1 use super::{_port, hba::HbaCmdTable, virt_2_phys}; 2 use crate::driver::base::block::block_device::{BlockDevice, BlockId}; 3 use crate::driver::base::block::disk_info::Partition; 4 use crate::driver::base::class::Class; 5 use crate::driver::base::device::bus::Bus; 6 7 use crate::driver::base::device::driver::Driver; 8 use crate::driver::base::device::{Device, DeviceType, IdTable}; 9 use crate::driver::base::kobject::{KObjType, KObject, KObjectState}; 10 use crate::driver::base::kset::KSet; 11 use crate::driver::disk::ahci::HBA_PxIS_TFES; 12 13 use crate::filesystem::kernfs::KernFSInode; 14 use crate::filesystem::mbr::MbrDiskPartionTable; 15 16 use crate::driver::disk::ahci::hba::{ 17 FisRegH2D, FisType, HbaCmdHeader, ATA_CMD_READ_DMA_EXT, ATA_CMD_WRITE_DMA_EXT, ATA_DEV_BUSY, 18 ATA_DEV_DRQ, 19 }; 20 use crate::libs::rwlock::{RwLockReadGuard, RwLockWriteGuard}; 21 use crate::libs::spinlock::SpinLock; 22 use crate::mm::{phys_2_virt, verify_area, VirtAddr}; 23 use log::error; 24 use system_error::SystemError; 25 26 use alloc::sync::Weak; 27 use alloc::{string::String, sync::Arc, vec::Vec}; 28 29 use core::fmt::Debug; 30 use core::sync::atomic::{compiler_fence, Ordering}; 31 use core::{mem::size_of, ptr::write_bytes}; 32 33 /// @brief: 只支持MBR分区格式的磁盘结构体 34 pub struct AhciDisk { 35 pub name: String, 36 pub flags: u16, // 磁盘的状态flags 37 pub partitions: Vec<Arc<Partition>>, // 磁盘分区数组 38 // port: &'static mut HbaPort, // 控制硬盘的端口 39 pub ctrl_num: u8, 40 pub port_num: u8, 41 /// 指向LockAhciDisk的弱引用 42 self_ref: Weak<LockedAhciDisk>, 43 } 44 45 /// @brief: 带锁的AhciDisk 46 #[derive(Debug)] 47 pub struct LockedAhciDisk(pub SpinLock<AhciDisk>); 48 /// 函数实现 49 impl Debug for AhciDisk { 50 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { 51 write!( 52 f, 53 "{{ name: {}, flags: {}, part_s: {:?} }}", 54 self.name, self.flags, self.partitions 55 )?; 56 return Ok(()); 57 } 58 } 59 60 impl AhciDisk { 61 fn read_at( 62 &self, 63 lba_id_start: BlockId, // 起始lba编号 64 count: usize, // 读取lba的数量 65 buf: &mut [u8], 66 ) -> Result<usize, SystemError> { 67 assert!((buf.len() & 511) == 0); 68 compiler_fence(Ordering::SeqCst); 69 let check_length = ((count - 1) >> 4) + 1; // prdt length 70 if count * 512 > buf.len() || check_length > 8_usize { 71 error!("ahci read: e2big"); 72 // 不可能的操作 73 return Err(SystemError::E2BIG); 74 } else if count == 0 { 75 return Ok(0); 76 } 77 78 let port = _port(self.ctrl_num, self.port_num); 79 volatile_write!(port.is, u32::MAX); // Clear pending interrupt bits 80 81 let slot = port.find_cmdslot().unwrap_or(u32::MAX); 82 83 if slot == u32::MAX { 84 return Err(SystemError::EIO); 85 } 86 87 #[allow(unused_unsafe)] 88 let cmdheader: &mut HbaCmdHeader = unsafe { 89 (phys_2_virt( 90 volatile_read!(port.clb) as usize + slot as usize * size_of::<HbaCmdHeader>(), 91 ) as *mut HbaCmdHeader) 92 .as_mut() 93 .unwrap() 94 }; 95 96 cmdheader.cfl = (size_of::<FisRegH2D>() / size_of::<u32>()) as u8; 97 98 volatile_set_bit!(cmdheader.cfl, 1 << 6, false); // Read/Write bit : Read from device 99 volatile_write!(cmdheader.prdtl, check_length as u16); // PRDT entries count 100 101 // 设置数据存放地址 102 let mut buf_ptr = buf as *mut [u8] as *mut usize as usize; 103 104 // 由于目前的内存管理机制无法把用户空间的内存地址转换为物理地址,所以只能先把数据拷贝到内核空间 105 // TODO:在内存管理重构后,可以直接使用用户空间的内存地址 106 107 let user_buf = verify_area(VirtAddr::new(buf_ptr), buf.len()).is_ok(); 108 let mut kbuf = if user_buf { 109 let x: Vec<u8> = vec![0; buf.len()]; 110 Some(x) 111 } else { 112 None 113 }; 114 115 if kbuf.is_some() { 116 buf_ptr = kbuf.as_mut().unwrap().as_mut_ptr() as usize; 117 } 118 119 #[allow(unused_unsafe)] 120 let cmdtbl = unsafe { 121 (phys_2_virt(volatile_read!(cmdheader.ctba) as usize) as *mut HbaCmdTable) 122 .as_mut() 123 .unwrap() // 必须使用 as_mut ,得到的才是原来的变量 124 }; 125 let mut tmp_count = count; 126 127 unsafe { 128 // 清空整个table的旧数据 129 write_bytes(cmdtbl, 0, 1); 130 } 131 // debug!("cmdheader.prdtl={}", volatile_read!(cmdheader.prdtl)); 132 133 // 8K bytes (16 sectors) per PRDT 134 for i in 0..((volatile_read!(cmdheader.prdtl) - 1) as usize) { 135 volatile_write!(cmdtbl.prdt_entry[i].dba, virt_2_phys(buf_ptr) as u64); 136 cmdtbl.prdt_entry[i].dbc = 8 * 1024 - 1; 137 volatile_set_bit!(cmdtbl.prdt_entry[i].dbc, 1 << 31, true); // 允许中断 prdt_entry.i 138 buf_ptr += 8 * 1024; 139 tmp_count -= 16; 140 } 141 142 // Last entry 143 let las = (volatile_read!(cmdheader.prdtl) - 1) as usize; 144 volatile_write!(cmdtbl.prdt_entry[las].dba, virt_2_phys(buf_ptr) as u64); 145 cmdtbl.prdt_entry[las].dbc = ((tmp_count << 9) - 1) as u32; // 数据长度 146 147 volatile_set_bit!(cmdtbl.prdt_entry[las].dbc, 1 << 31, true); // 允许中断 148 149 // 设置命令 150 let cmdfis = unsafe { 151 ((&mut cmdtbl.cfis) as *mut [u8] as *mut usize as *mut FisRegH2D) 152 .as_mut() 153 .unwrap() 154 }; 155 volatile_write!(cmdfis.fis_type, FisType::RegH2D as u8); 156 volatile_set_bit!(cmdfis.pm, 1 << 7, true); // command_bit set 157 volatile_write!(cmdfis.command, ATA_CMD_READ_DMA_EXT); 158 159 volatile_write!(cmdfis.lba0, (lba_id_start & 0xFF) as u8); 160 volatile_write!(cmdfis.lba1, ((lba_id_start >> 8) & 0xFF) as u8); 161 volatile_write!(cmdfis.lba2, ((lba_id_start >> 16) & 0xFF) as u8); 162 volatile_write!(cmdfis.lba3, ((lba_id_start >> 24) & 0xFF) as u8); 163 volatile_write!(cmdfis.lba4, ((lba_id_start >> 32) & 0xFF) as u8); 164 volatile_write!(cmdfis.lba5, ((lba_id_start >> 40) & 0xFF) as u8); 165 166 volatile_write!(cmdfis.countl, (count & 0xFF) as u8); 167 volatile_write!(cmdfis.counth, ((count >> 8) & 0xFF) as u8); 168 169 volatile_write!(cmdfis.device, 1 << 6); // LBA Mode 170 171 // 等待之前的操作完成 172 let mut spin_count = 0; 173 const SPIN_LIMIT: u32 = 10000; 174 175 while (volatile_read!(port.tfd) as u8 & (ATA_DEV_BUSY | ATA_DEV_DRQ)) > 0 176 && spin_count < SPIN_LIMIT 177 { 178 spin_count += 1; 179 } 180 181 if spin_count == SPIN_LIMIT { 182 error!("Port is hung"); 183 return Err(SystemError::EIO); 184 } 185 186 volatile_set_bit!(port.ci, 1 << slot, true); // Issue command 187 // debug!("To wait ahci read complete."); 188 // 等待操作完成 189 loop { 190 if (volatile_read!(port.ci) & (1 << slot)) == 0 { 191 break; 192 } 193 if (volatile_read!(port.is) & HBA_PxIS_TFES) > 0 { 194 error!("Read disk error"); 195 return Err(SystemError::EIO); 196 } 197 } 198 if let Some(kbuf) = &kbuf { 199 buf.copy_from_slice(kbuf); 200 } 201 202 compiler_fence(Ordering::SeqCst); 203 // successfully read 204 return Ok(count * 512); 205 } 206 207 fn write_at( 208 &self, 209 lba_id_start: BlockId, 210 count: usize, 211 buf: &[u8], 212 ) -> Result<usize, SystemError> { 213 assert!((buf.len() & 511) == 0); 214 compiler_fence(Ordering::SeqCst); 215 let check_length = ((count - 1) >> 4) + 1; // prdt length 216 if count * 512 > buf.len() || check_length > 8 { 217 // 不可能的操作 218 return Err(SystemError::E2BIG); 219 } else if count == 0 { 220 return Ok(0); 221 } 222 223 let port = _port(self.ctrl_num, self.port_num); 224 225 volatile_write!(port.is, u32::MAX); // Clear pending interrupt bits 226 227 let slot = port.find_cmdslot().unwrap_or(u32::MAX); 228 229 if slot == u32::MAX { 230 return Err(SystemError::EIO); 231 } 232 233 compiler_fence(Ordering::SeqCst); 234 #[allow(unused_unsafe)] 235 let cmdheader: &mut HbaCmdHeader = unsafe { 236 (phys_2_virt( 237 volatile_read!(port.clb) as usize + slot as usize * size_of::<HbaCmdHeader>(), 238 ) as *mut HbaCmdHeader) 239 .as_mut() 240 .unwrap() 241 }; 242 compiler_fence(Ordering::SeqCst); 243 244 volatile_write_bit!( 245 cmdheader.cfl, 246 (1 << 5) - 1_u8, 247 (size_of::<FisRegH2D>() / size_of::<u32>()) as u8 248 ); // Command FIS size 249 250 volatile_set_bit!(cmdheader.cfl, 7 << 5, true); // (p,c,w)都设置为1, Read/Write bit : Write from device 251 volatile_write!(cmdheader.prdtl, check_length as u16); // PRDT entries count 252 253 // 设置数据存放地址 254 compiler_fence(Ordering::SeqCst); 255 let mut buf_ptr = buf as *const [u8] as *mut usize as usize; 256 257 // 由于目前的内存管理机制无法把用户空间的内存地址转换为物理地址,所以只能先把数据拷贝到内核空间 258 // TODO:在内存管理重构后,可以直接使用用户空间的内存地址 259 let user_buf = verify_area(VirtAddr::new(buf_ptr), buf.len()).is_ok(); 260 let mut kbuf = if user_buf { 261 let mut x: Vec<u8> = vec![0; buf.len()]; 262 x.resize(buf.len(), 0); 263 x.copy_from_slice(buf); 264 Some(x) 265 } else { 266 None 267 }; 268 269 if kbuf.is_some() { 270 buf_ptr = kbuf.as_mut().unwrap().as_mut_ptr() as usize; 271 } 272 273 #[allow(unused_unsafe)] 274 let cmdtbl = unsafe { 275 (phys_2_virt(volatile_read!(cmdheader.ctba) as usize) as *mut HbaCmdTable) 276 .as_mut() 277 .unwrap() 278 }; 279 let mut tmp_count = count; 280 compiler_fence(Ordering::SeqCst); 281 282 unsafe { 283 // 清空整个table的旧数据 284 write_bytes(cmdtbl, 0, 1); 285 } 286 287 // 8K bytes (16 sectors) per PRDT 288 for i in 0..((volatile_read!(cmdheader.prdtl) - 1) as usize) { 289 volatile_write!(cmdtbl.prdt_entry[i].dba, virt_2_phys(buf_ptr) as u64); 290 volatile_write_bit!(cmdtbl.prdt_entry[i].dbc, (1 << 22) - 1, 8 * 1024 - 1); // 数据长度 291 volatile_set_bit!(cmdtbl.prdt_entry[i].dbc, 1 << 31, true); // 允许中断 292 buf_ptr += 8 * 1024; 293 tmp_count -= 16; 294 } 295 296 // Last entry 297 let las = (volatile_read!(cmdheader.prdtl) - 1) as usize; 298 volatile_write!(cmdtbl.prdt_entry[las].dba, virt_2_phys(buf_ptr) as u64); 299 volatile_set_bit!(cmdtbl.prdt_entry[las].dbc, 1 << 31, true); // 允许中断 300 volatile_write_bit!( 301 cmdtbl.prdt_entry[las].dbc, 302 (1 << 22) - 1, 303 ((tmp_count << 9) - 1) as u32 304 ); // 数据长度 305 306 // 设置命令 307 let cmdfis = unsafe { 308 ((&mut cmdtbl.cfis) as *mut [u8] as *mut usize as *mut FisRegH2D) 309 .as_mut() 310 .unwrap() 311 }; 312 volatile_write!(cmdfis.fis_type, FisType::RegH2D as u8); 313 volatile_set_bit!(cmdfis.pm, 1 << 7, true); // command_bit set 314 volatile_write!(cmdfis.command, ATA_CMD_WRITE_DMA_EXT); 315 316 volatile_write!(cmdfis.lba0, (lba_id_start & 0xFF) as u8); 317 volatile_write!(cmdfis.lba1, ((lba_id_start >> 8) & 0xFF) as u8); 318 volatile_write!(cmdfis.lba2, ((lba_id_start >> 16) & 0xFF) as u8); 319 volatile_write!(cmdfis.lba3, ((lba_id_start >> 24) & 0xFF) as u8); 320 volatile_write!(cmdfis.lba4, ((lba_id_start >> 32) & 0xFF) as u8); 321 volatile_write!(cmdfis.lba5, ((lba_id_start >> 40) & 0xFF) as u8); 322 323 volatile_write!(cmdfis.countl, (count & 0xFF) as u8); 324 volatile_write!(cmdfis.counth, ((count >> 8) & 0xFF) as u8); 325 326 volatile_write!(cmdfis.device, 1 << 6); // LBA Mode 327 328 volatile_set_bit!(port.ci, 1 << slot, true); // Issue command 329 330 // 等待操作完成 331 loop { 332 if (volatile_read!(port.ci) & (1 << slot)) == 0 { 333 break; 334 } 335 if (volatile_read!(port.is) & HBA_PxIS_TFES) > 0 { 336 error!("Write disk error"); 337 return Err(SystemError::EIO); 338 } 339 } 340 341 compiler_fence(Ordering::SeqCst); 342 // successfully read 343 return Ok(count * 512); 344 } 345 346 fn sync(&self) -> Result<(), SystemError> { 347 // 由于目前没有block cache, 因此sync返回成功即可 348 return Ok(()); 349 } 350 } 351 352 impl LockedAhciDisk { 353 pub fn new( 354 name: String, 355 flags: u16, 356 ctrl_num: u8, 357 port_num: u8, 358 ) -> Result<Arc<LockedAhciDisk>, SystemError> { 359 // 构建磁盘结构体 360 let result: Arc<LockedAhciDisk> = Arc::new_cyclic(|self_ref| { 361 LockedAhciDisk(SpinLock::new(AhciDisk { 362 name, 363 flags, 364 partitions: Default::default(), 365 ctrl_num, 366 port_num, 367 self_ref: self_ref.clone(), 368 })) 369 }); 370 let table: MbrDiskPartionTable = result.read_mbr_table()?; 371 372 // 求出有多少可用分区 373 let partitions = table.partitions(Arc::downgrade(&result) as Weak<dyn BlockDevice>); 374 result.0.lock().partitions = partitions; 375 376 return Ok(result); 377 } 378 379 /// @brief: 从磁盘中读取 MBR 分区表结构体 380 pub fn read_mbr_table(&self) -> Result<MbrDiskPartionTable, SystemError> { 381 let disk = self.0.lock().self_ref.upgrade().unwrap() as Arc<dyn BlockDevice>; 382 MbrDiskPartionTable::from_disk(disk) 383 } 384 } 385 386 impl KObject for LockedAhciDisk { 387 fn as_any_ref(&self) -> &dyn core::any::Any { 388 self 389 } 390 391 fn inode(&self) -> Option<Arc<KernFSInode>> { 392 todo!() 393 } 394 395 fn kobj_type(&self) -> Option<&'static dyn KObjType> { 396 todo!() 397 } 398 399 fn kset(&self) -> Option<Arc<KSet>> { 400 todo!() 401 } 402 403 fn parent(&self) -> Option<Weak<dyn KObject>> { 404 todo!() 405 } 406 407 fn set_inode(&self, _inode: Option<Arc<KernFSInode>>) { 408 todo!() 409 } 410 411 fn kobj_state(&self) -> RwLockReadGuard<KObjectState> { 412 todo!() 413 } 414 415 fn kobj_state_mut(&self) -> RwLockWriteGuard<KObjectState> { 416 todo!() 417 } 418 419 fn set_kobj_state(&self, _state: KObjectState) { 420 todo!() 421 } 422 423 fn name(&self) -> alloc::string::String { 424 todo!() 425 } 426 427 fn set_name(&self, _name: alloc::string::String) { 428 todo!() 429 } 430 431 fn set_kset(&self, _kset: Option<Arc<KSet>>) { 432 todo!() 433 } 434 435 fn set_parent(&self, _parent: Option<Weak<dyn KObject>>) { 436 todo!() 437 } 438 439 fn set_kobj_type(&self, _ktype: Option<&'static dyn KObjType>) { 440 todo!() 441 } 442 } 443 444 impl Device for LockedAhciDisk { 445 fn dev_type(&self) -> DeviceType { 446 return DeviceType::Block; 447 } 448 449 fn id_table(&self) -> IdTable { 450 todo!() 451 } 452 453 fn bus(&self) -> Option<Weak<dyn Bus>> { 454 todo!("LockedAhciDisk::bus()") 455 } 456 457 fn set_bus(&self, _bus: Option<Weak<dyn Bus>>) { 458 todo!("LockedAhciDisk::set_bus()") 459 } 460 461 fn driver(&self) -> Option<Arc<dyn Driver>> { 462 todo!("LockedAhciDisk::driver()") 463 } 464 465 fn is_dead(&self) -> bool { 466 false 467 } 468 469 fn set_driver(&self, _driver: Option<Weak<dyn Driver>>) { 470 todo!("LockedAhciDisk::set_driver()") 471 } 472 473 fn can_match(&self) -> bool { 474 todo!() 475 } 476 477 fn set_can_match(&self, _can_match: bool) { 478 todo!() 479 } 480 481 fn state_synced(&self) -> bool { 482 todo!() 483 } 484 485 fn set_class(&self, _class: Option<Weak<dyn Class>>) { 486 todo!() 487 } 488 } 489 490 impl BlockDevice for LockedAhciDisk { 491 #[inline] 492 fn as_any_ref(&self) -> &dyn core::any::Any { 493 self 494 } 495 496 #[inline] 497 fn blk_size_log2(&self) -> u8 { 498 9 499 } 500 501 fn sync(&self) -> Result<(), SystemError> { 502 return self.0.lock().sync(); 503 } 504 505 #[inline] 506 fn device(&self) -> Arc<dyn Device> { 507 return self.0.lock().self_ref.upgrade().unwrap(); 508 } 509 510 fn block_size(&self) -> usize { 511 todo!() 512 } 513 514 fn partitions(&self) -> Vec<Arc<Partition>> { 515 return self.0.lock().partitions.clone(); 516 } 517 518 #[inline] 519 fn read_at_sync( 520 &self, 521 lba_id_start: BlockId, // 起始lba编号 522 count: usize, // 读取lba的数量 523 buf: &mut [u8], 524 ) -> Result<usize, SystemError> { 525 self.0.lock().read_at(lba_id_start, count, buf) 526 } 527 528 #[inline] 529 fn write_at_sync( 530 &self, 531 lba_id_start: BlockId, 532 count: usize, 533 buf: &[u8], 534 ) -> Result<usize, SystemError> { 535 self.0.lock().write_at(lba_id_start, count, buf) 536 } 537 } 538