1 use core::{
2 arch::asm,
3 intrinsics::unlikely,
4 mem::ManuallyDrop,
5 sync::atomic::{compiler_fence, Ordering},
6 };
7
8 use alloc::sync::{Arc, Weak};
9
10 use kdepends::memoffset::offset_of;
11 use log::{error, warn};
12 use system_error::SystemError;
13 use x86::{controlregs::Cr4, segmentation::SegmentSelector};
14
15 use crate::{
16 arch::process::table::TSSManager,
17 exception::InterruptArch,
18 libs::spinlock::SpinLockGuard,
19 mm::VirtAddr,
20 process::{
21 fork::{CloneFlags, KernelCloneArgs},
22 KernelStack, ProcessControlBlock, ProcessFlags, ProcessManager, PROCESS_SWITCH_RESULT,
23 },
24 syscall::Syscall,
25 };
26
27 use self::{
28 kthread::kernel_thread_bootstrap_stage1,
29 syscall::ARCH_SET_FS,
30 table::{switch_fs_and_gs, KERNEL_DS, USER_DS},
31 };
32
33 use super::{fpu::FpState, interrupt::TrapFrame, syscall::X86_64GSData, CurrentIrqArch};
34
35 pub mod idle;
36 pub mod kthread;
37 pub mod syscall;
38 pub mod table;
39
40 extern "C" {
41 /// 从中断返回
ret_from_intr()42 fn ret_from_intr();
43 }
44
45 #[allow(dead_code)]
46 #[repr(align(32768))]
47 union InitProcUnion {
48 /// 用于存放idle进程的内核栈
49 idle_stack: [u8; 32768],
50 }
51
52 #[link_section = ".data.init_proc_union"]
53 #[no_mangle]
54 static BSP_IDLE_STACK_SPACE: InitProcUnion = InitProcUnion {
55 idle_stack: [0; 32768],
56 };
57
58 /// PCB中与架构相关的信息
59 #[derive(Debug)]
60 #[allow(dead_code)]
61 pub struct ArchPCBInfo {
62 rflags: usize,
63 rbx: usize,
64 r12: usize,
65 r13: usize,
66 r14: usize,
67 r15: usize,
68 rbp: usize,
69 rsp: usize,
70 rip: usize,
71 cr2: usize,
72 fsbase: usize,
73 gsbase: usize,
74 fs: SegmentSelector,
75 gs: SegmentSelector,
76 /// 存储PCB系统调用栈以及在syscall过程中暂存用户态rsp的结构体
77 gsdata: X86_64GSData,
78 /// 浮点寄存器的状态
79 fp_state: Option<FpState>,
80 }
81
82 #[allow(dead_code)]
83 impl ArchPCBInfo {
84 /// 创建一个新的ArchPCBInfo
85 ///
86 /// ## 参数
87 ///
88 /// - `kstack`:内核栈的引用,如果为None,则不会设置rsp和rbp。如果为Some,则会设置rsp和rbp为内核栈的最高地址。
89 ///
90 /// ## 返回值
91 ///
92 /// 返回一个新的ArchPCBInfo
93 #[inline(never)]
new(kstack: &KernelStack) -> Self94 pub fn new(kstack: &KernelStack) -> Self {
95 let mut r = Self {
96 rflags: 0,
97 rbx: 0,
98 r12: 0,
99 r13: 0,
100 r14: 0,
101 r15: 0,
102 rbp: 0,
103 rsp: 0,
104 rip: 0,
105 cr2: 0,
106 fsbase: 0,
107 gsbase: 0,
108 gsdata: X86_64GSData {
109 kaddr: VirtAddr::new(0),
110 uaddr: VirtAddr::new(0),
111 },
112 fs: KERNEL_DS,
113 gs: KERNEL_DS,
114 fp_state: None,
115 };
116
117 r.rsp = kstack.stack_max_address().data() - 8;
118 r.rbp = kstack.stack_max_address().data();
119
120 return r;
121 }
122
set_stack(&mut self, stack: VirtAddr)123 pub fn set_stack(&mut self, stack: VirtAddr) {
124 self.rsp = stack.data();
125 }
126
set_stack_base(&mut self, stack_base: VirtAddr)127 pub fn set_stack_base(&mut self, stack_base: VirtAddr) {
128 self.rbp = stack_base.data();
129 }
130
rbp(&self) -> usize131 pub fn rbp(&self) -> usize {
132 self.rbp
133 }
134
push_to_stack(&mut self, value: usize)135 pub unsafe fn push_to_stack(&mut self, value: usize) {
136 self.rsp -= core::mem::size_of::<usize>();
137 *(self.rsp as *mut usize) = value;
138 }
139
pop_from_stack(&mut self) -> usize140 pub unsafe fn pop_from_stack(&mut self) -> usize {
141 let value = *(self.rsp as *const usize);
142 self.rsp += core::mem::size_of::<usize>();
143 value
144 }
145
save_fp_state(&mut self)146 pub fn save_fp_state(&mut self) {
147 if self.fp_state.is_none() {
148 self.fp_state = Some(FpState::new());
149 }
150
151 self.fp_state.as_mut().unwrap().save();
152 }
153
restore_fp_state(&mut self)154 pub fn restore_fp_state(&mut self) {
155 if unlikely(self.fp_state.is_none()) {
156 return;
157 }
158
159 self.fp_state.as_mut().unwrap().restore();
160 }
161
162 /// 返回浮点寄存器结构体的副本
fp_state(&self) -> &Option<FpState>163 pub fn fp_state(&self) -> &Option<FpState> {
164 &self.fp_state
165 }
166
167 // 清空浮点寄存器
clear_fp_state(&mut self)168 pub fn clear_fp_state(&mut self) {
169 if unlikely(self.fp_state.is_none()) {
170 warn!("fp_state is none");
171 return;
172 }
173
174 self.fp_state.as_mut().unwrap().clear();
175 }
save_fsbase(&mut self)176 pub unsafe fn save_fsbase(&mut self) {
177 if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) {
178 self.fsbase = x86::current::segmentation::rdfsbase() as usize;
179 } else {
180 self.fsbase = x86::msr::rdmsr(x86::msr::IA32_FS_BASE) as usize;
181 }
182 }
183
save_gsbase(&mut self)184 pub unsafe fn save_gsbase(&mut self) {
185 if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) {
186 self.gsbase = x86::current::segmentation::rdgsbase() as usize;
187 } else {
188 self.gsbase = x86::msr::rdmsr(x86::msr::IA32_GS_BASE) as usize;
189 }
190 }
191
restore_fsbase(&mut self)192 pub unsafe fn restore_fsbase(&mut self) {
193 if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) {
194 x86::current::segmentation::wrfsbase(self.fsbase as u64);
195 } else {
196 x86::msr::wrmsr(x86::msr::IA32_FS_BASE, self.fsbase as u64);
197 }
198 }
199
restore_gsbase(&mut self)200 pub unsafe fn restore_gsbase(&mut self) {
201 if x86::controlregs::cr4().contains(Cr4::CR4_ENABLE_FSGSBASE) {
202 x86::current::segmentation::wrgsbase(self.gsbase as u64);
203 } else {
204 x86::msr::wrmsr(x86::msr::IA32_GS_BASE, self.gsbase as u64);
205 }
206 }
207
208 /// 将gsdata写入KernelGsbase寄存器
store_kernel_gsbase(&self)209 pub unsafe fn store_kernel_gsbase(&self) {
210 x86::msr::wrmsr(
211 x86::msr::IA32_KERNEL_GSBASE,
212 &self.gsdata as *const X86_64GSData as u64,
213 );
214 }
215
216 /// ### 初始化系统调用栈,不得与PCB内核栈冲突(即传入的应该是一个新的栈,避免栈损坏)
init_syscall_stack(&mut self, stack: &KernelStack)217 pub fn init_syscall_stack(&mut self, stack: &KernelStack) {
218 self.gsdata.set_kstack(stack.stack_max_address() - 8);
219 }
220
fsbase(&self) -> usize221 pub fn fsbase(&self) -> usize {
222 self.fsbase
223 }
224
gsbase(&self) -> usize225 pub fn gsbase(&self) -> usize {
226 self.gsbase
227 }
228
cr2_mut(&mut self) -> &mut usize229 pub fn cr2_mut(&mut self) -> &mut usize {
230 &mut self.cr2
231 }
232
fp_state_mut(&mut self) -> &mut Option<FpState>233 pub fn fp_state_mut(&mut self) -> &mut Option<FpState> {
234 &mut self.fp_state
235 }
236
237 /// ### 克隆ArchPCBInfo,需要注意gsdata也是对应clone的
clone_all(&self) -> Self238 pub fn clone_all(&self) -> Self {
239 Self {
240 rflags: self.rflags,
241 rbx: self.rbx,
242 r12: self.r12,
243 r13: self.r13,
244 r14: self.r14,
245 r15: self.r15,
246 rbp: self.rbp,
247 rsp: self.rsp,
248 rip: self.rip,
249 cr2: self.cr2,
250 fsbase: self.fsbase,
251 gsbase: self.gsbase,
252 fs: self.fs,
253 gs: self.gs,
254 gsdata: self.gsdata.clone(),
255 fp_state: self.fp_state,
256 }
257 }
258
259 // ### 从另一个ArchPCBInfo处clone,gsdata会被保留
clone_from(&mut self, from: &Self)260 pub fn clone_from(&mut self, from: &Self) {
261 let gsdata = self.gsdata.clone();
262 *self = from.clone_all();
263 self.gsdata = gsdata;
264 }
265 }
266
267 impl ProcessControlBlock {
268 /// 获取当前进程的pcb
arch_current_pcb() -> Arc<Self>269 pub fn arch_current_pcb() -> Arc<Self> {
270 // 获取栈指针
271 let ptr = VirtAddr::new(x86::current::registers::rsp() as usize);
272
273 let stack_base = VirtAddr::new(ptr.data() & (!(KernelStack::ALIGN - 1)));
274
275 // 从内核栈的最低地址处取出pcb的地址
276 let p = stack_base.data() as *const *const ProcessControlBlock;
277 if unlikely((unsafe { *p }).is_null()) {
278 error!("p={:p}", p);
279 panic!("current_pcb is null");
280 }
281 unsafe {
282 // 为了防止内核栈的pcb weak 指针被释放,这里需要将其包装一下
283 let weak_wrapper: ManuallyDrop<Weak<ProcessControlBlock>> =
284 ManuallyDrop::new(Weak::from_raw(*p));
285
286 let new_arc: Arc<ProcessControlBlock> = weak_wrapper.upgrade().unwrap();
287 return new_arc;
288 }
289 }
290 }
291
292 impl ProcessManager {
arch_init()293 pub fn arch_init() {
294 // do nothing
295 }
296 /// fork的过程中复制线程
297 ///
298 /// 由于这个过程与具体的架构相关,所以放在这里
copy_thread( current_pcb: &Arc<ProcessControlBlock>, new_pcb: &Arc<ProcessControlBlock>, clone_args: &KernelCloneArgs, current_trapframe: &TrapFrame, ) -> Result<(), SystemError>299 pub fn copy_thread(
300 current_pcb: &Arc<ProcessControlBlock>,
301 new_pcb: &Arc<ProcessControlBlock>,
302 clone_args: &KernelCloneArgs,
303 current_trapframe: &TrapFrame,
304 ) -> Result<(), SystemError> {
305 let clone_flags = clone_args.flags;
306 let mut child_trapframe = *current_trapframe;
307
308 // 子进程的返回值为0
309 child_trapframe.set_return_value(0);
310
311 // 设置子进程的栈基址(开始执行中断返回流程时的栈基址)
312 let mut new_arch_guard = unsafe { new_pcb.arch_info() };
313 let kernel_stack_guard = new_pcb.kernel_stack();
314
315 // 设置子进程在内核态开始执行时的rsp、rbp
316 new_arch_guard.set_stack_base(kernel_stack_guard.stack_max_address());
317
318 let trap_frame_vaddr: VirtAddr =
319 kernel_stack_guard.stack_max_address() - core::mem::size_of::<TrapFrame>();
320 new_arch_guard.set_stack(trap_frame_vaddr);
321
322 // 拷贝栈帧
323 unsafe {
324 let usp = clone_args.stack;
325 if usp != 0 {
326 child_trapframe.rsp = usp as u64;
327 }
328 let trap_frame_ptr = trap_frame_vaddr.data() as *mut TrapFrame;
329 *trap_frame_ptr = child_trapframe;
330 }
331
332 let current_arch_guard = current_pcb.arch_info_irqsave();
333 new_arch_guard.fsbase = current_arch_guard.fsbase;
334 new_arch_guard.gsbase = current_arch_guard.gsbase;
335 new_arch_guard.fs = current_arch_guard.fs;
336 new_arch_guard.gs = current_arch_guard.gs;
337 new_arch_guard.fp_state = current_arch_guard.fp_state;
338
339 // 拷贝浮点寄存器的状态
340 if let Some(fp_state) = current_arch_guard.fp_state.as_ref() {
341 new_arch_guard.fp_state = Some(*fp_state);
342 }
343 drop(current_arch_guard);
344
345 // 设置返回地址(子进程开始执行的指令地址)
346 if new_pcb.flags().contains(ProcessFlags::KTHREAD) {
347 let kthread_bootstrap_stage1_func_addr = kernel_thread_bootstrap_stage1 as usize;
348 new_arch_guard.rip = kthread_bootstrap_stage1_func_addr;
349 } else {
350 new_arch_guard.rip = ret_from_intr as usize;
351 }
352
353 // 设置tls
354 if clone_flags.contains(CloneFlags::CLONE_SETTLS) {
355 drop(new_arch_guard);
356 Syscall::do_arch_prctl_64(new_pcb, ARCH_SET_FS, clone_args.tls, true)?;
357 }
358
359 return Ok(());
360 }
361
362 /// 切换进程
363 ///
364 /// ## 参数
365 ///
366 /// - `prev`:上一个进程的pcb
367 /// - `next`:下一个进程的pcb
switch_process(prev: Arc<ProcessControlBlock>, next: Arc<ProcessControlBlock>)368 pub unsafe fn switch_process(prev: Arc<ProcessControlBlock>, next: Arc<ProcessControlBlock>) {
369 assert!(!CurrentIrqArch::is_irq_enabled());
370
371 // 保存浮点寄存器
372 prev.arch_info_irqsave().save_fp_state();
373 // 切换浮点寄存器
374 next.arch_info_irqsave().restore_fp_state();
375
376 // 切换fsbase
377 prev.arch_info_irqsave().save_fsbase();
378 next.arch_info_irqsave().restore_fsbase();
379
380 // 切换gsbase
381 Self::switch_gsbase(&prev, &next);
382
383 // 切换地址空间
384 let next_addr_space = next.basic().user_vm().as_ref().unwrap().clone();
385 compiler_fence(Ordering::SeqCst);
386
387 next_addr_space.read().user_mapper.utable.make_current();
388 drop(next_addr_space);
389 compiler_fence(Ordering::SeqCst);
390 // 切换内核栈
391
392 // 获取arch info的锁,并强制泄露其守卫(切换上下文后,在switch_finish_hook中会释放锁)
393 let next_arch = SpinLockGuard::leak(next.arch_info_irqsave()) as *mut ArchPCBInfo;
394 let prev_arch = SpinLockGuard::leak(prev.arch_info_irqsave()) as *mut ArchPCBInfo;
395
396 (*prev_arch).rip = switch_back as usize;
397
398 // 恢复当前的 preempt count*2
399 ProcessManager::current_pcb().preempt_enable();
400 ProcessManager::current_pcb().preempt_enable();
401
402 // 切换tss
403 TSSManager::current_tss().set_rsp(
404 x86::Ring::Ring0,
405 next.kernel_stack().stack_max_address().data() as u64,
406 );
407 PROCESS_SWITCH_RESULT.as_mut().unwrap().get_mut().prev_pcb = Some(prev);
408 PROCESS_SWITCH_RESULT.as_mut().unwrap().get_mut().next_pcb = Some(next);
409 // debug!("switch tss ok");
410 compiler_fence(Ordering::SeqCst);
411 // 正式切换上下文
412 switch_to_inner(prev_arch, next_arch);
413 }
414
switch_gsbase(prev: &Arc<ProcessControlBlock>, next: &Arc<ProcessControlBlock>)415 unsafe fn switch_gsbase(prev: &Arc<ProcessControlBlock>, next: &Arc<ProcessControlBlock>) {
416 asm!("swapgs", options(nostack, preserves_flags));
417 prev.arch_info_irqsave().save_gsbase();
418 next.arch_info_irqsave().restore_gsbase();
419 // 将下一个进程的kstack写入kernel_gsbase
420 next.arch_info_irqsave().store_kernel_gsbase();
421 asm!("swapgs", options(nostack, preserves_flags));
422 }
423 }
424
425 /// 保存上下文,然后切换进程,接着jmp到`switch_finish_hook`钩子函数
426 #[naked]
switch_to_inner(prev: *mut ArchPCBInfo, next: *mut ArchPCBInfo)427 unsafe extern "sysv64" fn switch_to_inner(prev: *mut ArchPCBInfo, next: *mut ArchPCBInfo) {
428 core::arch::naked_asm!(
429 // As a quick reminder for those who are unfamiliar with the System V ABI (extern "C"):
430 //
431 // - the current parameters are passed in the registers `rdi`, `rsi`,
432 // - we can modify scratch registers, e.g. rax
433 // - we cannot change callee-preserved registers arbitrarily, e.g. rbx, which is why we
434 // store them here in the first place.
435 concat!("
436 // Save old registers, and load new ones
437 mov [rdi + {off_rbx}], rbx
438 mov rbx, [rsi + {off_rbx}]
439
440 mov [rdi + {off_r12}], r12
441 mov r12, [rsi + {off_r12}]
442
443 mov [rdi + {off_r13}], r13
444 mov r13, [rsi + {off_r13}]
445
446 mov [rdi + {off_r14}], r14
447 mov r14, [rsi + {off_r14}]
448
449 mov [rdi + {off_r15}], r15
450 mov r15, [rsi + {off_r15}]
451
452 // switch segment registers (这些寄存器只能通过接下来的switch_hook的return来切换)
453 mov [rdi + {off_fs}], fs
454 mov [rdi + {off_gs}], gs
455
456 // mov fs, [rsi + {off_fs}]
457 // mov gs, [rsi + {off_gs}]
458
459 mov [rdi + {off_rbp}], rbp
460 mov rbp, [rsi + {off_rbp}]
461
462 mov [rdi + {off_rsp}], rsp
463 mov rsp, [rsi + {off_rsp}]
464
465 // // push RFLAGS (can only be modified via stack)
466 pushfq
467 // // pop RFLAGS into `self.rflags`
468 pop QWORD PTR [rdi + {off_rflags}]
469
470 // // push `next.rflags`
471 push QWORD PTR [rsi + {off_rflags}]
472 // // pop into RFLAGS
473 popfq
474
475 // push next rip to stack
476 push QWORD PTR [rsi + {off_rip}]
477
478
479 // When we return, we cannot even guarantee that the return address on the stack, points to
480 // the calling function. Thus, we have to execute this Rust hook by
481 // ourselves, which will unlock the contexts before the later switch.
482
483 // Note that switch_finish_hook will be responsible for executing `ret`.
484 jmp {switch_hook}
485 "),
486
487 off_rflags = const(offset_of!(ArchPCBInfo, rflags)),
488
489 off_rbx = const(offset_of!(ArchPCBInfo, rbx)),
490 off_r12 = const(offset_of!(ArchPCBInfo, r12)),
491 off_r13 = const(offset_of!(ArchPCBInfo, r13)),
492 off_r14 = const(offset_of!(ArchPCBInfo, r14)),
493 off_rbp = const(offset_of!(ArchPCBInfo, rbp)),
494 off_rsp = const(offset_of!(ArchPCBInfo, rsp)),
495 off_r15 = const(offset_of!(ArchPCBInfo, r15)),
496 off_rip = const(offset_of!(ArchPCBInfo, rip)),
497 off_fs = const(offset_of!(ArchPCBInfo, fs)),
498 off_gs = const(offset_of!(ArchPCBInfo, gs)),
499
500 switch_hook = sym crate::process::switch_finish_hook,
501 );
502 }
503
504 #[naked]
switch_back() -> !505 unsafe extern "sysv64" fn switch_back() -> ! {
506 core::arch::naked_asm!("ret");
507 }
508
arch_switch_to_user(trap_frame: TrapFrame) -> !509 pub unsafe fn arch_switch_to_user(trap_frame: TrapFrame) -> ! {
510 // 以下代码不能发生中断
511 CurrentIrqArch::interrupt_disable();
512
513 let current_pcb = ProcessManager::current_pcb();
514 let trap_frame_vaddr = VirtAddr::new(
515 current_pcb.kernel_stack().stack_max_address().data() - core::mem::size_of::<TrapFrame>(),
516 );
517 // debug!("trap_frame_vaddr: {:?}", trap_frame_vaddr);
518
519 assert!(
520 (x86::current::registers::rsp() as usize) < trap_frame_vaddr.data(),
521 "arch_switch_to_user(): current_rsp >= fake trap
522 frame vaddr, this may cause some illegal access to memory!
523 rsp: {:#x}, trap_frame_vaddr: {:#x}",
524 x86::current::registers::rsp() as usize,
525 trap_frame_vaddr.data()
526 );
527
528 let new_rip = VirtAddr::new(ret_from_intr as usize);
529 let mut arch_guard = current_pcb.arch_info_irqsave();
530 arch_guard.rsp = trap_frame_vaddr.data();
531
532 arch_guard.fs = USER_DS;
533 arch_guard.gs = USER_DS;
534
535 // 将内核gs数据压进cpu
536 arch_guard.store_kernel_gsbase();
537
538 switch_fs_and_gs(
539 SegmentSelector::from_bits_truncate(arch_guard.fs.bits()),
540 SegmentSelector::from_bits_truncate(arch_guard.gs.bits()),
541 );
542 arch_guard.rip = new_rip.data();
543
544 drop(arch_guard);
545
546 drop(current_pcb);
547 compiler_fence(Ordering::SeqCst);
548
549 // 重要!在这里之后,一定要保证上面的引用计数变量、动态申请的变量、锁的守卫都被drop了,否则可能导致内存安全问题!
550
551 compiler_fence(Ordering::SeqCst);
552 ready_to_switch_to_user(trap_frame, trap_frame_vaddr.data(), new_rip.data());
553 }
554
555 /// 由于需要依赖ret来切换到用户态,所以不能inline
556 #[inline(never)]
ready_to_switch_to_user( trap_frame: TrapFrame, trapframe_vaddr: usize, new_rip: usize, ) -> !557 unsafe extern "sysv64" fn ready_to_switch_to_user(
558 trap_frame: TrapFrame,
559 trapframe_vaddr: usize,
560 new_rip: usize,
561 ) -> ! {
562 *(trapframe_vaddr as *mut TrapFrame) = trap_frame;
563 compiler_fence(Ordering::SeqCst);
564 asm!(
565 "swapgs",
566 "mov rsp, {trapframe_vaddr}",
567 "push {new_rip}",
568 "ret",
569 trapframe_vaddr = in(reg) trapframe_vaddr,
570 new_rip = in(reg) new_rip
571 );
572 unreachable!()
573 }
574
575 // bitflags! {
576 // pub struct ProcessThreadFlags: u32 {
577 // /*
578 // * thread information flags
579 // * - these are process state flags that various assembly files
580 // * may need to access
581 // */
582 // const TIF_NOTIFY_RESUME = 1 << 1; /* callback before returning to user */
583 // const TIF_SIGPENDING = 1 << 2; /* signal pending */
584 // const TIF_NEED_RESCHED = 1 << 3; /* rescheduling necessary */
585 // const TIF_SINGLESTEP = 1 << 4; /* reenable singlestep on user return*/
586 // const TIF_SSBD = 1 << 5; /* Speculative store bypass disable */
587 // const TIF_SPEC_IB = 1 << 9; /* Indirect branch speculation mitigation */
588 // const TIF_SPEC_L1D_FLUSH = 1 << 10; /* Flush L1D on mm switches (processes) */
589 // const TIF_USER_RETURN_NOTIFY = 1 << 11; /* notify kernel of userspace return */
590 // const TIF_UPROBE = 1 << 12; /* breakpointed or singlestepping */
591 // const TIF_PATCH_PENDING = 1 << 13; /* pending live patching update */
592 // const TIF_NEED_FPU_LOAD = 1 << 14; /* load FPU on return to userspace */
593 // const TIF_NOCPUID = 1 << 15; /* CPUID is not accessible in userland */
594 // const TIF_NOTSC = 1 << 16; /* TSC is not accessible in userland */
595 // const TIF_NOTIFY_SIGNAL = 1 << 17; /* signal notifications exist */
596 // const TIF_MEMDIE = 1 << 20; /* is terminating due to OOM killer */
597 // const TIF_POLLING_NRFLAG = 1 << 21; /* idle is polling for TIF_NEED_RESCHED */
598 // const TIF_IO_BITMAP = 1 << 22; /* uses I/O bitmap */
599 // const TIF_SPEC_FORCE_UPDATE = 1 << 23; /* Force speculation MSR update in context switch */
600 // const TIF_FORCED_TF = 1 << 24; /* true if TF in eflags artificially */
601 // const TIF_BLOCKSTEP = 1 << 25; /* set when we want DEBUGCTLMSR_BTF */
602 // const TIF_LAZY_MMU_UPDATES = 1 << 27; /* task is updating the mmu lazily */
603 // const TIF_ADDR32 = 1 << 29; /* 32-bit address space on 64 bits */
604 // }
605 // }
606