xref: /DragonOS/kernel/src/arch/x86_64/mm/mod.rs (revision fae6e9ade46a52976ad5d099643d51cc20876448)
1 pub mod barrier;
2 pub mod bump;
3 pub mod fault;
4 pub mod pkru;
5 
6 use alloc::sync::Arc;
7 use alloc::vec::Vec;
8 use hashbrown::HashSet;
9 use log::{debug, info};
10 use x86::time::rdtsc;
11 use x86_64::registers::model_specific::EferFlags;
12 
13 use crate::driver::serial::serial8250::send_to_default_serial8250_port;
14 
15 use crate::init::boot::boot_callbacks;
16 use crate::libs::align::page_align_up;
17 use crate::libs::lib_ui::screen_manager::scm_disable_put_to_window;
18 use crate::libs::spinlock::SpinLock;
19 
20 use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage};
21 use crate::mm::memblock::mem_block_manager;
22 use crate::mm::ucontext::LockedVMA;
23 use crate::{
24     arch::MMArch,
25     mm::allocator::{buddy::BuddyAllocator, bump::BumpAllocator},
26 };
27 
28 use crate::mm::kernel_mapper::KernelMapper;
29 use crate::mm::page::{EntryFlags, PageEntry, PAGE_1G_SHIFT};
30 use crate::mm::{MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr, VmFlags};
31 
32 use system_error::SystemError;
33 
34 use core::arch::asm;
35 use core::fmt::Debug;
36 
37 use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
38 
39 use super::kvm::vmx::vmcs::VmcsFields;
40 use super::kvm::vmx::vmx_asm_wrapper::vmx_vmread;
41 
42 pub type PageMapper =
43     crate::mm::page::PageMapper<crate::arch::x86_64::mm::X86_64MMArch, LockedFrameAllocator>;
44 
45 /// 初始的CR3寄存器的值,用于内存管理初始化时,创建的第一个内核页表的位置
46 static mut INITIAL_CR3_VALUE: PhysAddr = PhysAddr::new(0);
47 
48 static INNER_ALLOCATOR: SpinLock<Option<BuddyAllocator<MMArch>>> = SpinLock::new(None);
49 
50 #[derive(Clone, Copy, Debug)]
51 pub struct X86_64MMBootstrapInfo {
52     kernel_load_base_paddr: usize,
53     kernel_code_start: usize,
54     kernel_code_end: usize,
55     kernel_data_end: usize,
56     kernel_rodata_end: usize,
57     start_brk: usize,
58 }
59 
60 pub(super) static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None;
61 
62 pub(super) fn x86_64_set_kernel_load_base_paddr(paddr: PhysAddr) {
63     unsafe {
64         BOOTSTRAP_MM_INFO.as_mut().unwrap().kernel_load_base_paddr = paddr.data();
65     }
66 }
67 
68 /// @brief X86_64的内存管理架构结构体
69 #[derive(Debug, Clone, Copy, Hash)]
70 pub struct X86_64MMArch;
71 
72 /// XD标志位是否被保留
73 static XD_RESERVED: AtomicBool = AtomicBool::new(false);
74 
75 impl MemoryManagementArch for X86_64MMArch {
76     /// X86目前支持缺页中断
77     const PAGE_FAULT_ENABLED: bool = true;
78     /// 4K页
79     const PAGE_SHIFT: usize = 12;
80 
81     /// 每个页表项占8字节,总共有512个页表项
82     const PAGE_ENTRY_SHIFT: usize = 9;
83 
84     /// 四级页表(PML4T、PDPT、PDT、PT)
85     const PAGE_LEVELS: usize = 4;
86 
87     /// 页表项的有效位的index。在x86_64中,页表项的第[0, 47]位表示地址和flag,
88     /// 第[48, 51]位表示保留。因此,有效位的index为52。
89     /// 请注意,第63位是XD位,表示是否允许执行。
90     const ENTRY_ADDRESS_SHIFT: usize = 52;
91 
92     const ENTRY_FLAG_DEFAULT_PAGE: usize = Self::ENTRY_FLAG_PRESENT;
93 
94     const ENTRY_FLAG_DEFAULT_TABLE: usize = Self::ENTRY_FLAG_PRESENT;
95 
96     const ENTRY_FLAG_PRESENT: usize = 1 << 0;
97 
98     const ENTRY_FLAG_READONLY: usize = 0;
99 
100     const ENTRY_FLAG_WRITEABLE: usize = 1 << 1;
101     const ENTRY_FLAG_READWRITE: usize = 1 << 1;
102 
103     const ENTRY_FLAG_USER: usize = 1 << 2;
104 
105     const ENTRY_FLAG_WRITE_THROUGH: usize = 1 << 3;
106 
107     const ENTRY_FLAG_CACHE_DISABLE: usize = 1 << 4;
108 
109     const ENTRY_FLAG_NO_EXEC: usize = 1 << 63;
110     /// x86_64不存在EXEC标志位,只有NO_EXEC(XD)标志位
111     const ENTRY_FLAG_EXEC: usize = 0;
112 
113     const ENTRY_FLAG_ACCESSED: usize = 1 << 5;
114     const ENTRY_FLAG_DIRTY: usize = 1 << 6;
115     const ENTRY_FLAG_HUGE_PAGE: usize = 1 << 7;
116     const ENTRY_FLAG_GLOBAL: usize = 1 << 8;
117 
118     /// 物理地址与虚拟地址的偏移量
119     /// 0xffff_8000_0000_0000
120     const PHYS_OFFSET: usize = Self::PAGE_NEGATIVE_MASK + (Self::PAGE_ADDRESS_SIZE >> 1);
121     const KERNEL_LINK_OFFSET: usize = 0x100000;
122 
123     // 参考 https://code.dragonos.org.cn/xref/linux-6.1.9/arch/x86/include/asm/page_64_types.h#75
124     const USER_END_VADDR: VirtAddr =
125         VirtAddr::new((Self::PAGE_ADDRESS_SIZE >> 1) - Self::PAGE_SIZE);
126     const USER_BRK_START: VirtAddr = VirtAddr::new(0x700000000000);
127     const USER_STACK_START: VirtAddr = VirtAddr::new(0x6ffff0a00000);
128 
129     const FIXMAP_START_VADDR: VirtAddr = VirtAddr::new(0xffffb00000000000);
130     /// 设置FIXMAP区域大小为16M
131     const FIXMAP_SIZE: usize = 256 * 4096 * 16;
132 
133     const MMIO_BASE: VirtAddr = VirtAddr::new(0xffffa10000000000);
134     const MMIO_SIZE: usize = 1 << PAGE_1G_SHIFT;
135 
136     /// @brief 获取物理内存区域
137     unsafe fn init() {
138         extern "C" {
139             fn _text();
140             fn _etext();
141             fn _edata();
142             fn _erodata();
143             fn _end();
144             fn _default_kernel_load_base();
145         }
146 
147         Self::init_xd_rsvd();
148 
149         let bootstrap_info = X86_64MMBootstrapInfo {
150             kernel_load_base_paddr: _default_kernel_load_base as usize,
151             kernel_code_start: _text as usize,
152             kernel_code_end: _etext as usize,
153             kernel_data_end: _edata as usize,
154             kernel_rodata_end: _erodata as usize,
155             start_brk: _end as usize,
156         };
157 
158         unsafe {
159             BOOTSTRAP_MM_INFO = Some(bootstrap_info);
160         }
161 
162         // 初始化物理内存区域
163         boot_callbacks()
164             .early_init_memory_blocks()
165             .expect("init memory area failed");
166 
167         debug!("bootstrap info: {:?}", unsafe { BOOTSTRAP_MM_INFO });
168         debug!("phys[0]=virt[0x{:x}]", unsafe {
169             MMArch::phys_2_virt(PhysAddr::new(0)).unwrap().data()
170         });
171 
172         // 初始化内存管理器
173         unsafe { allocator_init() };
174 
175         send_to_default_serial8250_port("x86 64 mm init done\n\0".as_bytes());
176     }
177 
178     /// @brief 刷新TLB中,关于指定虚拟地址的条目
179     unsafe fn invalidate_page(address: VirtAddr) {
180         compiler_fence(Ordering::SeqCst);
181         asm!("invlpg [{0}]", in(reg) address.data(), options(nostack, preserves_flags));
182         compiler_fence(Ordering::SeqCst);
183     }
184 
185     /// @brief 刷新TLB中,所有的条目
186     unsafe fn invalidate_all() {
187         compiler_fence(Ordering::SeqCst);
188         // 通过设置cr3寄存器,来刷新整个TLB
189         Self::set_table(PageTableKind::User, Self::table(PageTableKind::User));
190         compiler_fence(Ordering::SeqCst);
191     }
192 
193     /// @brief 获取顶级页表的物理地址
194     unsafe fn table(table_kind: PageTableKind) -> PhysAddr {
195         match table_kind {
196             PageTableKind::Kernel | PageTableKind::User => {
197                 compiler_fence(Ordering::SeqCst);
198                 let cr3 = x86::controlregs::cr3() as usize;
199                 compiler_fence(Ordering::SeqCst);
200                 return PhysAddr::new(cr3);
201             }
202             PageTableKind::EPT => {
203                 let eptp =
204                     vmx_vmread(VmcsFields::CTRL_EPTP_PTR as u32).expect("Failed to read eptp");
205                 return PhysAddr::new(eptp as usize);
206             }
207         }
208     }
209 
210     /// @brief 设置顶级页表的物理地址到处理器中
211     unsafe fn set_table(_table_kind: PageTableKind, table: PhysAddr) {
212         compiler_fence(Ordering::SeqCst);
213         asm!("mov cr3, {}", in(reg) table.data(), options(nostack, preserves_flags));
214         compiler_fence(Ordering::SeqCst);
215     }
216 
217     /// @brief 判断虚拟地址是否合法
218     fn virt_is_valid(virt: VirtAddr) -> bool {
219         return virt.is_canonical();
220     }
221 
222     /// 获取内存管理初始化时,创建的第一个内核页表的地址
223     fn initial_page_table() -> PhysAddr {
224         unsafe {
225             return INITIAL_CR3_VALUE;
226         }
227     }
228 
229     /// @brief 创建新的顶层页表
230     ///
231     /// 该函数会创建页表并复制内核的映射到新的页表中
232     ///
233     /// @return 新的页表
234     fn setup_new_usermapper() -> Result<crate::mm::ucontext::UserMapper, SystemError> {
235         let new_umapper: crate::mm::page::PageMapper<X86_64MMArch, LockedFrameAllocator> = unsafe {
236             PageMapper::create(PageTableKind::User, LockedFrameAllocator)
237                 .ok_or(SystemError::ENOMEM)?
238         };
239 
240         let current_ktable: KernelMapper = KernelMapper::lock();
241         let copy_mapping = |pml4_entry_no| unsafe {
242             let entry: PageEntry<X86_64MMArch> = current_ktable
243                 .table()
244                 .entry(pml4_entry_no)
245                 .unwrap_or_else(|| panic!("entry {} not found", pml4_entry_no));
246             new_umapper.table().set_entry(pml4_entry_no, entry)
247         };
248 
249         // 复制内核的映射
250         for pml4_entry_no in MMArch::PAGE_KERNEL_INDEX..MMArch::PAGE_ENTRY_NUM {
251             copy_mapping(pml4_entry_no);
252         }
253 
254         return Ok(crate::mm::ucontext::UserMapper::new(new_umapper));
255     }
256 
257     const PAGE_SIZE: usize = 1 << Self::PAGE_SHIFT;
258 
259     const PAGE_OFFSET_MASK: usize = Self::PAGE_SIZE - 1;
260 
261     const PAGE_MASK: usize = !(Self::PAGE_OFFSET_MASK);
262 
263     const PAGE_ADDRESS_SHIFT: usize = Self::PAGE_LEVELS * Self::PAGE_ENTRY_SHIFT + Self::PAGE_SHIFT;
264 
265     const PAGE_ADDRESS_SIZE: usize = 1 << Self::PAGE_ADDRESS_SHIFT;
266 
267     const PAGE_ADDRESS_MASK: usize = Self::PAGE_ADDRESS_SIZE - Self::PAGE_SIZE;
268 
269     const PAGE_ENTRY_SIZE: usize = 1 << (Self::PAGE_SHIFT - Self::PAGE_ENTRY_SHIFT);
270 
271     const PAGE_ENTRY_NUM: usize = 1 << Self::PAGE_ENTRY_SHIFT;
272 
273     const PAGE_ENTRY_MASK: usize = Self::PAGE_ENTRY_NUM - 1;
274 
275     const PAGE_KERNEL_INDEX: usize = (Self::PHYS_OFFSET & Self::PAGE_ADDRESS_MASK)
276         >> (Self::PAGE_ADDRESS_SHIFT - Self::PAGE_ENTRY_SHIFT);
277 
278     const PAGE_NEGATIVE_MASK: usize = !((Self::PAGE_ADDRESS_SIZE) - 1);
279 
280     const ENTRY_ADDRESS_SIZE: usize = 1 << Self::ENTRY_ADDRESS_SHIFT;
281 
282     const ENTRY_ADDRESS_MASK: usize = Self::ENTRY_ADDRESS_SIZE - Self::PAGE_SIZE;
283 
284     const ENTRY_FLAGS_MASK: usize = !Self::ENTRY_ADDRESS_MASK;
285 
286     unsafe fn read<T>(address: VirtAddr) -> T {
287         return core::ptr::read(address.data() as *const T);
288     }
289 
290     unsafe fn write<T>(address: VirtAddr, value: T) {
291         core::ptr::write(address.data() as *mut T, value);
292     }
293 
294     unsafe fn write_bytes(address: VirtAddr, value: u8, count: usize) {
295         core::ptr::write_bytes(address.data() as *mut u8, value, count);
296     }
297 
298     unsafe fn phys_2_virt(phys: PhysAddr) -> Option<VirtAddr> {
299         if let Some(vaddr) = phys.data().checked_add(Self::PHYS_OFFSET) {
300             return Some(VirtAddr::new(vaddr));
301         } else {
302             return None;
303         }
304     }
305 
306     unsafe fn virt_2_phys(virt: VirtAddr) -> Option<PhysAddr> {
307         if let Some(paddr) = virt.data().checked_sub(Self::PHYS_OFFSET) {
308             return Some(PhysAddr::new(paddr));
309         } else {
310             return None;
311         }
312     }
313 
314     #[inline(always)]
315     fn make_entry(paddr: PhysAddr, page_flags: usize) -> usize {
316         return paddr.data() | page_flags;
317     }
318 
319     fn vma_access_permitted(
320         vma: Arc<LockedVMA>,
321         write: bool,
322         execute: bool,
323         foreign: bool,
324     ) -> bool {
325         if execute {
326             return true;
327         }
328         if foreign | vma.is_foreign() {
329             return true;
330         }
331         pkru::pkru_allows_pkey(pkru::vma_pkey(vma), write)
332     }
333 
334     const PROTECTION_MAP: [EntryFlags<MMArch>; 16] = protection_map();
335 
336     const PAGE_NONE: usize =
337         Self::ENTRY_FLAG_PRESENT | Self::ENTRY_FLAG_ACCESSED | Self::ENTRY_FLAG_GLOBAL;
338 
339     const PAGE_SHARED: usize = Self::ENTRY_FLAG_PRESENT
340         | Self::ENTRY_FLAG_READWRITE
341         | Self::ENTRY_FLAG_USER
342         | Self::ENTRY_FLAG_ACCESSED
343         | Self::ENTRY_FLAG_NO_EXEC;
344 
345     const PAGE_SHARED_EXEC: usize = Self::ENTRY_FLAG_PRESENT
346         | Self::ENTRY_FLAG_READWRITE
347         | Self::ENTRY_FLAG_USER
348         | Self::ENTRY_FLAG_ACCESSED;
349 
350     const PAGE_COPY_NOEXEC: usize = Self::ENTRY_FLAG_PRESENT
351         | Self::ENTRY_FLAG_USER
352         | Self::ENTRY_FLAG_ACCESSED
353         | Self::ENTRY_FLAG_NO_EXEC;
354 
355     const PAGE_COPY_EXEC: usize =
356         Self::ENTRY_FLAG_PRESENT | Self::ENTRY_FLAG_USER | Self::ENTRY_FLAG_ACCESSED;
357 
358     const PAGE_COPY: usize = Self::ENTRY_FLAG_PRESENT
359         | Self::ENTRY_FLAG_USER
360         | Self::ENTRY_FLAG_ACCESSED
361         | Self::ENTRY_FLAG_NO_EXEC;
362 
363     const PAGE_READONLY: usize = Self::ENTRY_FLAG_PRESENT
364         | Self::ENTRY_FLAG_USER
365         | Self::ENTRY_FLAG_ACCESSED
366         | Self::ENTRY_FLAG_NO_EXEC;
367 
368     const PAGE_READONLY_EXEC: usize =
369         Self::ENTRY_FLAG_PRESENT | Self::ENTRY_FLAG_USER | Self::ENTRY_FLAG_ACCESSED;
370 
371     const PAGE_READ: usize = 0;
372     const PAGE_READ_EXEC: usize = 0;
373     const PAGE_WRITE: usize = 0;
374     const PAGE_WRITE_EXEC: usize = 0;
375     const PAGE_EXEC: usize = 0;
376 }
377 
378 /// 获取保护标志的映射表
379 ///
380 ///
381 /// ## 返回值
382 /// - `[usize; 16]`: 长度为16的映射表
383 const fn protection_map() -> [EntryFlags<MMArch>; 16] {
384     let mut map = [unsafe { EntryFlags::from_data(0) }; 16];
385     unsafe {
386         map[VmFlags::VM_NONE.bits()] = EntryFlags::from_data(MMArch::PAGE_NONE);
387         map[VmFlags::VM_READ.bits()] = EntryFlags::from_data(MMArch::PAGE_READONLY);
388         map[VmFlags::VM_WRITE.bits()] = EntryFlags::from_data(MMArch::PAGE_COPY);
389         map[VmFlags::VM_WRITE.bits() | VmFlags::VM_READ.bits()] =
390             EntryFlags::from_data(MMArch::PAGE_COPY);
391         map[VmFlags::VM_EXEC.bits()] = EntryFlags::from_data(MMArch::PAGE_READONLY_EXEC);
392         map[VmFlags::VM_EXEC.bits() | VmFlags::VM_READ.bits()] =
393             EntryFlags::from_data(MMArch::PAGE_READONLY_EXEC);
394         map[VmFlags::VM_EXEC.bits() | VmFlags::VM_WRITE.bits()] =
395             EntryFlags::from_data(MMArch::PAGE_COPY_EXEC);
396         map[VmFlags::VM_EXEC.bits() | VmFlags::VM_WRITE.bits() | VmFlags::VM_READ.bits()] =
397             EntryFlags::from_data(MMArch::PAGE_COPY_EXEC);
398         map[VmFlags::VM_SHARED.bits()] = EntryFlags::from_data(MMArch::PAGE_NONE);
399         map[VmFlags::VM_SHARED.bits() | VmFlags::VM_READ.bits()] =
400             EntryFlags::from_data(MMArch::PAGE_READONLY);
401         map[VmFlags::VM_SHARED.bits() | VmFlags::VM_WRITE.bits()] =
402             EntryFlags::from_data(MMArch::PAGE_SHARED);
403         map[VmFlags::VM_SHARED.bits() | VmFlags::VM_WRITE.bits() | VmFlags::VM_READ.bits()] =
404             EntryFlags::from_data(MMArch::PAGE_SHARED);
405         map[VmFlags::VM_SHARED.bits() | VmFlags::VM_EXEC.bits()] =
406             EntryFlags::from_data(MMArch::PAGE_READONLY_EXEC);
407         map[VmFlags::VM_SHARED.bits() | VmFlags::VM_EXEC.bits() | VmFlags::VM_READ.bits()] =
408             EntryFlags::from_data(MMArch::PAGE_READONLY_EXEC);
409         map[VmFlags::VM_SHARED.bits() | VmFlags::VM_EXEC.bits() | VmFlags::VM_WRITE.bits()] =
410             EntryFlags::from_data(MMArch::PAGE_SHARED_EXEC);
411         map[VmFlags::VM_SHARED.bits()
412             | VmFlags::VM_EXEC.bits()
413             | VmFlags::VM_WRITE.bits()
414             | VmFlags::VM_READ.bits()] = EntryFlags::from_data(MMArch::PAGE_SHARED_EXEC);
415     }
416     // if X86_64MMArch::is_xd_reserved() {
417     //     map.iter_mut().for_each(|x| *x &= !Self::ENTRY_FLAG_NO_EXEC)
418     // }
419     map
420 }
421 
422 impl X86_64MMArch {
423     fn init_xd_rsvd() {
424         // 读取ia32-EFER寄存器的值
425         let efer: EferFlags = x86_64::registers::model_specific::Efer::read();
426         if !efer.contains(EferFlags::NO_EXECUTE_ENABLE) {
427             // NO_EXECUTE_ENABLE是false,那么就设置xd_reserved为true
428             debug!("NO_EXECUTE_ENABLE is false, set XD_RESERVED to true");
429             XD_RESERVED.store(true, Ordering::Relaxed);
430         }
431         compiler_fence(Ordering::SeqCst);
432     }
433 
434     /// 判断XD标志位是否被保留
435     pub fn is_xd_reserved() -> bool {
436         // return XD_RESERVED.load(Ordering::Relaxed);
437 
438         // 由于暂时不支持execute disable,因此直接返回true
439         // 不支持的原因是,目前好像没有能正确的设置page-level的xd位,会触发page fault
440         return true;
441     }
442 }
443 
444 impl VirtAddr {
445     /// @brief 判断虚拟地址是否合法
446     #[inline(always)]
447     pub fn is_canonical(self) -> bool {
448         let x = self.data() & X86_64MMArch::PHYS_OFFSET;
449         // 如果x为0,说明虚拟地址的高位为0,是合法的用户地址
450         // 如果x为PHYS_OFFSET,说明虚拟地址的高位全为1,是合法的内核地址
451         return x == 0 || x == X86_64MMArch::PHYS_OFFSET;
452     }
453 }
454 
455 unsafe fn allocator_init() {
456     let virt_offset = VirtAddr::new(page_align_up(BOOTSTRAP_MM_INFO.unwrap().start_brk));
457 
458     let phy_offset = unsafe { MMArch::virt_2_phys(virt_offset) }.unwrap();
459 
460     mem_block_manager()
461         .reserve_block(PhysAddr::new(0), phy_offset.data())
462         .expect("Failed to reserve block");
463     let mut bump_allocator = BumpAllocator::<X86_64MMArch>::new(phy_offset.data());
464     debug!(
465         "BumpAllocator created, offset={:?}",
466         bump_allocator.offset()
467     );
468 
469     // 暂存初始在head.S中指定的页表的地址,后面再考虑是否需要把它加到buddy的可用空间里面!
470     // 现在不加的原因是,我担心会有安全漏洞问题:这些初始的页表,位于内核的数据段。如果归还到buddy,
471     // 可能会产生一定的安全风险(有的代码可能根据虚拟地址来进行安全校验)
472     let _old_page_table = MMArch::table(PageTableKind::Kernel);
473 
474     let new_page_table: PhysAddr;
475     // 使用bump分配器,把所有的内存页都映射到页表
476     {
477         // 用bump allocator创建新的页表
478         let mut mapper: crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>> =
479             crate::mm::page::PageMapper::<MMArch, _>::create(
480                 PageTableKind::Kernel,
481                 &mut bump_allocator,
482             )
483             .expect("Failed to create page mapper");
484         new_page_table = mapper.table().phys();
485         debug!("PageMapper created");
486 
487         // 取消最开始时候,在head.S中指定的映射(暂时不刷新TLB)
488         {
489             let table = mapper.table();
490             let empty_entry = PageEntry::<MMArch>::from_usize(0);
491             for i in 0..MMArch::PAGE_ENTRY_NUM {
492                 table
493                     .set_entry(i, empty_entry)
494                     .expect("Failed to empty page table entry");
495             }
496         }
497         debug!("Successfully emptied page table");
498 
499         let total_num = mem_block_manager().total_initial_memory_regions();
500         for i in 0..total_num {
501             let area = mem_block_manager().get_initial_memory_region(i).unwrap();
502             // debug!("area: base={:?}, size={:#x}, end={:?}", area.base, area.size, area.base + area.size);
503             for i in 0..((area.size + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE) {
504                 let paddr = area.base.add(i * MMArch::PAGE_SIZE);
505                 let vaddr = unsafe { MMArch::phys_2_virt(paddr) }.unwrap();
506                 let flags = kernel_page_flags::<MMArch>(vaddr);
507 
508                 let flusher = mapper
509                     .map_phys(vaddr, paddr, flags)
510                     .expect("Failed to map frame");
511                 // 暂时不刷新TLB
512                 flusher.ignore();
513             }
514         }
515     }
516 
517     unsafe {
518         INITIAL_CR3_VALUE = new_page_table;
519     }
520     debug!(
521         "After mapping all physical memory, DragonOS used: {} KB",
522         bump_allocator.offset() / 1024
523     );
524 
525     // 初始化buddy_allocator
526     let buddy_allocator = unsafe { BuddyAllocator::<X86_64MMArch>::new(bump_allocator).unwrap() };
527     // 设置全局的页帧分配器
528     unsafe { set_inner_allocator(buddy_allocator) };
529     info!("Successfully initialized buddy allocator");
530     // 关闭显示输出
531     scm_disable_put_to_window();
532 
533     // make the new page table current
534     {
535         let mut binding = INNER_ALLOCATOR.lock();
536         let mut allocator_guard = binding.as_mut().unwrap();
537         debug!("To enable new page table.");
538         compiler_fence(Ordering::SeqCst);
539         let mapper = crate::mm::page::PageMapper::<MMArch, _>::new(
540             PageTableKind::Kernel,
541             new_page_table,
542             &mut allocator_guard,
543         );
544         compiler_fence(Ordering::SeqCst);
545         mapper.make_current();
546         compiler_fence(Ordering::SeqCst);
547         debug!("New page table enabled");
548     }
549     debug!("Successfully enabled new page table");
550 }
551 
552 #[no_mangle]
553 pub extern "C" fn rs_test_buddy() {
554     test_buddy();
555 }
556 pub fn test_buddy() {
557     // 申请内存然后写入数据然后free掉
558     // 总共申请200MB内存
559     const TOTAL_SIZE: usize = 200 * 1024 * 1024;
560 
561     for i in 0..10 {
562         debug!("Test buddy, round: {i}");
563         // 存放申请的内存块
564         let mut v: Vec<(PhysAddr, PageFrameCount)> = Vec::with_capacity(60 * 1024);
565         // 存放已经申请的内存块的地址(用于检查重复)
566         let mut addr_set: HashSet<PhysAddr> = HashSet::new();
567 
568         let mut allocated = 0usize;
569 
570         let mut free_count = 0usize;
571 
572         while allocated < TOTAL_SIZE {
573             let mut random_size = 0u64;
574             unsafe { x86::random::rdrand64(&mut random_size) };
575             // 一次最多申请4M
576             random_size %= 1024 * 4096;
577             if random_size == 0 {
578                 continue;
579             }
580             let random_size =
581                 core::cmp::min(page_align_up(random_size as usize), TOTAL_SIZE - allocated);
582             let random_size = PageFrameCount::from_bytes(random_size.next_power_of_two()).unwrap();
583             // 获取帧
584             let (paddr, allocated_frame_count) =
585                 unsafe { LockedFrameAllocator.allocate(random_size).unwrap() };
586             assert!(allocated_frame_count.data().is_power_of_two());
587             assert!(paddr.data() % MMArch::PAGE_SIZE == 0);
588             unsafe {
589                 assert!(MMArch::phys_2_virt(paddr)
590                     .as_ref()
591                     .unwrap()
592                     .check_aligned(allocated_frame_count.data() * MMArch::PAGE_SIZE));
593             }
594             allocated += allocated_frame_count.data() * MMArch::PAGE_SIZE;
595             v.push((paddr, allocated_frame_count));
596             assert!(addr_set.insert(paddr), "duplicate address: {:?}", paddr);
597 
598             // 写入数据
599             let vaddr = unsafe { MMArch::phys_2_virt(paddr).unwrap() };
600             let slice = unsafe {
601                 core::slice::from_raw_parts_mut(
602                     vaddr.data() as *mut u8,
603                     allocated_frame_count.data() * MMArch::PAGE_SIZE,
604                 )
605             };
606             for (i, item) in slice.iter_mut().enumerate() {
607                 *item = ((i + unsafe { rdtsc() } as usize) % 256) as u8;
608             }
609 
610             // 随机释放一个内存块
611             if !v.is_empty() {
612                 let mut random_index = 0u64;
613                 unsafe { x86::random::rdrand64(&mut random_index) };
614                 // 70%概率释放
615                 if random_index % 10 > 7 {
616                     continue;
617                 }
618                 random_index %= v.len() as u64;
619                 let random_index = random_index as usize;
620                 let (paddr, allocated_frame_count) = v.remove(random_index);
621                 assert!(addr_set.remove(&paddr));
622                 unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
623                 free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
624             }
625         }
626 
627         debug!(
628             "Allocated {} MB memory, release: {} MB, no release: {} bytes",
629             allocated / 1024 / 1024,
630             free_count / 1024 / 1024,
631             (allocated - free_count)
632         );
633 
634         debug!("Now, to release buddy memory");
635         // 释放所有的内存
636         for (paddr, allocated_frame_count) in v {
637             unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
638             assert!(addr_set.remove(&paddr));
639             free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
640         }
641 
642         debug!("release done!, allocated: {allocated}, free_count: {free_count}");
643     }
644 }
645 
646 /// 全局的页帧分配器
647 #[derive(Debug, Clone, Copy, Hash)]
648 pub struct LockedFrameAllocator;
649 
650 impl FrameAllocator for LockedFrameAllocator {
651     unsafe fn allocate(&mut self, mut count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
652         count = count.next_power_of_two();
653         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
654             return allocator.allocate(count);
655         } else {
656             return None;
657         }
658     }
659 
660     unsafe fn free(&mut self, address: crate::mm::PhysAddr, count: PageFrameCount) {
661         assert!(count.data().is_power_of_two());
662         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
663             return allocator.free(address, count);
664         }
665     }
666 
667     unsafe fn usage(&self) -> PageFrameUsage {
668         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
669             return allocator.usage();
670         } else {
671             panic!("usage error");
672         }
673     }
674 }
675 
676 /// 获取内核地址默认的页面标志
677 pub unsafe fn kernel_page_flags<A: MemoryManagementArch>(virt: VirtAddr) -> EntryFlags<A> {
678     let info: X86_64MMBootstrapInfo = BOOTSTRAP_MM_INFO.unwrap();
679 
680     if virt.data() >= info.kernel_code_start && virt.data() < info.kernel_code_end {
681         // Remap kernel code  execute
682         return EntryFlags::new().set_execute(true).set_write(true);
683     } else if virt.data() >= info.kernel_data_end && virt.data() < info.kernel_rodata_end {
684         // Remap kernel rodata read only
685         return EntryFlags::new().set_execute(true);
686     } else {
687         return EntryFlags::new().set_write(true).set_execute(true);
688     }
689 }
690 
691 unsafe fn set_inner_allocator(allocator: BuddyAllocator<MMArch>) {
692     static FLAG: AtomicBool = AtomicBool::new(false);
693     if FLAG
694         .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
695         .is_err()
696     {
697         panic!("Cannot set inner allocator twice!");
698     }
699     *INNER_ALLOCATOR.lock() = Some(allocator);
700 }
701 
702 /// 低地址重映射的管理器
703 ///
704 /// 低地址重映射的管理器,在smp初始化完成之前,需要使用低地址的映射,因此需要在smp初始化完成之后,取消这一段映射
705 pub struct LowAddressRemapping;
706 
707 impl LowAddressRemapping {
708     // 映射64M
709     const REMAP_SIZE: usize = 64 * 1024 * 1024;
710 
711     pub unsafe fn remap_at_low_address(mapper: &mut PageMapper) {
712         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
713             let paddr = PhysAddr::new(i * MMArch::PAGE_SIZE);
714             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
715             let flags = kernel_page_flags::<MMArch>(vaddr);
716 
717             let flusher = mapper
718                 .map_phys(vaddr, paddr, flags)
719                 .expect("Failed to map frame");
720             // 暂时不刷新TLB
721             flusher.ignore();
722         }
723     }
724 
725     /// 取消低地址的映射
726     pub unsafe fn unmap_at_low_address(mapper: &mut PageMapper, flush: bool) {
727         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
728             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
729             let (_, _, flusher) = mapper
730                 .unmap_phys(vaddr, true)
731                 .expect("Failed to unmap frame");
732             if !flush {
733                 flusher.ignore();
734             }
735         }
736     }
737 }
738