xref: /DragonOS/kernel/src/driver/net/e1000e/e1000e.rs (revision 1603395155fc166de0ac5f80369526e196526ed2)
1 // 参考手册: PCIe* GbE Controllers Open Source Software Developer’s Manual
2 // Refernce: PCIe* GbE Controllers Open Source Software Developer’s Manual
3 
4 use alloc::vec::Vec;
5 use core::intrinsics::unlikely;
6 use core::mem::size_of;
7 use core::ptr::NonNull;
8 use core::slice::{from_raw_parts, from_raw_parts_mut};
9 use core::sync::atomic::{compiler_fence, Ordering};
10 
11 use super::e1000e_driver::e1000e_driver_init;
12 use crate::driver::net::dma::{dma_alloc, dma_dealloc};
13 use crate::driver::pci::pci::{
14     get_pci_device_structure_mut, PciDeviceStructure, PciDeviceStructureGeneralDevice, PciError,
15     PCI_DEVICE_LINKEDLIST,
16 };
17 use crate::driver::pci::pci_irq::{IrqCommonMsg, IrqMsg, IrqSpecificMsg, PciInterrupt, IRQ};
18 use crate::include::bindings::bindings::pt_regs;
19 use crate::libs::volatile::{ReadOnly, Volatile, WriteOnly};
20 use crate::net::net_core::poll_ifaces_try_lock_onetime;
21 use crate::{kdebug, kinfo};
22 
23 const PAGE_SIZE: usize = 4096;
24 const NETWORK_CLASS: u8 = 0x2;
25 const ETHERNET_SUBCLASS: u8 = 0x0;
26 // e1000e系列网卡的device id列表,来源:https://admin.pci-ids.ucw.cz/read/PC/8086
27 const E1000E_DEVICE_ID: [u16; 14] = [
28     0x10d3, // 8574L, qemu default
29     0x10cc, // 82567LM-2
30     0x10cd, // 82567LF-2
31     0x105f, // 82571EB
32     0x1060, // 82571EB
33     0x107f, // 82572EI
34     0x109a, // 82573L
35     0x10ea, // 82577LM
36     0x10eb, // 82577LC
37     0x10ef, // 82578DM
38     0x10f0, // 82578DC
39     0x1502, // 82579LM
40     0x1503, // 82579V
41     0x150c, // 82583V
42 ];
43 
44 // e1000e网卡与BAR有关的常量
45 // BAR0空间大小(128KB)
46 const E1000E_BAR_REG_SIZE: u32 = 128 * 1024;
47 // BAR0空间对齐(64bit)
48 #[allow(dead_code)]
49 const E1000E_BAR_REG_ALIGN: u8 = 64;
50 // 单个寄存器大小(32bit, 4字节)
51 #[allow(dead_code)]
52 const E1000E_REG_SIZE: u8 = 4;
53 
54 // TxBuffer和RxBuffer的大小(DMA页)
55 const E1000E_DMA_PAGES: usize = 1;
56 
57 // 中断相关
58 const E1000E_RECV_VECTOR: u16 = 57;
59 
60 // napi队列中暂时存储的buffer个数
61 const E1000E_RECV_NAPI: usize = 1024;
62 
63 // 收/发包的描述符结构 pp.24 Table 3-1
64 #[repr(C)]
65 #[derive(Copy, Clone, Debug)]
66 struct E1000ETransDesc {
67     addr: u64,
68     len: u16,
69     cso: u8,
70     cmd: u8,
71     status: u8,
72     css: u8,
73     special: u8,
74 }
75 // pp.54 Table 3-12
76 #[repr(C)]
77 #[derive(Copy, Clone, Debug)]
78 struct E1000ERecvDesc {
79     addr: u64,
80     len: u16,
81     chksum: u16,
82     status: u16,
83     error: u8,
84     special: u8,
85 }
86 #[derive(Copy, Clone)]
87 // Buffer的Copy只是指针操作,不涉及实际数据的复制,因此要小心使用,确保不同的buffer不会使用同一块内存
88 pub struct E1000EBuffer {
89     buffer: NonNull<u8>,
90     paddr: usize,
91     // length字段为0则表示这个buffer是一个占位符,不指向实际内存
92     // the buffer is empty and no page is allocated if length field is set 0
93     length: usize,
94 }
95 
96 impl E1000EBuffer {
97     pub fn new(length: usize) -> Self {
98         assert!(length <= PAGE_SIZE);
99         if unlikely(length == 0) {
100             // 在某些情况下,我们并不需要实际分配buffer,只需要提供一个占位符即可
101             // we dont need to allocate dma pages for buffer in some cases
102             E1000EBuffer {
103                 buffer: NonNull::dangling(),
104                 paddr: 0,
105                 length: 0,
106             }
107         } else {
108             let (paddr, vaddr) = dma_alloc(E1000E_DMA_PAGES);
109             E1000EBuffer {
110                 buffer: vaddr,
111                 paddr,
112                 length,
113             }
114         }
115     }
116 
117     #[allow(dead_code)]
118     pub fn as_addr(&self) -> NonNull<u8> {
119         assert!(self.length != 0);
120         return self.buffer;
121     }
122 
123     #[allow(dead_code)]
124     pub fn as_addr_u64(&self) -> u64 {
125         assert!(self.length != 0);
126         return self.buffer.as_ptr() as u64;
127     }
128 
129     pub fn as_paddr(&self) -> usize {
130         assert!(self.length != 0);
131         return self.paddr;
132     }
133 
134     #[allow(dead_code)]
135     pub fn as_slice(&self) -> &[u8] {
136         assert!(self.length != 0);
137         return unsafe { from_raw_parts(self.buffer.as_ptr(), self.length) };
138     }
139 
140     pub fn as_mut_slice(&mut self) -> &mut [u8] {
141         assert!(self.length != 0);
142         return unsafe { from_raw_parts_mut(self.buffer.as_ptr(), self.length) };
143     }
144 
145     pub fn set_length(&mut self, length: usize) {
146         self.length = length;
147     }
148 
149     pub fn len(&self) -> usize {
150         return self.length;
151     }
152     // 释放buffer内部的dma_pages,需要小心使用
153     pub fn free_buffer(self) -> () {
154         if self.length != 0 {
155             unsafe { dma_dealloc(self.paddr, self.buffer, E1000E_DMA_PAGES) };
156         }
157     }
158 }
159 
160 // 中断处理函数, 调用协议栈的poll函数,未来可能会用napi来替换这里
161 // Interrupt handler
162 unsafe extern "C" fn e1000e_irq_handler(_irq_num: u64, _irq_paramer: u64, _regs: *mut pt_regs) {
163     poll_ifaces_try_lock_onetime().ok();
164 }
165 
166 #[allow(dead_code)]
167 pub struct E1000EDevice {
168     // 设备寄存器
169     // device registers
170     general_regs: NonNull<GeneralRegs>,
171     interrupt_regs: NonNull<InterruptRegs>,
172     rctl_regs: NonNull<ReceiveCtrlRegs>,
173     receive_regs: NonNull<ReceiveRegs>,
174     tctl_regs: NonNull<TransmitCtrlRegs>,
175     transimit_regs: NonNull<TransimitRegs>,
176     pcie_regs: NonNull<PCIeRegs>,
177 
178     // descriptor环形队列,在操作系统与设备之间共享
179     // descriptor rings are shared between os and device
180     recv_desc_ring: &'static mut [E1000ERecvDesc],
181     trans_desc_ring: &'static mut [E1000ETransDesc],
182     recv_ring_pa: usize,
183     trans_ring_pa: usize,
184 
185     // 设备收/发包缓冲区数组
186     // buffers of receive/transmit packets
187     recv_buffers: Vec<E1000EBuffer>,
188     trans_buffers: Vec<E1000EBuffer>,
189     mac: [u8; 6],
190     first_trans: bool,
191     // napi队列,用于存放在中断关闭期间通过轮询收取的buffer
192     // the napi queue is designed to save buffer/packet when the interrupt is close
193     // NOTE: this feature is not completely implemented and not used in the current version
194     napi_buffers: Vec<E1000EBuffer>,
195     napi_buffer_head: usize,
196     napi_buffer_tail: usize,
197     napi_buffer_empty: bool,
198 }
199 
200 impl E1000EDevice {
201     // 从PCI标准设备进行驱动初始化
202     // init the device for PCI standard device struct
203     #[allow(unused_assignments)]
204     pub fn new(device: &mut PciDeviceStructureGeneralDevice) -> Result<Self, E1000EPciError> {
205         // 从BAR0获取我们需要的寄存器
206         // Build registers sturcts from BAR0
207         device.bar_ioremap().unwrap()?;
208         device.enable_master();
209         let bar = device.bar().ok_or(E1000EPciError::BarGetFailed)?;
210         let bar0 = bar.get_bar(0)?;
211         let (address, size) = bar0
212             .memory_address_size()
213             .ok_or(E1000EPciError::UnexpectedBarType)?;
214         if address == 0 {
215             return Err(E1000EPciError::BarNotAllocated);
216         }
217         if size != E1000E_BAR_REG_SIZE {
218             return Err(E1000EPciError::UnexpectedBarSize);
219         }
220         let vaddress = bar0
221             .virtual_address()
222             .ok_or(E1000EPciError::BarGetVaddrFailed)?
223             .data() as u64;
224 
225         // 初始化msi中断
226         // initialize msi interupt
227         let irq_vector = device.irq_vector_mut().unwrap();
228         irq_vector.push(E1000E_RECV_VECTOR);
229         device.irq_init(IRQ::PCI_IRQ_MSI).expect("IRQ Init Failed");
230         let msg = IrqMsg {
231             irq_common_message: IrqCommonMsg::init_from(
232                 0,
233                 "E1000E_RECV_IRQ",
234                 0,
235                 e1000e_irq_handler,
236                 None,
237             ),
238             irq_specific_message: IrqSpecificMsg::msi_default(),
239         };
240         device.irq_install(msg)?;
241         device.irq_enable(true)?;
242 
243         let general_regs: NonNull<GeneralRegs> =
244             get_register_ptr(vaddress, E1000E_GENERAL_REGS_OFFSET);
245         let interrupt_regs: NonNull<InterruptRegs> =
246             get_register_ptr(vaddress, E1000E_INTERRRUPT_REGS_OFFSET);
247         let rctl_regs: NonNull<ReceiveCtrlRegs> =
248             get_register_ptr(vaddress, E1000E_RECEIVE_CTRL_REG_OFFSET);
249         let receive_regs: NonNull<ReceiveRegs> =
250             get_register_ptr(vaddress, E1000E_RECEIVE_REGS_OFFSET);
251         let tctl_regs: NonNull<TransmitCtrlRegs> =
252             get_register_ptr(vaddress, E1000E_TRANSMIT_CTRL_REG_OFFSET);
253         let transimit_regs: NonNull<TransimitRegs> =
254             get_register_ptr(vaddress, E1000E_TRANSMIT_REGS_OFFSET);
255         let pcie_regs: NonNull<PCIeRegs> = get_register_ptr(vaddress, E1000E_PCIE_REGS_OFFSET);
256         let ra_regs: NonNull<ReceiveAddressRegs> =
257             get_register_ptr(vaddress, E1000E_RECEIVE_ADDRESS_REGS_OFFSET);
258         // 开始设备初始化 14.3
259         // Initialization Sequence
260         unsafe {
261             let mut ctrl = volread!(general_regs, ctrl);
262             // 关闭中断
263             // close the interrupt
264             volwrite!(interrupt_regs, imc, E1000E_IMC_CLEAR);
265             //SW RESET
266             volwrite!(general_regs, ctrl, ctrl | E1000E_CTRL_RST);
267             compiler_fence(Ordering::AcqRel);
268             // PHY RESET
269             ctrl = volread!(general_regs, ctrl);
270             volwrite!(general_regs, ctrl, ctrl | E1000E_CTRL_PHY_RST);
271             volwrite!(general_regs, ctrl, ctrl);
272             // 关闭中断
273             // close the interrupt
274             volwrite!(interrupt_regs, imc, E1000E_IMC_CLEAR);
275             let mut gcr = volread!(pcie_regs, gcr);
276             gcr = gcr | (1 << 22);
277             volwrite!(pcie_regs, gcr, gcr);
278             compiler_fence(Ordering::AcqRel);
279             // PHY Initialization 14.8.1
280             // MAC/PHY Link Setup 14.8.2
281             ctrl = volread!(general_regs, ctrl);
282             ctrl &= !(E1000E_CTRL_FRCSPD | E1000E_CTRL_FRCDPLX);
283             volwrite!(general_regs, ctrl, ctrl | E1000E_CTRL_SLU);
284         }
285         let status = unsafe { volread!(general_regs, status) };
286         kdebug!("Status: {status:#X}");
287 
288         // 读取设备的mac地址
289         // Read mac address
290         let ral = unsafe { volread!(ra_regs, ral0) };
291         let rah = unsafe { volread!(ra_regs, rah0) };
292         let mac: [u8; 6] = [
293             ((ral >> 0) & 0xFF) as u8,
294             ((ral >> 8) & 0xFF) as u8,
295             ((ral >> 16) & 0xFF) as u8,
296             ((ral >> 24) & 0xFF) as u8,
297             ((rah >> 0) & 0xFF) as u8,
298             ((rah >> 8) & 0xFF) as u8,
299         ];
300         // 初始化receive和transimit descriptor环形队列
301         // initialize receive and transimit desciptor ring
302         let (recv_ring_pa, recv_ring_va) = dma_alloc(E1000E_DMA_PAGES);
303         let (trans_ring_pa, trans_ring_va) = dma_alloc(E1000E_DMA_PAGES);
304         let recv_ring_length = PAGE_SIZE / size_of::<E1000ERecvDesc>();
305         let trans_ring_length = PAGE_SIZE / size_of::<E1000ETransDesc>();
306 
307         let recv_desc_ring = unsafe {
308             from_raw_parts_mut::<E1000ERecvDesc>(recv_ring_va.as_ptr().cast(), recv_ring_length)
309         };
310         let trans_desc_ring = unsafe {
311             from_raw_parts_mut::<E1000ETransDesc>(trans_ring_va.as_ptr().cast(), trans_ring_length)
312         };
313 
314         // 初始化receive和transmit packet的缓冲区
315         // initialzie receive and transmit buffers
316         let mut recv_buffers: Vec<E1000EBuffer> = Vec::with_capacity(recv_ring_length);
317         let mut trans_buffers: Vec<E1000EBuffer> = Vec::with_capacity(trans_ring_length);
318 
319         // 初始化缓冲区与descriptor,descriptor 中的addr字典应当指向buffer的物理地址
320         // Receive buffers of appropriate size should be allocated and pointers to these buffers should be stored in the descriptor ring.
321         for i in 0..recv_ring_length {
322             let buffer = E1000EBuffer::new(PAGE_SIZE);
323             recv_desc_ring[i].addr = buffer.as_paddr() as u64;
324             recv_desc_ring[i].status = 0;
325             recv_buffers.push(buffer);
326         }
327         // Same as receive buffers
328         for i in 0..trans_ring_length {
329             let buffer = E1000EBuffer::new(PAGE_SIZE);
330             trans_desc_ring[i].addr = buffer.as_paddr() as u64;
331             trans_desc_ring[i].status = 1;
332             trans_buffers.push(buffer);
333         }
334 
335         // Receive Initialization 14.6
336         // Initialzie mutlicast table array to 0b
337         // 初始化MTA,遍历0x05200-0x053FC中每个寄存器,写入0b,一共128个寄存器
338         let mut mta_adress = vaddress + E1000E_MTA_REGS_START_OFFSET;
339         while mta_adress != vaddress + E1000E_MTA_REGS_END_OFFSET {
340             let mta: NonNull<MTARegs> = get_register_ptr(mta_adress, 0);
341             unsafe { volwrite!(mta, mta, 0) };
342             mta_adress = mta_adress + 4;
343         }
344         // 连续的寄存器读-写操作,放在同一个unsafe块中
345         unsafe {
346             // 设置descriptor环形队列的基地址
347             // Program the descriptor base address with the address of the region.
348             volwrite!(receive_regs, rdbal0, (recv_ring_pa) as u32);
349             volwrite!(receive_regs, rdbah0, (recv_ring_pa >> 32) as u32);
350             // 设置descriptor环形队列的长度
351             // Set the length register to the size of the descriptor ring.
352             volwrite!(receive_regs, rdlen0, PAGE_SIZE as u32);
353             // 设置队列的首尾指针
354             // Program the head and tail registers
355             volwrite!(receive_regs, rdh0, 0);
356             volwrite!(receive_regs, rdt0, (recv_ring_length - 1) as u32);
357             // 设置控制寄存器的相关功能 14.6.1
358             // Set the receive control register
359             volwrite!(
360                 rctl_regs,
361                 rctl,
362                 E1000E_RCTL_EN
363                     | E1000E_RCTL_BAM
364                     | E1000E_RCTL_BSIZE_4K
365                     | E1000E_RCTL_BSEX
366                     | E1000E_RCTL_SECRC
367             );
368 
369             // Transmit Initialization 14.7
370             // 开启发包descriptor的回写功能
371             // Program the TXDCTL register with the desired TX descriptor write-back policy
372             volwrite!(
373                 transimit_regs,
374                 txdctl,
375                 E1000E_TXDCTL_WTHRESH | E1000E_TXDCTL_GRAN
376             );
377             // 设置descriptor环形队列的基地址,长度与首尾指针
378             // Program the descriptor base address with the address of the region
379             volwrite!(transimit_regs, tdbal0, trans_ring_pa as u32);
380             volwrite!(transimit_regs, tdbah0, (trans_ring_pa >> 32) as u32);
381             // Set the length register to the size of the descriptor ring.
382             volwrite!(transimit_regs, tdlen0, PAGE_SIZE as u32);
383             // Program the head and tail registerss
384             volwrite!(transimit_regs, tdh0, 0);
385             volwrite!(transimit_regs, tdt0, 0);
386             // Program the TIPG register
387             volwrite!(
388                 tctl_regs,
389                 tipg,
390                 E1000E_TIPG_IPGT | E1000E_TIPG_IPGR1 | E1000E_TIPG_IPGR2
391             );
392             // Program the TCTL register.
393             volwrite!(
394                 tctl_regs,
395                 tctl,
396                 E1000E_TCTL_EN | E1000E_TCTL_PSP | E1000E_TCTL_CT_VAL | E1000E_TCTL_COLD_VAL
397             );
398 
399             let icr = volread!(interrupt_regs, icr);
400             volwrite!(interrupt_regs, icr, icr);
401             // 开启收包相关的中断
402             // Enable receive interrupts
403             let mut ims = volread!(interrupt_regs, ims);
404             ims = E1000E_IMS_LSC | E1000E_IMS_RXT0 | E1000E_IMS_RXDMT0 | E1000E_IMS_OTHER;
405             volwrite!(interrupt_regs, ims, ims);
406         }
407         return Ok(E1000EDevice {
408             general_regs,
409             interrupt_regs,
410             rctl_regs,
411             receive_regs,
412             tctl_regs,
413             transimit_regs,
414             pcie_regs,
415             recv_desc_ring,
416             trans_desc_ring,
417             recv_ring_pa,
418             trans_ring_pa,
419             recv_buffers,
420             trans_buffers,
421             mac,
422             first_trans: true,
423             napi_buffers: vec![E1000EBuffer::new(0); E1000E_RECV_NAPI],
424             napi_buffer_head: 0,
425             napi_buffer_tail: 0,
426             napi_buffer_empty: true,
427         });
428     }
429     pub fn e1000e_receive(&mut self) -> Option<E1000EBuffer> {
430         self.e1000e_intr();
431         let mut rdt = unsafe { volread!(self.receive_regs, rdt0) } as usize;
432         let index = (rdt + 1) % self.recv_desc_ring.len();
433         let desc = &mut self.recv_desc_ring[index];
434         if (desc.status & E1000E_RXD_STATUS_DD) == 0 {
435             return None;
436         }
437         let mut buffer = self.recv_buffers[index];
438         let new_buffer = E1000EBuffer::new(PAGE_SIZE);
439         self.recv_buffers[index] = new_buffer;
440         desc.addr = new_buffer.as_paddr() as u64;
441         buffer.set_length(desc.len as usize);
442         rdt = index;
443         unsafe { volwrite!(self.receive_regs, rdt0, rdt as u32) };
444         // kdebug!("e1000e: receive packet");
445         return Some(buffer);
446     }
447 
448     pub fn e1000e_can_transmit(&self) -> bool {
449         let tdt = unsafe { volread!(self.transimit_regs, tdt0) } as usize;
450         let index = tdt % self.trans_desc_ring.len();
451         let desc = &self.trans_desc_ring[index];
452         if (desc.status & E1000E_TXD_STATUS_DD) == 0 {
453             return false;
454         }
455         true
456     }
457 
458     pub fn e1000e_transmit(&mut self, packet: E1000EBuffer) {
459         let mut tdt = unsafe { volread!(self.transimit_regs, tdt0) } as usize;
460         let index = tdt % self.trans_desc_ring.len();
461         let desc = &mut self.trans_desc_ring[index];
462         let buffer = self.trans_buffers[index];
463         self.trans_buffers[index] = packet;
464         // recycle unused transmit buffer
465         buffer.free_buffer();
466         // Set the transmit descriptor
467         desc.addr = packet.as_paddr() as u64;
468         desc.len = packet.len() as u16;
469         desc.status = 0;
470         desc.cmd = E1000E_TXD_CMD_EOP | E1000E_TXD_CMD_RS | E1000E_TXD_CMD_IFCS;
471         tdt = (tdt + 1) % self.trans_desc_ring.len();
472         unsafe { volwrite!(self.transimit_regs, tdt0, tdt as u32) };
473         self.first_trans = false;
474     }
475     pub fn mac_address(&self) -> [u8; 6] {
476         return self.mac;
477     }
478     // 向ICR寄存器中的某一bit写入1b表示该中断已经被接收,同时会清空该位
479     // we need to clear ICR to tell e1000e we have read the interrupt
480     pub fn e1000e_intr(&mut self) {
481         let icr = unsafe { volread!(self.interrupt_regs, icr) };
482         // write 1b to any bit in ICR will clear the bit
483         unsafe { volwrite!(self.interrupt_regs, icr, icr) };
484     }
485 
486     // 切换是否接受分组到达的中断
487     // change whether the receive timer interrupt is enabled
488     // Note: this method is not completely implemented and not used in the current version
489     #[allow(dead_code)]
490     pub fn e1000e_intr_set(&mut self, state: bool) {
491         let mut ims = unsafe { volread!(self.interrupt_regs, ims) };
492         match state {
493             true => ims = ims | E1000E_IMS_RXT0,
494             false => ims = ims & !E1000E_IMS_RXT0,
495         }
496         unsafe { volwrite!(self.interrupt_regs, ims, ims) };
497     }
498 
499     // 实现了一部分napi机制的收包函数, 现在还没有投入使用
500     // This method is a partial implementation of napi (New API) techniques
501     // Note: this method is not completely implemented and not used in the current version
502     #[allow(dead_code)]
503     pub fn e1000e_receive2(&mut self) -> Option<E1000EBuffer> {
504         // 向设备表明我们已经接受到了之前的中断
505         // Tell e1000e we have received the interrupt
506         self.e1000e_intr();
507         // 如果napi队列不存在已经收到的分组...
508         // if napi queue is empty...
509         if self.napi_buffer_empty {
510             // 暂时关闭设备中断
511             // close interrupt
512             self.e1000e_intr_set(false);
513             loop {
514                 if self.napi_buffer_tail == self.napi_buffer_head && self.napi_buffer_empty == false
515                 {
516                     // napi缓冲队列已满,停止收包
517                     // napi queue is full, stop
518                     break;
519                 }
520                 match self.e1000e_receive() {
521                     Some(buffer) => {
522                         self.napi_buffers[self.napi_buffer_tail] = buffer;
523                         self.napi_buffer_tail = (self.napi_buffer_tail + 1) % E1000E_RECV_NAPI;
524                         self.napi_buffer_empty = false;
525                     }
526                     None => {
527                         // 设备队列中没有剩余的已到达的数据包
528                         // no packet remains in the device buffer
529                         break;
530                     }
531                 };
532             }
533             // 重新打开设备中断
534             // open the interrupt
535             self.e1000e_intr_set(true);
536         }
537 
538         let result = self.napi_buffers[self.napi_buffer_head];
539         match result.len() {
540             0 => {
541                 // napi队列和网卡队列中都不存在数据包
542                 // both napi queue and device buffer is empty, no packet will receive
543                 return None;
544             }
545             _ => {
546                 // 有剩余的已到达的数据包
547                 // there is packet in napi queue
548                 self.napi_buffer_head = (self.napi_buffer_head + 1) % E1000E_RECV_NAPI;
549                 if self.napi_buffer_head == self.napi_buffer_tail {
550                     self.napi_buffer_empty = true;
551                 }
552                 return Some(result);
553             }
554         }
555     }
556 }
557 
558 impl Drop for E1000EDevice {
559     fn drop(&mut self) {
560         // 释放已分配的所有dma页
561         // free all dma pages we have allocated
562         kdebug!("droping...");
563         let recv_ring_length = PAGE_SIZE / size_of::<E1000ERecvDesc>();
564         let trans_ring_length = PAGE_SIZE / size_of::<E1000ETransDesc>();
565         unsafe {
566             // 释放所有buffer中的dma页
567             // free all dma pages in buffers
568             for i in 0..recv_ring_length {
569                 self.recv_buffers[i].free_buffer();
570             }
571             for i in 0..trans_ring_length {
572                 self.trans_buffers[i].free_buffer();
573             }
574             // 释放descriptor ring
575             // free descriptor ring
576             dma_dealloc(
577                 self.recv_ring_pa,
578                 NonNull::new(self.recv_desc_ring).unwrap().cast(),
579                 E1000E_DMA_PAGES,
580             );
581             dma_dealloc(
582                 self.trans_ring_pa,
583                 NonNull::new(self.trans_desc_ring).unwrap().cast(),
584                 E1000E_DMA_PAGES,
585             );
586         }
587     }
588 }
589 
590 #[no_mangle]
591 pub extern "C" fn rs_e1000e_init() {
592     e1000e_init();
593 }
594 
595 pub fn e1000e_init() -> () {
596     match e1000e_probe() {
597         Ok(_code) => kinfo!("Successfully init e1000e device!"),
598         Err(_error) => kinfo!("Error occurred!"),
599     }
600 }
601 
602 pub fn e1000e_probe() -> Result<u64, E1000EPciError> {
603     let mut list = PCI_DEVICE_LINKEDLIST.write();
604     let result = get_pci_device_structure_mut(&mut list, NETWORK_CLASS, ETHERNET_SUBCLASS);
605     if result.is_empty() {
606         return Ok(0);
607     }
608     for device in result {
609         let standard_device = device.as_standard_device_mut().unwrap();
610         let header = &standard_device.common_header;
611         if header.vendor_id == 0x8086 {
612             // intel
613             if E1000E_DEVICE_ID.contains(&header.device_id) {
614                 kdebug!(
615                     "Detected e1000e PCI device with device id {:#x}",
616                     header.device_id
617                 );
618                 let e1000e = E1000EDevice::new(standard_device)?;
619                 e1000e_driver_init(e1000e);
620             }
621         }
622     }
623 
624     return Ok(1);
625 }
626 
627 // 用到的e1000e寄存器结构体
628 // pp.275, Table 13-3
629 // 设备通用寄存器
630 #[allow(dead_code)]
631 struct GeneralRegs {
632     ctrl: Volatile<u32>,         //0x00000
633     ctrl_alias: Volatile<u32>,   //0x00004
634     status: ReadOnly<u32>,       //0x00008
635     status_align: ReadOnly<u32>, //0x0000c
636     eec: Volatile<u32>,          //0x00010
637     eerd: Volatile<u32>,         //0x00014
638     ctrl_ext: Volatile<u32>,     //0x00018
639     fla: Volatile<u32>,          //0x0001c
640     mdic: Volatile<u32>,         //0x00020
641 }
642 // 中断控制
643 #[allow(dead_code)]
644 struct InterruptRegs {
645     icr: Volatile<u32>, //0x000c0 ICR寄存器应当为只读寄存器,但我们需要向其中写入来清除对应位
646     itr: Volatile<u32>, //0x000c4
647     ics: WriteOnly<u32>, //0x000c8
648     ics_align: ReadOnly<u32>, //0x000cc
649     ims: Volatile<u32>, //0x000d0
650     ims_align: ReadOnly<u32>, //0x000d4
651     imc: WriteOnly<u32>, //0x000d8
652 }
653 // 收包功能控制
654 struct ReceiveCtrlRegs {
655     rctl: Volatile<u32>, //0x00100
656 }
657 // 发包功能控制
658 #[allow(dead_code)]
659 struct TransmitCtrlRegs {
660     tctl: Volatile<u32>,     //0x00400
661     tctl_ext: Volatile<u32>, //0x00404
662     unused_1: ReadOnly<u32>, //0x00408
663     unused_2: ReadOnly<u32>, //0x0040c
664     tipg: Volatile<u32>,     //0x00410
665 }
666 // 收包功能相关
667 #[allow(dead_code)]
668 struct ReceiveRegs {
669     rdbal0: Volatile<u32>,     //0x02800
670     rdbah0: Volatile<u32>,     //0x02804
671     rdlen0: Volatile<u32>,     //0x02808
672     rdl_align: ReadOnly<u32>,  //0x0280c
673     rdh0: Volatile<u32>,       //0x02810
674     rdh_align: ReadOnly<u32>,  //0x02814
675     rdt0: Volatile<u32>,       //0x02818
676     rdt_align: ReadOnly<u32>,  //0x281c
677     rdtr: Volatile<u32>,       //0x2820
678     rdtr_align: ReadOnly<u32>, //0x2824
679     rxdctl: Volatile<u32>,     //0x2828
680 }
681 // 发包功能相关
682 #[allow(dead_code)]
683 struct TransimitRegs {
684     tdbal0: Volatile<u32>,      //0x03800
685     tdbah0: Volatile<u32>,      //0x03804
686     tdlen0: Volatile<u32>,      //0x03808
687     tdlen_algin: ReadOnly<u32>, //0x0380c
688     tdh0: Volatile<u32>,        //0x03810
689     tdh_align: ReadOnly<u32>,   //0x03814
690     tdt0: Volatile<u32>,        //0x03818
691     tdt_align: ReadOnly<u32>,   //0x0381c
692     tidv: Volatile<u32>,        //0x03820
693     tidv_align: ReadOnly<u32>,  //0x03824
694     txdctl: Volatile<u32>,      //0x03828
695     tadv: Volatile<u32>,        //0x0382c
696 }
697 // mac地址
698 struct ReceiveAddressRegs {
699     ral0: Volatile<u32>, //0x05400
700     rah0: Volatile<u32>, //0x05404
701 }
702 // PCIe 通用控制
703 struct PCIeRegs {
704     gcr: Volatile<u32>, //0x05b00
705 }
706 #[allow(dead_code)]
707 struct StatisticsRegs {}
708 
709 // 0x05200-0x053fc
710 // 在Receive Initialization 中按照每次一个32bit寄存器的方式来遍历
711 // Multicast Table Array Registers will be written per 32bit
712 struct MTARegs {
713     mta: Volatile<u32>,
714 }
715 
716 const E1000E_GENERAL_REGS_OFFSET: u64 = 0x00000;
717 const E1000E_INTERRRUPT_REGS_OFFSET: u64 = 0x000c0;
718 const E1000E_RECEIVE_CTRL_REG_OFFSET: u64 = 0x00100;
719 const E1000E_RECEIVE_REGS_OFFSET: u64 = 0x02800;
720 const E1000E_TRANSMIT_CTRL_REG_OFFSET: u64 = 0x00400;
721 const E1000E_TRANSMIT_REGS_OFFSET: u64 = 0x03800;
722 const E1000E_RECEIVE_ADDRESS_REGS_OFFSET: u64 = 0x05400;
723 const E1000E_PCIE_REGS_OFFSET: u64 = 0x05b00;
724 const E1000E_MTA_REGS_START_OFFSET: u64 = 0x05200;
725 const E1000E_MTA_REGS_END_OFFSET: u64 = 0x053fc;
726 // 寄存器的特定位
727 //CTRL
728 const E1000E_CTRL_SLU: u32 = 1 << 6;
729 const E1000E_CTRL_FRCSPD: u32 = 1 << 11;
730 const E1000E_CTRL_FRCDPLX: u32 = 1 << 12;
731 const E1000E_CTRL_RST: u32 = 1 << 26;
732 #[allow(dead_code)]
733 const E1000E_CTRL_RFCE: u32 = 1 << 27;
734 #[allow(dead_code)]
735 const E1000E_CTRL_TFCE: u32 = 1 << 28;
736 const E1000E_CTRL_PHY_RST: u32 = 1 << 31;
737 
738 // IMS
739 const E1000E_IMS_LSC: u32 = 1 << 2;
740 const E1000E_IMS_RXDMT0: u32 = 1 << 4;
741 #[allow(dead_code)]
742 const E1000E_IMS_RXO: u32 = 1 << 6;
743 const E1000E_IMS_RXT0: u32 = 1 << 7;
744 #[allow(dead_code)]
745 const E1000E_IMS_RXQ0: u32 = 1 << 20;
746 const E1000E_IMS_OTHER: u32 = 1 << 24; // qemu use this bit to set msi-x interrupt
747 
748 // IMC
749 const E1000E_IMC_CLEAR: u32 = 0xffffffff;
750 
751 // RCTL
752 const E1000E_RCTL_EN: u32 = 1 << 1;
753 const E1000E_RCTL_BAM: u32 = 1 << 15;
754 const E1000E_RCTL_BSIZE_4K: u32 = 3 << 16;
755 const E1000E_RCTL_BSEX: u32 = 1 << 25;
756 const E1000E_RCTL_SECRC: u32 = 1 << 26;
757 
758 // TCTL
759 const E1000E_TCTL_EN: u32 = 1 << 1;
760 const E1000E_TCTL_PSP: u32 = 1 << 3;
761 const E1000E_TCTL_CT_VAL: u32 = 0x0f << 4; // suggested 16d collision, 手册建议值:16d
762 const E1000E_TCTL_COLD_VAL: u32 = 0x03f << 12; // suggested 64 byte time for Full-Duplex, 手册建议值:64
763                                                // TXDCTL
764 const E1000E_TXDCTL_WTHRESH: u32 = 1 << 16;
765 const E1000E_TXDCTL_GRAN: u32 = 1 << 24;
766 // TIPG
767 const E1000E_TIPG_IPGT: u32 = 8;
768 const E1000E_TIPG_IPGR1: u32 = 2 << 10;
769 const E1000E_TIPG_IPGR2: u32 = 10 << 20;
770 
771 // RxDescriptorStatus
772 const E1000E_RXD_STATUS_DD: u16 = 1 << 0;
773 
774 // TxDescriptorStatus
775 const E1000E_TXD_STATUS_DD: u8 = 1 << 0;
776 const E1000E_TXD_CMD_EOP: u8 = 1 << 0;
777 const E1000E_TXD_CMD_IFCS: u8 = 1 << 1;
778 const E1000E_TXD_CMD_RS: u8 = 1 << 3;
779 
780 // E1000E驱动初始化过程中可能的错误
781 pub enum E1000EPciError {
782     // 获取到错误类型的BAR(IO BAR)
783     // An IO BAR was provided rather than a memory BAR.
784     UnexpectedBarType,
785     // 获取的BAR没有被分配到某个地址(address == 0)
786     // A BAR which we need was not allocated an address(address == 0).
787     BarNotAllocated,
788     //获取虚拟地址失败
789     BarGetVaddrFailed,
790     // 没有对应的BAR或者获取BAR失败
791     BarGetFailed,
792     // BAR的大小与预期不符(128KB)
793     // Size of BAR is not 128KB
794     UnexpectedBarSize,
795     Pci(PciError),
796 }
797 
798 /// PCI error到VirtioPciError的转换,层层上报
799 impl From<PciError> for E1000EPciError {
800     fn from(error: PciError) -> Self {
801         Self::Pci(error)
802     }
803 }
804 
805 /**
806  * @brief 获取基地址的某个偏移量的指针,用于在mmio bar中构造寄存器结构体
807  * @brief used for build register struct in mmio bar
808  * @param vaddr: base address (in virtual memory)
809  * @param offset: offset
810  */
811 fn get_register_ptr<T>(vaddr: u64, offset: u64) -> NonNull<T> {
812     NonNull::new((vaddr + offset) as *mut T).unwrap()
813 }
814