1 #![allow(dead_code)] 2 // 目前仅支持单主桥单Segment 3 4 use super::device::pci_device_manager; 5 use super::pci_irq::{IrqType, PciIrqError}; 6 use super::raw_device::PciGeneralDevice; 7 use super::root::{pci_root_0, PciRoot}; 8 9 use crate::arch::{PciArch, TraitPciArch}; 10 use crate::driver::pci::subsys::pci_bus_subsys_init; 11 use crate::exception::IrqNumber; 12 use crate::libs::rwlock::{RwLock, RwLockReadGuard, RwLockWriteGuard}; 13 14 use crate::mm::mmio_buddy::{mmio_pool, MMIOSpaceGuard}; 15 16 use crate::mm::VirtAddr; 17 18 use alloc::string::String; 19 use alloc::sync::Arc; 20 use alloc::vec::Vec; 21 use alloc::{boxed::Box, collections::LinkedList}; 22 use bitflags::bitflags; 23 use log::{debug, error, info, warn}; 24 25 use core::{ 26 convert::TryFrom, 27 fmt::{self, Debug, Display, Formatter}, 28 }; 29 // PCI_DEVICE_LINKEDLIST 添加了读写锁的全局链表,里面存储了检索到的PCI设备结构体 30 lazy_static! { 31 pub static ref PCI_DEVICE_LINKEDLIST: PciDeviceLinkedList = PciDeviceLinkedList::new(); 32 } 33 34 /// PCI域地址 35 #[derive(Clone, Copy, Eq, Ord, PartialEq, PartialOrd)] 36 #[repr(transparent)] 37 pub struct PciAddr(usize); 38 39 impl PciAddr { 40 #[inline(always)] 41 pub const fn new(address: usize) -> Self { 42 Self(address) 43 } 44 45 /// @brief 获取PCI域地址的值 46 #[inline(always)] 47 pub fn data(&self) -> usize { 48 self.0 49 } 50 51 /// @brief 将PCI域地址加上一个偏移量 52 #[inline(always)] 53 pub fn add(self, offset: usize) -> Self { 54 Self(self.0 + offset) 55 } 56 57 /// @brief 判断PCI域地址是否按照指定要求对齐 58 #[inline(always)] 59 pub fn check_aligned(&self, align: usize) -> bool { 60 return self.0 & (align - 1) == 0; 61 } 62 } 63 impl Debug for PciAddr { 64 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { 65 write!(f, "PciAddr({:#x})", self.0) 66 } 67 } 68 69 /// 添加了读写锁的链表,存储PCI设备结构体 70 pub struct PciDeviceLinkedList { 71 list: RwLock<LinkedList<Box<dyn PciDeviceStructure>>>, 72 } 73 74 impl PciDeviceLinkedList { 75 /// @brief 初始化结构体 76 fn new() -> Self { 77 PciDeviceLinkedList { 78 list: RwLock::new(LinkedList::new()), 79 } 80 } 81 /// @brief 获取可读的linkedlist(读锁守卫) 82 /// @return RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>> 读锁守卫 83 pub fn read(&self) -> RwLockReadGuard<LinkedList<Box<dyn PciDeviceStructure>>> { 84 self.list.read() 85 } 86 /// @brief 获取可写的linkedlist(写锁守卫) 87 /// @return RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>> 写锁守卫 88 pub fn write(&self) -> RwLockWriteGuard<LinkedList<Box<dyn PciDeviceStructure>>> { 89 self.list.write() 90 } 91 /// @brief 获取链表中PCI结构体数目 92 /// @return usize 链表中PCI结构体数目 93 pub fn num(&self) -> usize { 94 let list = self.list.read(); 95 list.len() 96 } 97 /// @brief 添加Pci设备结构体到链表中 98 pub fn add(&self, device: Box<dyn PciDeviceStructure>) { 99 let mut list = self.list.write(); 100 list.push_back(device); 101 } 102 } 103 104 /// # 获取具有特定供应商ID的PCI设备结构的引用 105 /// 106 /// 这个函数通过供应商ID搜索PCI设备结构列表,并返回匹配该ID的所有设备结构的引用。 107 /// 108 /// ## 参数 109 /// 110 /// - list: 一个可变的PCI设备结构链表,类型为`&'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>`。 111 /// - vendor_id: 要查找的PCI供应商ID,类型为`u16`。 112 /// 113 /// ## 返回值 114 /// 115 /// - 返回匹配的供应商ID的PCI设备结构的引用。 116 pub fn get_pci_device_structures_mut_by_vendor_id<'a>( 117 list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>, 118 vendor_id: u16, 119 ) -> Vec<&'a mut Box<(dyn PciDeviceStructure)>> { 120 let mut result = Vec::new(); 121 for box_pci_device_structure in list.iter_mut() { 122 let common_header = (*box_pci_device_structure).common_header(); 123 if common_header.vendor_id == vendor_id { 124 result.push(box_pci_device_structure); 125 } 126 } 127 result 128 } 129 130 /// # get_pci_device_structure_mut - 在链表中寻找满足条件的PCI设备结构体并返回其可变引用 131 /// 132 /// 该函数遍历给定的PCI设备链表,寻找其common_header中class_code和subclass字段与给定值匹配的设备结构体。 133 /// 对于每一个匹配的设备结构体,函数返回一个可变引用。 134 /// 135 /// ## 参数 136 /// 137 /// - list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>> — 链表的写锁守卫,用于访问和遍历PCI设备链表。 138 /// - class_code: u8 — PCI设备class code寄存器值,用于分类设备的功能。 139 /// - subclass: u8 — PCI设备subclass寄存器值,与class_code一起确定设备的子类型。 140 /// 141 /// ## 返回值 142 /// - 包含链表中所有满足条件的PCI结构体的可变引用的容器。 143 pub fn get_pci_device_structure_mut<'a>( 144 list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>, 145 class_code: u8, 146 subclass: u8, 147 ) -> Vec<&'a mut Box<(dyn PciDeviceStructure)>> { 148 let mut result = Vec::new(); 149 for box_pci_device_structure in list.iter_mut() { 150 let common_header = (*box_pci_device_structure).common_header(); 151 if (common_header.class_code == class_code) && (common_header.subclass == subclass) { 152 result.push(box_pci_device_structure); 153 } 154 } 155 result 156 } 157 158 /// # get_pci_device_structure - 在链表中寻找满足条件的PCI设备结构体并返回其不可变引用 159 /// 160 /// 该函数遍历给定的PCI设备链表,寻找其common_header中class_code和subclass字段与给定值匹配的设备结构体。 161 /// 对于每一个匹配的设备结构体,函数返回一个可变引用。 162 /// 163 /// ## 参数 164 /// 165 /// - list: &'a mut RwLockWriteGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>> — 链表的写锁守卫,用于访问和遍历PCI设备链表。 166 /// - class_code: u8 — PCI设备class code寄存器值,用于分类设备的功能。 167 /// - subclass: u8 — PCI设备subclass寄存器值,与class_code一起确定设备的子类型。 168 /// 169 /// ## 返回值 170 /// - 包含链表中所有满足条件的PCI结构体的不可变引用的容器。 171 #[allow(clippy::borrowed_box)] 172 pub fn get_pci_device_structure<'a>( 173 list: &'a mut RwLockReadGuard<'_, LinkedList<Box<dyn PciDeviceStructure>>>, 174 class_code: u8, 175 subclass: u8, 176 ) -> Vec<&'a Box<(dyn PciDeviceStructure)>> { 177 let mut result = Vec::new(); 178 for box_pci_device_structure in list.iter() { 179 let common_header = (*box_pci_device_structure).common_header(); 180 if (common_header.class_code == class_code) && (common_header.subclass == subclass) { 181 result.push(box_pci_device_structure); 182 } 183 } 184 result 185 } 186 187 //Bar0寄存器的offset 188 const BAR0_OFFSET: u8 = 0x10; 189 //Status、Command寄存器的offset 190 const STATUS_COMMAND_OFFSET: u8 = 0x04; 191 /// ID for vendor-specific PCI capabilities.(Virtio Capabilities) 192 pub const PCI_CAP_ID_VNDR: u8 = 0x09; 193 pub const PCI_CAP_ID_MSI: u8 = 0x05; 194 pub const PCI_CAP_ID_MSIX: u8 = 0x11; 195 pub const PORT_PCI_CONFIG_ADDRESS: u16 = 0xcf8; 196 pub const PORT_PCI_CONFIG_DATA: u16 = 0xcfc; 197 // pci设备分组的id 198 pub type SegmentGroupNumber = u16; //理论上最多支持65535个Segment_Group 199 200 bitflags! { 201 /// The status register in PCI configuration space. 202 pub struct Status: u16 { 203 // Bits 0-2 are reserved. 204 /// The state of the device's INTx# signal. 205 const INTERRUPT_STATUS = 1 << 3; 206 /// The device has a linked list of capabilities. 207 const CAPABILITIES_LIST = 1 << 4; 208 /// The device is capabile of running at 66 MHz rather than 33 MHz. 209 const MHZ_66_CAPABLE = 1 << 5; 210 // Bit 6 is reserved. 211 /// The device can accept fast back-to-back transactions not from the same agent. 212 const FAST_BACK_TO_BACK_CAPABLE = 1 << 7; 213 /// The bus agent observed a parity error (if parity error handling is enabled). 214 const MASTER_DATA_PARITY_ERROR = 1 << 8; 215 // Bits 9-10 are DEVSEL timing. 216 /// A target device terminated a transaction with target-abort. 217 const SIGNALED_TARGET_ABORT = 1 << 11; 218 /// A master device transaction was terminated with target-abort. 219 const RECEIVED_TARGET_ABORT = 1 << 12; 220 /// A master device transaction was terminated with master-abort. 221 const RECEIVED_MASTER_ABORT = 1 << 13; 222 /// A device asserts SERR#. 223 const SIGNALED_SYSTEM_ERROR = 1 << 14; 224 /// The device detects a parity error, even if parity error handling is disabled. 225 const DETECTED_PARITY_ERROR = 1 << 15; 226 } 227 } 228 229 bitflags! { 230 /// The command register in PCI configuration space. 231 pub struct Command: u16 { 232 /// The device can respond to I/O Space accesses. 233 const IO_SPACE = 1 << 0; 234 /// The device can respond to Memory Space accesses. 235 const MEMORY_SPACE = 1 << 1; 236 /// The device can behave as a bus master. 237 const BUS_MASTER = 1 << 2; 238 /// The device can monitor Special Cycle operations. 239 const SPECIAL_CYCLES = 1 << 3; 240 /// The device can generate the Memory Write and Invalidate command. 241 const MEMORY_WRITE_AND_INVALIDATE_ENABLE = 1 << 4; 242 /// The device will snoop palette register data. 243 const VGA_PALETTE_SNOOP = 1 << 5; 244 /// The device should take its normal action when a parity error is detected. 245 const PARITY_ERROR_RESPONSE = 1 << 6; 246 // Bit 7 is reserved. 247 /// The SERR# driver is enabled. 248 const SERR_ENABLE = 1 << 8; 249 /// The device is allowed to generate fast back-to-back transactions. 250 const FAST_BACK_TO_BACK_ENABLE = 1 << 9; 251 /// Assertion of the device's INTx# signal is disabled. 252 const INTERRUPT_DISABLE = 1 << 10; 253 } 254 } 255 256 /// The type of a PCI device function header. 257 /// 标头类型/设备类型 258 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 259 pub enum HeaderType { 260 /// A normal PCI device. 261 Standard, 262 /// A PCI to PCI bridge. 263 PciPciBridge, 264 /// A PCI to CardBus bridge. 265 PciCardbusBridge, 266 /// Unrecognised header type. 267 Unrecognised(u8), 268 } 269 /// u8到HeaderType的转换 270 impl From<u8> for HeaderType { 271 fn from(value: u8) -> Self { 272 match value { 273 0x00 => Self::Standard, 274 0x01 => Self::PciPciBridge, 275 0x02 => Self::PciCardbusBridge, 276 _ => Self::Unrecognised(value), 277 } 278 } 279 } 280 /// Pci可能触发的各种错误 281 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 282 pub enum PciError { 283 /// The device reported an invalid BAR type. 284 InvalidBarType, 285 CreateMmioError, 286 InvalidBusDeviceFunction, 287 SegmentNotFound, 288 McfgTableNotFound, 289 GetWrongHeader, 290 UnrecognisedHeaderType, 291 PciDeviceStructureTransformError, 292 PciIrqError(PciIrqError), 293 } 294 ///实现PciError的Display trait,使其可以直接输出 295 impl Display for PciError { 296 fn fmt(&self, f: &mut Formatter) -> fmt::Result { 297 match self { 298 Self::InvalidBarType => write!(f, "Invalid PCI BAR type."), 299 Self::CreateMmioError => write!(f, "Error occurred while creating mmio."), 300 Self::InvalidBusDeviceFunction => write!(f, "Found invalid BusDeviceFunction."), 301 Self::SegmentNotFound => write!(f, "Target segment not found"), 302 Self::McfgTableNotFound => write!(f, "ACPI MCFG Table not found"), 303 Self::GetWrongHeader => write!(f, "GetWrongHeader with vendor id 0xffff"), 304 Self::UnrecognisedHeaderType => write!(f, "Found device with unrecognised header type"), 305 Self::PciDeviceStructureTransformError => { 306 write!(f, "Found None When transform Pci device structure") 307 } 308 Self::PciIrqError(err) => write!(f, "Error occurred while setting irq :{:?}.", err), 309 } 310 } 311 } 312 313 /// trait类型Pci_Device_Structure表示pci设备,动态绑定三种具体设备类型:Pci_Device_Structure_General_Device、Pci_Device_Structure_Pci_to_Pci_Bridge、Pci_Device_Structure_Pci_to_Cardbus_Bridge 314 pub trait PciDeviceStructure: Send + Sync { 315 /// @brief 获取设备类型 316 /// @return HeaderType 设备类型 317 fn header_type(&self) -> HeaderType; 318 /// @brief 当其为standard设备时返回&Pci_Device_Structure_General_Device,其余情况返回None 319 #[inline(always)] 320 fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> { 321 None 322 } 323 /// @brief 当其为pci to pci bridge设备时返回&Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None 324 #[inline(always)] 325 fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> { 326 None 327 } 328 /// @brief 当其为pci to cardbus bridge设备时返回&Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None 329 #[inline(always)] 330 fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> { 331 None 332 } 333 /// @brief 获取Pci设备共有的common_header 334 /// @return 返回其不可变引用 335 fn common_header(&self) -> &PciDeviceStructureHeader; 336 /// @brief 当其为standard设备时返回&mut Pci_Device_Structure_General_Device,其余情况返回None 337 #[inline(always)] 338 fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> { 339 None 340 } 341 /// @brief 当其为pci to pci bridge设备时返回&mut Pci_Device_Structure_Pci_to_Pci_Bridge,其余情况返回None 342 #[inline(always)] 343 fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> { 344 None 345 } 346 /// @brief 当其为pci to cardbus bridge设备时返回&mut Pci_Device_Structure_Pci_to_Cardbus_Bridge,其余情况返回None 347 #[inline(always)] 348 fn as_pci_to_carbus_bridge_device_mut( 349 &mut self, 350 ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> { 351 None 352 } 353 /// @brief 返回迭代器,遍历capabilities 354 fn capabilities(&self) -> Option<CapabilityIterator> { 355 None 356 } 357 /// @brief 获取Status、Command寄存器的值 358 fn status_command(&self) -> (Status, Command) { 359 let common_header = self.common_header(); 360 let status = Status::from_bits_truncate(common_header.status); 361 let command = Command::from_bits_truncate(common_header.command); 362 (status, command) 363 } 364 /// @brief 设置Command寄存器的值 365 fn set_command(&mut self, command: Command) { 366 let common_header = self.common_header_mut(); 367 let command = command.bits(); 368 common_header.command = command; 369 pci_root_0().write_config( 370 common_header.bus_device_function, 371 STATUS_COMMAND_OFFSET.into(), 372 command as u32, 373 ); 374 } 375 /// @brief 获取Pci设备共有的common_header 376 /// @return 返回其可变引用 377 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader; 378 379 /// @brief 读取standard设备的bar寄存器,映射后将结果加入结构体的standard_device_bar变量 380 /// @return 只有standard设备才返回成功或者错误,其余返回None 381 #[inline(always)] 382 fn bar_ioremap(&mut self) -> Option<Result<u8, PciError>> { 383 None 384 } 385 /// @brief 获取PCI设备的bar寄存器的引用 386 /// @return 387 #[inline(always)] 388 fn bar(&mut self) -> Option<&PciStandardDeviceBar> { 389 None 390 } 391 /// @brief 通过设置该pci设备的command 392 fn enable_master(&mut self) { 393 self.set_command(Command::IO_SPACE | Command::MEMORY_SPACE | Command::BUS_MASTER); 394 } 395 /// @brief 寻找设备的msix空间的offset 396 fn msix_capability_offset(&self) -> Option<u8> { 397 for capability in self.capabilities()? { 398 if capability.id == PCI_CAP_ID_MSIX { 399 return Some(capability.offset); 400 } 401 } 402 None 403 } 404 /// @brief 寻找设备的msi空间的offset 405 fn msi_capability_offset(&self) -> Option<u8> { 406 for capability in self.capabilities()? { 407 if capability.id == PCI_CAP_ID_MSI { 408 return Some(capability.offset); 409 } 410 } 411 None 412 } 413 /// @brief 返回结构体中的irq_type的可变引用 414 fn irq_type_mut(&mut self) -> Option<&mut IrqType>; 415 /// @brief 返回结构体中的irq_vector的可变引用 416 fn irq_vector_mut(&mut self) -> Option<&mut Vec<IrqNumber>>; 417 } 418 419 /// Pci_Device_Structure_Header PCI设备结构体共有的头部 420 #[derive(Clone, Debug)] 421 pub struct PciDeviceStructureHeader { 422 // ==== busdevicefunction变量表示该结构体所处的位置 423 pub bus_device_function: BusDeviceFunction, 424 pub vendor_id: u16, // 供应商ID 0xffff是一个无效值,在读取访问不存在的设备的配置空间寄存器时返回 425 pub device_id: u16, // 设备ID,标志特定设备 426 pub command: u16, // 提供对设备生成和响应pci周期的能力的控制 向该寄存器写入0时,设备与pci总线断开除配置空间访问以外的所有连接 427 pub status: u16, // 用于记录pci总线相关时间的状态信息寄存器 428 pub revision_id: u8, // 修订ID,指定特定设备的修订标志符 429 pub prog_if: u8, // 编程接口字节,一个只读寄存器,指定设备具有的寄存器级别的编程接口(如果有的话) 430 pub subclass: u8, // 子类。指定设备执行的特定功能的只读寄存器 431 pub class_code: u8, // 类代码,一个只读寄存器,指定设备执行的功能类型 432 pub cache_line_size: u8, // 缓存线大小:以 32 位为单位指定系统缓存线大小。设备可以限制它可以支持的缓存线大小的数量,如果不支持的值写入该字段,设备将表现得好像写入了 0 值 433 pub latency_timer: u8, // 延迟计时器:以 PCI 总线时钟为单位指定延迟计时器。 434 pub header_type: u8, // 标头类型 a value of 0x0 specifies a general device, a value of 0x1 specifies a PCI-to-PCI bridge, and a value of 0x2 specifies a CardBus bridge. If bit 7 of this register is set, the device has multiple functions; otherwise, it is a single function device. 435 pub bist: u8, // Represents that status and allows control of a devices BIST (built-in self test). 436 // Here is the layout of the BIST register: 437 // | bit7 | bit6 | Bits 5-4 | Bits 3-0 | 438 // | BIST Capable | Start BIST | Reserved | Completion Code | 439 // for more details, please visit https://wiki.osdev.org/PCI 440 } 441 442 /// Pci_Device_Structure_General_Device PCI标准设备结构体 443 #[derive(Clone, Debug)] 444 pub struct PciDeviceStructureGeneralDevice { 445 pub common_header: PciDeviceStructureHeader, 446 // 中断结构体,包括legacy,msi,msix三种情况 447 pub irq_type: IrqType, 448 // 使用的中断号的vec集合 449 pub irq_vector: Vec<IrqNumber>, 450 pub standard_device_bar: PciStandardDeviceBar, 451 pub cardbus_cis_pointer: u32, // 指向卡信息结构,供在 CardBus 和 PCI 之间共享芯片的设备使用。 452 pub subsystem_vendor_id: u16, 453 pub subsystem_id: u16, 454 pub expansion_rom_base_address: u32, 455 pub capabilities_pointer: u8, 456 pub reserved0: u8, 457 pub reserved1: u16, 458 pub reserved2: u32, 459 pub interrupt_line: u8, // 指定设备的中断引脚连接到系统中断控制器的哪个输入,并由任何使用中断引脚的设备实现。对于 x86 架构,此寄存器对应于 PIC IRQ 编号 0-15(而不是 I/O APIC IRQ 编号),并且值0xFF定义为无连接。 460 pub interrupt_pin: u8, // 指定设备使用的中断引脚。其中值为0x1INTA#、0x2INTB#、0x3INTC#、0x4INTD#,0x0表示设备不使用中断引脚。 461 pub min_grant: u8, // 一个只读寄存器,用于指定设备所需的突发周期长度(以 1/4 微秒为单位)(假设时钟速率为 33 MHz) 462 pub max_latency: u8, // 一个只读寄存器,指定设备需要多长时间访问一次 PCI 总线(以 1/4 微秒为单位)。 463 } 464 impl PciDeviceStructure for PciDeviceStructureGeneralDevice { 465 #[inline(always)] 466 fn header_type(&self) -> HeaderType { 467 HeaderType::Standard 468 } 469 #[inline(always)] 470 fn as_standard_device(&self) -> Option<&PciDeviceStructureGeneralDevice> { 471 Some(self) 472 } 473 #[inline(always)] 474 fn as_standard_device_mut(&mut self) -> Option<&mut PciDeviceStructureGeneralDevice> { 475 Some(self) 476 } 477 #[inline(always)] 478 fn common_header(&self) -> &PciDeviceStructureHeader { 479 &self.common_header 480 } 481 #[inline(always)] 482 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader { 483 &mut self.common_header 484 } 485 fn capabilities(&self) -> Option<CapabilityIterator> { 486 Some(CapabilityIterator { 487 bus_device_function: self.common_header.bus_device_function, 488 next_capability_offset: Some(self.capabilities_pointer), 489 }) 490 } 491 fn bar_ioremap(&mut self) -> Option<Result<u8, PciError>> { 492 let common_header = &self.common_header; 493 match pci_bar_init(common_header.bus_device_function) { 494 Ok(bar) => { 495 self.standard_device_bar = bar; 496 Some(Ok(0)) 497 } 498 Err(e) => Some(Err(e)), 499 } 500 } 501 fn bar(&mut self) -> Option<&PciStandardDeviceBar> { 502 Some(&self.standard_device_bar) 503 } 504 #[inline(always)] 505 fn irq_type_mut(&mut self) -> Option<&mut IrqType> { 506 Some(&mut self.irq_type) 507 } 508 #[inline(always)] 509 fn irq_vector_mut(&mut self) -> Option<&mut Vec<IrqNumber>> { 510 Some(&mut self.irq_vector) 511 } 512 } 513 514 /// Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci桥设备结构体 515 #[derive(Clone, Debug)] 516 pub struct PciDeviceStructurePciToPciBridge { 517 pub common_header: PciDeviceStructureHeader, 518 // 中断结构体,包括legacy,msi,msix三种情况 519 pub irq_type: IrqType, 520 // 使用的中断号的vec集合 521 pub irq_vector: Vec<IrqNumber>, 522 pub bar0: u32, 523 pub bar1: u32, 524 pub primary_bus_number: u8, 525 pub secondary_bus_number: u8, 526 pub subordinate_bus_number: u8, 527 pub secondary_latency_timer: u8, 528 pub io_base: u8, 529 pub io_limit: u8, 530 pub secondary_status: u16, 531 pub memory_base: u16, 532 pub memory_limit: u16, 533 pub prefetchable_memory_base: u16, 534 pub prefetchable_memory_limit: u16, 535 pub prefetchable_base_upper_32_bits: u32, 536 pub prefetchable_limit_upper_32_bits: u32, 537 pub io_base_upper_16_bits: u16, 538 pub io_limit_upper_16_bits: u16, 539 pub capability_pointer: u8, 540 pub reserved0: u8, 541 pub reserved1: u16, 542 pub expansion_rom_base_address: u32, 543 pub interrupt_line: u8, 544 pub interrupt_pin: u8, 545 pub bridge_control: u16, 546 } 547 impl PciDeviceStructure for PciDeviceStructurePciToPciBridge { 548 #[inline(always)] 549 fn header_type(&self) -> HeaderType { 550 HeaderType::PciPciBridge 551 } 552 #[inline(always)] 553 fn as_pci_to_pci_bridge_device(&self) -> Option<&PciDeviceStructurePciToPciBridge> { 554 Some(self) 555 } 556 #[inline(always)] 557 fn as_pci_to_pci_bridge_device_mut(&mut self) -> Option<&mut PciDeviceStructurePciToPciBridge> { 558 Some(self) 559 } 560 #[inline(always)] 561 fn common_header(&self) -> &PciDeviceStructureHeader { 562 &self.common_header 563 } 564 #[inline(always)] 565 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader { 566 &mut self.common_header 567 } 568 #[inline(always)] 569 fn irq_type_mut(&mut self) -> Option<&mut IrqType> { 570 Some(&mut self.irq_type) 571 } 572 #[inline(always)] 573 fn irq_vector_mut(&mut self) -> Option<&mut Vec<IrqNumber>> { 574 Some(&mut self.irq_vector) 575 } 576 } 577 /// Pci_Device_Structure_Pci_to_Cardbus_Bridge Pci_to_Cardbus桥设备结构体 578 #[derive(Clone, Debug)] 579 pub struct PciDeviceStructurePciToCardbusBridge { 580 pub common_header: PciDeviceStructureHeader, 581 pub cardbus_socket_ex_ca_base_address: u32, 582 pub offset_of_capabilities_list: u8, 583 pub reserved: u8, 584 pub secondary_status: u16, 585 pub pci_bus_number: u8, 586 pub card_bus_bus_number: u8, 587 pub subordinate_bus_number: u8, 588 pub card_bus_latency_timer: u8, 589 pub memory_base_address0: u32, 590 pub memory_limit0: u32, 591 pub memory_base_address1: u32, 592 pub memory_limit1: u32, 593 pub io_base_address0: u32, 594 pub io_limit0: u32, 595 pub io_base_address1: u32, 596 pub io_limit1: u32, 597 pub interrupt_line: u8, 598 pub interrupt_pin: u8, 599 pub bridge_control: u16, 600 pub subsystem_device_id: u16, 601 pub subsystem_vendor_id: u16, 602 pub pc_card_legacy_mode_base_address_16_bit: u32, 603 } 604 impl PciDeviceStructure for PciDeviceStructurePciToCardbusBridge { 605 #[inline(always)] 606 fn header_type(&self) -> HeaderType { 607 HeaderType::PciCardbusBridge 608 } 609 #[inline(always)] 610 fn as_pci_to_carbus_bridge_device(&self) -> Option<&PciDeviceStructurePciToCardbusBridge> { 611 Some(self) 612 } 613 #[inline(always)] 614 fn as_pci_to_carbus_bridge_device_mut( 615 &mut self, 616 ) -> Option<&mut PciDeviceStructurePciToCardbusBridge> { 617 Some(self) 618 } 619 #[inline(always)] 620 fn common_header(&self) -> &PciDeviceStructureHeader { 621 &self.common_header 622 } 623 #[inline(always)] 624 fn common_header_mut(&mut self) -> &mut PciDeviceStructureHeader { 625 &mut self.common_header 626 } 627 #[inline(always)] 628 fn irq_type_mut(&mut self) -> Option<&mut IrqType> { 629 None 630 } 631 #[inline(always)] 632 fn irq_vector_mut(&mut self) -> Option<&mut Vec<IrqNumber>> { 633 None 634 } 635 } 636 637 /// PCI配置空间访问机制 638 /// 639 /// 用于访问PCI设备的功能配置空间的一组机制。 640 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 641 pub enum PciCam { 642 /// PCI内存映射配置访问机制 643 /// 644 /// 为每个设备功能提供256字节的配置空间访问。 645 MmioCam, 646 /// PCIe内存映射增强配置访问机制 647 /// 648 /// 为每个设备功能提供4千字节(4096字节)的配置空间访问。 649 Ecam, 650 } 651 652 impl PciCam { 653 /// Returns the total size in bytes of the memory-mapped region. 654 pub const fn size(self) -> u32 { 655 match self { 656 Self::MmioCam => 0x1000000, 657 Self::Ecam => 0x10000000, 658 } 659 } 660 } 661 662 /// Gets the capabilities 'pointer' for the device function, if any. 663 /// @brief 获取第一个capability 的offset 664 /// @param bus_device_function PCI设备的唯一标识 665 /// @return Option<u8> offset 666 pub fn capabilities_offset(bus_device_function: BusDeviceFunction) -> Option<u8> { 667 let result = pci_root_0().read_config(bus_device_function, STATUS_COMMAND_OFFSET.into()); 668 let status: Status = Status::from_bits_truncate((result >> 16) as u16); 669 if status.contains(Status::CAPABILITIES_LIST) { 670 let cap_pointer = pci_root_0().read_config(bus_device_function, 0x34) as u8 & 0xFC; 671 Some(cap_pointer) 672 } else { 673 None 674 } 675 } 676 677 /// @brief 读取pci设备头部 678 /// @param bus_device_function PCI设备的唯一标识 679 /// @param add_to_list 是否添加到链表 680 /// @return 返回的header(trait 类型) 681 fn pci_read_header( 682 bus_device_function: BusDeviceFunction, 683 add_to_list: bool, 684 ) -> Result<Box<dyn PciDeviceStructure>, PciError> { 685 // 先读取公共header 686 let result = pci_root_0().read_config(bus_device_function, 0x00); 687 let vendor_id = result as u16; 688 let device_id = (result >> 16) as u16; 689 690 let result = pci_root_0().read_config(bus_device_function, 0x04); 691 let command = result as u16; 692 let status = (result >> 16) as u16; 693 694 let result = pci_root_0().read_config(bus_device_function, 0x08); 695 let revision_id = result as u8; 696 let prog_if = (result >> 8) as u8; 697 let subclass = (result >> 16) as u8; 698 let class_code = (result >> 24) as u8; 699 700 let result = pci_root_0().read_config(bus_device_function, 0x0c); 701 let cache_line_size = result as u8; 702 let latency_timer = (result >> 8) as u8; 703 let header_type = (result >> 16) as u8; 704 let bist = (result >> 24) as u8; 705 if vendor_id == 0xffff { 706 return Err(PciError::GetWrongHeader); 707 } 708 let header = PciDeviceStructureHeader { 709 bus_device_function, 710 vendor_id, 711 device_id, 712 command, 713 status, 714 revision_id, 715 prog_if, 716 subclass, 717 class_code, 718 cache_line_size, 719 latency_timer, 720 header_type, 721 bist, 722 }; 723 match HeaderType::from(header_type & 0x7f) { 724 HeaderType::Standard => { 725 let general_device: PciDeviceStructureGeneralDevice = 726 pci_read_general_device_header(header, &bus_device_function); 727 let box_general_device = Box::new(general_device.clone()); 728 let box_general_device_clone = box_general_device.clone(); 729 if add_to_list { 730 PCI_DEVICE_LINKEDLIST.add(box_general_device); 731 //这里实际上不应该使用clone,因为raw是用于sysfs的结构,但是实际上pci设备是在PCI_DEVICE_LINKEDLIST链表上的, 732 //这就导致sysfs呈现的对pci设备的操控接口实际上操控的是pci设备描述符是一个副本 733 //但是无奈这里没有使用Arc 734 //todo:修改pci设备描述符在静态链表中存在的方式,并修改这里的clone操作 735 let raw = PciGeneralDevice::from(&general_device); 736 let _ = pci_device_manager().device_add(Arc::new(raw)); 737 } 738 Ok(box_general_device_clone) 739 } 740 HeaderType::PciPciBridge => { 741 let pci_to_pci_bridge = pci_read_pci_to_pci_bridge_header(header, &bus_device_function); 742 let box_pci_to_pci_bridge = Box::new(pci_to_pci_bridge); 743 let box_pci_to_pci_bridge_clone = box_pci_to_pci_bridge.clone(); 744 if add_to_list { 745 PCI_DEVICE_LINKEDLIST.add(box_pci_to_pci_bridge); 746 } 747 Ok(box_pci_to_pci_bridge_clone) 748 } 749 HeaderType::PciCardbusBridge => { 750 let pci_cardbus_bridge = 751 pci_read_pci_to_cardbus_bridge_header(header, &bus_device_function); 752 let box_pci_cardbus_bridge = Box::new(pci_cardbus_bridge); 753 let box_pci_cardbus_bridge_clone = box_pci_cardbus_bridge.clone(); 754 if add_to_list { 755 PCI_DEVICE_LINKEDLIST.add(box_pci_cardbus_bridge); 756 } 757 Ok(box_pci_cardbus_bridge_clone) 758 } 759 HeaderType::Unrecognised(_) => Err(PciError::UnrecognisedHeaderType), 760 } 761 } 762 763 /// @brief 读取type为0x0的pci设备的header 764 /// 本函数只应被 pci_read_header()调用 765 /// @param common_header 共有头部 766 /// @param bus_device_function PCI设备的唯一标识 767 /// @return Pci_Device_Structure_General_Device 标准设备头部 768 fn pci_read_general_device_header( 769 common_header: PciDeviceStructureHeader, 770 bus_device_function: &BusDeviceFunction, 771 ) -> PciDeviceStructureGeneralDevice { 772 let standard_device_bar = PciStandardDeviceBar::default(); 773 let cardbus_cis_pointer = pci_root_0().read_config(*bus_device_function, 0x28); 774 775 let result = pci_root_0().read_config(*bus_device_function, 0x2c); 776 let subsystem_vendor_id = result as u16; 777 let subsystem_id = (result >> 16) as u16; 778 779 let expansion_rom_base_address = pci_root_0().read_config(*bus_device_function, 0x30); 780 781 let result = pci_root_0().read_config(*bus_device_function, 0x34); 782 let capabilities_pointer = result as u8; 783 let reserved0 = (result >> 8) as u8; 784 let reserved1 = (result >> 16) as u16; 785 786 let reserved2 = pci_root_0().read_config(*bus_device_function, 0x38); 787 788 let result = pci_root_0().read_config(*bus_device_function, 0x3c); 789 let interrupt_line = result as u8; 790 let interrupt_pin = (result >> 8) as u8; 791 let min_grant = (result >> 16) as u8; 792 let max_latency = (result >> 24) as u8; 793 PciDeviceStructureGeneralDevice { 794 common_header, 795 irq_type: IrqType::Unused, 796 irq_vector: Vec::new(), 797 standard_device_bar, 798 cardbus_cis_pointer, 799 subsystem_vendor_id, 800 subsystem_id, 801 expansion_rom_base_address, 802 capabilities_pointer, 803 reserved0, 804 reserved1, 805 reserved2, 806 interrupt_line, 807 interrupt_pin, 808 min_grant, 809 max_latency, 810 } 811 } 812 813 /// @brief 读取type为0x1的pci设备的header 814 /// 本函数只应被 pci_read_header()调用 815 /// @param common_header 共有头部 816 /// @param bus_device_function PCI设备的唯一标识 817 /// @return Pci_Device_Structure_Pci_to_Pci_Bridge pci-to-pci 桥设备头部 818 fn pci_read_pci_to_pci_bridge_header( 819 common_header: PciDeviceStructureHeader, 820 bus_device_function: &BusDeviceFunction, 821 ) -> PciDeviceStructurePciToPciBridge { 822 let bar0 = pci_root_0().read_config(*bus_device_function, 0x10); 823 let bar1 = pci_root_0().read_config(*bus_device_function, 0x14); 824 825 let result = pci_root_0().read_config(*bus_device_function, 0x18); 826 827 let primary_bus_number = result as u8; 828 let secondary_bus_number = (result >> 8) as u8; 829 let subordinate_bus_number = (result >> 16) as u8; 830 let secondary_latency_timer = (result >> 24) as u8; 831 832 let result = pci_root_0().read_config(*bus_device_function, 0x1c); 833 let io_base = result as u8; 834 let io_limit = (result >> 8) as u8; 835 let secondary_status = (result >> 16) as u16; 836 837 let result = pci_root_0().read_config(*bus_device_function, 0x20); 838 let memory_base = result as u16; 839 let memory_limit = (result >> 16) as u16; 840 841 let result = pci_root_0().read_config(*bus_device_function, 0x24); 842 let prefetchable_memory_base = result as u16; 843 let prefetchable_memory_limit = (result >> 16) as u16; 844 845 let prefetchable_base_upper_32_bits = pci_root_0().read_config(*bus_device_function, 0x28); 846 let prefetchable_limit_upper_32_bits = pci_root_0().read_config(*bus_device_function, 0x2c); 847 848 let result = pci_root_0().read_config(*bus_device_function, 0x30); 849 let io_base_upper_16_bits = result as u16; 850 let io_limit_upper_16_bits = (result >> 16) as u16; 851 852 let result = pci_root_0().read_config(*bus_device_function, 0x34); 853 let capability_pointer = result as u8; 854 let reserved0 = (result >> 8) as u8; 855 let reserved1 = (result >> 16) as u16; 856 857 let expansion_rom_base_address = pci_root_0().read_config(*bus_device_function, 0x38); 858 859 let result = pci_root_0().read_config(*bus_device_function, 0x3c); 860 let interrupt_line = result as u8; 861 let interrupt_pin = (result >> 8) as u8; 862 let bridge_control = (result >> 16) as u16; 863 PciDeviceStructurePciToPciBridge { 864 common_header, 865 irq_type: IrqType::Unused, 866 irq_vector: Vec::new(), 867 bar0, 868 bar1, 869 primary_bus_number, 870 secondary_bus_number, 871 subordinate_bus_number, 872 secondary_latency_timer, 873 io_base, 874 io_limit, 875 secondary_status, 876 memory_base, 877 memory_limit, 878 prefetchable_memory_base, 879 prefetchable_memory_limit, 880 prefetchable_base_upper_32_bits, 881 prefetchable_limit_upper_32_bits, 882 io_base_upper_16_bits, 883 io_limit_upper_16_bits, 884 capability_pointer, 885 reserved0, 886 reserved1, 887 expansion_rom_base_address, 888 interrupt_line, 889 interrupt_pin, 890 bridge_control, 891 } 892 } 893 894 /// @brief 读取type为0x2的pci设备的header 895 /// 本函数只应被 pci_read_header()调用 896 /// @param common_header 共有头部 897 /// @param bus_device_function PCI设备的唯一标识 898 /// @return Pci_Device_Structure_Pci_to_Cardbus_Bridge pci-to-cardbus 桥设备头部 899 fn pci_read_pci_to_cardbus_bridge_header( 900 common_header: PciDeviceStructureHeader, 901 busdevicefunction: &BusDeviceFunction, 902 ) -> PciDeviceStructurePciToCardbusBridge { 903 let cardbus_socket_ex_ca_base_address = pci_root_0().read_config(*busdevicefunction, 0x10); 904 905 let result = pci_root_0().read_config(*busdevicefunction, 0x14); 906 let offset_of_capabilities_list = result as u8; 907 let reserved = (result >> 8) as u8; 908 let secondary_status = (result >> 16) as u16; 909 910 let result = pci_root_0().read_config(*busdevicefunction, 0x18); 911 let pci_bus_number = result as u8; 912 let card_bus_bus_number = (result >> 8) as u8; 913 let subordinate_bus_number = (result >> 16) as u8; 914 let card_bus_latency_timer = (result >> 24) as u8; 915 916 let memory_base_address0 = pci_root_0().read_config(*busdevicefunction, 0x1c); 917 let memory_limit0 = pci_root_0().read_config(*busdevicefunction, 0x20); 918 let memory_base_address1 = pci_root_0().read_config(*busdevicefunction, 0x24); 919 let memory_limit1 = pci_root_0().read_config(*busdevicefunction, 0x28); 920 921 let io_base_address0 = pci_root_0().read_config(*busdevicefunction, 0x2c); 922 let io_limit0 = pci_root_0().read_config(*busdevicefunction, 0x30); 923 let io_base_address1 = pci_root_0().read_config(*busdevicefunction, 0x34); 924 let io_limit1 = pci_root_0().read_config(*busdevicefunction, 0x38); 925 let result = pci_root_0().read_config(*busdevicefunction, 0x3c); 926 let interrupt_line = result as u8; 927 let interrupt_pin = (result >> 8) as u8; 928 let bridge_control = (result >> 16) as u16; 929 930 let result = pci_root_0().read_config(*busdevicefunction, 0x40); 931 let subsystem_device_id = result as u16; 932 let subsystem_vendor_id = (result >> 16) as u16; 933 934 let pc_card_legacy_mode_base_address_16_bit = 935 pci_root_0().read_config(*busdevicefunction, 0x44); 936 PciDeviceStructurePciToCardbusBridge { 937 common_header, 938 cardbus_socket_ex_ca_base_address, 939 offset_of_capabilities_list, 940 reserved, 941 secondary_status, 942 pci_bus_number, 943 card_bus_bus_number, 944 subordinate_bus_number, 945 card_bus_latency_timer, 946 memory_base_address0, 947 memory_limit0, 948 memory_base_address1, 949 memory_limit1, 950 io_base_address0, 951 io_limit0, 952 io_base_address1, 953 io_limit1, 954 interrupt_line, 955 interrupt_pin, 956 bridge_control, 957 subsystem_device_id, 958 subsystem_vendor_id, 959 pc_card_legacy_mode_base_address_16_bit, 960 } 961 } 962 963 /// @brief 检查所有bus上的设备并将其加入链表 964 /// @return 成功返回ok(),失败返回失败原因 965 fn pci_check_all_buses() -> Result<u8, PciError> { 966 info!("Checking all devices in PCI bus..."); 967 let busdevicefunction = BusDeviceFunction { 968 bus: 0, 969 device: 0, 970 function: 0, 971 }; 972 let header = pci_read_header(busdevicefunction, false)?; 973 let common_header = header.common_header(); 974 pci_check_bus(0)?; 975 if common_header.header_type & 0x80 != 0 { 976 for function in 1..8 { 977 pci_check_bus(function)?; 978 } 979 } 980 Ok(0) 981 } 982 /// @brief 检查特定设备并将其加入链表 983 /// @return 成功返回ok(),失败返回失败原因 984 fn pci_check_function(busdevicefunction: BusDeviceFunction) -> Result<u8, PciError> { 985 //debug!("PCI check function {}", busdevicefunction.function); 986 let header = match pci_read_header(busdevicefunction, true) { 987 Ok(header) => header, 988 Err(PciError::GetWrongHeader) => { 989 return Ok(255); 990 } 991 Err(e) => { 992 return Err(e); 993 } 994 }; 995 let common_header = header.common_header(); 996 if (common_header.class_code == 0x06) 997 && (common_header.subclass == 0x04 || common_header.subclass == 0x09) 998 { 999 let pci_to_pci_bridge = header 1000 .as_pci_to_pci_bridge_device() 1001 .ok_or(PciError::PciDeviceStructureTransformError)?; 1002 let secondary_bus = pci_to_pci_bridge.secondary_bus_number; 1003 pci_check_bus(secondary_bus)?; 1004 } 1005 Ok(0) 1006 } 1007 1008 /// @brief 检查device上的设备并将其加入链表 1009 /// @return 成功返回ok(),失败返回失败原因 1010 fn pci_check_device(bus: u8, device: u8) -> Result<u8, PciError> { 1011 //debug!("PCI check device {}", device); 1012 let busdevicefunction = BusDeviceFunction { 1013 bus, 1014 device, 1015 function: 0, 1016 }; 1017 let header = match pci_read_header(busdevicefunction, false) { 1018 Ok(header) => header, 1019 Err(PciError::GetWrongHeader) => { 1020 //设备不存在,直接返回即可,不用终止遍历 1021 return Ok(255); 1022 } 1023 Err(e) => { 1024 return Err(e); 1025 } 1026 }; 1027 pci_check_function(busdevicefunction)?; 1028 let common_header = header.common_header(); 1029 if common_header.header_type & 0x80 != 0 { 1030 debug!( 1031 "Detected multi func device in bus{},device{}", 1032 busdevicefunction.bus, busdevicefunction.device 1033 ); 1034 // 这是一个多function的设备,因此查询剩余的function 1035 for function in 1..8 { 1036 let busdevicefunction = BusDeviceFunction { 1037 bus, 1038 device, 1039 function, 1040 }; 1041 pci_check_function(busdevicefunction)?; 1042 } 1043 } 1044 Ok(0) 1045 } 1046 /// @brief 检查该bus上的设备并将其加入链表 1047 /// @return 成功返回ok(),失败返回失败原因 1048 fn pci_check_bus(bus: u8) -> Result<u8, PciError> { 1049 //debug!("PCI check bus {}", bus); 1050 for device in 0..32 { 1051 pci_check_device(bus, device)?; 1052 } 1053 Ok(0) 1054 } 1055 1056 /// pci初始化函数 1057 #[inline(never)] 1058 pub fn pci_init() { 1059 info!("Initializing PCI bus..."); 1060 pci_bus_subsys_init().expect("Failed to init pci bus subsystem"); 1061 if let Err(e) = pci_check_all_buses() { 1062 error!("pci init failed when checking bus because of error: {}", e); 1063 return; 1064 } 1065 info!( 1066 "Total pci device and function num = {}", 1067 PCI_DEVICE_LINKEDLIST.num() 1068 ); 1069 let list = PCI_DEVICE_LINKEDLIST.read(); 1070 for box_pci_device in list.iter() { 1071 let common_header = box_pci_device.common_header(); 1072 match box_pci_device.header_type() { 1073 HeaderType::Standard if common_header.status & 0x10 != 0 => { 1074 info!("Found pci standard device with class code ={} subclass={} status={:#x} cap_pointer={:#x} vendor={:#x}, device id={:#x},bdf={}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_standard_device().unwrap().capabilities_pointer,common_header.vendor_id, common_header.device_id,common_header.bus_device_function); 1075 } 1076 HeaderType::Standard => { 1077 info!( 1078 "Found pci standard device with class code ={} subclass={} status={:#x} ", 1079 common_header.class_code, common_header.subclass, common_header.status 1080 ); 1081 } 1082 HeaderType::PciPciBridge if common_header.status & 0x10 != 0 => { 1083 info!("Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} cap_pointer={:#x}", common_header.class_code, common_header.subclass, common_header.status, box_pci_device.as_pci_to_pci_bridge_device().unwrap().capability_pointer); 1084 } 1085 HeaderType::PciPciBridge => { 1086 info!( 1087 "Found pci-to-pci bridge device with class code ={} subclass={} status={:#x} ", 1088 common_header.class_code, common_header.subclass, common_header.status 1089 ); 1090 } 1091 HeaderType::PciCardbusBridge => { 1092 info!( 1093 "Found pcicardbus bridge device with class code ={} subclass={} status={:#x} ", 1094 common_header.class_code, common_header.subclass, common_header.status 1095 ); 1096 } 1097 HeaderType::Unrecognised(_) => {} 1098 } 1099 } 1100 1101 info!("PCI bus initialized."); 1102 } 1103 1104 /// An identifier for a PCI bus, device and function. 1105 /// PCI设备的唯一标识 1106 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 1107 pub struct BusDeviceFunction { 1108 /// The PCI bus number, between 0 and 255. 1109 pub bus: u8, 1110 /// The device number on the bus, between 0 and 31. 1111 pub device: u8, 1112 /// The function number of the device, between 0 and 7. 1113 pub function: u8, 1114 } 1115 impl BusDeviceFunction { 1116 /// Returns whether the device and function numbers are valid, i.e. the device is between 0 and 1117 ///@brief 检测BusDeviceFunction实例是否有效 1118 ///@param self 1119 ///@return bool 是否有效 1120 #[allow(dead_code)] 1121 pub fn valid(&self) -> bool { 1122 self.device < 32 && self.function < 8 1123 } 1124 } 1125 1126 impl From<BusDeviceFunction> for String { 1127 /// # 函数的功能 1128 /// 这里提供一个由BusDeviceFunction到dddd:bb:vv.f字符串的转换函数,主要用于转换成设备的名称(pci设备的名称一般是诸如0000:00:00.1这种) 1129 fn from(value: BusDeviceFunction) -> Self { 1130 //需要注意,这里的0000应该是所谓的“域号”(Domain ID),但是尚不知道是如何获得的,故硬编码在这里 1131 //todo:实现域号的获取 1132 format!( 1133 "0000:{:02x}:{:02x}.{}", 1134 value.bus, value.device, value.function 1135 ) 1136 } 1137 } 1138 ///实现BusDeviceFunction的Display trait,使其可以直接输出 1139 impl Display for BusDeviceFunction { 1140 fn fmt(&self, f: &mut Formatter) -> fmt::Result { 1141 write!( 1142 f, 1143 "bus {} device {} function{}", 1144 self.bus, self.device, self.function 1145 ) 1146 } 1147 } 1148 /// The location allowed for a memory BAR. 1149 /// memory BAR的三种情况 1150 #[derive(Copy, Clone, Debug, Eq, PartialEq)] 1151 pub enum MemoryBarType { 1152 /// The BAR has a 32-bit address and can be mapped anywhere in 32-bit address space. 1153 Width32, 1154 /// The BAR must be mapped below 1MiB. 1155 Below1MiB, 1156 /// The BAR has a 64-bit address and can be mapped anywhere in 64-bit address space. 1157 Width64, 1158 } 1159 ///实现MemoryBarType与u8的类型转换 1160 impl From<MemoryBarType> for u8 { 1161 fn from(bar_type: MemoryBarType) -> Self { 1162 match bar_type { 1163 MemoryBarType::Width32 => 0, 1164 MemoryBarType::Below1MiB => 1, 1165 MemoryBarType::Width64 => 2, 1166 } 1167 } 1168 } 1169 ///实现MemoryBarType与u8的类型转换 1170 impl TryFrom<u8> for MemoryBarType { 1171 type Error = PciError; 1172 fn try_from(value: u8) -> Result<Self, Self::Error> { 1173 match value { 1174 0 => Ok(Self::Width32), 1175 1 => Ok(Self::Below1MiB), 1176 2 => Ok(Self::Width64), 1177 _ => Err(PciError::InvalidBarType), 1178 } 1179 } 1180 } 1181 1182 /// Information about a PCI Base Address Register. 1183 /// BAR的三种类型 Memory/IO/Unused 1184 #[derive(Clone, Debug)] 1185 pub enum BarInfo { 1186 /// The BAR is for a memory region. 1187 Memory { 1188 /// The size of the BAR address and where it can be located. 1189 address_type: MemoryBarType, 1190 /// If true, then reading from the region doesn't have side effects. The CPU may cache reads 1191 /// and merge repeated stores. 1192 prefetchable: bool, 1193 /// The memory address, always 16-byte aligned. 1194 address: u64, 1195 /// The size of the BAR in bytes. 1196 size: u32, 1197 /// The virtaddress for a memory bar(mapped). 1198 mmio_guard: Arc<MMIOSpaceGuard>, 1199 }, 1200 /// The BAR is for an I/O region. 1201 IO { 1202 /// The I/O address, always 4-byte aligned. 1203 address: u32, 1204 /// The size of the BAR in bytes. 1205 size: u32, 1206 }, 1207 Unused, 1208 } 1209 1210 impl BarInfo { 1211 /// Returns the address and size of this BAR if it is a memory bar, or `None` if it is an IO 1212 /// BAR. 1213 ///@brief 得到某个bar的memory_address与size(前提是他的类型为Memory Bar) 1214 ///@param self 1215 ///@return Option<(u64, u32) 是Memory Bar返回内存地址与大小,不是则返回None 1216 pub fn memory_address_size(&self) -> Option<(u64, u32)> { 1217 if let Self::Memory { address, size, .. } = self { 1218 Some((*address, *size)) 1219 } else { 1220 None 1221 } 1222 } 1223 ///@brief 得到某个bar的virtaddress(前提是他的类型为Memory Bar) 1224 ///@param self 1225 ///@return Option<(u64) 是Memory Bar返回映射的虚拟地址,不是则返回None 1226 pub fn virtual_address(&self) -> Option<VirtAddr> { 1227 if let Self::Memory { mmio_guard, .. } = self { 1228 Some(mmio_guard.vaddr()) 1229 } else { 1230 None 1231 } 1232 } 1233 } 1234 ///实现BarInfo的Display trait,自定义输出 1235 impl Display for BarInfo { 1236 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 1237 match self { 1238 Self::Memory { 1239 address_type, 1240 prefetchable, 1241 address, 1242 size, 1243 mmio_guard, 1244 } => write!( 1245 f, 1246 "Memory space at {:#010x}, size {}, type {:?}, prefetchable {}, mmio_guard: {:?}", 1247 address, size, address_type, prefetchable, mmio_guard 1248 ), 1249 Self::IO { address, size } => { 1250 write!(f, "I/O space at {:#010x}, size {}", address, size) 1251 } 1252 Self::Unused => { 1253 write!(f, "Unused bar") 1254 } 1255 } 1256 } 1257 } 1258 // todo 增加对桥的bar的支持 1259 pub trait PciDeviceBar {} 1260 1261 ///一个普通PCI设备(非桥)有6个BAR寄存器,PciStandardDeviceBar存储其全部信息 1262 #[derive(Clone, Debug)] 1263 pub struct PciStandardDeviceBar { 1264 bar0: BarInfo, 1265 bar1: BarInfo, 1266 bar2: BarInfo, 1267 bar3: BarInfo, 1268 bar4: BarInfo, 1269 bar5: BarInfo, 1270 } 1271 1272 impl PciStandardDeviceBar { 1273 ///@brief 得到某个bar的barinfo 1274 ///@param self ,bar_index(0-5) 1275 ///@return Result<&BarInfo, PciError> bar_index在0-5则返回对应的bar_info结构体,超出范围则返回错误 1276 pub fn get_bar(&self, bar_index: u8) -> Result<&BarInfo, PciError> { 1277 match bar_index { 1278 0 => Ok(&self.bar0), 1279 1 => Ok(&self.bar1), 1280 2 => Ok(&self.bar2), 1281 3 => Ok(&self.bar3), 1282 4 => Ok(&self.bar4), 1283 5 => Ok(&self.bar5), 1284 _ => Err(PciError::InvalidBarType), 1285 } 1286 } 1287 } 1288 ///实现PciStandardDeviceBar的Display trait,使其可以直接输出 1289 impl Display for PciStandardDeviceBar { 1290 fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result { 1291 write!( 1292 f, 1293 "\r\nBar0:{}\r\nBar1:{}\r\nBar2:{}\r\nBar3:{}\r\nBar4:{}\r\nBar5:{}", 1294 self.bar0, self.bar1, self.bar2, self.bar3, self.bar4, self.bar5 1295 ) 1296 } 1297 } 1298 ///实现PciStandardDeviceBar的Default trait,使其可以简单初始化 1299 impl Default for PciStandardDeviceBar { 1300 fn default() -> Self { 1301 PciStandardDeviceBar { 1302 bar0: BarInfo::Unused, 1303 bar1: BarInfo::Unused, 1304 bar2: BarInfo::Unused, 1305 bar3: BarInfo::Unused, 1306 bar4: BarInfo::Unused, 1307 bar5: BarInfo::Unused, 1308 } 1309 } 1310 } 1311 1312 ///@brief 将某个pci设备的bar寄存器读取值后映射到虚拟地址 1313 ///@param self ,bus_device_function PCI设备的唯一标识符 1314 ///@return Result<PciStandardDeviceBar, PciError> 成功则返回对应的PciStandardDeviceBar结构体,失败则返回错误类型 1315 pub fn pci_bar_init( 1316 bus_device_function: BusDeviceFunction, 1317 ) -> Result<PciStandardDeviceBar, PciError> { 1318 let mut device_bar: PciStandardDeviceBar = PciStandardDeviceBar::default(); 1319 let mut bar_index_ignore: u8 = 255; 1320 for bar_index in 0..6 { 1321 if bar_index == bar_index_ignore { 1322 continue; 1323 } 1324 let bar_info; 1325 let bar_orig = 1326 pci_root_0().read_config(bus_device_function, (BAR0_OFFSET + 4 * bar_index).into()); 1327 pci_root_0().write_config( 1328 bus_device_function, 1329 (BAR0_OFFSET + 4 * bar_index).into(), 1330 0xffffffff, 1331 ); 1332 let size_mask = 1333 pci_root_0().read_config(bus_device_function, (BAR0_OFFSET + 4 * bar_index).into()); 1334 // A wrapping add is necessary to correctly handle the case of unused BARs, which read back 1335 // as 0, and should be treated as size 0. 1336 let size = (!(size_mask & 0xfffffff0)).wrapping_add(1); 1337 //debug!("bar_orig:{:#x},size: {:#x}", bar_orig,size); 1338 // Restore the original value. 1339 pci_root_0().write_config( 1340 bus_device_function, 1341 (BAR0_OFFSET + 4 * bar_index).into(), 1342 bar_orig, 1343 ); 1344 if size == 0 { 1345 continue; 1346 } 1347 if bar_orig & 0x00000001 == 0x00000001 { 1348 // I/O space 1349 let address = bar_orig & 0xfffffffc; 1350 bar_info = BarInfo::IO { address, size }; 1351 } else { 1352 // Memory space 1353 let mut address = u64::from(bar_orig & 0xfffffff0); 1354 let prefetchable = bar_orig & 0x00000008 != 0; 1355 let address_type = MemoryBarType::try_from(((bar_orig & 0x00000006) >> 1) as u8)?; 1356 if address_type == MemoryBarType::Width64 { 1357 if bar_index >= 5 { 1358 return Err(PciError::InvalidBarType); 1359 } 1360 let address_top = pci_root_0().read_config( 1361 bus_device_function, 1362 (BAR0_OFFSET + 4 * (bar_index + 1)).into(), 1363 ); 1364 address |= u64::from(address_top) << 32; 1365 bar_index_ignore = bar_index + 1; //下个bar跳过,因为64位的memory bar覆盖了两个bar 1366 } 1367 let pci_address = PciAddr::new(address as usize); 1368 let paddr = PciArch::address_pci_to_physical(pci_address); //PCI总线域物理地址转换为存储器域物理地址 1369 1370 let space_guard: Arc<MMIOSpaceGuard>; 1371 unsafe { 1372 let size_want = size as usize; 1373 let tmp = mmio_pool() 1374 .create_mmio(size_want) 1375 .map_err(|_| PciError::CreateMmioError)?; 1376 space_guard = Arc::new(tmp); 1377 //debug!("Pci bar init: mmio space: {space_guard:?}, paddr={paddr:?}, size_want={size_want}"); 1378 assert!( 1379 space_guard.map_phys(paddr, size_want).is_ok(), 1380 "pci_bar_init: map_phys failed" 1381 ); 1382 } 1383 bar_info = BarInfo::Memory { 1384 address_type, 1385 prefetchable, 1386 address, 1387 size, 1388 mmio_guard: space_guard, 1389 }; 1390 } 1391 match bar_index { 1392 0 => { 1393 device_bar.bar0 = bar_info; 1394 } 1395 1 => { 1396 device_bar.bar1 = bar_info; 1397 } 1398 2 => { 1399 device_bar.bar2 = bar_info; 1400 } 1401 3 => { 1402 device_bar.bar3 = bar_info; 1403 } 1404 4 => { 1405 device_bar.bar4 = bar_info; 1406 } 1407 5 => { 1408 device_bar.bar5 = bar_info; 1409 } 1410 _ => {} 1411 } 1412 } 1413 //debug!("pci_device_bar:{}", device_bar); 1414 return Ok(device_bar); 1415 } 1416 1417 /// Information about a PCI device capability. 1418 /// PCI设备的capability的信息 1419 #[derive(Debug, Copy, Clone, Eq, PartialEq)] 1420 pub struct CapabilityInfo { 1421 /// The offset of the capability in the PCI configuration space of the device function. 1422 pub offset: u8, 1423 /// The ID of the capability. 1424 pub id: u8, 1425 /// The third and fourth bytes of the capability, to save reading them again. 1426 pub private_header: u16, 1427 } 1428 1429 /// Iterator over capabilities for a device. 1430 /// 创建迭代器以遍历PCI设备的capability 1431 #[derive(Debug)] 1432 pub struct CapabilityIterator { 1433 pub bus_device_function: BusDeviceFunction, 1434 pub next_capability_offset: Option<u8>, 1435 } 1436 1437 impl Iterator for CapabilityIterator { 1438 type Item = CapabilityInfo; 1439 fn next(&mut self) -> Option<Self::Item> { 1440 let offset = self.next_capability_offset?; 1441 1442 // Read the first 4 bytes of the capability. 1443 let capability_header = pci_root_0().read_config(self.bus_device_function, offset.into()); 1444 let id = capability_header as u8; 1445 let next_offset = (capability_header >> 8) as u8; 1446 let private_header = (capability_header >> 16) as u16; 1447 1448 self.next_capability_offset = if next_offset == 0 { 1449 None 1450 } else if next_offset < 64 || next_offset & 0x3 != 0 { 1451 warn!("Invalid next capability offset {:#04x}", next_offset); 1452 None 1453 } else { 1454 Some(next_offset) 1455 }; 1456 1457 Some(CapabilityInfo { 1458 offset, 1459 id, 1460 private_header, 1461 }) 1462 } 1463 } 1464 1465 /// Information about a PCIe device capability. 1466 /// PCIe设备的external capability的信息 1467 #[derive(Debug, Copy, Clone, Eq, PartialEq)] 1468 pub struct ExternalCapabilityInfo { 1469 /// The offset of the capability in the PCI configuration space of the device function. 1470 pub offset: u16, 1471 /// The ID of the capability. 1472 pub id: u16, 1473 /// The third and fourth bytes of the capability, to save reading them again. 1474 pub capability_version: u8, 1475 } 1476 1477 /// Iterator over capabilities for a device. 1478 /// 创建迭代器以遍历PCIe设备的external capability 1479 #[derive(Debug)] 1480 pub struct ExternalCapabilityIterator<'a> { 1481 pub root: &'a PciRoot, 1482 pub bus_device_function: BusDeviceFunction, 1483 pub next_capability_offset: Option<u16>, 1484 } 1485 impl<'a> Iterator for ExternalCapabilityIterator<'a> { 1486 type Item = ExternalCapabilityInfo; 1487 fn next(&mut self) -> Option<Self::Item> { 1488 let offset = self.next_capability_offset?; 1489 1490 // Read the first 4 bytes of the capability. 1491 let capability_header = self.root.read_config(self.bus_device_function, offset); 1492 let id = capability_header as u16; 1493 let next_offset = (capability_header >> 20) as u16; 1494 let capability_version = ((capability_header >> 16) & 0xf) as u8; 1495 1496 self.next_capability_offset = if next_offset == 0 { 1497 None 1498 } else if next_offset < 0x100 || next_offset & 0x3 != 0 { 1499 warn!("Invalid next capability offset {:#04x}", next_offset); 1500 None 1501 } else { 1502 Some(next_offset) 1503 }; 1504 1505 Some(ExternalCapabilityInfo { 1506 offset, 1507 id, 1508 capability_version, 1509 }) 1510 } 1511 } 1512