1 use super::{_port, hba::HbaCmdTable, virt_2_phys}; 2 use crate::driver::base::block::block_device::{BlockDevice, BlockId}; 3 use crate::driver::base::block::disk_info::Partition; 4 use crate::driver::base::block::SeekFrom; 5 use crate::driver::base::device::{Device, DeviceType, KObject}; 6 use crate::driver::disk::ahci::HBA_PxIS_TFES; 7 use crate::filesystem::mbr::MbrDiskPartionTable; 8 use crate::include::bindings::bindings::verify_area; 9 10 use crate::kdebug; 11 use crate::libs::{spinlock::SpinLock, vec_cursor::VecCursor}; 12 use crate::mm::phys_2_virt; 13 use crate::syscall::SystemError; 14 use crate::{ 15 driver::disk::ahci::hba::{ 16 FisRegH2D, FisType, HbaCmdHeader, ATA_CMD_READ_DMA_EXT, ATA_CMD_WRITE_DMA_EXT, 17 ATA_DEV_BUSY, ATA_DEV_DRQ, 18 }, 19 kerror, 20 }; 21 22 use alloc::sync::Weak; 23 use alloc::{string::String, sync::Arc, vec::Vec}; 24 25 use core::fmt::Debug; 26 use core::sync::atomic::{compiler_fence, Ordering}; 27 use core::{mem::size_of, ptr::write_bytes}; 28 29 /// @brief: 只支持MBR分区格式的磁盘结构体 30 pub struct AhciDisk { 31 pub name: String, 32 pub flags: u16, // 磁盘的状态flags 33 pub partitions: Vec<Arc<Partition>>, // 磁盘分区数组 34 // port: &'static mut HbaPort, // 控制硬盘的端口 35 pub ctrl_num: u8, 36 pub port_num: u8, 37 /// 指向LockAhciDisk的弱引用 38 self_ref: Weak<LockedAhciDisk>, 39 } 40 41 /// @brief: 带锁的AhciDisk 42 #[derive(Debug)] 43 pub struct LockedAhciDisk(pub SpinLock<AhciDisk>); 44 /// 函数实现 45 impl Debug for AhciDisk { 46 fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result { 47 write!( 48 f, 49 "{{ name: {}, flags: {}, part_s: {:?} }}", 50 self.name, self.flags, self.partitions 51 )?; 52 return Ok(()); 53 } 54 } 55 56 impl AhciDisk { 57 fn read_at( 58 &self, 59 lba_id_start: BlockId, // 起始lba编号 60 count: usize, // 读取lba的数量 61 buf: &mut [u8], 62 ) -> Result<usize, SystemError> { 63 assert!((buf.len() & 511) == 0); 64 compiler_fence(core::sync::atomic::Ordering::SeqCst); 65 let check_length = ((count - 1) >> 4) + 1; // prdt length 66 if count * 512 > buf.len() || check_length > 8 as usize { 67 kerror!("ahci read: e2big"); 68 // 不可能的操作 69 return Err(SystemError::E2BIG); 70 } else if count == 0 { 71 return Ok(0); 72 } 73 74 let port = _port(self.ctrl_num, self.port_num); 75 volatile_write!(port.is, u32::MAX); // Clear pending interrupt bits 76 77 let slot = port.find_cmdslot().unwrap_or(u32::MAX); 78 79 if slot == u32::MAX { 80 return Err(SystemError::EIO); 81 } 82 83 #[allow(unused_unsafe)] 84 let cmdheader: &mut HbaCmdHeader = unsafe { 85 (phys_2_virt( 86 volatile_read!(port.clb) as usize 87 + slot as usize * size_of::<HbaCmdHeader>() as usize, 88 ) as *mut HbaCmdHeader) 89 .as_mut() 90 .unwrap() 91 }; 92 93 cmdheader.cfl = (size_of::<FisRegH2D>() / size_of::<u32>()) as u8; 94 95 volatile_set_bit!(cmdheader.cfl, 1 << 6, false); // Read/Write bit : Read from device 96 volatile_write!(cmdheader.prdtl, check_length as u16); // PRDT entries count 97 98 // 设置数据存放地址 99 let mut buf_ptr = buf as *mut [u8] as *mut usize as usize; 100 101 // 由于目前的内存管理机制无法把用户空间的内存地址转换为物理地址,所以只能先把数据拷贝到内核空间 102 // TODO:在内存管理重构后,可以直接使用用户空间的内存地址 103 let user_buf = if unsafe { verify_area(buf_ptr as u64, buf.len() as u64) } { 104 true 105 } else { 106 false 107 }; 108 let mut kbuf = if user_buf { 109 let mut x: Vec<u8> = Vec::new(); 110 x.resize(buf.len(), 0); 111 Some(x) 112 } else { 113 None 114 }; 115 116 if kbuf.is_some() { 117 buf_ptr = kbuf.as_mut().unwrap().as_mut_ptr() as usize; 118 } 119 120 #[allow(unused_unsafe)] 121 let cmdtbl = unsafe { 122 (phys_2_virt(volatile_read!(cmdheader.ctba) as usize) as *mut HbaCmdTable) 123 .as_mut() 124 .unwrap() // 必须使用 as_mut ,得到的才是原来的变量 125 }; 126 let mut tmp_count = count; 127 128 unsafe { 129 // 清空整个table的旧数据 130 write_bytes(cmdtbl, 0, 1); 131 } 132 // kdebug!("cmdheader.prdtl={}", volatile_read!(cmdheader.prdtl)); 133 134 // 8K bytes (16 sectors) per PRDT 135 for i in 0..((volatile_read!(cmdheader.prdtl) - 1) as usize) { 136 volatile_write!(cmdtbl.prdt_entry[i].dba, virt_2_phys(buf_ptr) as u64); 137 cmdtbl.prdt_entry[i].dbc = 8 * 1024 - 1; 138 volatile_set_bit!(cmdtbl.prdt_entry[i].dbc, 1 << 31, true); // 允许中断 prdt_entry.i 139 buf_ptr += 8 * 1024; 140 tmp_count -= 16; 141 } 142 143 // Last entry 144 let las = (volatile_read!(cmdheader.prdtl) - 1) as usize; 145 volatile_write!(cmdtbl.prdt_entry[las].dba, virt_2_phys(buf_ptr) as u64); 146 cmdtbl.prdt_entry[las].dbc = ((tmp_count << 9) - 1) as u32; // 数据长度 147 148 volatile_set_bit!(cmdtbl.prdt_entry[las].dbc, 1 << 31, true); // 允许中断 149 150 // 设置命令 151 let cmdfis = unsafe { 152 ((&mut cmdtbl.cfis) as *mut [u8] as *mut usize as *mut FisRegH2D) 153 .as_mut() 154 .unwrap() 155 }; 156 volatile_write!(cmdfis.fis_type, FisType::RegH2D as u8); 157 volatile_set_bit!(cmdfis.pm, 1 << 7, true); // command_bit set 158 volatile_write!(cmdfis.command, ATA_CMD_READ_DMA_EXT); 159 160 volatile_write!(cmdfis.lba0, (lba_id_start & 0xFF) as u8); 161 volatile_write!(cmdfis.lba1, ((lba_id_start >> 8) & 0xFF) as u8); 162 volatile_write!(cmdfis.lba2, ((lba_id_start >> 16) & 0xFF) as u8); 163 volatile_write!(cmdfis.lba3, ((lba_id_start >> 24) & 0xFF) as u8); 164 volatile_write!(cmdfis.lba4, ((lba_id_start >> 32) & 0xFF) as u8); 165 volatile_write!(cmdfis.lba5, ((lba_id_start >> 40) & 0xFF) as u8); 166 167 volatile_write!(cmdfis.countl, (count & 0xFF) as u8); 168 volatile_write!(cmdfis.counth, ((count >> 8) & 0xFF) as u8); 169 170 volatile_write!(cmdfis.device, 1 << 6); // LBA Mode 171 172 // 等待之前的操作完成 173 let mut spin_count = 0; 174 const SPIN_LIMIT: u32 = 10000; 175 176 while (volatile_read!(port.tfd) as u8 & (ATA_DEV_BUSY | ATA_DEV_DRQ)) > 0 177 && spin_count < SPIN_LIMIT 178 { 179 spin_count += 1; 180 } 181 182 if spin_count == SPIN_LIMIT { 183 kerror!("Port is hung"); 184 return Err(SystemError::EIO); 185 } 186 187 volatile_set_bit!(port.ci, 1 << slot, true); // Issue command 188 // kdebug!("To wait ahci read complete."); 189 // 等待操作完成 190 loop { 191 if (volatile_read!(port.ci) & (1 << slot)) == 0 { 192 break; 193 } 194 if (volatile_read!(port.is) & HBA_PxIS_TFES) > 0 { 195 kerror!("Read disk error"); 196 return Err(SystemError::EIO); 197 } 198 } 199 200 if kbuf.is_some() { 201 buf.copy_from_slice(kbuf.as_ref().unwrap()); 202 } 203 204 compiler_fence(core::sync::atomic::Ordering::SeqCst); 205 // successfully read 206 return Ok(count * 512); 207 } 208 209 fn write_at( 210 &self, 211 lba_id_start: BlockId, 212 count: usize, 213 buf: &[u8], 214 ) -> Result<usize, SystemError> { 215 assert!((buf.len() & 511) == 0); 216 compiler_fence(core::sync::atomic::Ordering::SeqCst); 217 let check_length = ((count - 1) >> 4) + 1; // prdt length 218 if count * 512 > buf.len() || check_length > 8 as usize { 219 // 不可能的操作 220 return Err(SystemError::E2BIG); 221 } else if count == 0 { 222 return Ok(0); 223 } 224 225 let port = _port(self.ctrl_num, self.port_num); 226 227 volatile_write!(port.is, u32::MAX); // Clear pending interrupt bits 228 229 let slot = port.find_cmdslot().unwrap_or(u32::MAX); 230 231 if slot == u32::MAX { 232 return Err(SystemError::EIO); 233 } 234 235 compiler_fence(core::sync::atomic::Ordering::SeqCst); 236 #[allow(unused_unsafe)] 237 let cmdheader: &mut HbaCmdHeader = unsafe { 238 (phys_2_virt( 239 volatile_read!(port.clb) as usize 240 + slot as usize * size_of::<HbaCmdHeader>() as usize, 241 ) as *mut HbaCmdHeader) 242 .as_mut() 243 .unwrap() 244 }; 245 compiler_fence(core::sync::atomic::Ordering::SeqCst); 246 247 volatile_write_bit!( 248 cmdheader.cfl, 249 (1 << 5) - 1 as u8, 250 (size_of::<FisRegH2D>() / size_of::<u32>()) as u8 251 ); // Command FIS size 252 253 volatile_set_bit!(cmdheader.cfl, 7 << 5, true); // (p,c,w)都设置为1, Read/Write bit : Write from device 254 volatile_write!(cmdheader.prdtl, check_length as u16); // PRDT entries count 255 256 // 设置数据存放地址 257 compiler_fence(core::sync::atomic::Ordering::SeqCst); 258 let mut buf_ptr = buf as *const [u8] as *mut usize as usize; 259 260 // 由于目前的内存管理机制无法把用户空间的内存地址转换为物理地址,所以只能先把数据拷贝到内核空间 261 // TODO:在内存管理重构后,可以直接使用用户空间的内存地址 262 let user_buf = if unsafe { verify_area(buf_ptr as u64, buf.len() as u64) } { 263 true 264 } else { 265 false 266 }; 267 let mut kbuf = if user_buf { 268 let mut x: Vec<u8> = Vec::with_capacity(buf.len()); 269 x.resize(buf.len(), 0); 270 x.copy_from_slice(buf); 271 Some(x) 272 } else { 273 None 274 }; 275 276 if kbuf.is_some() { 277 buf_ptr = kbuf.as_mut().unwrap().as_mut_ptr() as usize; 278 } 279 280 #[allow(unused_unsafe)] 281 let cmdtbl = unsafe { 282 (phys_2_virt(volatile_read!(cmdheader.ctba) as usize) as *mut HbaCmdTable) 283 .as_mut() 284 .unwrap() 285 }; 286 let mut tmp_count = count; 287 compiler_fence(core::sync::atomic::Ordering::SeqCst); 288 289 unsafe { 290 // 清空整个table的旧数据 291 write_bytes(cmdtbl, 0, 1); 292 } 293 294 // 8K bytes (16 sectors) per PRDT 295 for i in 0..((volatile_read!(cmdheader.prdtl) - 1) as usize) { 296 volatile_write!(cmdtbl.prdt_entry[i].dba, virt_2_phys(buf_ptr) as u64); 297 volatile_write_bit!(cmdtbl.prdt_entry[i].dbc, (1 << 22) - 1, 8 * 1024 - 1); // 数据长度 298 volatile_set_bit!(cmdtbl.prdt_entry[i].dbc, 1 << 31, true); // 允许中断 299 buf_ptr += 8 * 1024; 300 tmp_count -= 16; 301 } 302 303 // Last entry 304 let las = (volatile_read!(cmdheader.prdtl) - 1) as usize; 305 volatile_write!(cmdtbl.prdt_entry[las].dba, virt_2_phys(buf_ptr) as u64); 306 volatile_set_bit!(cmdtbl.prdt_entry[las].dbc, 1 << 31, true); // 允许中断 307 volatile_write_bit!( 308 cmdtbl.prdt_entry[las].dbc, 309 (1 << 22) - 1, 310 ((tmp_count << 9) - 1) as u32 311 ); // 数据长度 312 313 // 设置命令 314 let cmdfis = unsafe { 315 ((&mut cmdtbl.cfis) as *mut [u8] as *mut usize as *mut FisRegH2D) 316 .as_mut() 317 .unwrap() 318 }; 319 volatile_write!(cmdfis.fis_type, FisType::RegH2D as u8); 320 volatile_set_bit!(cmdfis.pm, 1 << 7, true); // command_bit set 321 volatile_write!(cmdfis.command, ATA_CMD_WRITE_DMA_EXT); 322 323 volatile_write!(cmdfis.lba0, (lba_id_start & 0xFF) as u8); 324 volatile_write!(cmdfis.lba1, ((lba_id_start >> 8) & 0xFF) as u8); 325 volatile_write!(cmdfis.lba2, ((lba_id_start >> 16) & 0xFF) as u8); 326 volatile_write!(cmdfis.lba3, ((lba_id_start >> 24) & 0xFF) as u8); 327 volatile_write!(cmdfis.lba4, ((lba_id_start >> 32) & 0xFF) as u8); 328 volatile_write!(cmdfis.lba5, ((lba_id_start >> 40) & 0xFF) as u8); 329 330 volatile_write!(cmdfis.countl, (count & 0xFF) as u8); 331 volatile_write!(cmdfis.counth, ((count >> 8) & 0xFF) as u8); 332 333 volatile_write!(cmdfis.device, 1 << 6); // LBA Mode 334 335 volatile_set_bit!(port.ci, 1 << slot, true); // Issue command 336 337 // 等待操作完成 338 loop { 339 if (volatile_read!(port.ci) & (1 << slot)) == 0 { 340 break; 341 } 342 if (volatile_read!(port.is) & HBA_PxIS_TFES) > 0 { 343 kerror!("Write disk error"); 344 return Err(SystemError::EIO); 345 } 346 } 347 348 compiler_fence(core::sync::atomic::Ordering::SeqCst); 349 // successfully read 350 return Ok(count * 512); 351 } 352 353 fn sync(&self) -> Result<(), SystemError> { 354 // 由于目前没有block cache, 因此sync返回成功即可 355 return Ok(()); 356 } 357 } 358 359 impl LockedAhciDisk { 360 pub fn new( 361 name: String, 362 flags: u16, 363 ctrl_num: u8, 364 port_num: u8, 365 ) -> Result<Arc<LockedAhciDisk>, SystemError> { 366 // 构建磁盘结构体 367 let result: Arc<LockedAhciDisk> = Arc::new(LockedAhciDisk(SpinLock::new(AhciDisk { 368 name, 369 flags, 370 partitions: Default::default(), 371 ctrl_num, 372 port_num, 373 self_ref: Weak::default(), 374 }))); 375 376 let table: MbrDiskPartionTable = result.read_mbr_table()?; 377 378 // 求出有多少可用分区 379 for i in 0..4 { 380 compiler_fence(Ordering::SeqCst); 381 if table.dpte[i].part_type != 0 { 382 let w = Arc::downgrade(&result); 383 result.0.lock().partitions.push(Partition::new( 384 table.dpte[i].starting_sector() as u64, 385 table.dpte[i].starting_lba as u64, 386 table.dpte[i].total_sectors as u64, 387 w, 388 i as u16, 389 )); 390 } 391 } 392 393 result.0.lock().self_ref = Arc::downgrade(&result); 394 395 return Ok(result); 396 } 397 398 /// @brief: 从磁盘中读取 MBR 分区表结构体 TODO: Cursor 399 pub fn read_mbr_table(&self) -> Result<MbrDiskPartionTable, SystemError> { 400 let mut table: MbrDiskPartionTable = Default::default(); 401 402 // 数据缓冲区 403 let mut buf: Vec<u8> = Vec::new(); 404 buf.resize(size_of::<MbrDiskPartionTable>(), 0); 405 406 self.read_at(0, 1, &mut buf)?; 407 // 创建 Cursor 用于按字节读取 408 let mut cursor = VecCursor::new(buf); 409 cursor.seek(SeekFrom::SeekCurrent(446))?; 410 411 for i in 0..4 { 412 kdebug!("infomation of partition {}:\n", i); 413 414 table.dpte[i].flags = cursor.read_u8()?; 415 table.dpte[i].starting_head = cursor.read_u8()?; 416 table.dpte[i].starting_sector_cylinder = cursor.read_u16()?; 417 table.dpte[i].part_type = cursor.read_u8()?; 418 table.dpte[i].ending_head = cursor.read_u8()?; 419 table.dpte[i].ending_sector_cylingder = cursor.read_u16()?; 420 table.dpte[i].starting_lba = cursor.read_u32()?; 421 table.dpte[i].total_sectors = cursor.read_u32()?; 422 423 kdebug!("dpte[i] = {:?}", table.dpte[i]); 424 } 425 table.bs_trailsig = cursor.read_u16()?; 426 // kdebug!("bs_trailsig = {}", unsafe { 427 // read_unaligned(addr_of!(table.bs_trailsig)) 428 // }); 429 430 return Ok(table); 431 } 432 } 433 434 impl KObject for LockedAhciDisk {} 435 436 impl Device for LockedAhciDisk { 437 fn dev_type(&self) -> DeviceType { 438 return DeviceType::Block; 439 } 440 441 fn as_any_ref(&self) -> &dyn core::any::Any { 442 return self; 443 } 444 445 fn id_table(&self) -> crate::driver::base::device::IdTable { 446 todo!() 447 } 448 449 fn set_sys_info(&self, _sys_info: Option<Arc<dyn crate::filesystem::vfs::IndexNode>>) { 450 todo!() 451 } 452 453 fn sys_info(&self) -> Option<Arc<dyn crate::filesystem::vfs::IndexNode>> { 454 todo!() 455 } 456 } 457 458 impl BlockDevice for LockedAhciDisk { 459 #[inline] 460 fn as_any_ref(&self) -> &dyn core::any::Any { 461 self 462 } 463 464 #[inline] 465 fn blk_size_log2(&self) -> u8 { 466 9 467 } 468 469 fn sync(&self) -> Result<(), SystemError> { 470 return self.0.lock().sync(); 471 } 472 473 #[inline] 474 fn device(&self) -> Arc<dyn Device> { 475 return self.0.lock().self_ref.upgrade().unwrap(); 476 } 477 478 fn block_size(&self) -> usize { 479 todo!() 480 } 481 482 fn partitions(&self) -> Vec<Arc<Partition>> { 483 return self.0.lock().partitions.clone(); 484 } 485 486 #[inline] 487 fn read_at( 488 &self, 489 lba_id_start: BlockId, // 起始lba编号 490 count: usize, // 读取lba的数量 491 buf: &mut [u8], 492 ) -> Result<usize, SystemError> { 493 self.0.lock().read_at(lba_id_start, count, buf) 494 } 495 496 #[inline] 497 fn write_at( 498 &self, 499 lba_id_start: BlockId, 500 count: usize, 501 buf: &[u8], 502 ) -> Result<usize, SystemError> { 503 self.0.lock().write_at(lba_id_start, count, buf) 504 } 505 } 506