xref: /DragonOS/kernel/src/arch/x86_64/mm/mod.rs (revision dfe53cf087ef4c7b6db63d992906b062dc63e93f)
1 pub mod barrier;
2 pub mod bump;
3 
4 use alloc::vec::Vec;
5 use hashbrown::HashSet;
6 use x86::time::rdtsc;
7 use x86_64::registers::model_specific::EferFlags;
8 
9 use crate::driver::serial::serial8250::send_to_default_serial8250_port;
10 use crate::include::bindings::bindings::{
11     multiboot2_get_load_base, multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t,
12     multiboot_tag_load_base_addr_t,
13 };
14 use crate::libs::align::page_align_up;
15 use crate::libs::lib_ui::screen_manager::scm_disable_put_to_window;
16 use crate::libs::spinlock::SpinLock;
17 
18 use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage};
19 use crate::mm::memblock::mem_block_manager;
20 use crate::{
21     arch::MMArch,
22     mm::allocator::{buddy::BuddyAllocator, bump::BumpAllocator},
23 };
24 
25 use crate::mm::kernel_mapper::KernelMapper;
26 use crate::mm::page::{PageEntry, PageFlags};
27 use crate::mm::{MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr};
28 use crate::{kdebug, kinfo, kwarn};
29 use system_error::SystemError;
30 
31 use core::arch::asm;
32 use core::ffi::c_void;
33 use core::fmt::Debug;
34 use core::mem::{self};
35 
36 use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
37 
38 use super::kvm::vmx::vmcs::VmcsFields;
39 use super::kvm::vmx::vmx_asm_wrapper::vmx_vmread;
40 
41 pub type PageMapper =
42     crate::mm::page::PageMapper<crate::arch::x86_64::mm::X86_64MMArch, LockedFrameAllocator>;
43 
44 /// 初始的CR3寄存器的值,用于内存管理初始化时,创建的第一个内核页表的位置
45 static mut INITIAL_CR3_VALUE: PhysAddr = PhysAddr::new(0);
46 
47 /// 内核的第一个页表在pml4中的索引
48 /// 顶级页表的[256, 512)项是内核的页表
49 static KERNEL_PML4E_NO: usize = (X86_64MMArch::PHYS_OFFSET & ((1 << 48) - 1)) >> 39;
50 
51 static INNER_ALLOCATOR: SpinLock<Option<BuddyAllocator<MMArch>>> = SpinLock::new(None);
52 
53 #[derive(Clone, Copy, Debug)]
54 pub struct X86_64MMBootstrapInfo {
55     kernel_load_base_paddr: usize,
56     kernel_code_start: usize,
57     kernel_code_end: usize,
58     kernel_data_end: usize,
59     kernel_rodata_end: usize,
60     start_brk: usize,
61 }
62 
63 pub(super) static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None;
64 
65 /// @brief X86_64的内存管理架构结构体
66 #[derive(Debug, Clone, Copy, Hash)]
67 pub struct X86_64MMArch;
68 
69 /// XD标志位是否被保留
70 static XD_RESERVED: AtomicBool = AtomicBool::new(false);
71 
72 impl MemoryManagementArch for X86_64MMArch {
73     /// 4K页
74     const PAGE_SHIFT: usize = 12;
75 
76     /// 每个页表项占8字节,总共有512个页表项
77     const PAGE_ENTRY_SHIFT: usize = 9;
78 
79     /// 四级页表(PML4T、PDPT、PDT、PT)
80     const PAGE_LEVELS: usize = 4;
81 
82     /// 页表项的有效位的index。在x86_64中,页表项的第[0, 47]位表示地址和flag,
83     /// 第[48, 51]位表示保留。因此,有效位的index为52。
84     /// 请注意,第63位是XD位,表示是否允许执行。
85     const ENTRY_ADDRESS_SHIFT: usize = 52;
86 
87     const ENTRY_FLAG_DEFAULT_PAGE: usize = Self::ENTRY_FLAG_PRESENT;
88 
89     const ENTRY_FLAG_DEFAULT_TABLE: usize = Self::ENTRY_FLAG_PRESENT;
90 
91     const ENTRY_FLAG_PRESENT: usize = 1 << 0;
92 
93     const ENTRY_FLAG_READONLY: usize = 0;
94 
95     const ENTRY_FLAG_READWRITE: usize = 1 << 1;
96 
97     const ENTRY_FLAG_USER: usize = 1 << 2;
98 
99     const ENTRY_FLAG_WRITE_THROUGH: usize = 1 << 3;
100 
101     const ENTRY_FLAG_CACHE_DISABLE: usize = 1 << 4;
102 
103     const ENTRY_FLAG_NO_EXEC: usize = 1 << 63;
104     /// x86_64不存在EXEC标志位,只有NO_EXEC(XD)标志位
105     const ENTRY_FLAG_EXEC: usize = 0;
106 
107     const ENTRY_FLAG_ACCESSED: usize = 0;
108     const ENTRY_FLAG_DIRTY: usize = 0;
109 
110     /// 物理地址与虚拟地址的偏移量
111     /// 0xffff_8000_0000_0000
112     const PHYS_OFFSET: usize = Self::PAGE_NEGATIVE_MASK + (Self::PAGE_ADDRESS_SIZE >> 1);
113     const KERNEL_LINK_OFFSET: usize = 0x100000;
114 
115     // 参考 https://code.dragonos.org.cn/xref/linux-6.1.9/arch/x86/include/asm/page_64_types.h#75
116     const USER_END_VADDR: VirtAddr =
117         VirtAddr::new((Self::PAGE_ADDRESS_SIZE >> 1) - Self::PAGE_SIZE);
118     const USER_BRK_START: VirtAddr = VirtAddr::new(0x700000000000);
119     const USER_STACK_START: VirtAddr = VirtAddr::new(0x6ffff0a00000);
120 
121     const FIXMAP_START_VADDR: VirtAddr = VirtAddr::new(0xffffb00000000000);
122     /// 设置FIXMAP区域大小为1M
123     const FIXMAP_SIZE: usize = 256 * 4096;
124 
125     /// @brief 获取物理内存区域
126     unsafe fn init() {
127         extern "C" {
128             fn _text();
129             fn _etext();
130             fn _edata();
131             fn _erodata();
132             fn _end();
133         }
134 
135         Self::init_xd_rsvd();
136         let load_base_paddr = Self::get_load_base_paddr();
137 
138         let bootstrap_info = X86_64MMBootstrapInfo {
139             kernel_load_base_paddr: load_base_paddr.data(),
140             kernel_code_start: _text as usize,
141             kernel_code_end: _etext as usize,
142             kernel_data_end: _edata as usize,
143             kernel_rodata_end: _erodata as usize,
144             start_brk: _end as usize,
145         };
146 
147         unsafe {
148             BOOTSTRAP_MM_INFO = Some(bootstrap_info);
149         }
150 
151         // 初始化物理内存区域(从multiboot2中获取)
152         Self::init_memory_area_from_multiboot2().expect("init memory area failed");
153 
154         kdebug!("bootstrap info: {:?}", unsafe { BOOTSTRAP_MM_INFO });
155         kdebug!("phys[0]=virt[0x{:x}]", unsafe {
156             MMArch::phys_2_virt(PhysAddr::new(0)).unwrap().data()
157         });
158 
159         // 初始化内存管理器
160         unsafe { allocator_init() };
161 
162         send_to_default_serial8250_port("x86 64 init done\n\0".as_bytes());
163     }
164 
165     /// @brief 刷新TLB中,关于指定虚拟地址的条目
166     unsafe fn invalidate_page(address: VirtAddr) {
167         compiler_fence(Ordering::SeqCst);
168         asm!("invlpg [{0}]", in(reg) address.data(), options(nostack, preserves_flags));
169         compiler_fence(Ordering::SeqCst);
170     }
171 
172     /// @brief 刷新TLB中,所有的条目
173     unsafe fn invalidate_all() {
174         compiler_fence(Ordering::SeqCst);
175         // 通过设置cr3寄存器,来刷新整个TLB
176         Self::set_table(PageTableKind::User, Self::table(PageTableKind::User));
177         compiler_fence(Ordering::SeqCst);
178     }
179 
180     /// @brief 获取顶级页表的物理地址
181     unsafe fn table(table_kind: PageTableKind) -> PhysAddr {
182         match table_kind {
183             PageTableKind::Kernel | PageTableKind::User => {
184                 compiler_fence(Ordering::SeqCst);
185                 let cr3 = x86::controlregs::cr3() as usize;
186                 compiler_fence(Ordering::SeqCst);
187                 return PhysAddr::new(cr3);
188             }
189             PageTableKind::EPT => {
190                 let eptp =
191                     vmx_vmread(VmcsFields::CTRL_EPTP_PTR as u32).expect("Failed to read eptp");
192                 return PhysAddr::new(eptp as usize);
193             }
194         }
195     }
196 
197     /// @brief 设置顶级页表的物理地址到处理器中
198     unsafe fn set_table(_table_kind: PageTableKind, table: PhysAddr) {
199         compiler_fence(Ordering::SeqCst);
200         asm!("mov cr3, {}", in(reg) table.data(), options(nostack, preserves_flags));
201         compiler_fence(Ordering::SeqCst);
202     }
203 
204     /// @brief 判断虚拟地址是否合法
205     fn virt_is_valid(virt: VirtAddr) -> bool {
206         return virt.is_canonical();
207     }
208 
209     /// 获取内存管理初始化时,创建的第一个内核页表的地址
210     fn initial_page_table() -> PhysAddr {
211         unsafe {
212             return INITIAL_CR3_VALUE;
213         }
214     }
215 
216     /// @brief 创建新的顶层页表
217     ///
218     /// 该函数会创建页表并复制内核的映射到新的页表中
219     ///
220     /// @return 新的页表
221     fn setup_new_usermapper() -> Result<crate::mm::ucontext::UserMapper, SystemError> {
222         let new_umapper: crate::mm::page::PageMapper<X86_64MMArch, LockedFrameAllocator> = unsafe {
223             PageMapper::create(PageTableKind::User, LockedFrameAllocator)
224                 .ok_or(SystemError::ENOMEM)?
225         };
226 
227         let current_ktable: KernelMapper = KernelMapper::lock();
228         let copy_mapping = |pml4_entry_no| unsafe {
229             let entry: PageEntry<X86_64MMArch> = current_ktable
230                 .table()
231                 .entry(pml4_entry_no)
232                 .unwrap_or_else(|| panic!("entry {} not found", pml4_entry_no));
233             new_umapper.table().set_entry(pml4_entry_no, entry)
234         };
235 
236         // 复制内核的映射
237         for pml4_entry_no in KERNEL_PML4E_NO..512 {
238             copy_mapping(pml4_entry_no);
239         }
240 
241         return Ok(crate::mm::ucontext::UserMapper::new(new_umapper));
242     }
243 
244     const PAGE_SIZE: usize = 1 << Self::PAGE_SHIFT;
245 
246     const PAGE_OFFSET_MASK: usize = Self::PAGE_SIZE - 1;
247 
248     const PAGE_MASK: usize = !(Self::PAGE_OFFSET_MASK);
249 
250     const PAGE_ADDRESS_SHIFT: usize = Self::PAGE_LEVELS * Self::PAGE_ENTRY_SHIFT + Self::PAGE_SHIFT;
251 
252     const PAGE_ADDRESS_SIZE: usize = 1 << Self::PAGE_ADDRESS_SHIFT;
253 
254     const PAGE_ADDRESS_MASK: usize = Self::PAGE_ADDRESS_SIZE - Self::PAGE_SIZE;
255 
256     const PAGE_ENTRY_SIZE: usize = 1 << (Self::PAGE_SHIFT - Self::PAGE_ENTRY_SHIFT);
257 
258     const PAGE_ENTRY_NUM: usize = 1 << Self::PAGE_ENTRY_SHIFT;
259 
260     const PAGE_ENTRY_MASK: usize = Self::PAGE_ENTRY_NUM - 1;
261 
262     const PAGE_NEGATIVE_MASK: usize = !((Self::PAGE_ADDRESS_SIZE) - 1);
263 
264     const ENTRY_ADDRESS_SIZE: usize = 1 << Self::ENTRY_ADDRESS_SHIFT;
265 
266     const ENTRY_ADDRESS_MASK: usize = Self::ENTRY_ADDRESS_SIZE - Self::PAGE_SIZE;
267 
268     const ENTRY_FLAGS_MASK: usize = !Self::ENTRY_ADDRESS_MASK;
269 
270     unsafe fn read<T>(address: VirtAddr) -> T {
271         return core::ptr::read(address.data() as *const T);
272     }
273 
274     unsafe fn write<T>(address: VirtAddr, value: T) {
275         core::ptr::write(address.data() as *mut T, value);
276     }
277 
278     unsafe fn write_bytes(address: VirtAddr, value: u8, count: usize) {
279         core::ptr::write_bytes(address.data() as *mut u8, value, count);
280     }
281 
282     unsafe fn phys_2_virt(phys: PhysAddr) -> Option<VirtAddr> {
283         if let Some(vaddr) = phys.data().checked_add(Self::PHYS_OFFSET) {
284             return Some(VirtAddr::new(vaddr));
285         } else {
286             return None;
287         }
288     }
289 
290     unsafe fn virt_2_phys(virt: VirtAddr) -> Option<PhysAddr> {
291         if let Some(paddr) = virt.data().checked_sub(Self::PHYS_OFFSET) {
292             return Some(PhysAddr::new(paddr));
293         } else {
294             return None;
295         }
296     }
297 
298     #[inline(always)]
299     fn make_entry(paddr: PhysAddr, page_flags: usize) -> usize {
300         return paddr.data() | page_flags;
301     }
302 }
303 
304 impl X86_64MMArch {
305     unsafe fn get_load_base_paddr() -> PhysAddr {
306         let mut mb2_lb_info: [multiboot_tag_load_base_addr_t; 512] = mem::zeroed();
307         send_to_default_serial8250_port("get_load_base_paddr begin\n\0".as_bytes());
308 
309         let mut mb2_count: u32 = 0;
310         multiboot2_iter(
311             Some(multiboot2_get_load_base),
312             &mut mb2_lb_info as *mut [multiboot_tag_load_base_addr_t; 512] as usize as *mut c_void,
313             &mut mb2_count,
314         );
315 
316         if mb2_count == 0 {
317             send_to_default_serial8250_port(
318                 "get_load_base_paddr mb2_count == 0, default to 1MB\n\0".as_bytes(),
319             );
320             return PhysAddr::new(0x100000);
321         }
322 
323         let phys = mb2_lb_info[0].load_base_addr as usize;
324 
325         return PhysAddr::new(phys);
326     }
327     unsafe fn init_memory_area_from_multiboot2() -> Result<usize, SystemError> {
328         // 这个数组用来存放内存区域的信息(从C获取)
329         let mut mb2_mem_info: [multiboot_mmap_entry_t; 512] = mem::zeroed();
330         send_to_default_serial8250_port("init_memory_area_from_multiboot2 begin\n\0".as_bytes());
331 
332         let mut mb2_count: u32 = 0;
333         multiboot2_iter(
334             Some(multiboot2_get_memory),
335             &mut mb2_mem_info as *mut [multiboot_mmap_entry_t; 512] as usize as *mut c_void,
336             &mut mb2_count,
337         );
338         send_to_default_serial8250_port("init_memory_area_from_multiboot2 2\n\0".as_bytes());
339 
340         let mb2_count = mb2_count as usize;
341         let mut areas_count = 0usize;
342         let mut total_mem_size = 0usize;
343         for info_entry in mb2_mem_info.iter().take(mb2_count) {
344             // Only use the memory area if its type is 1 (RAM)
345             if info_entry.type_ == 1 {
346                 // Skip the memory area if its len is 0
347                 if info_entry.len == 0 {
348                     continue;
349                 }
350 
351                 total_mem_size += info_entry.len as usize;
352 
353                 mem_block_manager()
354                     .add_block(
355                         PhysAddr::new(info_entry.addr as usize),
356                         info_entry.len as usize,
357                     )
358                     .unwrap_or_else(|e| {
359                         kwarn!(
360                             "Failed to add memory block: base={:#x}, size={:#x}, error={:?}",
361                             info_entry.addr,
362                             info_entry.len,
363                             e
364                         );
365                     });
366                 areas_count += 1;
367             }
368         }
369         send_to_default_serial8250_port("init_memory_area_from_multiboot2 end\n\0".as_bytes());
370         kinfo!("Total memory size: {} MB, total areas from multiboot2: {mb2_count}, valid areas: {areas_count}", total_mem_size / 1024 / 1024);
371         return Ok(areas_count);
372     }
373 
374     fn init_xd_rsvd() {
375         // 读取ia32-EFER寄存器的值
376         let efer: EferFlags = x86_64::registers::model_specific::Efer::read();
377         if !efer.contains(EferFlags::NO_EXECUTE_ENABLE) {
378             // NO_EXECUTE_ENABLE是false,那么就设置xd_reserved为true
379             kdebug!("NO_EXECUTE_ENABLE is false, set XD_RESERVED to true");
380             XD_RESERVED.store(true, Ordering::Relaxed);
381         }
382         compiler_fence(Ordering::SeqCst);
383     }
384 
385     /// 判断XD标志位是否被保留
386     pub fn is_xd_reserved() -> bool {
387         // return XD_RESERVED.load(Ordering::Relaxed);
388 
389         // 由于暂时不支持execute disable,因此直接返回true
390         // 不支持的原因是,目前好像没有能正确的设置page-level的xd位,会触发page fault
391         return true;
392     }
393 }
394 
395 impl VirtAddr {
396     /// @brief 判断虚拟地址是否合法
397     #[inline(always)]
398     pub fn is_canonical(self) -> bool {
399         let x = self.data() & X86_64MMArch::PHYS_OFFSET;
400         // 如果x为0,说明虚拟地址的高位为0,是合法的用户地址
401         // 如果x为PHYS_OFFSET,说明虚拟地址的高位全为1,是合法的内核地址
402         return x == 0 || x == X86_64MMArch::PHYS_OFFSET;
403     }
404 }
405 
406 unsafe fn allocator_init() {
407     let virt_offset = VirtAddr::new(page_align_up(BOOTSTRAP_MM_INFO.unwrap().start_brk));
408 
409     let phy_offset = unsafe { MMArch::virt_2_phys(virt_offset) }.unwrap();
410 
411     mem_block_manager()
412         .reserve_block(PhysAddr::new(0), phy_offset.data())
413         .expect("Failed to reserve block");
414     let mut bump_allocator = BumpAllocator::<X86_64MMArch>::new(phy_offset.data());
415     kdebug!(
416         "BumpAllocator created, offset={:?}",
417         bump_allocator.offset()
418     );
419 
420     // 暂存初始在head.S中指定的页表的地址,后面再考虑是否需要把它加到buddy的可用空间里面!
421     // 现在不加的原因是,我担心会有安全漏洞问题:这些初始的页表,位于内核的数据段。如果归还到buddy,
422     // 可能会产生一定的安全风险(有的代码可能根据虚拟地址来进行安全校验)
423     let _old_page_table = MMArch::table(PageTableKind::Kernel);
424 
425     let new_page_table: PhysAddr;
426     // 使用bump分配器,把所有的内存页都映射到页表
427     {
428         // 用bump allocator创建新的页表
429         let mut mapper: crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>> =
430             crate::mm::page::PageMapper::<MMArch, _>::create(
431                 PageTableKind::Kernel,
432                 &mut bump_allocator,
433             )
434             .expect("Failed to create page mapper");
435         new_page_table = mapper.table().phys();
436         kdebug!("PageMapper created");
437 
438         // 取消最开始时候,在head.S中指定的映射(暂时不刷新TLB)
439         {
440             let table = mapper.table();
441             let empty_entry = PageEntry::<MMArch>::from_usize(0);
442             for i in 0..MMArch::PAGE_ENTRY_NUM {
443                 table
444                     .set_entry(i, empty_entry)
445                     .expect("Failed to empty page table entry");
446             }
447         }
448         kdebug!("Successfully emptied page table");
449 
450         let total_num = mem_block_manager().total_initial_memory_regions();
451         for i in 0..total_num {
452             let area = mem_block_manager().get_initial_memory_region(i).unwrap();
453             // kdebug!("area: base={:?}, size={:#x}, end={:?}", area.base, area.size, area.base + area.size);
454             for i in 0..((area.size + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE) {
455                 let paddr = area.base.add(i * MMArch::PAGE_SIZE);
456                 let vaddr = unsafe { MMArch::phys_2_virt(paddr) }.unwrap();
457                 let flags = kernel_page_flags::<MMArch>(vaddr);
458 
459                 let flusher = mapper
460                     .map_phys(vaddr, paddr, flags)
461                     .expect("Failed to map frame");
462                 // 暂时不刷新TLB
463                 flusher.ignore();
464             }
465         }
466     }
467 
468     unsafe {
469         INITIAL_CR3_VALUE = new_page_table;
470     }
471     kdebug!(
472         "After mapping all physical memory, DragonOS used: {} KB",
473         bump_allocator.offset() / 1024
474     );
475 
476     // 初始化buddy_allocator
477     let buddy_allocator = unsafe { BuddyAllocator::<X86_64MMArch>::new(bump_allocator).unwrap() };
478     // 设置全局的页帧分配器
479     unsafe { set_inner_allocator(buddy_allocator) };
480     kinfo!("Successfully initialized buddy allocator");
481     // 关闭显示输出
482     scm_disable_put_to_window();
483 
484     // make the new page table current
485     {
486         let mut binding = INNER_ALLOCATOR.lock();
487         let mut allocator_guard = binding.as_mut().unwrap();
488         kdebug!("To enable new page table.");
489         compiler_fence(Ordering::SeqCst);
490         let mapper = crate::mm::page::PageMapper::<MMArch, _>::new(
491             PageTableKind::Kernel,
492             new_page_table,
493             &mut allocator_guard,
494         );
495         compiler_fence(Ordering::SeqCst);
496         mapper.make_current();
497         compiler_fence(Ordering::SeqCst);
498         kdebug!("New page table enabled");
499     }
500     kdebug!("Successfully enabled new page table");
501 }
502 
503 #[no_mangle]
504 pub extern "C" fn rs_test_buddy() {
505     test_buddy();
506 }
507 pub fn test_buddy() {
508     // 申请内存然后写入数据然后free掉
509     // 总共申请200MB内存
510     const TOTAL_SIZE: usize = 200 * 1024 * 1024;
511 
512     for i in 0..10 {
513         kdebug!("Test buddy, round: {i}");
514         // 存放申请的内存块
515         let mut v: Vec<(PhysAddr, PageFrameCount)> = Vec::with_capacity(60 * 1024);
516         // 存放已经申请的内存块的地址(用于检查重复)
517         let mut addr_set: HashSet<PhysAddr> = HashSet::new();
518 
519         let mut allocated = 0usize;
520 
521         let mut free_count = 0usize;
522 
523         while allocated < TOTAL_SIZE {
524             let mut random_size = 0u64;
525             unsafe { x86::random::rdrand64(&mut random_size) };
526             // 一次最多申请4M
527             random_size %= 1024 * 4096;
528             if random_size == 0 {
529                 continue;
530             }
531             let random_size =
532                 core::cmp::min(page_align_up(random_size as usize), TOTAL_SIZE - allocated);
533             let random_size = PageFrameCount::from_bytes(random_size.next_power_of_two()).unwrap();
534             // 获取帧
535             let (paddr, allocated_frame_count) =
536                 unsafe { LockedFrameAllocator.allocate(random_size).unwrap() };
537             assert!(allocated_frame_count.data().is_power_of_two());
538             assert!(paddr.data() % MMArch::PAGE_SIZE == 0);
539             unsafe {
540                 assert!(MMArch::phys_2_virt(paddr)
541                     .as_ref()
542                     .unwrap()
543                     .check_aligned(allocated_frame_count.data() * MMArch::PAGE_SIZE));
544             }
545             allocated += allocated_frame_count.data() * MMArch::PAGE_SIZE;
546             v.push((paddr, allocated_frame_count));
547             assert!(addr_set.insert(paddr), "duplicate address: {:?}", paddr);
548 
549             // 写入数据
550             let vaddr = unsafe { MMArch::phys_2_virt(paddr).unwrap() };
551             let slice = unsafe {
552                 core::slice::from_raw_parts_mut(
553                     vaddr.data() as *mut u8,
554                     allocated_frame_count.data() * MMArch::PAGE_SIZE,
555                 )
556             };
557             for (i, item) in slice.iter_mut().enumerate() {
558                 *item = ((i + unsafe { rdtsc() } as usize) % 256) as u8;
559             }
560 
561             // 随机释放一个内存块
562             if !v.is_empty() {
563                 let mut random_index = 0u64;
564                 unsafe { x86::random::rdrand64(&mut random_index) };
565                 // 70%概率释放
566                 if random_index % 10 > 7 {
567                     continue;
568                 }
569                 random_index %= v.len() as u64;
570                 let random_index = random_index as usize;
571                 let (paddr, allocated_frame_count) = v.remove(random_index);
572                 assert!(addr_set.remove(&paddr));
573                 unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
574                 free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
575             }
576         }
577 
578         kdebug!(
579             "Allocated {} MB memory, release: {} MB, no release: {} bytes",
580             allocated / 1024 / 1024,
581             free_count / 1024 / 1024,
582             (allocated - free_count)
583         );
584 
585         kdebug!("Now, to release buddy memory");
586         // 释放所有的内存
587         for (paddr, allocated_frame_count) in v {
588             unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
589             assert!(addr_set.remove(&paddr));
590             free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
591         }
592 
593         kdebug!("release done!, allocated: {allocated}, free_count: {free_count}");
594     }
595 }
596 
597 /// 全局的页帧分配器
598 #[derive(Debug, Clone, Copy, Hash)]
599 pub struct LockedFrameAllocator;
600 
601 impl FrameAllocator for LockedFrameAllocator {
602     unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
603         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
604             return allocator.allocate(count);
605         } else {
606             return None;
607         }
608     }
609 
610     unsafe fn free(&mut self, address: crate::mm::PhysAddr, count: PageFrameCount) {
611         assert!(count.data().is_power_of_two());
612         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
613             return allocator.free(address, count);
614         }
615     }
616 
617     unsafe fn usage(&self) -> PageFrameUsage {
618         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
619             return allocator.usage();
620         } else {
621             panic!("usage error");
622         }
623     }
624 }
625 
626 /// 获取内核地址默认的页面标志
627 pub unsafe fn kernel_page_flags<A: MemoryManagementArch>(virt: VirtAddr) -> PageFlags<A> {
628     let info: X86_64MMBootstrapInfo = BOOTSTRAP_MM_INFO.unwrap();
629 
630     if virt.data() >= info.kernel_code_start && virt.data() < info.kernel_code_end {
631         // Remap kernel code  execute
632         return PageFlags::new().set_execute(true).set_write(true);
633     } else if virt.data() >= info.kernel_data_end && virt.data() < info.kernel_rodata_end {
634         // Remap kernel rodata read only
635         return PageFlags::new().set_execute(true);
636     } else {
637         return PageFlags::new().set_write(true).set_execute(true);
638     }
639 }
640 
641 unsafe fn set_inner_allocator(allocator: BuddyAllocator<MMArch>) {
642     static FLAG: AtomicBool = AtomicBool::new(false);
643     if FLAG
644         .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
645         .is_err()
646     {
647         panic!("Cannot set inner allocator twice!");
648     }
649     *INNER_ALLOCATOR.lock() = Some(allocator);
650 }
651 
652 /// 低地址重映射的管理器
653 ///
654 /// 低地址重映射的管理器,在smp初始化完成之前,需要使用低地址的映射,因此需要在smp初始化完成之后,取消这一段映射
655 pub struct LowAddressRemapping;
656 
657 impl LowAddressRemapping {
658     // 映射64M
659     const REMAP_SIZE: usize = 64 * 1024 * 1024;
660 
661     pub unsafe fn remap_at_low_address(mapper: &mut PageMapper) {
662         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
663             let paddr = PhysAddr::new(i * MMArch::PAGE_SIZE);
664             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
665             let flags = kernel_page_flags::<MMArch>(vaddr);
666 
667             let flusher = mapper
668                 .map_phys(vaddr, paddr, flags)
669                 .expect("Failed to map frame");
670             // 暂时不刷新TLB
671             flusher.ignore();
672         }
673     }
674 
675     /// 取消低地址的映射
676     pub unsafe fn unmap_at_low_address(mapper: &mut PageMapper, flush: bool) {
677         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
678             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
679             let (_, _, flusher) = mapper
680                 .unmap_phys(vaddr, true)
681                 .expect("Failed to unmap frame");
682             if !flush {
683                 flusher.ignore();
684             }
685         }
686     }
687 }
688