate(common_header.status);
305         let command = Command::from_bits_truncate(common_header.command);
306         (status, command)
307     }
308     /// @brief 设置Command寄存器的值
309     fn set_command(&mut self, command: Command) {
310         let common_header = self.common_header_mut();
311         let command = command.bits();
312         common_header.command = command;
313         PciArch::write_config(
314             &common_header.bus_device_function,
315             STATUS_COMMAND_OFFSET,
316             command as u32,
317         );
318     }
319     /// @brief 获取Pci设备共有的common_header
320     /// @return 返回其可变引用
321     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader;
322     /// @brief 读取standard设备的bar寄存器,映射后将结果加入结构体的standard_device_bar变量
323     /// @return 只有standard设备才返回成功或者错误,其余返回None
324     fn bar_init(&mut self) -> Option<Result<u8, PciError>> {
325         None
326     }
327     /// todo
328     fn msix_init(&mut self) -> Option<Result<u8, PciError>> {
329         None
330     }
331     fn enable_master(&mut self) {
332         self.set_command(Command::IO_SPACE | Command::MEMORY_SPACE | Command::BUS_MASTER);
333     }
334 }
335 
336 /// Pci_Device_Structure_Header PCI设备结构体共有的头部
337 #[derive(Clone, Debug)]
338 pub struct PciDeviceStructureHeader {
339     // 包含msix table地址的bar的mmio基地址 todo:以下四个作为一个结构体统一管理
340     pub msix_mmio_vaddr: u64,
341     pub msix_mmio_size: u64,  // msix映射长度
342     pub msix_offset: u32,     // msix表的offset
343     pub msix_table_size: u16, // msix表的表项数量
344     // ==== busdevicefunction变量表示该结构体所处的位置
345     pub bus_device_function: BusDeviceFunction,
346     pub vendor_id: u16, // 供应商ID 0xffff是一个无效值,在读取访问不存在的设备的配置空间寄存器时返回
347     pub device_id: u16, // 设备ID,标志特定设备
348     pub command: u16, // 提供对设备生成和响应pci周期的能力的控制 向该寄存器写入0时,设备与pci总线断开除配置空间访问以外的所有连接
349     pub status: u16,  // 用于记录pci总线相关时间的状态信息寄存器
350     pub revision_id: u8, // 修订ID,指定特定设备的修订标志符
351     pub prog_if: u8, // 编程接口字节,一个只读寄存器,指定设备具有的寄存器级别的编程接口(如果有的话)
352     pub subclass: u8, // 子类。指定设备执行的特定功能的只读寄存器
353     pub class_code: u8, // 类代码,一个只读寄存器,指定设备执行的功能类型
354     pub cache_line_size: u8, // 缓存线大小:以 32 位为单位指定系统缓存线大小。设备可以限制它可以支持的缓存线大小的数量,如果不支持的值写入该字段,设备将表现得好像写入了 0 值
355     pub latency_timer: u8,   // 延迟计时器:以 PCI 总线时钟为单位指定延迟计时器。
356     pub header_type: u8, // 标头类型 a value of 0x0 specifies a general device, a value of 0x1 specifies a PCI-to-PCI bridge, and a value of 0x2 specifies a CardBus bridge. If bit 7 of this register is set, the device has multiple functions; otherwise, it is a single function device.
357     pub bist: u8, // Represents that status and allows control of a devices BIST (built-in self test).
358                   // Here is the layout of the BIST register:
359                   // |     bit7     |    bit6    | Bits 5-4 |     Bits 3-0    |
360                   // | BIST Capable | Start BIST | Reserved | Completion Code |
361                   // for more details, please visit https://wiki.osdev.org/PCI
362 }
363 
364 /// Pci_Device_Structure_General_Device PCI标准设备结构体
365 #[derive(Clone, Debug)]
366 pub struct PciDeviceStructureGeneralDevice {
367     pub common_header: PciDeviceStructureHeader,
368     pub standard_device_bar: PciStandardDeviceBar,
369     pub cardbus_cis_pointer: u32, // 指向卡信息结构,供在 CardBus 和 PCI 之间共享芯片的设备使用。
370     pub subsystem_vendor_id: u16,
371     pub subsystem_id: u16,
372     pub expansion_rom_base_address: u32,
373     pub capabilities_pointer: u8,
374     pub reserved0: u8,
375     pub reserved1: u16,
376     pub reserved2: u32,
377     pub interrupt_line: u8, // 指定设备的中断引脚连接到系统中断控制器的哪个输入,并由任何使用中断引脚的设备实现。对于 x86 架构,此寄存器对应于 PIC IRQ 编号 0-15(而不是 I/O APIC IRQ 编号),并且值0xFF定义为无连接。
378     pub interrupt_pin: u8, // 指定设备使用的中断引脚。其中值为0x1INTA#、0x2INTB#、0x3INTC#、0x4INTD#,0x0表示设备不使用中断引脚。
379     pub min_grant: u8, // 一个只读寄存器,用于指定设备所需的突发周期长度(以 1/4 微秒为单位)(假设时钟速率为 33 MHz)
380     pub max_latency: u8, // 一个只读寄存器,指定设备需要多长时间访问一次 PCI 总线(以 1/4 微秒为单位)。
381 }
382 impl PciDeviceStructure for PciDeviceStructureGeneralDevice {
383     fn header_type(&self) -> HeaderType {
384         HeaderType::Standard
385     }
386     fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> {
387         Some(self)
388     }
389     fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> {
390         Some(self)
391     }
392     fn common_header(&self) -> &PciDeviceStructureHeader {
393         &self.common_header
394     }
395 
396     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader {
397         &mut self.common_header
398     }
399     fn capabilities(&self) -> Option<CapabilityIterator> {
400         Some(CapabilityIterator {
401             bus_device_function: self.common_header.bus_device_function,
402             next_capability_offset: Some(self.capabilities_pointer),
403         })
404     }
405     fn bar_init(&mut self) -> Option<Result<u8, PciError>> {
406         let common_header = &self.common_header;
407         match pci_bar_init(common_header.bus_device_function) {
408             Ok(bar) => {
409                 self.standard_device_bar = bar;
410                 Some(Ok(0))
411             }
412             Err(e) => Some(Err(e)),
413         }
414     }
415 }
416 /// Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci桥设备结构体
417 #[derive(Clone, Debug)]
418 pub struct PciDeviceStructurePciToPciBridge {
419     pub common_header: PciDeviceStructureHeader,
420     pub bar0: u32,
421     pub bar1: u32,
422     pub primary_bus_number: u8,
423     pub secondary_bus_number: u8,
424     pub subordinate_bus_number: u8,
425     pub secondary_latency_timer: u8,
426     pub io_base: u8,
427     pub io_limit: u8,
428     pub secondary_status: u16,
429     pub memory_base: u16,
430     pub memory_limit: u16,
431     pub prefetchable_memory_base: u16,
432     pub prefetchable_memory_limit: u16,
433     pub prefetchable_base_upper_32_bits: u32,
434     pub prefetchable_limit_upper_32_bits: u32,
435     pub io_base_upper_16_bits: u16,
436     pub io_limit_upper_16_bits: u16,
437     pub capability_pointer: u8,
438     pub reserved0: u8,
439     pub reserved1: u16,
440     pub expansion_rom_base_address: u32,
441     pub interrupt_line: u8,
442     pub interrupt_pin: u8,
443     pub bridge_control: u16,
444 }
445 impl PciDeviceStructure for PciDeviceStructurePciToPciBridge {
446     fn header_type(&self) -> HeaderType {
447         HeaderType::PciPciBridge
448     }
449     fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> {
450         Some(self)
451     }
452     fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> {
453         Some(self)
454     }
455     fn common_header(&self) -> &PciDeviceStructureHeader {
456         &self.common_header
457     }
458 
459     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader {
460         &mut self.common_header
461     }
462 }
463 /// Pci_Device_Structure_Pci_to_Cardbus_Bridge Pci_to_Cardbus桥设备结构体
464 #[derive(Clone, Debug)]
465 pub struct PciDeviceStructurePciToCardbusBridge {
466     pub common_header: PciDeviceStructureHeader,
467     pub cardbus_socket_ex_ca_base_address: u32,
468     pub offset_of_capabilities_list: u8,
469     pub reserved: u8,
470     pub secondary_status: u16,
471     pub pci_bus_number: u8,
472     pub card_bus_bus_number: u8,
473     pub subordinate_bus_number: u8,
474     pub card_bus_latency_timer: u8,
475     pub memory_base_address0: u32,
476     pub memory_limit0: u32,
477     pub memory_base_address1: u32,
478     pub memory_limit1: u32,
479     pub io_base_address0: u32,
480     pub io_limit0: u32,
481     pub io_base_address1: u32,
482     pub io_limit1: u32,
483     pub interrupt_line: u8,
484     pub interrupt_pin: u8,
485     pub bridge_control: u16,
486     pub subsystem_device_id: u16,
487     pub subsystem_vendor_id: u16,
488     pub pc_card_legacy_mode_base_address_16_bit: u32,
489 }
490 impl PciDeviceStructure for PciDeviceStructurePciToCardbusBridge {
491     fn header_type(&self) -> HeaderType {
492         HeaderType::PciCardbusBridge
493     }
494     fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> {
495         Some(&self)
496     }
497     fn as_pci_to_carbus_bridge_device_mut(
498         &mut self,
499     ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> {
500         Some(self)
501     }
502     fn common_header(&self) -> &PciDeviceStructureHeader {
503         &self.common_header
504     }
505 
506     fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader {
507         &mut self.common_header
508     }
509 }
510 
511 /// 代表一个PCI segement greoup.
512 #[derive(Copy, Clone, Debug, PartialEq)]
513 pub struct PciRoot {
514     pub physical_address_base: u64,                //物理地址,acpi获取
515     pub mmio_base: Option<*mut u32>,               //映射后的虚拟地址,为方便访问数据这里转化成指针
516     pub segement_group_number: SegmentGroupNumber, //segement greoup的id
517     pub bus_begin: u8,                             //该分组中的最小bus
518     pub bus_end: u8,                               //该分组中的最大bus
519 }
520 ///线程间共享需要,该结构体只需要在初始化时写入数据,无需读写锁保证线程安全
521 unsafe impl Send for PciRoot {}
522 unsafe impl Sync for PciRoot {}
523 ///实现PciRoot的Display trait,自定义输出
524 impl Display for PciRoot {
525     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
526         write!(
527                 f,
528                 "PCI Root with segement:{}, bus begin at {}, bus end at {}, physical address at {:#x},mapped at {:#x}",
529                 self.segement_group_number, self.bus_begin, self.bus_end, self.physical_address_base, self.mmio_base.unwrap() as usize
530             )
531     }
532 }
533 
534 impl PciRoot {
535     /// @brief 初始化结构体,获取ecam root所在物理地址后map到虚拟地址,再将该虚拟地址加入mmio_base变量
536     /// @return 成功返回结果,错误返回错误类型
537     pub fn new(segment_group_number: SegmentGroupNumber) -> Result<Self, PciError> {
538         let mut pci_root = PciArch::ecam_root(segment_group_number)?;
539         pci_root.map()?;
540         Ok(pci_root)
541     }
542     /// @brief  完成物理地址到虚拟地址的映射,并将虚拟地址加入mmio_base变量
543     /// @return 返回错误或Ok(0)
544     fn map(&mut self) -> Result<u8, PciError> {
545         //kdebug!("bus_begin={},bus_end={}", self.bus_begin,self.bus_end);
546         let bus_number = (self.bus_end - self.bus_begin) as u32 + 1;
547         let bus_number_double = (bus_number - 1) / 2 + 1; //一个bus占据1MB空间,计算全部bus占据空间相对于2MB空间的个数
548         let mut virtaddress: u64 = 0;
549         let vaddr_ptr = &mut virtaddress as *mut u64;
550         let mut virtsize: u64 = 0;
551         let virtsize_ptr = &mut virtsize as *mut u64;
552         let size = bus_number_double * PAGE_2M_SIZE;
553         unsafe {
554             let initial_mm_ptr = &mut initial_mm as *mut mm_struct;
555             if let Err(_) =
556                 MMIO_POOL.create_mmio(size, (VM_IO | VM_DONTCOPY) as u64, vaddr_ptr, virtsize_ptr)
557             {
558                 kerror!("Create mmio failed when initing ecam");
559                 return Err(PciError::CreateMmioError);
560             };
561             //kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize);
562             mm_map(
563                 initial_mm_ptr,
564                 virtaddress,
565                 size as u64,
566                 self.physical_address_base,
567             );
568         }
569         self.mmio_base = Some(virtaddress as *mut u32);
570         Ok(0)
571     }
572     /// @brief 获得要操作的寄存器相对于mmio_offset的偏移量
573     /// @param bus_device_function 在同一个group中pci设备的唯一标识符
574     /// @param register_offset 寄存器在设备中的offset
575     /// @return u32 要操作的寄存器相对于mmio_offset的偏移量
576     fn cam_offset(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32 {
577         assert!(bus_device_function.valid());
578         let bdf = ((bus_device_function.bus - self.bus_begin) as u32) << 8
579             | (bus_device_function.device as u32) << 3
580             | bus_device_function.function as u32;
581         let address = bdf << 12 | register_offset as u32;
582         // Ensure that address is word-aligned.
583         assert!(address & 0x3 == 0);
584         address
585     }
586     /// @brief 通过bus_device_function和offset读取相应位置寄存器的值(32位)
587     /// @param bus_device_function 在同一个group中pci设备的唯一标识符
588     /// @param register_offset 寄存器在设备中的offset
589     /// @return u32 寄存器读值结果
590     pub fn read_config(&self, bus_device_function: BusDeviceFunction, register_offset: u16) -> u32 {
591         let address = self.cam_offset(bus_device_function, register_offset);
592         unsafe {
593             // Right shift to convert from byte offset to word offset.
594             (self.mmio_base.unwrap().add((address >> 2) as usize)).read_volatile()
595         }
596     }
597 
598     /// @brief 通过bus_device_function和offset写入相应位置寄存器值(32位)
599     /// @param bus_device_function 在同一个group中pci设备的唯一标识符
600     /// @param register_offset 寄存器在设备中的offset
601     /// @param data 要写入的值
602     pub fn write_config(
603         &mut self,
604         bus_device_function: BusDeviceFunction,
605         register_offset: u16,
606         data: u32,
607     ) {
608         let address = self.cam_offset(bus_device_function, register_offset);
609         // Safe because both the `mmio_base` and the address offset are properly aligned, and the
610         // resulting pointer is within the MMIO range of the CAM.
611         unsafe {
612             // Right shift to convert from byte offset to word offset.
613             (self.mmio_base.unwrap().add((address >> 2) as usize)).write_volatile(data)
614         }
615     }
616     /// @brief 返回迭代器,遍历pcie设备的external_capabilities
617     pub fn external_capabilities(
618         &self,
619         bus_device_function: BusDeviceFunction,
620     ) -> ExternalCapabilityIterator {
621         ExternalCapabilityIterator {
622             root: self,
623             bus_device_function,
624             next_capability_offset: Some(0x100),
625         }
626     }
627 }
628 /// Gets the capabilities 'pointer' for the device function, if any.
629 /// @brief 获取第一个capability 的offset
630 /// @param bus_device_function PCI设备的唯一标识
631 /// @return Option<u8> offset
632 pub fn capabilities_offset(bus_device_function: BusDeviceFunction) -> Option<u8> {
633     let result = PciArch::read_config(&bus_device_function, STATUS_COMMAND_OFFSET);
634     let status: Status = Status::from_bits_truncate((result >> 16) as u16);
635     if status.contains(Status::CAPABILITIES_LIST) {
636         let cap_pointer = PciArch::read_config(&bus_device_function, 0x34) as u8 & 0xFC;
637         Some(cap_pointer)
638     } else {
639         None
640     }
641 }
642 
643 /// @brief 读取pci设备头部
644 /// @param bus_device_function PCI设备的唯一标识
645 /// @param add_to_list 是否添加到链表
646 /// @return 返回的header(trait 类型)
647 fn pci_read_header(
648     bus_device_function: BusDeviceFunction,
649     add_to_list: bool,
650 ) -> Result<Box<dyn PciDeviceStructure>, PciError> {
651     // 先读取公共header
652     let result = PciArch::read_config(&bus_device_function, 0x00);
653     let vendor_id = result as u16;
654     let device_id = (result >> 16) as u16;
655 
656     let result = PciArch::read_config(&bus_device_function, 0x04);
657     let command = result as u16;
658     let status = (result >> 16) as u16;
659 
660     let result = PciArch::read_config(&bus_device_function, 0x08);
661     let revision_id = result as u8;
662     let prog_if = (result >> 8) as u8;
663     let subclass = (result >> 16) as u8;
664     let class_code = (result >> 24) as u8;
665 
666     let result = PciArch::read_config(&bus_device_function, 0x0c);
667     let cache_line_size = result as u8;
668     let latency_timer = (result >> 8) as u8;
669     let header_type = (result >> 16) as u8;
670     let bist = (result >> 24) as u8;
671     if vendor_id == 0xffff {
672         return Err(PciError::GetWrongHeader);
673     }
674     let header = PciDeviceStructureHeader {
675         msix_mmio_vaddr: 0,
676         msix_mmio_size: 0,
677         msix_offset: 0,
678         msix_table_size: 0,
679         bus_device_function,
680         vendor_id,
681         device_id,
682         command,
683         status,
684         revision_id,
685         prog_if,
686         subclass,
687         class_code,
688         cache_line_size,
689         latency_timer,
690         header_type,
691         bist,
692     };
693     match HeaderType::from(header_type & 0x7f) {
694         HeaderType::Standard => {
695             let general_device = pci_read_general_device_header(header, &bus_device_function);
696             let box_general_device = Box::new(general_device);
697             let box_general_device_clone = box_general_device.clone();
698             if add_to_list {
699                 PCI_DEVICE_LINKEDLIST.add(box_general_device);
700             }
701             Ok(box_general_device_clone)
702         }
703         HeaderType::PciPciBridge => {
704             let pci_to_pci_bridge = pci_read_pci_to_pci_bridge_header(header, &bus_device_function);
705             let box_pci_to_pci_bridge = Box::new(pci_to_pci_bridge);
706             let box_pci_to_pci_bridge_clone = box_pci_to_pci_bridge.clone();
707             if add_to_list {
708                 PCI_DEVICE_LINKEDLIST.add(box_pci_to_pci_bridge);
709             }
710             Ok(box_pci_to_pci_bridge_clone)
711         }
712         HeaderType::PciCardbusBridge => {
713             let pci_cardbus_bridge =
714                 pci_read_pci_to_cardbus_bridge_header(header, &bus_device_function);
715             let box_pci_cardbus_bridge = Box::new(pci_cardbus_bridge);
716             let box_pci_cardbus_bridge_clone = box_pci_cardbus_bridge.clone();
717             if add_to_list {
718                 PCI_DEVICE_LINKEDLIST.add(box_pci_cardbus_bridge);
719             }
720             Ok(box_pci_cardbus_bridge_clone)
721         }
722         HeaderType::Unrecognised(_) => Err(PciError::UnrecognisedHeaderType),
723     }
724 }
725 
726 /// @brief 读取type为0x0的pci设备的header
727 /// 本函数只应被 pci_read_header()调用
728 /// @param common_header 共有头部
729 /// @param bus_device_function PCI设备的唯一标识
730 /// @return Pci_Device_Structure_General_Device 标准设备头部
731 fn pci_read_general_device_header(
732     common_header: PciDeviceStructureHeader,
733     bus_device_function: &BusDeviceFunction,
734 ) -> PciDeviceStructureGeneralDevice {
735     let standard_device_bar = PciStandardDeviceBar::default();
736     let cardbus_cis_pointer = PciArch::read_config(bus_device_function, 0x28);
737 
738     let result = PciArch::read_config(bus_device_function, 0x2c);
739     let subsystem_vendor_id = result as u16;
740     let subsystem_id = (result >> 16) as u16;
741 
742     let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x30);
743 
744     let result = PciArch::read_config(bus_device_function, 0x34);
745     let capabilities_pointer = result as u8;
746     let reserved0 = (result >> 8) as u8;
747     let reserved1 = (result >> 16) as u16;
748 
749     let reserved2 = PciArch::read_config(bus_device_function, 0x38);
750 
751     let result = PciArch::read_config(bus_device_function, 0x3c);
752     let interrupt_line = result as u8;
753     let interrupt_pin = (result >> 8) as u8;
754     let min_grant = (result >> 16) as u8;
755     let max_latency = (result >> 24) as u8;
756     PciDeviceStructureGeneralDevice {
757         common_header,
758         standard_device_bar,
759         cardbus_cis_pointer,
760         subsystem_vendor_id,
761         subsystem_id,
762         expansion_rom_base_address,
763         capabilities_pointer,
764         reserved0,
765         reserved1,
766         reserved2,
767         interrupt_line,
768         interrupt_pin,
769         min_grant,
770         max_latency,
771     }
772 }
773 
774 /// @brief 读取type为0x1的pci设备的header
775 /// 本函数只应被 pci_read_header()调用
776 /// @param common_header 共有头部
777 /// @param bus_device_function PCI设备的唯一标识
778 /// @return Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci 桥设备头部
779 fn pci_read_pci_to_pci_bridge_header(
780     common_header: PciDeviceStructureHeader,
781     bus_device_function: &BusDeviceFunction,
782 ) -> PciDeviceStructurePciToPciBridge {
783     let bar0 = PciArch::read_config(bus_device_function, 0x10);
784     let bar1 = PciArch::read_config(bus_device_function, 0x14);
785 
786     let result = PciArch::read_config(bus_device_function, 0x18);
787 
788     let primary_bus_number = result as u8;
789     let secondary_bus_number = (result >> 8) as u8;
790     let subordinate_bus_number = (result >> 16) as u8;
791     let secondary_latency_timer = (result >> 24) as u8;
792 
793     let result = PciArch::read_config(bus_device_function, 0x1c);
794     let io_base = result as u8;
795     let io_limit = (result >> 8) as u8;
796     let secondary_status = (result >> 16) as u16;
797 
798     let result = PciArch::read_config(bus_device_function, 0x20);
799     let memory_base = result as u16;
800     let memory_limit = (result >> 16) as u16;
801 
802     let result = PciArch::read_config(bus_device_function, 0x24);
803     let prefetchable_memory_base = result as u16;
804     let prefetchable_memory_limit = (result >> 16) as u16;
805 
806     let prefetchable_base_upper_32_bits = PciArch::read_config(bus_device_function, 0x28);
807     let prefetchable_limit_upper_32_bits = PciArch::read_config(bus_device_function, 0x2c);
808 
809     let result = PciArch::read_config(bus_device_function, 0x30);
810     let io_base_upper_16_bits = result as u16;
811     let io_limit_upper_16_bits = (result >> 16) as u16;
812 
813     let result = PciArch::read_config(bus_device_function, 0x34);
814     let capability_pointer = result as u8;
815     let reserved0 = (result >> 8) as u8;
816     let reserved1 = (result >> 16) as u16;
817 
818     let expansion_rom_base_address = PciArch::read_config(bus_device_function, 0x38);
819 
820     let result = PciArch::read_config(bus_device_function, 0x3c);
821     let interrupt_line = result as u8;
822     let interrupt_pin = (result >> 8) as u8;
823     let bridge_control = (result >> 16) as u16;
824     PciDeviceStructurePciToPciBridge {
825         common_header,
826         bar0,
827         bar1,
828         primary_bus_number,
829         secondary_bus_number,
830         subordinate_bus_number,
831         secondary_latency_timer,
832         io_base,
833         io_limit,
834         secondary_status,
835         memory_base,
836         memory_limit,
837         prefetchable_memory_base,
838         prefetchable_memory_limit,
839         prefetchable_base_upper_32_bits,
840         prefetchable_limit_upper_32_bits,
841         io_base_upper_16_bits,
842         io_limit_upper_16_bits,
843         capability_pointer,
844         reserved0,
845         reserved1,
846         expansion_rom_base_address,
847         interrupt_line,
848         interrupt_pin,
849         bridge_control,
850     }
851 }
852 
853 /// @brief 读取type为0x2的pci设备的header
854 /// 本函数只应被 pci_read_header()调用
855 /// @param common_header 共有头部
856 /// @param bus_device_function PCI设备的唯一标识
857 /// @return ) -> Pci_Device_Structure_Pci_to_Cardbus_Bridge  pci-to-cardbus 桥设备头部
858 fn pci_read_pci_to_cardbus_bridge_header(
859     common_header: PciDeviceStructureHeader,
860     busdevicefunction: &BusDeviceFunction,
861 ) -> PciDeviceStructurePciToCardbusBridge {
862     let cardbus_socket_ex_ca_base_address = PciArch::read_config(busdevicefunction, 0x10);
863 
864     let result = PciArch::read_config(busdevicefunction, 0x14);
865     let offset_of_capabilities_list = result as u8;
866     let reserved = (result >> 8) as u8;
867     let secondary_status = (result >> 16) as u16;
868 
869     let result = PciArch::read_config(busdevicefunction, 0x18);
870     let pci_bus_number = result as u8;
871     let card_bus_bus_number = (result >> 8) as u8;
872     let subordinate_bus_number = (result >> 16) as u8;
873     let card_bus_latency_timer = (result >> 24) as u8;
874 
875     let memory_base_address0 = PciArch::read_config(busdevicefunction, 0x1c);
876     let memory_limit0 = PciArch::read_config(busdevicefunction, 0x20);
877     let memory_base_address1 = PciArch::read_config(busdevicefunction, 0x24);
878     let memory_limit1 = PciArch::read_config(busdevicefunction, 0x28);
879 
880     let io_base_address0 = PciArch::read_config(busdevicefunction, 0x2c);
881     let io_limit0 = PciArch::read_config(busdevicefunction, 0x30);
882     let io_base_address1 = PciArch::read_config(busdevicefunction, 0x34);
883     let io_limit1 = PciArch::read_config(busdevicefunction, 0x38);
884     let result = PciArch::read_config(busdevicefunction, 0x3c);
885     let interrupt_line = result as u8;
886     let interrupt_pin = (result >> 8) as u8;
887     let bridge_control = (result >> 16) as u16;
888 
889     let result = PciArch::read_config(busdevicefunction, 0x40);
890     let subsystem_device_id = result as u16;
891     let subsystem_vendor_id = (result >> 16) as u16;
892 
893     let pc_card_legacy_mode_base_address_16_bit = PciArch::read_config(busdevicefunction, 0x44);
894     PciDeviceStructurePciToCardbusBridge {
895         common_header,
896         cardbus_socket_ex_ca_base_address,
897         offset_of_capabilities_list,
898         reserved,
899         secondary_status,
900         pci_bus_number,
901         card_bus_bus_number,
902         subordinate_bus_number,
903         card_bus_latency_timer,
904         memory_base_address0,
905         memory_limit0,
906         memory_base_address1,
907         memory_limit1,
908         io_base_address0,
909         io_limit0,
910         io_base_address1,
911         io_limit1,
912         interrupt_line,
913         interrupt_pin,
914         bridge_control,
915         subsystem_device_id,
916         subsystem_vendor_id,
917         pc_card_legacy_mode_base_address_16_bit,
918     }
919 }
920 
921 /// @brief 检查所有bus上的设备并将其加入链表
922 /// @return 成功返回ok(),失败返回失败原因
923 fn pci_check_all_buses() -> Result<u8, PciError> {
924     kinfo!("Checking all devices in PCI bus...");
925     let busdevicefunction = BusDeviceFunction {
926         bus: 0,
927         device: 0,
928         function: 0,
929     };
930     let header = pci_read_header(busdevicefunction, false)?;
931     let common_header = header.common_header();
932     pci_check_bus(0)?;
933     if common_header.header_type & 0x80 != 0 {
934         for function in 1..8 {
935             pci_check_bus(function)?;
936         }
937     }
938     Ok(0)
939 }
940 /// @brief 检查特定设备并将其加入链表
941 /// @return 成功返回ok(),失败返回失败原因
942 fn pci_check_function(busdevicefunction: BusDeviceFunction) -> Result<u8, PciError> {
943     //kdebug!("PCI check function {}", busdevicefunction.function);
944     let header = match pci_read_header(busdevicefunction, true) {
945         Ok(header) => header,
946         Err(PciError::GetWrongHeader) => {
947             return Ok(255);
948         }
949         Err(e) => {
950             return Err(e);
951         }
952     };
953     let common_header = header.common_header();
954     if (common_header.class_code == 0x06)
955         && (common_header.subclass == 0x04 || common_header.subclass == 0x09)
956     {
957         let pci_to_pci_bridge = header
958             .as_pci_to_pci_bridge_device()
959             .ok_or(PciError::PciDeviceStructureTransformError)?;
960         let secondary_bus = pci_to_pci_bridge.secondary_bus_number;
961         pci_check_bus(secondary_bus)?;
962     }
963     Ok(0)
964 }
965 
966 /// @brief 检查device上的设备并将其加入链表
967 /// @return 成功返回ok(),失败返回失败原因
968 fn pci_check_device(bus: u8, device: u8) -> Result<u8, PciError> {
969     //kdebug!("PCI check device {}", device);
970     let busdevicefunction = BusDeviceFunction {
971         bus,
972         device,
973         function: 0,
974     };
975     let header = match pci_read_header(busdevicefunction, false) {
976         Ok(header) => header,
977         Err(PciError::GetWrongHeader) => {
978             //设备不存在,直接返回即可,不用终止遍历
979             return Ok(255);
980         }
981         Err(e) => {
982             return Err(e);
983         }
984     };
985     pci_check_function(busdevicefunction)?;
986     let common_header = header.common_header();
987     if common_header.header_type & 0x80 != 0 {
988         kdebug!(
989             "Detected multi func device in bus{},device{}",
990             busdevicefunction.bus,
991             busdevicefunction.device
992         );
993         // 这是一个多function的设备,因此查询剩余的function
994         for function in 1..8 {
995             let busdevicefunction = BusDeviceFunction {
996                 bus,
997                 device,
998                 function,
999             };
1000             pci_check_function(busdevicefunction)?;
1001         }
1002     }
1003     Ok(0)
1004 }
1005 /// @brief 检查该bus上的设备并将其加入链表
1006 /// @return 成功返回ok(),失败返回失败原因
1007 fn pci_check_bus(bus: u8) -> Result<u8, PciError> {
1008     //kdebug!("PCI check bus {}", bus);
1009     for device in 0..32 {
1010         pci_check_device(bus, device)?;
1011     }
1012     Ok(0)
1013 }
1014 /// @brief pci初始化函数(for c)
1015 #[no_mangle]
1016 pub extern "C" fn rs_pci_init() {
1017     pci_init();
1018     if PCI_ROOT_0.is_some() {
1019         kdebug!("{}", PCI_ROOT_0.unwrap());
1020         //以下为ecam的读取寄存器值测试,经测试可正常读取
1021         // let bus_device_function = BusDeviceFunction {
1022         //     bus: 0,
1023         //     device: 2,
1024         //     function: 0,
1025         // };
1026         // kdebug!(
1027         //     "Ecam read virtio-net device status={:#x}",
1028         //     (PCI_ROOT_0.unwrap().read_config(bus_device_function, 4)>>16) as u16
1029         // );
1030     }
1031 }
1032 /// @brief pci初始化函数
1033 pub fn pci_init() {
1034     kinfo!("Initializing PCI bus...");
1035     if let Err(e) = pci_check_all_buses() {
1036         kerror!("pci init failed when checking bus because of error: {}", e);
1037         return;
1038     }
1039     kinfo!(
1040         "Total pci device and function num = {}",
1041         PCI_DEVICE_LINKEDLIST.num()
1042     );
1043     let list = PCI_DEVICE_LINKEDLIST.read();
1044     for box_pci_device in list.iter() {
1045         let common_header = box_pci_device.common_header();
1046         match box_pci_device.header_type() {
1047             HeaderType::Standard if common_header.status & 0x10 != 0 => {
1048                 kinfo!("Found pci standard device with class code ={} subclass={} status={:#x} cap_pointer={:#x}  vendor={:#x}, device id={:#x},bdf={}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer,common_header.vendor_id, common_header.device_id,common_header.bus_device_function);
1049             }
1050             HeaderType::Standard => {
1051                 kinfo!(
1052                     "Found pci standard device with class code ={} subclass={} status={:#x} ",
1053                     common_header.class_code,
1054                     common_header.subclass,
1055                     common_header.status
1056                 );
1057             }
1058             HeaderType::PciPciBridge if common_header.status & 0x10 != 0 => {
1059                 kinfo!("Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} cap_pointer={:#x}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer);
1060             }
1061             HeaderType::PciPciBridge => {
1062                 kinfo!(
1063                     "Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} ",
1064                     common_header.class_code,
1065                     common_header.subclass,
1066                     common_header.status
1067                 );
1068             }
1069             HeaderType::PciCardbusBridge => {
1070                 kinfo!(
1071                     "Found pcicardbus bridge device with class code ={} subclass={} status={:#x} ",
1072                     common_header.class_code,
1073                     common_header.subclass,
1074                     common_header.status
1075                 );
1076             }
1077             HeaderType::Unrecognised(_) => {}
1078         }
1079     }
1080     kinfo!("PCI bus initialized.");
1081 }
1082 
1083 /// An identifier for a PCI bus, device and function.
1084 /// PCI设备的唯一标识
1085 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
1086 pub struct BusDeviceFunction {
1087     /// The PCI bus number, between 0 and 255.
1088     pub bus: u8,
1089     /// The device number on the bus, between 0 and 31.
1090     pub device: u8,
1091     /// The function number of the device, between 0 and 7.
1092     pub function: u8,
1093 }
1094 impl BusDeviceFunction {
1095     /// Returns whether the device and function numbers are valid, i.e. the device is between 0 and
1096     ///@brief 检测BusDeviceFunction实例是否有效
1097     ///@param self
1098     ///@return bool 是否有效
1099     #[allow(dead_code)]
1100     pub fn valid(&self) -> bool {
1101         self.device < 32 && self.function < 8
1102     }
1103 }
1104 ///实现BusDeviceFunction的Display trait,使其可以直接输出
1105 impl Display for BusDeviceFunction {
1106     fn fmt(&self, f: &mut Formatter) -> fmt::Result {
1107         write!(
1108             f,
1109             "bus {} device {} function{}",
1110             self.bus, self.device, self.function
1111         )
1112     }
1113 }
1114 /// The location allowed for a memory BAR.
1115 /// memory BAR的三种情况
1116 #[derive(Copy, Clone, Debug, Eq, PartialEq)]
1117 pub enum MemoryBarType {
1118     /// The BAR has a 32-bit address and can be mapped anywhere in 32-bit address space.
1119     Width32,
1120     /// The BAR must be mapped below 1MiB.
1121     Below1MiB,
1122     /// The BAR has a 64-bit address and can be mapped anywhere in 64-bit address space.
1123     Width64,
1124 }
1125 ///实现MemoryBarType与u8的类型转换
1126 impl From<MemoryBarType> for u8 {
1127     fn from(bar_type: MemoryBarType) -> Self {
1128         match bar_type {
1129             MemoryBarType::Width32 => 0,
1130             MemoryBarType::Below1MiB => 1,
1131             MemoryBarType::Width64 => 2,
1132         }
1133     }
1134 }
1135 ///实现MemoryBarType与u8的类型转换
1136 impl TryFrom<u8> for MemoryBarType {
1137     type Error = PciError;
1138     fn try_from(value: u8) -> Result<Self, Self::Error> {
1139         match value {
1140             0 => Ok(Self::Width32),
1141             1 => Ok(Self::Below1MiB),
1142             2 => Ok(Self::Width64),
1143             _ => Err(PciError::InvalidBarType),
1144         }
1145     }
1146 }
1147 
1148 /// Information about a PCI Base Address Register.
1149 /// BAR的三种类型 Memory/IO/Unused
1150 #[derive(Clone, Debug, Eq, PartialEq)]
1151 pub enum BarInfo {
1152     /// The BAR is for a memory region.
1153     Memory {
1154         /// The size of the BAR address and where it can be located.
1155         address_type: MemoryBarType,
1156         /// If true, then reading from the region doesn't have side effects. The CPU may cache reads
1157         /// and merge repeated stores.
1158         prefetchable: bool,
1159         /// The memory address, always 16-byte aligned.
1160         address: u64,
1161         /// The size of the BAR in bytes.
1162         size: u32,
1163         /// The virtaddress for a memory bar(mapped).
1164         virtaddress: u64,
1165     },
1166     /// The BAR is for an I/O region.
1167     IO {
1168         /// The I/O address, always 4-byte aligned.
1169         address: u32,
1170         /// The size of the BAR in bytes.
1171         size: u32,
1172     },
1173     Unused,
1174 }
1175 
1176 impl BarInfo {
1177     /// Returns the address and size of this BAR if it is a memory bar, or `None` if it is an IO
1178     /// BAR.
1179     ///@brief 得到某个bar的memory_address与size(前提是他的类型为Memory Bar)
1180     ///@param self
1181     ///@return Option<(u64, u32) 是Memory Bar返回内存地址与大小,不是则返回None
1182     pub fn memory_address_size(&self) -> Option<(u64, u32)> {
1183         if let Self::Memory { address, size, .. } = self {
1184             Some((*address, *size))
1185         } else {
1186             None
1187         }
1188     }
1189     ///@brief 得到某个bar的virtaddress(前提是他的类型为Memory Bar)
1190     ///@param self
1191     ///@return Option<(u64) 是Memory Bar返回映射的虚拟地址,不是则返回None
1192     pub fn virtual_address(&self) -> Option<u64> {
1193         if let Self::Memory { virtaddress, .. } = self {
1194             Some(*virtaddress)
1195         } else {
1196             None
1197         }
1198     }
1199 }
1200 ///实现BarInfo的Display trait,自定义输出
1201 impl Display for BarInfo {
1202     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1203         match self {
1204             Self::Memory {
1205                 address_type,
1206                 prefetchable,
1207                 address,
1208                 size,
1209                 virtaddress,
1210             } => write!(
1211                 f,
1212                 "Memory space at {:#010x}, size {}, type {:?}, prefetchable {},mapped at {:#x}",
1213                 address, size, address_type, prefetchable, virtaddress
1214             ),
1215             Self::IO { address, size } => {
1216                 write!(f, "I/O space at {:#010x}, size {}", address, size)
1217             }
1218             Self::Unused => {
1219                 write!(f, "Unused bar")
1220             }
1221         }
1222     }
1223 }
1224 ///一个普通PCI设备(非桥)有6个BAR寄存器,PciStandardDeviceBar存储其全部信息
1225 #[derive(Clone, Debug, Eq, PartialEq)]
1226 pub struct PciStandardDeviceBar {
1227     bar0: BarInfo,
1228     bar1: BarInfo,
1229     bar2: BarInfo,
1230     bar3: BarInfo,
1231     bar4: BarInfo,
1232     bar5: BarInfo,
1233 }
1234 
1235 impl PciStandardDeviceBar {
1236     ///@brief 得到某个bar的barinfo
1237     ///@param self ,bar_index(0-5)
1238     ///@return Result<&BarInfo, PciError> bar_index在0-5则返回对应的bar_info结构体,超出范围则返回错误
1239     pub fn get_bar(&self, bar_index: u8) -> Result<&BarInfo, PciError> {
1240         match bar_index {
1241             0 => Ok(&self.bar0),
1242             1 => Ok(&self.bar1),
1243             2 => Ok(&self.bar2),
1244             3 => Ok(&self.bar3),
1245             4 => Ok(&self.bar4),
1246             5 => Ok(&self.bar5),
1247             _ => Err(PciError::InvalidBarType),
1248         }
1249     }
1250 }
1251 ///实现PciStandardDeviceBar的Display trait,使其可以直接输出
1252 impl Display for PciStandardDeviceBar {
1253     fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
1254         write!(
1255             f,
1256             "\r\nBar0:{}\r\n Bar1:{}\r\n Bar2:{}\r\n Bar3:{}\r\nBar4:{}\r\nBar5:{}",
1257             self.bar0, self.bar1, self.bar2, self.bar3, self.bar4, self.bar5
1258         )
1259     }
1260 }
1261 ///实现PciStandardDeviceBar的Default trait,使其可以简单初始化
1262 impl Default for PciStandardDeviceBar {
1263     fn default() -> Self {
1264         PciStandardDeviceBar {
1265             bar0: BarInfo::Unused,
1266             bar1: BarInfo::Unused,
1267             bar2: BarInfo::Unused,
1268             bar3: BarInfo::Unused,
1269             bar4: BarInfo::Unused,
1270             bar5: BarInfo::Unused,
1271         }
1272     }
1273 }
1274 
1275 ///@brief 将某个pci设备的bar寄存器读取值后映射到虚拟地址
1276 ///@param self ,bus_device_function PCI设备的唯一标识符
1277 ///@return Result<PciStandardDeviceBar, PciError> 成功则返回对应的PciStandardDeviceBar结构体,失败则返回错误类型
1278 pub fn pci_bar_init(
1279     bus_device_function: BusDeviceFunction,
1280 ) -> Result<PciStandardDeviceBar, PciError> {
1281     let mut device_bar: PciStandardDeviceBar = PciStandardDeviceBar::default();
1282     let mut bar_index_ignore: u8 = 255;
1283     for bar_index in 0..6 {
1284         if bar_index == bar_index_ignore {
1285             continue;
1286         }
1287         let bar_info;
1288         let mut virtaddress: u64 = 0;
1289         let bar_orig = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index);
1290         PciArch::write_config(
1291             &bus_device_function,
1292             BAR0_OFFSET + 4 * bar_index,
1293             0xffffffff,
1294         );
1295         let size_mask = PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index);
1296         // A wrapping add is necessary to correctly handle the case of unused BARs, which read back
1297         // as 0, and should be treated as size 0.
1298         let size = (!(size_mask & 0xfffffff0)).wrapping_add(1);
1299         //kdebug!("bar_orig:{:#x},size: {:#x}", bar_orig,size);
1300         // Restore the original value.
1301         PciArch::write_config(&bus_device_function, BAR0_OFFSET + 4 * bar_index, bar_orig);
1302         if size == 0 {
1303             continue;
1304         }
1305         if bar_orig & 0x00000001 == 0x00000001 {
1306             // I/O space
1307             let address = bar_orig & 0xfffffffc;
1308             bar_info = BarInfo::IO { address, size };
1309         } else {
1310             // Memory space
1311             let mut address = u64::from(bar_orig & 0xfffffff0);
1312             let prefetchable = bar_orig & 0x00000008 != 0;
1313             let address_type = MemoryBarType::try_from(((bar_orig & 0x00000006) >> 1) as u8)?;
1314             if address_type == MemoryBarType::Width64 {
1315                 if bar_index >= 5 {
1316                     return Err(PciError::InvalidBarType);
1317                 }
1318                 let address_top =
1319                     PciArch::read_config(&bus_device_function, BAR0_OFFSET + 4 * (bar_index + 1));
1320                 address |= u64::from(address_top) << 32;
1321                 bar_index_ignore = bar_index + 1; //下个bar跳过,因为64位的memory bar覆盖了两个bar
1322             }
1323             let pci_address = PciAddr::new(address as usize);
1324             address = PciArch::address_pci_to_physical(pci_address) as u64; //PCI总线域物理地址转换为存储器域物理地址
1325             unsafe {
1326                 let vaddr_ptr = &mut virtaddress as *mut u64;
1327                 let mut virtsize: u64 = 0;
1328                 let virtsize_ptr = &mut virtsize as *mut u64;
1329                 let initial_mm_ptr = &mut initial_mm as *mut mm_struct;
1330                 //kdebug!("size want={:#x}", size);
1331                 if let Err(_) = MMIO_POOL.create_mmio(
1332                     size,
1333                     (VM_IO | VM_DONTCOPY) as u64,
1334                     vaddr_ptr,
1335                     virtsize_ptr,
1336                 ) {
1337                     kerror!("Create mmio failed when initing pci bar");
1338                     return Err(PciError::CreateMmioError);
1339                 };
1340                 //kdebug!("virtaddress={:#x},virtsize={:#x}",virtaddress,virtsize);
1341                 mm_map(initial_mm_ptr, virtaddress, size as u64, address);
1342             }
1343             bar_info = BarInfo::Memory {
1344                 address_type,
1345                 prefetchable,
1346                 address,
1347                 size,
1348                 virtaddress,
1349             };
1350         }
1351         match bar_index {
1352             0 => {
1353                 device_bar.bar0 = bar_info;
1354             }
1355             1 => {
1356                 device_bar.bar1 = bar_info;
1357             }
1358             2 => {
1359                 device_bar.bar2 = bar_info;
1360             }
1361             3 => {
1362                 device_bar.bar3 = bar_info;
1363             }
1364             4 => {
1365                 device_bar.bar4 = bar_info;
1366             }
1367             5 => {
1368                 device_bar.bar5 = bar_info;
1369             }
1370             _ => {}
1371         }
1372     }
1373     kdebug!("pci_device_bar:{}", device_bar);
1374     return Ok(device_bar);
1375 }
1376 
1377 /// Information about a PCI device capability.
1378 /// PCI设备的capability的信息
1379 #[derive(Debug, Copy, Clone, Eq, PartialEq)]
1380 pub struct CapabilityInfo {
1381     /// The offset of the capability in the PCI configuration space of the device function.
1382     pub offset: u8,
1383     /// The ID of the capability.
1384     pub id: u8,
1385     /// The third and fourth bytes of the capability, to save reading them again.
1386     pub private_header: u16,
1387 }
1388 
1389 /// Iterator over capabilities for a device.
1390 /// 创建迭代器以遍历PCI设备的capability
1391 #[derive(Debug)]
1392 pub struct CapabilityIterator {
1393     pub bus_device_function: BusDeviceFunction,
1394     pub next_capability_offset: Option<u8>,
1395 }
1396 
1397 impl Iterator for CapabilityIterator {
1398     type Item = CapabilityInfo;
1399     fn next(&mut self) -> Option<Self::Item> {
1400         let offset = self.next_capability_offset?;
1401 
1402         // Read the first 4 bytes of the capability.
1403         let capability_header = PciArch::read_config(&self.bus_device_function, offset);
1404         let id = capability_header as u8;
1405         let next_offset = (capability_header >> 8) as u8;
1406         let private_header = (capability_header >> 16) as u16;
1407 
1408         self.next_capability_offset = if next_offset == 0 {
1409             None
1410         } else if next_offset < 64 || next_offset & 0x3 != 0 {
1411             kwarn!("Invalid next capability offset {:#04x}", next_offset);
1412             None
1413         } else {
1414             Some(next_offset)
1415         };
1416 
1417         Some(CapabilityInfo {
1418             offset,
1419             id,
1420             private_header,
1421         })
1422     }
1423 }
1424 
1425 /// Information about a PCIe device capability.
1426 /// PCIe设备的external capability的信息
1427 #[derive(Debug, Copy, Clone, Eq, PartialEq)]
1428 pub struct ExternalCapabilityInfo {
1429     /// The offset of the capability in the PCI configuration space of the device function.
1430     pub offset: u16,
1431     /// The ID of the capability.
1432     pub id: u16,
1433     /// The third and fourth bytes of the capability, to save reading them again.
1434     pub capability_version: u8,
1435 }
1436 
1437 /// Iterator over capabilities for a device.
1438 /// 创建迭代器以遍历PCIe设备的external capability
1439 #[derive(Debug)]
1440 pub struct ExternalCapabilityIterator<'a> {
1441     pub root: &'a PciRoot,
1442     pub bus_device_function: BusDeviceFunction,
1443     pub next_capability_offset: Option<u16>,
1444 }
1445 impl<'a> Iterator for ExternalCapabilityIterator<'a> {
1446     type Item = ExternalCapabilityInfo;
1447     fn next(&mut self) -> Option<Self::Item> {
1448         let offset = self.next_capability_offset?;
1449 
1450         // Read the first 4 bytes of the capability.
1451         let capability_header = self.root.read_config(self.bus_device_function, offset);
1452         let id = capability_header as u16;
1453         let next_offset = (capability_header >> 20) as u16;
1454         let capability_version = ((capability_header >> 16) & 0xf) as u8;
1455 
1456         self.next_capability_offset = if next_offset == 0 {
1457             None
1458         } else if next_offset < 0x100 || next_offset & 0x3 != 0 {
1459             kwarn!("Invalid next capability offset {:#04x}", next_offset);
1460             None
1461         } else {
1462             Some(next_offset)
1463         };
1464 
1465         Some(ExternalCapabilityInfo {
1466             offset,
1467             id,
1468             capability_version,
1469         })
1470     }
1471 }
1472