xref: /DragonOS/kernel/src/driver/net/e1000e/e1000e.rs (revision 77799ccaaca276fe127448d169f0e035837cce44)
1 // 参考手册: PCIe* GbE Controllers Open Source Software Developer’s Manual
2 // Refernce: PCIe* GbE Controllers Open Source Software Developer’s Manual
3 
4 use alloc::vec::Vec;
5 use core::intrinsics::unlikely;
6 use core::mem::size_of;
7 use core::ptr::NonNull;
8 use core::slice::{from_raw_parts, from_raw_parts_mut};
9 use core::sync::atomic::{compiler_fence, Ordering};
10 
11 use super::e1000e_driver::e1000e_driver_init;
12 use crate::driver::net::dma::{dma_alloc, dma_dealloc};
13 use crate::driver::pci::pci::{
14     get_pci_device_structure_mut, PciDeviceStructure, PciDeviceStructureGeneralDevice, PciError,
15     PCI_DEVICE_LINKEDLIST,
16 };
17 use crate::driver::pci::pci_irq::{IrqCommonMsg, IrqMsg, IrqSpecificMsg, PciInterrupt, IRQ};
18 use crate::include::bindings::bindings::pt_regs;
19 use crate::libs::volatile::{ReadOnly, Volatile, VolatileReadable, VolatileWritable, WriteOnly};
20 use crate::net::net_core::poll_ifaces_try_lock_onetime;
21 use crate::{kdebug, kinfo};
22 
23 const PAGE_SIZE: usize = 4096;
24 const NETWORK_CLASS: u8 = 0x2;
25 const ETHERNET_SUBCLASS: u8 = 0x0;
26 // e1000e系列网卡的device id列表,来源:https://admin.pci-ids.ucw.cz/read/PC/8086
27 const E1000E_DEVICE_ID: [u16; 14] = [
28     0x10d3, // 8574L, qemu default
29     0x10cc, // 82567LM-2
30     0x10cd, // 82567LF-2
31     0x105f, // 82571EB
32     0x1060, // 82571EB
33     0x107f, // 82572EI
34     0x109a, // 82573L
35     0x10ea, // 82577LM
36     0x10eb, // 82577LC
37     0x10ef, // 82578DM
38     0x10f0, // 82578DC
39     0x1502, // 82579LM
40     0x1503, // 82579V
41     0x150c, // 82583V
42 ];
43 
44 // e1000e网卡与BAR有关的常量
45 // BAR0空间大小(128KB)
46 const E1000E_BAR_REG_SIZE: u32 = 128 * 1024;
47 // BAR0空间对齐(64bit)
48 const E1000E_BAR_REG_ALIGN: u8 = 64;
49 // 单个寄存器大小(32bit, 4字节)
50 const E1000E_REG_SIZE: u8 = 4;
51 
52 // TxBuffer和RxBuffer的大小(DMA页)
53 const E1000E_DMA_PAGES: usize = 1;
54 
55 // 中断相关
56 const E1000E_RECV_VECTOR: u16 = 57;
57 
58 // napi队列中暂时存储的buffer个数
59 const E1000E_RECV_NAPI: usize = 1024;
60 
61 // 收/发包的描述符结构 pp.24 Table 3-1
62 #[repr(C)]
63 #[derive(Copy, Clone, Debug)]
64 struct E1000ETransDesc {
65     addr: u64,
66     len: u16,
67     cso: u8,
68     cmd: u8,
69     status: u8,
70     css: u8,
71     special: u8,
72 }
73 // pp.54 Table 3-12
74 #[repr(C)]
75 #[derive(Copy, Clone, Debug)]
76 struct E1000ERecvDesc {
77     addr: u64,
78     len: u16,
79     chksum: u16,
80     status: u16,
81     error: u8,
82     special: u8,
83 }
84 #[derive(Copy, Clone)]
85 // Buffer的Copy只是指针操作,不涉及实际数据的复制,因此要小心使用,确保不同的buffer不会使用同一块内存
86 pub struct E1000EBuffer {
87     buffer: NonNull<u8>,
88     paddr: usize,
89     // length字段为0则表示这个buffer是一个占位符,不指向实际内存
90     // the buffer is empty and no page is allocated if length field is set 0
91     length: usize,
92 }
93 
94 impl E1000EBuffer {
95     pub fn new(length: usize) -> Self {
96         assert!(length <= PAGE_SIZE);
97         if unlikely(length == 0) {
98             // 在某些情况下,我们并不需要实际分配buffer,只需要提供一个占位符即可
99             // we dont need to allocate dma pages for buffer in some cases
100             E1000EBuffer {
101                 buffer: NonNull::dangling(),
102                 paddr: 0,
103                 length: 0,
104             }
105         } else {
106             let (paddr, vaddr) = dma_alloc(E1000E_DMA_PAGES);
107             E1000EBuffer {
108                 buffer: vaddr,
109                 paddr,
110                 length,
111             }
112         }
113     }
114 
115     pub fn as_addr(&self) -> NonNull<u8> {
116         assert!(self.length != 0);
117         return self.buffer;
118     }
119 
120     pub fn as_addr_u64(&self) -> u64 {
121         assert!(self.length != 0);
122         return self.buffer.as_ptr() as u64;
123     }
124 
125     pub fn as_paddr(&self) -> usize {
126         assert!(self.length != 0);
127         return self.paddr;
128     }
129 
130     pub fn as_slice(&self) -> &[u8] {
131         assert!(self.length != 0);
132         return unsafe { from_raw_parts(self.buffer.as_ptr(), self.length) };
133     }
134 
135     pub fn as_mut_slice(&mut self) -> &mut [u8] {
136         assert!(self.length != 0);
137         return unsafe { from_raw_parts_mut(self.buffer.as_ptr(), self.length) };
138     }
139 
140     pub fn set_length(&mut self, length: usize) {
141         self.length = length;
142     }
143 
144     pub fn len(&self) -> usize {
145         return self.length;
146     }
147     // 释放buffer内部的dma_pages,需要小心使用
148     pub fn free_buffer(self) -> () {
149         if self.length != 0 {
150             unsafe { dma_dealloc(self.paddr, self.buffer, E1000E_DMA_PAGES) };
151         }
152     }
153 }
154 
155 // 中断处理函数, 调用协议栈的poll函数,未来可能会用napi来替换这里
156 // Interrupt handler
157 unsafe extern "C" fn e1000e_irq_handler(irq_num: u64, irq_paramer: u64, regs: *mut pt_regs) {
158     poll_ifaces_try_lock_onetime().ok();
159 }
160 
161 pub struct E1000EDevice {
162     // 设备寄存器
163     // device registers
164     general_regs: NonNull<GeneralRegs>,
165     interrupt_regs: NonNull<InterruptRegs>,
166     rctl_regs: NonNull<ReceiveCtrlRegs>,
167     receive_regs: NonNull<ReceiveRegs>,
168     tctl_regs: NonNull<TransmitCtrlRegs>,
169     transimit_regs: NonNull<TransimitRegs>,
170     pcie_regs: NonNull<PCIeRegs>,
171 
172     // descriptor环形队列,在操作系统与设备之间共享
173     // descriptor rings are shared between os and device
174     recv_desc_ring: &'static mut [E1000ERecvDesc],
175     trans_desc_ring: &'static mut [E1000ETransDesc],
176     recv_ring_pa: usize,
177     trans_ring_pa: usize,
178 
179     // 设备收/发包缓冲区数组
180     // buffers of receive/transmit packets
181     recv_buffers: Vec<E1000EBuffer>,
182     trans_buffers: Vec<E1000EBuffer>,
183     mac: [u8; 6],
184     first_trans: bool,
185     // napi队列,用于存放在中断关闭期间通过轮询收取的buffer
186     // the napi queue is designed to save buffer/packet when the interrupt is close
187     // NOTE: this feature is not completely implemented and not used in the current version
188     napi_buffers: Vec<E1000EBuffer>,
189     napi_buffer_head: usize,
190     napi_buffer_tail: usize,
191     napi_buffer_empty: bool,
192 }
193 
194 impl E1000EDevice {
195     // 从PCI标准设备进行驱动初始化
196     // init the device for PCI standard device struct
197     pub fn new(device: &mut PciDeviceStructureGeneralDevice) -> Result<Self, E1000EPciError> {
198         // 从BAR0获取我们需要的寄存器
199         // Build registers sturcts from BAR0
200         device.bar_ioremap().unwrap()?;
201         device.enable_master();
202         let bar = device.bar().ok_or(E1000EPciError::BarGetFailed)?;
203         let bar0 = bar.get_bar(0)?;
204         let (address, size) = bar0
205             .memory_address_size()
206             .ok_or(E1000EPciError::UnexpectedBarType)?;
207         if address == 0 {
208             return Err(E1000EPciError::BarNotAllocated);
209         }
210         if size != E1000E_BAR_REG_SIZE {
211             return Err(E1000EPciError::UnexpectedBarSize);
212         }
213         let vaddress = bar0
214             .virtual_address()
215             .ok_or(E1000EPciError::BarGetVaddrFailed)?
216             .data() as u64;
217 
218         // 初始化msi中断
219         // initialize msi interupt
220         let irq_vector = device.irq_vector_mut().unwrap();
221         irq_vector.push(E1000E_RECV_VECTOR);
222         device.irq_init(IRQ::PCI_IRQ_MSI).expect("IRQ Init Failed");
223         let msg = IrqMsg {
224             irq_common_message: IrqCommonMsg::init_from(
225                 0,
226                 "E1000E_RECV_IRQ",
227                 0,
228                 e1000e_irq_handler,
229                 None,
230             ),
231             irq_specific_message: IrqSpecificMsg::msi_default(),
232         };
233         device.irq_install(msg)?;
234         device.irq_enable(true)?;
235 
236         let general_regs: NonNull<GeneralRegs> =
237             get_register_ptr(vaddress, E1000E_GENERAL_REGS_OFFSET);
238         let interrupt_regs: NonNull<InterruptRegs> =
239             get_register_ptr(vaddress, E1000E_INTERRRUPT_REGS_OFFSET);
240         let rctl_regs: NonNull<ReceiveCtrlRegs> =
241             get_register_ptr(vaddress, E1000E_RECEIVE_CTRL_REG_OFFSET);
242         let receive_regs: NonNull<ReceiveRegs> =
243             get_register_ptr(vaddress, E1000E_RECEIVE_REGS_OFFSET);
244         let tctl_regs: NonNull<TransmitCtrlRegs> =
245             get_register_ptr(vaddress, E1000E_TRANSMIT_CTRL_REG_OFFSET);
246         let transimit_regs: NonNull<TransimitRegs> =
247             get_register_ptr(vaddress, E1000E_TRANSMIT_REGS_OFFSET);
248         let pcie_regs: NonNull<PCIeRegs> = get_register_ptr(vaddress, E1000E_PCIE_REGS_OFFSET);
249         let ra_regs: NonNull<ReceiveAddressRegs> =
250             get_register_ptr(vaddress, E1000E_RECEIVE_ADDRESS_REGS_OFFSET);
251         // 开始设备初始化 14.3
252         // Initialization Sequence
253         unsafe {
254             let mut ctrl = volread!(general_regs, ctrl);
255             // 关闭中断
256             // close the interrupt
257             volwrite!(interrupt_regs, imc, E1000E_IMC_CLEAR);
258             //SW RESET
259             volwrite!(general_regs, ctrl, ctrl | E1000E_CTRL_RST);
260             compiler_fence(Ordering::AcqRel);
261             // PHY RESET
262             ctrl = volread!(general_regs, ctrl);
263             volwrite!(general_regs, ctrl, ctrl | E1000E_CTRL_PHY_RST);
264             volwrite!(general_regs, ctrl, ctrl);
265             // 关闭中断
266             // close the interrupt
267             volwrite!(interrupt_regs, imc, E1000E_IMC_CLEAR);
268             let mut gcr = volread!(pcie_regs, gcr);
269             gcr = gcr | (1 << 22);
270             volwrite!(pcie_regs, gcr, gcr);
271             compiler_fence(Ordering::AcqRel);
272             // PHY Initialization 14.8.1
273             // MAC/PHY Link Setup 14.8.2
274             ctrl = volread!(general_regs, ctrl);
275             ctrl &= !(E1000E_CTRL_FRCSPD | E1000E_CTRL_FRCDPLX);
276             volwrite!(general_regs, ctrl, ctrl | E1000E_CTRL_SLU);
277         }
278         let status = unsafe { volread!(general_regs, status) };
279         kdebug!("Status: {status:#X}");
280 
281         // 读取设备的mac地址
282         // Read mac address
283         let ral = unsafe { volread!(ra_regs, ral0) };
284         let rah = unsafe { volread!(ra_regs, rah0) };
285         let mac: [u8; 6] = [
286             ((ral >> 0) & 0xFF) as u8,
287             ((ral >> 8) & 0xFF) as u8,
288             ((ral >> 16) & 0xFF) as u8,
289             ((ral >> 24) & 0xFF) as u8,
290             ((rah >> 0) & 0xFF) as u8,
291             ((rah >> 8) & 0xFF) as u8,
292         ];
293         // 初始化receive和transimit descriptor环形队列
294         // initialize receive and transimit desciptor ring
295         let (recv_ring_pa, recv_ring_va) = dma_alloc(E1000E_DMA_PAGES);
296         let (trans_ring_pa, trans_ring_va) = dma_alloc(E1000E_DMA_PAGES);
297         let recv_ring_length = PAGE_SIZE / size_of::<E1000ERecvDesc>();
298         let trans_ring_length = PAGE_SIZE / size_of::<E1000ETransDesc>();
299 
300         let recv_desc_ring = unsafe {
301             from_raw_parts_mut::<E1000ERecvDesc>(recv_ring_va.as_ptr().cast(), recv_ring_length)
302         };
303         let trans_desc_ring = unsafe {
304             from_raw_parts_mut::<E1000ETransDesc>(trans_ring_va.as_ptr().cast(), trans_ring_length)
305         };
306 
307         // 初始化receive和transmit packet的缓冲区
308         // initialzie receive and transmit buffers
309         let mut recv_buffers: Vec<E1000EBuffer> = Vec::with_capacity(recv_ring_length);
310         let mut trans_buffers: Vec<E1000EBuffer> = Vec::with_capacity(trans_ring_length);
311 
312         // 初始化缓冲区与descriptor,descriptor 中的addr字典应当指向buffer的物理地址
313         // Receive buffers of appropriate size should be allocated and pointers to these buffers should be stored in the descriptor ring.
314         for i in 0..recv_ring_length {
315             let buffer = E1000EBuffer::new(PAGE_SIZE);
316             recv_desc_ring[i].addr = buffer.as_paddr() as u64;
317             recv_desc_ring[i].status = 0;
318             recv_buffers.push(buffer);
319         }
320         // Same as receive buffers
321         for i in 0..trans_ring_length {
322             let buffer = E1000EBuffer::new(PAGE_SIZE);
323             trans_desc_ring[i].addr = buffer.as_paddr() as u64;
324             trans_desc_ring[i].status = 1;
325             trans_buffers.push(buffer);
326         }
327 
328         // Receive Initialization 14.6
329         // Initialzie mutlicast table array to 0b
330         // 初始化MTA,遍历0x05200-0x053FC中每个寄存器,写入0b,一共128个寄存器
331         let mut mta_adress = vaddress + E1000E_MTA_REGS_START_OFFSET;
332         while mta_adress != vaddress + E1000E_MTA_REGS_END_OFFSET {
333             let mta: NonNull<MTARegs> = get_register_ptr(mta_adress, 0);
334             unsafe { volwrite!(mta, mta, 0) };
335             mta_adress = mta_adress + 4;
336         }
337         // 连续的寄存器读-写操作,放在同一个unsafe块中
338         unsafe {
339             // 设置descriptor环形队列的基地址
340             // Program the descriptor base address with the address of the region.
341             volwrite!(receive_regs, rdbal0, (recv_ring_pa) as u32);
342             volwrite!(receive_regs, rdbah0, (recv_ring_pa >> 32) as u32);
343             // 设置descriptor环形队列的长度
344             // Set the length register to the size of the descriptor ring.
345             volwrite!(receive_regs, rdlen0, PAGE_SIZE as u32);
346             // 设置队列的首尾指针
347             // Program the head and tail registers
348             volwrite!(receive_regs, rdh0, 0);
349             volwrite!(receive_regs, rdt0, (recv_ring_length - 1) as u32);
350             // 设置控制寄存器的相关功能 14.6.1
351             // Set the receive control register
352             volwrite!(
353                 rctl_regs,
354                 rctl,
355                 E1000E_RCTL_EN
356                     | E1000E_RCTL_BAM
357                     | E1000E_RCTL_BSIZE_4K
358                     | E1000E_RCTL_BSEX
359                     | E1000E_RCTL_SECRC
360             );
361 
362             // Transmit Initialization 14.7
363             // 开启发包descriptor的回写功能
364             // Program the TXDCTL register with the desired TX descriptor write-back policy
365             volwrite!(
366                 transimit_regs,
367                 txdctl,
368                 E1000E_TXDCTL_WTHRESH | E1000E_TXDCTL_GRAN
369             );
370             // 设置descriptor环形队列的基地址,长度与首尾指针
371             // Program the descriptor base address with the address of the region
372             volwrite!(transimit_regs, tdbal0, trans_ring_pa as u32);
373             volwrite!(transimit_regs, tdbah0, (trans_ring_pa >> 32) as u32);
374             // Set the length register to the size of the descriptor ring.
375             volwrite!(transimit_regs, tdlen0, PAGE_SIZE as u32);
376             // Program the head and tail registerss
377             volwrite!(transimit_regs, tdh0, 0);
378             volwrite!(transimit_regs, tdt0, 0);
379             // Program the TIPG register
380             volwrite!(
381                 tctl_regs,
382                 tipg,
383                 E1000E_TIPG_IPGT | E1000E_TIPG_IPGR1 | E1000E_TIPG_IPGR2
384             );
385             // Program the TCTL register.
386             volwrite!(
387                 tctl_regs,
388                 tctl,
389                 E1000E_TCTL_EN | E1000E_TCTL_PSP | E1000E_TCTL_CT_VAL | E1000E_TCTL_COLD_VAL
390             );
391 
392             let icr = volread!(interrupt_regs, icr);
393             volwrite!(interrupt_regs, icr, icr);
394             // 开启收包相关的中断
395             // Enable receive interrupts
396             let mut ims = volread!(interrupt_regs, ims);
397             ims = E1000E_IMS_LSC | E1000E_IMS_RXT0 | E1000E_IMS_RXDMT0 | E1000E_IMS_OTHER;
398             volwrite!(interrupt_regs, ims, ims);
399         }
400         return Ok(E1000EDevice {
401             general_regs,
402             interrupt_regs,
403             rctl_regs,
404             receive_regs,
405             tctl_regs,
406             transimit_regs,
407             pcie_regs,
408             recv_desc_ring,
409             trans_desc_ring,
410             recv_ring_pa,
411             trans_ring_pa,
412             recv_buffers,
413             trans_buffers,
414             mac,
415             first_trans: true,
416             napi_buffers: vec![E1000EBuffer::new(0); E1000E_RECV_NAPI],
417             napi_buffer_head: 0,
418             napi_buffer_tail: 0,
419             napi_buffer_empty: true,
420         });
421     }
422     pub fn e1000e_receive(&mut self) -> Option<E1000EBuffer> {
423         self.e1000e_intr();
424         let mut rdt = unsafe { volread!(self.receive_regs, rdt0) } as usize;
425         let index = (rdt + 1) % self.recv_desc_ring.len();
426         let desc = &mut self.recv_desc_ring[index];
427         if (desc.status & E1000E_RXD_STATUS_DD) == 0 {
428             return None;
429         }
430         let mut buffer = self.recv_buffers[index];
431         let new_buffer = E1000EBuffer::new(PAGE_SIZE);
432         self.recv_buffers[index] = new_buffer;
433         desc.addr = new_buffer.as_paddr() as u64;
434         buffer.set_length(desc.len as usize);
435         rdt = index;
436         unsafe { volwrite!(self.receive_regs, rdt0, rdt as u32) };
437         // kdebug!("e1000e: receive packet");
438         return Some(buffer);
439     }
440 
441     pub fn e1000e_can_transmit(&self) -> bool {
442         let tdt = unsafe { volread!(self.transimit_regs, tdt0) } as usize;
443         let index = tdt % self.trans_desc_ring.len();
444         let desc = &self.trans_desc_ring[index];
445         if (desc.status & E1000E_TXD_STATUS_DD) == 0 {
446             return false;
447         }
448         true
449     }
450 
451     pub fn e1000e_transmit(&mut self, packet: E1000EBuffer) {
452         let mut tdt = unsafe { volread!(self.transimit_regs, tdt0) } as usize;
453         let index = tdt % self.trans_desc_ring.len();
454         let desc = &mut self.trans_desc_ring[index];
455         let buffer = self.trans_buffers[index];
456         self.trans_buffers[index] = packet;
457         // recycle unused transmit buffer
458         buffer.free_buffer();
459         // Set the transmit descriptor
460         desc.addr = packet.as_paddr() as u64;
461         desc.len = packet.len() as u16;
462         desc.status = 0;
463         desc.cmd = E1000E_TXD_CMD_EOP | E1000E_TXD_CMD_RS | E1000E_TXD_CMD_IFCS;
464         tdt = (tdt + 1) % self.trans_desc_ring.len();
465         unsafe { volwrite!(self.transimit_regs, tdt0, tdt as u32) };
466         self.first_trans = false;
467     }
468     pub fn mac_address(&self) -> [u8; 6] {
469         return self.mac;
470     }
471     // 向ICR寄存器中的某一bit写入1b表示该中断已经被接收,同时会清空该位
472     // we need to clear ICR to tell e1000e we have read the interrupt
473     pub fn e1000e_intr(&mut self) {
474         let icr = unsafe { volread!(self.interrupt_regs, icr) };
475         // write 1b to any bit in ICR will clear the bit
476         unsafe { volwrite!(self.interrupt_regs, icr, icr) };
477     }
478 
479     // 切换是否接受分组到达的中断
480     // change whether the receive timer interrupt is enabled
481     // Note: this method is not completely implemented and not used in the current version
482     pub fn e1000e_intr_set(&mut self, state: bool) {
483         let mut ims = unsafe { volread!(self.interrupt_regs, ims) };
484         match state {
485             true => ims = ims | E1000E_IMS_RXT0,
486             false => ims = ims & !E1000E_IMS_RXT0,
487         }
488         unsafe { volwrite!(self.interrupt_regs, ims, ims) };
489     }
490 
491     // 实现了一部分napi机制的收包函数, 现在还没有投入使用
492     // This method is a partial implementation of napi (New API) techniques
493     // Note: this method is not completely implemented and not used in the current version
494     pub fn e1000e_receive2(&mut self) -> Option<E1000EBuffer> {
495         // 向设备表明我们已经接受到了之前的中断
496         // Tell e1000e we have received the interrupt
497         self.e1000e_intr();
498         // 如果napi队列不存在已经收到的分组...
499         // if napi queue is empty...
500         if self.napi_buffer_empty {
501             // 暂时关闭设备中断
502             // close interrupt
503             self.e1000e_intr_set(false);
504             loop {
505                 if self.napi_buffer_tail == self.napi_buffer_head && self.napi_buffer_empty == false
506                 {
507                     // napi缓冲队列已满,停止收包
508                     // napi queue is full, stop
509                     break;
510                 }
511                 match self.e1000e_receive() {
512                     Some(buffer) => {
513                         self.napi_buffers[self.napi_buffer_tail] = buffer;
514                         self.napi_buffer_tail = (self.napi_buffer_tail + 1) % E1000E_RECV_NAPI;
515                         self.napi_buffer_empty = false;
516                     }
517                     None => {
518                         // 设备队列中没有剩余的已到达的数据包
519                         // no packet remains in the device buffer
520                         break;
521                     }
522                 };
523             }
524             // 重新打开设备中断
525             // open the interrupt
526             self.e1000e_intr_set(true);
527         }
528 
529         let result = self.napi_buffers[self.napi_buffer_head];
530         match result.len() {
531             0 => {
532                 // napi队列和网卡队列中都不存在数据包
533                 // both napi queue and device buffer is empty, no packet will receive
534                 return None;
535             }
536             _ => {
537                 // 有剩余的已到达的数据包
538                 // there is packet in napi queue
539                 self.napi_buffer_head = (self.napi_buffer_head + 1) % E1000E_RECV_NAPI;
540                 if self.napi_buffer_head == self.napi_buffer_tail {
541                     self.napi_buffer_empty = true;
542                 }
543                 return Some(result);
544             }
545         }
546     }
547 }
548 
549 impl Drop for E1000EDevice {
550     fn drop(&mut self) {
551         // 释放已分配的所有dma页
552         // free all dma pages we have allocated
553         kdebug!("droping...");
554         let recv_ring_length = PAGE_SIZE / size_of::<E1000ERecvDesc>();
555         let trans_ring_length = PAGE_SIZE / size_of::<E1000ETransDesc>();
556         unsafe {
557             // 释放所有buffer中的dma页
558             // free all dma pages in buffers
559             for i in 0..recv_ring_length {
560                 self.recv_buffers[i].free_buffer();
561             }
562             for i in 0..trans_ring_length {
563                 self.trans_buffers[i].free_buffer();
564             }
565             // 释放descriptor ring
566             // free descriptor ring
567             dma_dealloc(
568                 self.recv_ring_pa,
569                 NonNull::new(self.recv_desc_ring).unwrap().cast(),
570                 E1000E_DMA_PAGES,
571             );
572             dma_dealloc(
573                 self.trans_ring_pa,
574                 NonNull::new(self.trans_desc_ring).unwrap().cast(),
575                 E1000E_DMA_PAGES,
576             );
577         }
578     }
579 }
580 
581 #[no_mangle]
582 pub extern "C" fn rs_e1000e_init() {
583     e1000e_init();
584 }
585 
586 pub fn e1000e_init() -> () {
587     match e1000e_probe() {
588         Ok(code) => kinfo!("Successfully init e1000e device!"),
589         Err(error) => kinfo!("Error occurred!"),
590     }
591 }
592 
593 pub fn e1000e_probe() -> Result<u64, E1000EPciError> {
594     let mut list = PCI_DEVICE_LINKEDLIST.write();
595     let result = get_pci_device_structure_mut(&mut list, NETWORK_CLASS, ETHERNET_SUBCLASS);
596     if result.is_empty() {
597         return Ok(0);
598     }
599     for device in result {
600         let standard_device = device.as_standard_device_mut().unwrap();
601         let header = &standard_device.common_header;
602         if header.vendor_id == 0x8086 {
603             // intel
604             if E1000E_DEVICE_ID.contains(&header.device_id) {
605                 kdebug!(
606                     "Detected e1000e PCI device with device id {:#x}",
607                     header.device_id
608                 );
609                 let e1000e = E1000EDevice::new(standard_device)?;
610                 e1000e_driver_init(e1000e);
611             }
612         }
613     }
614 
615     return Ok(1);
616 }
617 
618 // 用到的e1000e寄存器结构体
619 // pp.275, Table 13-3
620 // 设备通用寄存器
621 struct GeneralRegs {
622     ctrl: Volatile<u32>,         //0x00000
623     ctrl_alias: Volatile<u32>,   //0x00004
624     status: ReadOnly<u32>,       //0x00008
625     status_align: ReadOnly<u32>, //0x0000c
626     eec: Volatile<u32>,          //0x00010
627     eerd: Volatile<u32>,         //0x00014
628     ctrl_ext: Volatile<u32>,     //0x00018
629     fla: Volatile<u32>,          //0x0001c
630     mdic: Volatile<u32>,         //0x00020
631 }
632 // 中断控制
633 struct InterruptRegs {
634     icr: Volatile<u32>, //0x000c0 ICR寄存器应当为只读寄存器,但我们需要向其中写入来清除对应位
635     itr: Volatile<u32>, //0x000c4
636     ics: WriteOnly<u32>, //0x000c8
637     ics_align: ReadOnly<u32>, //0x000cc
638     ims: Volatile<u32>, //0x000d0
639     ims_align: ReadOnly<u32>, //0x000d4
640     imc: WriteOnly<u32>, //0x000d8
641 }
642 // 收包功能控制
643 struct ReceiveCtrlRegs {
644     rctl: Volatile<u32>, //0x00100
645 }
646 // 发包功能控制
647 struct TransmitCtrlRegs {
648     tctl: Volatile<u32>,     //0x00400
649     tctl_ext: Volatile<u32>, //0x00404
650     unused_1: ReadOnly<u32>, //0x00408
651     unused_2: ReadOnly<u32>, //0x0040c
652     tipg: Volatile<u32>,     //0x00410
653 }
654 // 收包功能相关
655 struct ReceiveRegs {
656     rdbal0: Volatile<u32>,     //0x02800
657     rdbah0: Volatile<u32>,     //0x02804
658     rdlen0: Volatile<u32>,     //0x02808
659     rdl_align: ReadOnly<u32>,  //0x0280c
660     rdh0: Volatile<u32>,       //0x02810
661     rdh_align: ReadOnly<u32>,  //0x02814
662     rdt0: Volatile<u32>,       //0x02818
663     rdt_align: ReadOnly<u32>,  //0x281c
664     rdtr: Volatile<u32>,       //0x2820
665     rdtr_align: ReadOnly<u32>, //0x2824
666     rxdctl: Volatile<u32>,     //0x2828
667 }
668 // 发包功能相关
669 struct TransimitRegs {
670     tdbal0: Volatile<u32>,      //0x03800
671     tdbah0: Volatile<u32>,      //0x03804
672     tdlen0: Volatile<u32>,      //0x03808
673     tdlen_algin: ReadOnly<u32>, //0x0380c
674     tdh0: Volatile<u32>,        //0x03810
675     tdh_align: ReadOnly<u32>,   //0x03814
676     tdt0: Volatile<u32>,        //0x03818
677     tdt_align: ReadOnly<u32>,   //0x0381c
678     tidv: Volatile<u32>,        //0x03820
679     tidv_align: ReadOnly<u32>,  //0x03824
680     txdctl: Volatile<u32>,      //0x03828
681     tadv: Volatile<u32>,        //0x0382c
682 }
683 // mac地址
684 struct ReceiveAddressRegs {
685     ral0: Volatile<u32>, //0x05400
686     rah0: Volatile<u32>, //0x05404
687 }
688 // PCIe 通用控制
689 struct PCIeRegs {
690     gcr: Volatile<u32>, //0x05b00
691 }
692 struct StatisticsRegs {}
693 
694 // 0x05200-0x053fc
695 // 在Receive Initialization 中按照每次一个32bit寄存器的方式来遍历
696 // Multicast Table Array Registers will be written per 32bit
697 struct MTARegs {
698     mta: Volatile<u32>,
699 }
700 
701 const E1000E_GENERAL_REGS_OFFSET: u64 = 0x00000;
702 const E1000E_INTERRRUPT_REGS_OFFSET: u64 = 0x000c0;
703 const E1000E_RECEIVE_CTRL_REG_OFFSET: u64 = 0x00100;
704 const E1000E_RECEIVE_REGS_OFFSET: u64 = 0x02800;
705 const E1000E_TRANSMIT_CTRL_REG_OFFSET: u64 = 0x00400;
706 const E1000E_TRANSMIT_REGS_OFFSET: u64 = 0x03800;
707 const E1000E_RECEIVE_ADDRESS_REGS_OFFSET: u64 = 0x05400;
708 const E1000E_PCIE_REGS_OFFSET: u64 = 0x05b00;
709 const E1000E_MTA_REGS_START_OFFSET: u64 = 0x05200;
710 const E1000E_MTA_REGS_END_OFFSET: u64 = 0x053fc;
711 // 寄存器的特定位
712 //CTRL
713 const E1000E_CTRL_SLU: u32 = 1 << 6;
714 const E1000E_CTRL_FRCSPD: u32 = 1 << 11;
715 const E1000E_CTRL_FRCDPLX: u32 = 1 << 12;
716 const E1000E_CTRL_RST: u32 = 1 << 26;
717 const E1000E_CTRL_RFCE: u32 = 1 << 27;
718 const E1000E_CTRL_TFCE: u32 = 1 << 28;
719 const E1000E_CTRL_PHY_RST: u32 = 1 << 31;
720 
721 // IMS
722 const E1000E_IMS_LSC: u32 = 1 << 2;
723 const E1000E_IMS_RXDMT0: u32 = 1 << 4;
724 const E1000E_IMS_RXO: u32 = 1 << 6;
725 const E1000E_IMS_RXT0: u32 = 1 << 7;
726 const E1000E_IMS_RXQ0: u32 = 1 << 20;
727 const E1000E_IMS_OTHER: u32 = 1 << 24; // qemu use this bit to set msi-x interrupt
728 
729 // IMC
730 const E1000E_IMC_CLEAR: u32 = 0xffffffff;
731 
732 // RCTL
733 const E1000E_RCTL_EN: u32 = 1 << 1;
734 const E1000E_RCTL_BAM: u32 = 1 << 15;
735 const E1000E_RCTL_BSIZE_4K: u32 = 3 << 16;
736 const E1000E_RCTL_BSEX: u32 = 1 << 25;
737 const E1000E_RCTL_SECRC: u32 = 1 << 26;
738 
739 // TCTL
740 const E1000E_TCTL_EN: u32 = 1 << 1;
741 const E1000E_TCTL_PSP: u32 = 1 << 3;
742 const E1000E_TCTL_CT_VAL: u32 = 0x0f << 4; // suggested 16d collision, 手册建议值:16d
743 const E1000E_TCTL_COLD_VAL: u32 = 0x03f << 12; // suggested 64 byte time for Full-Duplex, 手册建议值:64
744                                                // TXDCTL
745 const E1000E_TXDCTL_WTHRESH: u32 = 1 << 16;
746 const E1000E_TXDCTL_GRAN: u32 = 1 << 24;
747 // TIPG
748 const E1000E_TIPG_IPGT: u32 = 8;
749 const E1000E_TIPG_IPGR1: u32 = 2 << 10;
750 const E1000E_TIPG_IPGR2: u32 = 10 << 20;
751 
752 // RxDescriptorStatus
753 const E1000E_RXD_STATUS_DD: u16 = 1 << 0;
754 
755 // TxDescriptorStatus
756 const E1000E_TXD_STATUS_DD: u8 = 1 << 0;
757 const E1000E_TXD_CMD_EOP: u8 = 1 << 0;
758 const E1000E_TXD_CMD_IFCS: u8 = 1 << 1;
759 const E1000E_TXD_CMD_RS: u8 = 1 << 3;
760 
761 // E1000E驱动初始化过程中可能的错误
762 pub enum E1000EPciError {
763     // 获取到错误类型的BAR(IO BAR)
764     // An IO BAR was provided rather than a memory BAR.
765     UnexpectedBarType,
766     // 获取的BAR没有被分配到某个地址(address == 0)
767     // A BAR which we need was not allocated an address(address == 0).
768     BarNotAllocated,
769     //获取虚拟地址失败
770     BarGetVaddrFailed,
771     // 没有对应的BAR或者获取BAR失败
772     BarGetFailed,
773     // BAR的大小与预期不符(128KB)
774     // Size of BAR is not 128KB
775     UnexpectedBarSize,
776     Pci(PciError),
777 }
778 
779 /// PCI error到VirtioPciError的转换,层层上报
780 impl From<PciError> for E1000EPciError {
781     fn from(error: PciError) -> Self {
782         Self::Pci(error)
783     }
784 }
785 
786 /**
787  * @brief 获取基地址的某个偏移量的指针,用于在mmio bar中构造寄存器结构体
788  * @brief used for build register struct in mmio bar
789  * @param vaddr: base address (in virtual memory)
790  * @param offset: offset
791  */
792 fn get_register_ptr<T>(vaddr: u64, offset: u64) -> NonNull<T> {
793     NonNull::new((vaddr + offset) as *mut T).unwrap()
794 }
795