xref: /DragonOS/kernel/src/arch/x86_64/mm/mod.rs (revision c75ef4e2126c180bf04c08635ffa5a278619c035)
1 pub mod barrier;
2 pub mod bump;
3 mod c_adapter;
4 
5 use alloc::vec::Vec;
6 use hashbrown::HashSet;
7 use x86::time::rdtsc;
8 use x86_64::registers::model_specific::EferFlags;
9 
10 use crate::driver::tty::serial::serial8250::send_to_default_serial8250_port;
11 use crate::include::bindings::bindings::{
12     multiboot2_get_load_base, multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t,
13     multiboot_tag_load_base_addr_t,
14 };
15 use crate::libs::align::page_align_up;
16 use crate::libs::lib_ui::screen_manager::scm_disable_put_to_window;
17 use crate::libs::printk::PrintkWriter;
18 use crate::libs::spinlock::SpinLock;
19 
20 use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage};
21 use crate::mm::memblock::mem_block_manager;
22 use crate::mm::mmio_buddy::mmio_init;
23 use crate::{
24     arch::MMArch,
25     mm::allocator::{buddy::BuddyAllocator, bump::BumpAllocator},
26 };
27 
28 use crate::mm::kernel_mapper::KernelMapper;
29 use crate::mm::page::{PageEntry, PageFlags};
30 use crate::mm::{MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr};
31 use crate::{kdebug, kinfo, kwarn};
32 use system_error::SystemError;
33 
34 use core::arch::asm;
35 use core::ffi::c_void;
36 use core::fmt::{Debug, Write};
37 use core::mem::{self};
38 
39 use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
40 
41 use super::kvm::vmx::vmcs::VmcsFields;
42 use super::kvm::vmx::vmx_asm_wrapper::vmx_vmread;
43 
44 pub type PageMapper =
45     crate::mm::page::PageMapper<crate::arch::x86_64::mm::X86_64MMArch, LockedFrameAllocator>;
46 
47 /// 初始的CR3寄存器的值,用于内存管理初始化时,创建的第一个内核页表的位置
48 static mut INITIAL_CR3_VALUE: PhysAddr = PhysAddr::new(0);
49 
50 /// 内核的第一个页表在pml4中的索引
51 /// 顶级页表的[256, 512)项是内核的页表
52 static KERNEL_PML4E_NO: usize = (X86_64MMArch::PHYS_OFFSET & ((1 << 48) - 1)) >> 39;
53 
54 static INNER_ALLOCATOR: SpinLock<Option<BuddyAllocator<MMArch>>> = SpinLock::new(None);
55 
56 #[derive(Clone, Copy, Debug)]
57 pub struct X86_64MMBootstrapInfo {
58     kernel_load_base_paddr: usize,
59     kernel_code_start: usize,
60     kernel_code_end: usize,
61     kernel_data_end: usize,
62     kernel_rodata_end: usize,
63     start_brk: usize,
64 }
65 
66 pub(super) static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None;
67 
68 /// @brief X86_64的内存管理架构结构体
69 #[derive(Debug, Clone, Copy, Hash)]
70 pub struct X86_64MMArch;
71 
72 /// XD标志位是否被保留
73 static XD_RESERVED: AtomicBool = AtomicBool::new(false);
74 
75 impl MemoryManagementArch for X86_64MMArch {
76     /// 4K页
77     const PAGE_SHIFT: usize = 12;
78 
79     /// 每个页表项占8字节,总共有512个页表项
80     const PAGE_ENTRY_SHIFT: usize = 9;
81 
82     /// 四级页表(PML4T、PDPT、PDT、PT)
83     const PAGE_LEVELS: usize = 4;
84 
85     /// 页表项的有效位的index。在x86_64中,页表项的第[0, 47]位表示地址和flag,
86     /// 第[48, 51]位表示保留。因此,有效位的index为52。
87     /// 请注意,第63位是XD位,表示是否允许执行。
88     const ENTRY_ADDRESS_SHIFT: usize = 52;
89 
90     const ENTRY_FLAG_DEFAULT_PAGE: usize = Self::ENTRY_FLAG_PRESENT;
91 
92     const ENTRY_FLAG_DEFAULT_TABLE: usize = Self::ENTRY_FLAG_PRESENT;
93 
94     const ENTRY_FLAG_PRESENT: usize = 1 << 0;
95 
96     const ENTRY_FLAG_READONLY: usize = 0;
97 
98     const ENTRY_FLAG_READWRITE: usize = 1 << 1;
99 
100     const ENTRY_FLAG_USER: usize = 1 << 2;
101 
102     const ENTRY_FLAG_WRITE_THROUGH: usize = 1 << 3;
103 
104     const ENTRY_FLAG_CACHE_DISABLE: usize = 1 << 4;
105 
106     const ENTRY_FLAG_NO_EXEC: usize = 1 << 63;
107     /// x86_64不存在EXEC标志位,只有NO_EXEC(XD)标志位
108     const ENTRY_FLAG_EXEC: usize = 0;
109 
110     /// 物理地址与虚拟地址的偏移量
111     /// 0xffff_8000_0000_0000
112     const PHYS_OFFSET: usize = Self::PAGE_NEGATIVE_MASK + (Self::PAGE_ADDRESS_SIZE >> 1);
113 
114     const USER_END_VADDR: VirtAddr = VirtAddr::new(0x0000_7eff_ffff_ffff);
115     const USER_BRK_START: VirtAddr = VirtAddr::new(0x700000000000);
116     const USER_STACK_START: VirtAddr = VirtAddr::new(0x6ffff0a00000);
117 
118     /// @brief 获取物理内存区域
119     unsafe fn init() {
120         extern "C" {
121             fn _text();
122             fn _etext();
123             fn _edata();
124             fn _erodata();
125             fn _end();
126         }
127 
128         Self::init_xd_rsvd();
129         let load_base_paddr = Self::get_load_base_paddr();
130 
131         let bootstrap_info = X86_64MMBootstrapInfo {
132             kernel_load_base_paddr: load_base_paddr.data(),
133             kernel_code_start: _text as usize,
134             kernel_code_end: _etext as usize,
135             kernel_data_end: _edata as usize,
136             kernel_rodata_end: _erodata as usize,
137             start_brk: _end as usize,
138         };
139 
140         unsafe {
141             BOOTSTRAP_MM_INFO = Some(bootstrap_info);
142         }
143 
144         // 初始化物理内存区域(从multiboot2中获取)
145         Self::init_memory_area_from_multiboot2().expect("init memory area failed");
146 
147         send_to_default_serial8250_port("x86 64 init end\n\0".as_bytes());
148     }
149 
150     /// @brief 刷新TLB中,关于指定虚拟地址的条目
151     unsafe fn invalidate_page(address: VirtAddr) {
152         compiler_fence(Ordering::SeqCst);
153         asm!("invlpg [{0}]", in(reg) address.data(), options(nostack, preserves_flags));
154         compiler_fence(Ordering::SeqCst);
155     }
156 
157     /// @brief 刷新TLB中,所有的条目
158     unsafe fn invalidate_all() {
159         compiler_fence(Ordering::SeqCst);
160         // 通过设置cr3寄存器,来刷新整个TLB
161         Self::set_table(PageTableKind::User, Self::table(PageTableKind::User));
162         compiler_fence(Ordering::SeqCst);
163     }
164 
165     /// @brief 获取顶级页表的物理地址
166     unsafe fn table(table_kind: PageTableKind) -> PhysAddr {
167         match table_kind {
168             PageTableKind::Kernel | PageTableKind::User => {
169                 let paddr: usize;
170                 compiler_fence(Ordering::SeqCst);
171                 asm!("mov {}, cr3", out(reg) paddr, options(nomem, nostack, preserves_flags));
172                 compiler_fence(Ordering::SeqCst);
173                 return PhysAddr::new(paddr);
174             }
175             PageTableKind::EPT => {
176                 let eptp =
177                     vmx_vmread(VmcsFields::CTRL_EPTP_PTR as u32).expect("Failed to read eptp");
178                 return PhysAddr::new(eptp as usize);
179             }
180         }
181     }
182 
183     /// @brief 设置顶级页表的物理地址到处理器中
184     unsafe fn set_table(_table_kind: PageTableKind, table: PhysAddr) {
185         compiler_fence(Ordering::SeqCst);
186         asm!("mov cr3, {}", in(reg) table.data(), options(nostack, preserves_flags));
187         compiler_fence(Ordering::SeqCst);
188     }
189 
190     /// @brief 判断虚拟地址是否合法
191     fn virt_is_valid(virt: VirtAddr) -> bool {
192         return virt.is_canonical();
193     }
194 
195     /// 获取内存管理初始化时,创建的第一个内核页表的地址
196     fn initial_page_table() -> PhysAddr {
197         unsafe {
198             return INITIAL_CR3_VALUE;
199         }
200     }
201 
202     /// @brief 创建新的顶层页表
203     ///
204     /// 该函数会创建页表并复制内核的映射到新的页表中
205     ///
206     /// @return 新的页表
207     fn setup_new_usermapper() -> Result<crate::mm::ucontext::UserMapper, SystemError> {
208         let new_umapper: crate::mm::page::PageMapper<X86_64MMArch, LockedFrameAllocator> = unsafe {
209             PageMapper::create(PageTableKind::User, LockedFrameAllocator)
210                 .ok_or(SystemError::ENOMEM)?
211         };
212 
213         let current_ktable: KernelMapper = KernelMapper::lock();
214         let copy_mapping = |pml4_entry_no| unsafe {
215             let entry: PageEntry<X86_64MMArch> = current_ktable
216                 .table()
217                 .entry(pml4_entry_no)
218                 .unwrap_or_else(|| panic!("entry {} not found", pml4_entry_no));
219             new_umapper.table().set_entry(pml4_entry_no, entry)
220         };
221 
222         // 复制内核的映射
223         for pml4_entry_no in KERNEL_PML4E_NO..512 {
224             copy_mapping(pml4_entry_no);
225         }
226 
227         return Ok(crate::mm::ucontext::UserMapper::new(new_umapper));
228     }
229 
230     const PAGE_SIZE: usize = 1 << Self::PAGE_SHIFT;
231 
232     const PAGE_OFFSET_MASK: usize = Self::PAGE_SIZE - 1;
233 
234     const PAGE_MASK: usize = !(Self::PAGE_OFFSET_MASK);
235 
236     const PAGE_ADDRESS_SHIFT: usize = Self::PAGE_LEVELS * Self::PAGE_ENTRY_SHIFT + Self::PAGE_SHIFT;
237 
238     const PAGE_ADDRESS_SIZE: usize = 1 << Self::PAGE_ADDRESS_SHIFT;
239 
240     const PAGE_ADDRESS_MASK: usize = Self::PAGE_ADDRESS_SIZE - Self::PAGE_SIZE;
241 
242     const PAGE_ENTRY_SIZE: usize = 1 << (Self::PAGE_SHIFT - Self::PAGE_ENTRY_SHIFT);
243 
244     const PAGE_ENTRY_NUM: usize = 1 << Self::PAGE_ENTRY_SHIFT;
245 
246     const PAGE_ENTRY_MASK: usize = Self::PAGE_ENTRY_NUM - 1;
247 
248     const PAGE_NEGATIVE_MASK: usize = !((Self::PAGE_ADDRESS_SIZE) - 1);
249 
250     const ENTRY_ADDRESS_SIZE: usize = 1 << Self::ENTRY_ADDRESS_SHIFT;
251 
252     const ENTRY_ADDRESS_MASK: usize = Self::ENTRY_ADDRESS_SIZE - Self::PAGE_SIZE;
253 
254     const ENTRY_FLAGS_MASK: usize = !Self::ENTRY_ADDRESS_MASK;
255 
256     unsafe fn read<T>(address: VirtAddr) -> T {
257         return core::ptr::read(address.data() as *const T);
258     }
259 
260     unsafe fn write<T>(address: VirtAddr, value: T) {
261         core::ptr::write(address.data() as *mut T, value);
262     }
263 
264     unsafe fn write_bytes(address: VirtAddr, value: u8, count: usize) {
265         core::ptr::write_bytes(address.data() as *mut u8, value, count);
266     }
267 
268     unsafe fn phys_2_virt(phys: PhysAddr) -> Option<VirtAddr> {
269         if let Some(vaddr) = phys.data().checked_add(Self::PHYS_OFFSET) {
270             return Some(VirtAddr::new(vaddr));
271         } else {
272             return None;
273         }
274     }
275 
276     unsafe fn virt_2_phys(virt: VirtAddr) -> Option<PhysAddr> {
277         if let Some(paddr) = virt.data().checked_sub(Self::PHYS_OFFSET) {
278             return Some(PhysAddr::new(paddr));
279         } else {
280             return None;
281         }
282     }
283 }
284 
285 impl X86_64MMArch {
286     unsafe fn get_load_base_paddr() -> PhysAddr {
287         let mut mb2_lb_info: [multiboot_tag_load_base_addr_t; 512] = mem::zeroed();
288         send_to_default_serial8250_port("get_load_base_paddr begin\n\0".as_bytes());
289 
290         let mut mb2_count: u32 = 0;
291         multiboot2_iter(
292             Some(multiboot2_get_load_base),
293             &mut mb2_lb_info as *mut [multiboot_tag_load_base_addr_t; 512] as usize as *mut c_void,
294             &mut mb2_count,
295         );
296 
297         if mb2_count == 0 {
298             send_to_default_serial8250_port(
299                 "get_load_base_paddr mb2_count == 0, default to 1MB\n\0".as_bytes(),
300             );
301             return PhysAddr::new(0x100000);
302         }
303 
304         let phys = mb2_lb_info[0].load_base_addr as usize;
305 
306         return PhysAddr::new(phys);
307     }
308     unsafe fn init_memory_area_from_multiboot2() -> Result<usize, SystemError> {
309         // 这个数组用来存放内存区域的信息(从C获取)
310         let mut mb2_mem_info: [multiboot_mmap_entry_t; 512] = mem::zeroed();
311         send_to_default_serial8250_port("init_memory_area_from_multiboot2 begin\n\0".as_bytes());
312 
313         let mut mb2_count: u32 = 0;
314         multiboot2_iter(
315             Some(multiboot2_get_memory),
316             &mut mb2_mem_info as *mut [multiboot_mmap_entry_t; 512] as usize as *mut c_void,
317             &mut mb2_count,
318         );
319         send_to_default_serial8250_port("init_memory_area_from_multiboot2 2\n\0".as_bytes());
320 
321         let mb2_count = mb2_count as usize;
322         let mut areas_count = 0usize;
323         let mut total_mem_size = 0usize;
324         for i in 0..mb2_count {
325             // Only use the memory area if its type is 1 (RAM)
326             if mb2_mem_info[i].type_ == 1 {
327                 // Skip the memory area if its len is 0
328                 if mb2_mem_info[i].len == 0 {
329                     continue;
330                 }
331 
332                 total_mem_size += mb2_mem_info[i].len as usize;
333                 // PHYS_MEMORY_AREAS[areas_count].base = PhysAddr::new(mb2_mem_info[i].addr as usize);
334                 // PHYS_MEMORY_AREAS[areas_count].size = mb2_mem_info[i].len as usize;
335 
336                 mem_block_manager()
337                     .add_block(
338                         PhysAddr::new(mb2_mem_info[i].addr as usize),
339                         mb2_mem_info[i].len as usize,
340                     )
341                     .unwrap_or_else(|e| {
342                         kwarn!(
343                             "Failed to add memory block: base={:#x}, size={:#x}, error={:?}",
344                             mb2_mem_info[i].addr,
345                             mb2_mem_info[i].len,
346                             e
347                         );
348                     });
349                 areas_count += 1;
350             }
351         }
352         send_to_default_serial8250_port("init_memory_area_from_multiboot2 end\n\0".as_bytes());
353         kinfo!("Total memory size: {} MB, total areas from multiboot2: {mb2_count}, valid areas: {areas_count}", total_mem_size / 1024 / 1024);
354         return Ok(areas_count);
355     }
356 
357     fn init_xd_rsvd() {
358         // 读取ia32-EFER寄存器的值
359         let efer: EferFlags = x86_64::registers::model_specific::Efer::read();
360         if !efer.contains(EferFlags::NO_EXECUTE_ENABLE) {
361             // NO_EXECUTE_ENABLE是false,那么就设置xd_reserved为true
362             kdebug!("NO_EXECUTE_ENABLE is false, set XD_RESERVED to true");
363             XD_RESERVED.store(true, Ordering::Relaxed);
364         }
365         compiler_fence(Ordering::SeqCst);
366     }
367 
368     /// 判断XD标志位是否被保留
369     pub fn is_xd_reserved() -> bool {
370         // return XD_RESERVED.load(Ordering::Relaxed);
371 
372         // 由于暂时不支持execute disable,因此直接返回true
373         // 不支持的原因是,目前好像没有能正确的设置page-level的xd位,会触发page fault
374         return true;
375     }
376 }
377 
378 impl VirtAddr {
379     /// @brief 判断虚拟地址是否合法
380     #[inline(always)]
381     pub fn is_canonical(self) -> bool {
382         let x = self.data() & X86_64MMArch::PHYS_OFFSET;
383         // 如果x为0,说明虚拟地址的高位为0,是合法的用户地址
384         // 如果x为PHYS_OFFSET,说明虚拟地址的高位全为1,是合法的内核地址
385         return x == 0 || x == X86_64MMArch::PHYS_OFFSET;
386     }
387 }
388 
389 /// @brief 初始化内存管理模块
390 pub fn mm_init() {
391     send_to_default_serial8250_port("mm_init\n\0".as_bytes());
392     PrintkWriter
393         .write_fmt(format_args!("mm_init() called\n"))
394         .unwrap();
395     // printk_color!(GREEN, BLACK, "mm_init() called\n");
396     static _CALL_ONCE: AtomicBool = AtomicBool::new(false);
397     if _CALL_ONCE
398         .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
399         .is_err()
400     {
401         send_to_default_serial8250_port("mm_init err\n\0".as_bytes());
402         panic!("mm_init() can only be called once");
403     }
404 
405     unsafe { X86_64MMArch::init() };
406     kdebug!("bootstrap info: {:?}", unsafe { BOOTSTRAP_MM_INFO });
407     kdebug!("phys[0]=virt[0x{:x}]", unsafe {
408         MMArch::phys_2_virt(PhysAddr::new(0)).unwrap().data()
409     });
410 
411     // 初始化内存管理器
412     unsafe { allocator_init() };
413     // enable mmio
414     mmio_init();
415 }
416 
417 unsafe fn allocator_init() {
418     let virt_offset = BOOTSTRAP_MM_INFO.unwrap().start_brk;
419     let phy_offset =
420         unsafe { MMArch::virt_2_phys(VirtAddr::new(page_align_up(virt_offset))) }.unwrap();
421 
422     let mut bump_allocator = BumpAllocator::<X86_64MMArch>::new(phy_offset.data());
423     kdebug!(
424         "BumpAllocator created, offset={:?}",
425         bump_allocator.offset()
426     );
427 
428     // 暂存初始在head.S中指定的页表的地址,后面再考虑是否需要把它加到buddy的可用空间里面!
429     // 现在不加的原因是,我担心会有安全漏洞问题:这些初始的页表,位于内核的数据段。如果归还到buddy,
430     // 可能会产生一定的安全风险(有的代码可能根据虚拟地址来进行安全校验)
431     let _old_page_table = MMArch::table(PageTableKind::Kernel);
432 
433     let new_page_table: PhysAddr;
434     // 使用bump分配器,把所有的内存页都映射到页表
435     {
436         // 用bump allocator创建新的页表
437         let mut mapper: crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>> =
438             crate::mm::page::PageMapper::<MMArch, _>::create(
439                 PageTableKind::Kernel,
440                 &mut bump_allocator,
441             )
442             .expect("Failed to create page mapper");
443         new_page_table = mapper.table().phys();
444         kdebug!("PageMapper created");
445 
446         // 取消最开始时候,在head.S中指定的映射(暂时不刷新TLB)
447         {
448             let table = mapper.table();
449             let empty_entry = PageEntry::<MMArch>::new(0);
450             for i in 0..MMArch::PAGE_ENTRY_NUM {
451                 table
452                     .set_entry(i, empty_entry)
453                     .expect("Failed to empty page table entry");
454             }
455         }
456         kdebug!("Successfully emptied page table");
457 
458         let total_num = mem_block_manager().total_initial_memory_regions();
459         for i in 0..total_num {
460             let area = mem_block_manager().get_initial_memory_region(i).unwrap();
461             // kdebug!("area: base={:?}, size={:#x}, end={:?}", area.base, area.size, area.base + area.size);
462             for i in 0..((area.size + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE) {
463                 let paddr = area.base.add(i * MMArch::PAGE_SIZE);
464                 let vaddr = unsafe { MMArch::phys_2_virt(paddr) }.unwrap();
465                 let flags = kernel_page_flags::<MMArch>(vaddr);
466 
467                 let flusher = mapper
468                     .map_phys(vaddr, paddr, flags)
469                     .expect("Failed to map frame");
470                 // 暂时不刷新TLB
471                 flusher.ignore();
472             }
473         }
474 
475         // 添加低地址的映射(在smp完成初始化之前,需要使用低地址的映射.初始化之后需要取消这一段映射)
476         LowAddressRemapping::remap_at_low_address(&mut mapper);
477     }
478 
479     unsafe {
480         INITIAL_CR3_VALUE = new_page_table;
481     }
482     kdebug!(
483         "After mapping all physical memory, DragonOS used: {} KB",
484         bump_allocator.offset() / 1024
485     );
486 
487     // 初始化buddy_allocator
488     let buddy_allocator = unsafe { BuddyAllocator::<X86_64MMArch>::new(bump_allocator).unwrap() };
489     // 设置全局的页帧分配器
490     unsafe { set_inner_allocator(buddy_allocator) };
491     kinfo!("Successfully initialized buddy allocator");
492     // 关闭显示输出
493     scm_disable_put_to_window();
494 
495     // make the new page table current
496     {
497         let mut binding = INNER_ALLOCATOR.lock();
498         let mut allocator_guard = binding.as_mut().unwrap();
499         kdebug!("To enable new page table.");
500         compiler_fence(Ordering::SeqCst);
501         let mapper = crate::mm::page::PageMapper::<MMArch, _>::new(
502             PageTableKind::Kernel,
503             new_page_table,
504             &mut allocator_guard,
505         );
506         compiler_fence(Ordering::SeqCst);
507         mapper.make_current();
508         compiler_fence(Ordering::SeqCst);
509         kdebug!("New page table enabled");
510     }
511     kdebug!("Successfully enabled new page table");
512 }
513 
514 #[no_mangle]
515 pub extern "C" fn rs_test_buddy() {
516     test_buddy();
517 }
518 pub fn test_buddy() {
519     // 申请内存然后写入数据然后free掉
520     // 总共申请200MB内存
521     const TOTAL_SIZE: usize = 200 * 1024 * 1024;
522 
523     for i in 0..10 {
524         kdebug!("Test buddy, round: {i}");
525         // 存放申请的内存块
526         let mut v: Vec<(PhysAddr, PageFrameCount)> = Vec::with_capacity(60 * 1024);
527         // 存放已经申请的内存块的地址(用于检查重复)
528         let mut addr_set: HashSet<PhysAddr> = HashSet::new();
529 
530         let mut allocated = 0usize;
531 
532         let mut free_count = 0usize;
533 
534         while allocated < TOTAL_SIZE {
535             let mut random_size = 0u64;
536             unsafe { x86::random::rdrand64(&mut random_size) };
537             // 一次最多申请4M
538             random_size = random_size % (1024 * 4096);
539             if random_size == 0 {
540                 continue;
541             }
542             let random_size =
543                 core::cmp::min(page_align_up(random_size as usize), TOTAL_SIZE - allocated);
544             let random_size = PageFrameCount::from_bytes(random_size.next_power_of_two()).unwrap();
545             // 获取帧
546             let (paddr, allocated_frame_count) =
547                 unsafe { LockedFrameAllocator.allocate(random_size).unwrap() };
548             assert!(allocated_frame_count.data().is_power_of_two());
549             assert!(paddr.data() % MMArch::PAGE_SIZE == 0);
550             unsafe {
551                 assert!(MMArch::phys_2_virt(paddr)
552                     .as_ref()
553                     .unwrap()
554                     .check_aligned(allocated_frame_count.data() * MMArch::PAGE_SIZE));
555             }
556             allocated += allocated_frame_count.data() * MMArch::PAGE_SIZE;
557             v.push((paddr, allocated_frame_count));
558             assert!(addr_set.insert(paddr), "duplicate address: {:?}", paddr);
559 
560             // 写入数据
561             let vaddr = unsafe { MMArch::phys_2_virt(paddr).unwrap() };
562             let slice = unsafe {
563                 core::slice::from_raw_parts_mut(
564                     vaddr.data() as *mut u8,
565                     allocated_frame_count.data() * MMArch::PAGE_SIZE,
566                 )
567             };
568             for i in 0..slice.len() {
569                 slice[i] = ((i + unsafe { rdtsc() } as usize) % 256) as u8;
570             }
571 
572             // 随机释放一个内存块
573             if v.len() > 0 {
574                 let mut random_index = 0u64;
575                 unsafe { x86::random::rdrand64(&mut random_index) };
576                 // 70%概率释放
577                 if random_index % 10 > 7 {
578                     continue;
579                 }
580                 random_index = random_index % v.len() as u64;
581                 let random_index = random_index as usize;
582                 let (paddr, allocated_frame_count) = v.remove(random_index);
583                 assert!(addr_set.remove(&paddr));
584                 unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
585                 free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
586             }
587         }
588 
589         kdebug!(
590             "Allocated {} MB memory, release: {} MB, no release: {} bytes",
591             allocated / 1024 / 1024,
592             free_count / 1024 / 1024,
593             (allocated - free_count)
594         );
595 
596         kdebug!("Now, to release buddy memory");
597         // 释放所有的内存
598         for (paddr, allocated_frame_count) in v {
599             unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
600             assert!(addr_set.remove(&paddr));
601             free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
602         }
603 
604         kdebug!("release done!, allocated: {allocated}, free_count: {free_count}");
605     }
606 }
607 
608 /// 全局的页帧分配器
609 #[derive(Debug, Clone, Copy, Hash)]
610 pub struct LockedFrameAllocator;
611 
612 impl FrameAllocator for LockedFrameAllocator {
613     unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
614         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
615             return allocator.allocate(count);
616         } else {
617             return None;
618         }
619     }
620 
621     unsafe fn free(&mut self, address: crate::mm::PhysAddr, count: PageFrameCount) {
622         assert!(count.data().is_power_of_two());
623         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
624             return allocator.free(address, count);
625         }
626     }
627 
628     unsafe fn usage(&self) -> PageFrameUsage {
629         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
630             return allocator.usage();
631         } else {
632             panic!("usage error");
633         }
634     }
635 }
636 
637 /// 获取内核地址默认的页面标志
638 pub unsafe fn kernel_page_flags<A: MemoryManagementArch>(virt: VirtAddr) -> PageFlags<A> {
639     let info: X86_64MMBootstrapInfo = BOOTSTRAP_MM_INFO.clone().unwrap();
640 
641     if virt.data() >= info.kernel_code_start && virt.data() < info.kernel_code_end {
642         // Remap kernel code  execute
643         return PageFlags::new().set_execute(true).set_write(true);
644     } else if virt.data() >= info.kernel_data_end && virt.data() < info.kernel_rodata_end {
645         // Remap kernel rodata read only
646         return PageFlags::new().set_execute(true);
647     } else {
648         return PageFlags::new().set_write(true).set_execute(true);
649     }
650 }
651 
652 unsafe fn set_inner_allocator(allocator: BuddyAllocator<MMArch>) {
653     static FLAG: AtomicBool = AtomicBool::new(false);
654     if FLAG
655         .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
656         .is_err()
657     {
658         panic!("Cannot set inner allocator twice!");
659     }
660     *INNER_ALLOCATOR.lock() = Some(allocator);
661 }
662 
663 /// 低地址重映射的管理器
664 ///
665 /// 低地址重映射的管理器,在smp初始化完成之前,需要使用低地址的映射,因此需要在smp初始化完成之后,取消这一段映射
666 pub struct LowAddressRemapping;
667 
668 impl LowAddressRemapping {
669     // 映射32M
670     const REMAP_SIZE: usize = 32 * 1024 * 1024;
671 
672     pub unsafe fn remap_at_low_address(
673         mapper: &mut crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>>,
674     ) {
675         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
676             let paddr = PhysAddr::new(i * MMArch::PAGE_SIZE);
677             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
678             let flags = kernel_page_flags::<MMArch>(vaddr);
679 
680             let flusher = mapper
681                 .map_phys(vaddr, paddr, flags)
682                 .expect("Failed to map frame");
683             // 暂时不刷新TLB
684             flusher.ignore();
685         }
686     }
687 
688     /// 取消低地址的映射
689     pub unsafe fn unmap_at_low_address(flush: bool) {
690         let mut mapper = KernelMapper::lock();
691         assert!(mapper.as_mut().is_some());
692         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
693             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
694             let (_, _, flusher) = mapper
695                 .as_mut()
696                 .unwrap()
697                 .unmap_phys(vaddr, true)
698                 .expect("Failed to unmap frame");
699             if flush == false {
700                 flusher.ignore();
701             }
702         }
703     }
704 }
705 #[no_mangle]
706 pub extern "C" fn rs_mm_init() {
707     mm_init();
708 }
709