1 pub mod barrier; 2 pub mod bump; 3 4 use alloc::vec::Vec; 5 use hashbrown::HashSet; 6 use x86::time::rdtsc; 7 use x86_64::registers::model_specific::EferFlags; 8 9 use crate::driver::tty::serial::serial8250::send_to_default_serial8250_port; 10 use crate::include::bindings::bindings::{ 11 multiboot2_get_load_base, multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t, 12 multiboot_tag_load_base_addr_t, 13 }; 14 use crate::libs::align::page_align_up; 15 use crate::libs::lib_ui::screen_manager::scm_disable_put_to_window; 16 use crate::libs::printk::PrintkWriter; 17 use crate::libs::spinlock::SpinLock; 18 19 use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage}; 20 use crate::mm::mmio_buddy::mmio_init; 21 use crate::{ 22 arch::MMArch, 23 mm::allocator::{buddy::BuddyAllocator, bump::BumpAllocator}, 24 }; 25 26 use crate::mm::kernel_mapper::KernelMapper; 27 use crate::mm::page::{PageEntry, PageFlags}; 28 use crate::mm::{MemoryManagementArch, PageTableKind, PhysAddr, PhysMemoryArea, VirtAddr}; 29 use crate::syscall::SystemError; 30 use crate::{kdebug, kinfo}; 31 32 use core::arch::asm; 33 use core::ffi::c_void; 34 use core::fmt::{Debug, Write}; 35 use core::mem::{self}; 36 37 use core::sync::atomic::{compiler_fence, AtomicBool, Ordering}; 38 39 use super::kvm::vmx::vmcs::VmcsFields; 40 use super::kvm::vmx::vmx_asm_wrapper::vmx_vmread; 41 42 pub type PageMapper = 43 crate::mm::page::PageMapper<crate::arch::x86_64::mm::X86_64MMArch, LockedFrameAllocator>; 44 45 /// @brief 用于存储物理内存区域的数组 46 static mut PHYS_MEMORY_AREAS: [PhysMemoryArea; 512] = [PhysMemoryArea { 47 base: PhysAddr::new(0), 48 size: 0, 49 }; 512]; 50 51 /// 初始的CR3寄存器的值,用于内存管理初始化时,创建的第一个内核页表的位置 52 static mut INITIAL_CR3_VALUE: PhysAddr = PhysAddr::new(0); 53 54 /// 内核的第一个页表在pml4中的索引 55 /// 顶级页表的[256, 512)项是内核的页表 56 static KERNEL_PML4E_NO: usize = (X86_64MMArch::PHYS_OFFSET & ((1 << 48) - 1)) >> 39; 57 58 static INNER_ALLOCATOR: SpinLock<Option<BuddyAllocator<MMArch>>> = SpinLock::new(None); 59 60 #[derive(Clone, Copy, Debug)] 61 pub struct X86_64MMBootstrapInfo { 62 kernel_load_base_paddr: usize, 63 kernel_code_start: usize, 64 kernel_code_end: usize, 65 kernel_data_end: usize, 66 kernel_rodata_end: usize, 67 start_brk: usize, 68 } 69 70 pub(super) static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None; 71 72 /// @brief X86_64的内存管理架构结构体 73 #[derive(Debug, Clone, Copy, Hash)] 74 pub struct X86_64MMArch; 75 76 /// XD标志位是否被保留 77 static XD_RESERVED: AtomicBool = AtomicBool::new(false); 78 79 impl MemoryManagementArch for X86_64MMArch { 80 /// 4K页 81 const PAGE_SHIFT: usize = 12; 82 83 /// 每个页表项占8字节,总共有512个页表项 84 const PAGE_ENTRY_SHIFT: usize = 9; 85 86 /// 四级页表(PML4T、PDPT、PDT、PT) 87 const PAGE_LEVELS: usize = 4; 88 89 /// 页表项的有效位的index。在x86_64中,页表项的第[0, 47]位表示地址和flag, 90 /// 第[48, 51]位表示保留。因此,有效位的index为52。 91 /// 请注意,第63位是XD位,表示是否允许执行。 92 const ENTRY_ADDRESS_SHIFT: usize = 52; 93 94 const ENTRY_FLAG_DEFAULT_PAGE: usize = Self::ENTRY_FLAG_PRESENT; 95 96 const ENTRY_FLAG_DEFAULT_TABLE: usize = Self::ENTRY_FLAG_PRESENT; 97 98 const ENTRY_FLAG_PRESENT: usize = 1 << 0; 99 100 const ENTRY_FLAG_READONLY: usize = 0; 101 102 const ENTRY_FLAG_READWRITE: usize = 1 << 1; 103 104 const ENTRY_FLAG_USER: usize = 1 << 2; 105 106 const ENTRY_FLAG_WRITE_THROUGH: usize = 1 << 3; 107 108 const ENTRY_FLAG_CACHE_DISABLE: usize = 1 << 4; 109 110 const ENTRY_FLAG_NO_EXEC: usize = 1 << 63; 111 /// x86_64不存在EXEC标志位,只有NO_EXEC(XD)标志位 112 const ENTRY_FLAG_EXEC: usize = 0; 113 114 /// 物理地址与虚拟地址的偏移量 115 /// 0xffff_8000_0000_0000 116 const PHYS_OFFSET: usize = Self::PAGE_NEGATIVE_MASK + (Self::PAGE_ADDRESS_SIZE >> 1); 117 118 const USER_END_VADDR: VirtAddr = VirtAddr::new(0x0000_7eff_ffff_ffff); 119 const USER_BRK_START: VirtAddr = VirtAddr::new(0x700000000000); 120 const USER_STACK_START: VirtAddr = VirtAddr::new(0x6ffff0a00000); 121 122 /// @brief 获取物理内存区域 123 unsafe fn init() -> &'static [crate::mm::PhysMemoryArea] { 124 extern "C" { 125 fn _text(); 126 fn _etext(); 127 fn _edata(); 128 fn _erodata(); 129 fn _end(); 130 } 131 132 Self::init_xd_rsvd(); 133 let load_base_paddr = Self::get_load_base_paddr(); 134 135 let bootstrap_info = X86_64MMBootstrapInfo { 136 kernel_load_base_paddr: load_base_paddr.data(), 137 kernel_code_start: _text as usize, 138 kernel_code_end: _etext as usize, 139 kernel_data_end: _edata as usize, 140 kernel_rodata_end: _erodata as usize, 141 start_brk: _end as usize, 142 }; 143 144 unsafe { 145 BOOTSTRAP_MM_INFO = Some(bootstrap_info); 146 } 147 148 // 初始化物理内存区域(从multiboot2中获取) 149 let areas_count = 150 Self::init_memory_area_from_multiboot2().expect("init memory area failed"); 151 152 send_to_default_serial8250_port("x86 64 init end\n\0".as_bytes()); 153 154 return &PHYS_MEMORY_AREAS[0..areas_count]; 155 } 156 157 /// @brief 刷新TLB中,关于指定虚拟地址的条目 158 unsafe fn invalidate_page(address: VirtAddr) { 159 compiler_fence(Ordering::SeqCst); 160 asm!("invlpg [{0}]", in(reg) address.data(), options(nostack, preserves_flags)); 161 compiler_fence(Ordering::SeqCst); 162 } 163 164 /// @brief 刷新TLB中,所有的条目 165 unsafe fn invalidate_all() { 166 compiler_fence(Ordering::SeqCst); 167 // 通过设置cr3寄存器,来刷新整个TLB 168 Self::set_table(PageTableKind::User, Self::table(PageTableKind::User)); 169 compiler_fence(Ordering::SeqCst); 170 } 171 172 /// @brief 获取顶级页表的物理地址 173 unsafe fn table(table_kind: PageTableKind) -> PhysAddr { 174 match table_kind { 175 PageTableKind::Kernel | PageTableKind::User => { 176 let paddr: usize; 177 compiler_fence(Ordering::SeqCst); 178 asm!("mov {}, cr3", out(reg) paddr, options(nomem, nostack, preserves_flags)); 179 compiler_fence(Ordering::SeqCst); 180 return PhysAddr::new(paddr); 181 } 182 PageTableKind::EPT => { 183 let eptp = 184 vmx_vmread(VmcsFields::CTRL_EPTP_PTR as u32).expect("Failed to read eptp"); 185 return PhysAddr::new(eptp as usize); 186 } 187 } 188 } 189 190 /// @brief 设置顶级页表的物理地址到处理器中 191 unsafe fn set_table(_table_kind: PageTableKind, table: PhysAddr) { 192 compiler_fence(Ordering::SeqCst); 193 asm!("mov cr3, {}", in(reg) table.data(), options(nostack, preserves_flags)); 194 compiler_fence(Ordering::SeqCst); 195 } 196 197 /// @brief 判断虚拟地址是否合法 198 fn virt_is_valid(virt: VirtAddr) -> bool { 199 return virt.is_canonical(); 200 } 201 202 /// 获取内存管理初始化时,创建的第一个内核页表的地址 203 fn initial_page_table() -> PhysAddr { 204 unsafe { 205 return INITIAL_CR3_VALUE; 206 } 207 } 208 209 /// @brief 创建新的顶层页表 210 /// 211 /// 该函数会创建页表并复制内核的映射到新的页表中 212 /// 213 /// @return 新的页表 214 fn setup_new_usermapper() -> Result<crate::mm::ucontext::UserMapper, SystemError> { 215 let new_umapper: crate::mm::page::PageMapper<X86_64MMArch, LockedFrameAllocator> = unsafe { 216 PageMapper::create(PageTableKind::User, LockedFrameAllocator) 217 .ok_or(SystemError::ENOMEM)? 218 }; 219 220 let current_ktable: KernelMapper = KernelMapper::lock(); 221 let copy_mapping = |pml4_entry_no| unsafe { 222 let entry: PageEntry<X86_64MMArch> = current_ktable 223 .table() 224 .entry(pml4_entry_no) 225 .unwrap_or_else(|| panic!("entry {} not found", pml4_entry_no)); 226 new_umapper.table().set_entry(pml4_entry_no, entry) 227 }; 228 229 // 复制内核的映射 230 for pml4_entry_no in KERNEL_PML4E_NO..512 { 231 copy_mapping(pml4_entry_no); 232 } 233 234 return Ok(crate::mm::ucontext::UserMapper::new(new_umapper)); 235 } 236 } 237 238 impl X86_64MMArch { 239 unsafe fn get_load_base_paddr() -> PhysAddr { 240 let mut mb2_lb_info: [multiboot_tag_load_base_addr_t; 512] = mem::zeroed(); 241 send_to_default_serial8250_port("get_load_base_paddr begin\n\0".as_bytes()); 242 243 let mut mb2_count: u32 = 0; 244 multiboot2_iter( 245 Some(multiboot2_get_load_base), 246 &mut mb2_lb_info as *mut [multiboot_tag_load_base_addr_t; 512] as usize as *mut c_void, 247 &mut mb2_count, 248 ); 249 250 if mb2_count == 0 { 251 send_to_default_serial8250_port( 252 "get_load_base_paddr mb2_count == 0, default to 1MB\n\0".as_bytes(), 253 ); 254 return PhysAddr::new(0x100000); 255 } 256 257 let phys = mb2_lb_info[0].load_base_addr as usize; 258 259 return PhysAddr::new(phys); 260 } 261 unsafe fn init_memory_area_from_multiboot2() -> Result<usize, SystemError> { 262 // 这个数组用来存放内存区域的信息(从C获取) 263 let mut mb2_mem_info: [multiboot_mmap_entry_t; 512] = mem::zeroed(); 264 send_to_default_serial8250_port("init_memory_area_from_multiboot2 begin\n\0".as_bytes()); 265 266 let mut mb2_count: u32 = 0; 267 multiboot2_iter( 268 Some(multiboot2_get_memory), 269 &mut mb2_mem_info as *mut [multiboot_mmap_entry_t; 512] as usize as *mut c_void, 270 &mut mb2_count, 271 ); 272 send_to_default_serial8250_port("init_memory_area_from_multiboot2 2\n\0".as_bytes()); 273 274 let mb2_count = mb2_count as usize; 275 let mut areas_count = 0usize; 276 let mut total_mem_size = 0usize; 277 for i in 0..mb2_count { 278 // Only use the memory area if its type is 1 (RAM) 279 if mb2_mem_info[i].type_ == 1 { 280 // Skip the memory area if its len is 0 281 if mb2_mem_info[i].len == 0 { 282 continue; 283 } 284 total_mem_size += mb2_mem_info[i].len as usize; 285 PHYS_MEMORY_AREAS[areas_count].base = PhysAddr::new(mb2_mem_info[i].addr as usize); 286 PHYS_MEMORY_AREAS[areas_count].size = mb2_mem_info[i].len as usize; 287 areas_count += 1; 288 } 289 } 290 send_to_default_serial8250_port("init_memory_area_from_multiboot2 end\n\0".as_bytes()); 291 kinfo!("Total memory size: {} MB, total areas from multiboot2: {mb2_count}, valid areas: {areas_count}", total_mem_size / 1024 / 1024); 292 return Ok(areas_count); 293 } 294 295 fn init_xd_rsvd() { 296 // 读取ia32-EFER寄存器的值 297 let efer: EferFlags = x86_64::registers::model_specific::Efer::read(); 298 if !efer.contains(EferFlags::NO_EXECUTE_ENABLE) { 299 // NO_EXECUTE_ENABLE是false,那么就设置xd_reserved为true 300 kdebug!("NO_EXECUTE_ENABLE is false, set XD_RESERVED to true"); 301 XD_RESERVED.store(true, Ordering::Relaxed); 302 } 303 compiler_fence(Ordering::SeqCst); 304 } 305 306 /// 判断XD标志位是否被保留 307 pub fn is_xd_reserved() -> bool { 308 // return XD_RESERVED.load(Ordering::Relaxed); 309 310 // 由于暂时不支持execute disable,因此直接返回true 311 // 不支持的原因是,目前好像没有能正确的设置page-level的xd位,会触发page fault 312 return true; 313 } 314 } 315 316 impl VirtAddr { 317 /// @brief 判断虚拟地址是否合法 318 #[inline(always)] 319 pub fn is_canonical(self) -> bool { 320 let x = self.data() & X86_64MMArch::PHYS_OFFSET; 321 // 如果x为0,说明虚拟地址的高位为0,是合法的用户地址 322 // 如果x为PHYS_OFFSET,说明虚拟地址的高位全为1,是合法的内核地址 323 return x == 0 || x == X86_64MMArch::PHYS_OFFSET; 324 } 325 } 326 327 /// @brief 初始化内存管理模块 328 pub fn mm_init() { 329 send_to_default_serial8250_port("mm_init\n\0".as_bytes()); 330 PrintkWriter 331 .write_fmt(format_args!("mm_init() called\n")) 332 .unwrap(); 333 // printk_color!(GREEN, BLACK, "mm_init() called\n"); 334 static _CALL_ONCE: AtomicBool = AtomicBool::new(false); 335 if _CALL_ONCE 336 .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst) 337 .is_err() 338 { 339 send_to_default_serial8250_port("mm_init err\n\0".as_bytes()); 340 panic!("mm_init() can only be called once"); 341 } 342 343 unsafe { X86_64MMArch::init() }; 344 kdebug!("bootstrap info: {:?}", unsafe { BOOTSTRAP_MM_INFO }); 345 kdebug!("phys[0]=virt[0x{:x}]", unsafe { 346 MMArch::phys_2_virt(PhysAddr::new(0)).unwrap().data() 347 }); 348 349 // 初始化内存管理器 350 unsafe { allocator_init() }; 351 // enable mmio 352 mmio_init(); 353 } 354 355 unsafe fn allocator_init() { 356 let virt_offset = BOOTSTRAP_MM_INFO.unwrap().start_brk; 357 let phy_offset = 358 unsafe { MMArch::virt_2_phys(VirtAddr::new(page_align_up(virt_offset))) }.unwrap(); 359 360 kdebug!("PhysArea[0..10] = {:?}", &PHYS_MEMORY_AREAS[0..10]); 361 let mut bump_allocator = 362 BumpAllocator::<X86_64MMArch>::new(&PHYS_MEMORY_AREAS, phy_offset.data()); 363 kdebug!( 364 "BumpAllocator created, offset={:?}", 365 bump_allocator.offset() 366 ); 367 368 // 暂存初始在head.S中指定的页表的地址,后面再考虑是否需要把它加到buddy的可用空间里面! 369 // 现在不加的原因是,我担心会有安全漏洞问题:这些初始的页表,位于内核的数据段。如果归还到buddy, 370 // 可能会产生一定的安全风险(有的代码可能根据虚拟地址来进行安全校验) 371 let _old_page_table = MMArch::table(PageTableKind::Kernel); 372 373 let new_page_table: PhysAddr; 374 // 使用bump分配器,把所有的内存页都映射到页表 375 { 376 // 用bump allocator创建新的页表 377 let mut mapper: crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>> = 378 crate::mm::page::PageMapper::<MMArch, _>::create( 379 PageTableKind::Kernel, 380 &mut bump_allocator, 381 ) 382 .expect("Failed to create page mapper"); 383 new_page_table = mapper.table().phys(); 384 kdebug!("PageMapper created"); 385 386 // 取消最开始时候,在head.S中指定的映射(暂时不刷新TLB) 387 { 388 let table = mapper.table(); 389 let empty_entry = PageEntry::<MMArch>::new(0); 390 for i in 0..MMArch::PAGE_ENTRY_NUM { 391 table 392 .set_entry(i, empty_entry) 393 .expect("Failed to empty page table entry"); 394 } 395 } 396 kdebug!("Successfully emptied page table"); 397 398 for area in PHYS_MEMORY_AREAS.iter() { 399 // kdebug!("area: base={:?}, size={:#x}, end={:?}", area.base, area.size, area.base + area.size); 400 for i in 0..((area.size + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE) { 401 let paddr = area.base.add(i * MMArch::PAGE_SIZE); 402 let vaddr = unsafe { MMArch::phys_2_virt(paddr) }.unwrap(); 403 let flags = kernel_page_flags::<MMArch>(vaddr); 404 405 let flusher = mapper 406 .map_phys(vaddr, paddr, flags) 407 .expect("Failed to map frame"); 408 // 暂时不刷新TLB 409 flusher.ignore(); 410 } 411 } 412 413 // 添加低地址的映射(在smp完成初始化之前,需要使用低地址的映射.初始化之后需要取消这一段映射) 414 LowAddressRemapping::remap_at_low_address(&mut mapper); 415 } 416 417 unsafe { 418 INITIAL_CR3_VALUE = new_page_table; 419 } 420 kdebug!( 421 "After mapping all physical memory, DragonOS used: {} KB", 422 bump_allocator.offset() / 1024 423 ); 424 425 // 初始化buddy_allocator 426 let buddy_allocator = unsafe { BuddyAllocator::<X86_64MMArch>::new(bump_allocator).unwrap() }; 427 // 设置全局的页帧分配器 428 unsafe { set_inner_allocator(buddy_allocator) }; 429 kinfo!("Successfully initialized buddy allocator"); 430 // 关闭显示输出 431 scm_disable_put_to_window(); 432 433 // make the new page table current 434 { 435 let mut binding = INNER_ALLOCATOR.lock(); 436 let mut allocator_guard = binding.as_mut().unwrap(); 437 kdebug!("To enable new page table."); 438 compiler_fence(Ordering::SeqCst); 439 let mapper = crate::mm::page::PageMapper::<MMArch, _>::new( 440 PageTableKind::Kernel, 441 new_page_table, 442 &mut allocator_guard, 443 ); 444 compiler_fence(Ordering::SeqCst); 445 mapper.make_current(); 446 compiler_fence(Ordering::SeqCst); 447 kdebug!("New page table enabled"); 448 } 449 kdebug!("Successfully enabled new page table"); 450 } 451 452 #[no_mangle] 453 pub extern "C" fn rs_test_buddy() { 454 test_buddy(); 455 } 456 pub fn test_buddy() { 457 // 申请内存然后写入数据然后free掉 458 // 总共申请200MB内存 459 const TOTAL_SIZE: usize = 200 * 1024 * 1024; 460 461 for i in 0..10 { 462 kdebug!("Test buddy, round: {i}"); 463 // 存放申请的内存块 464 let mut v: Vec<(PhysAddr, PageFrameCount)> = Vec::with_capacity(60 * 1024); 465 // 存放已经申请的内存块的地址(用于检查重复) 466 let mut addr_set: HashSet<PhysAddr> = HashSet::new(); 467 468 let mut allocated = 0usize; 469 470 let mut free_count = 0usize; 471 472 while allocated < TOTAL_SIZE { 473 let mut random_size = 0u64; 474 unsafe { x86::random::rdrand64(&mut random_size) }; 475 // 一次最多申请4M 476 random_size = random_size % (1024 * 4096); 477 if random_size == 0 { 478 continue; 479 } 480 let random_size = 481 core::cmp::min(page_align_up(random_size as usize), TOTAL_SIZE - allocated); 482 let random_size = PageFrameCount::from_bytes(random_size.next_power_of_two()).unwrap(); 483 // 获取帧 484 let (paddr, allocated_frame_count) = 485 unsafe { LockedFrameAllocator.allocate(random_size).unwrap() }; 486 assert!(allocated_frame_count.data().is_power_of_two()); 487 assert!(paddr.data() % MMArch::PAGE_SIZE == 0); 488 unsafe { 489 assert!(MMArch::phys_2_virt(paddr) 490 .as_ref() 491 .unwrap() 492 .check_aligned(allocated_frame_count.data() * MMArch::PAGE_SIZE)); 493 } 494 allocated += allocated_frame_count.data() * MMArch::PAGE_SIZE; 495 v.push((paddr, allocated_frame_count)); 496 assert!(addr_set.insert(paddr), "duplicate address: {:?}", paddr); 497 498 // 写入数据 499 let vaddr = unsafe { MMArch::phys_2_virt(paddr).unwrap() }; 500 let slice = unsafe { 501 core::slice::from_raw_parts_mut( 502 vaddr.data() as *mut u8, 503 allocated_frame_count.data() * MMArch::PAGE_SIZE, 504 ) 505 }; 506 for i in 0..slice.len() { 507 slice[i] = ((i + unsafe { rdtsc() } as usize) % 256) as u8; 508 } 509 510 // 随机释放一个内存块 511 if v.len() > 0 { 512 let mut random_index = 0u64; 513 unsafe { x86::random::rdrand64(&mut random_index) }; 514 // 70%概率释放 515 if random_index % 10 > 7 { 516 continue; 517 } 518 random_index = random_index % v.len() as u64; 519 let random_index = random_index as usize; 520 let (paddr, allocated_frame_count) = v.remove(random_index); 521 assert!(addr_set.remove(&paddr)); 522 unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) }; 523 free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE; 524 } 525 } 526 527 kdebug!( 528 "Allocated {} MB memory, release: {} MB, no release: {} bytes", 529 allocated / 1024 / 1024, 530 free_count / 1024 / 1024, 531 (allocated - free_count) 532 ); 533 534 kdebug!("Now, to release buddy memory"); 535 // 释放所有的内存 536 for (paddr, allocated_frame_count) in v { 537 unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) }; 538 assert!(addr_set.remove(&paddr)); 539 free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE; 540 } 541 542 kdebug!("release done!, allocated: {allocated}, free_count: {free_count}"); 543 } 544 } 545 /// 全局的页帧分配器 546 #[derive(Debug, Clone, Copy, Hash)] 547 pub struct LockedFrameAllocator; 548 549 impl FrameAllocator for LockedFrameAllocator { 550 unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> { 551 if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() { 552 return allocator.allocate(count); 553 } else { 554 return None; 555 } 556 } 557 558 unsafe fn free(&mut self, address: crate::mm::PhysAddr, count: PageFrameCount) { 559 assert!(count.data().is_power_of_two()); 560 if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() { 561 return allocator.free(address, count); 562 } 563 } 564 565 unsafe fn usage(&self) -> PageFrameUsage { 566 if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() { 567 return allocator.usage(); 568 } else { 569 panic!("usage error"); 570 } 571 } 572 } 573 574 impl LockedFrameAllocator { 575 pub fn get_usage(&self) -> PageFrameUsage { 576 unsafe { self.usage() } 577 } 578 } 579 580 /// 获取内核地址默认的页面标志 581 pub unsafe fn kernel_page_flags<A: MemoryManagementArch>(virt: VirtAddr) -> PageFlags<A> { 582 let info: X86_64MMBootstrapInfo = BOOTSTRAP_MM_INFO.clone().unwrap(); 583 584 if virt.data() >= info.kernel_code_start && virt.data() < info.kernel_code_end { 585 // Remap kernel code execute 586 return PageFlags::new().set_execute(true).set_write(true); 587 } else if virt.data() >= info.kernel_data_end && virt.data() < info.kernel_rodata_end { 588 // Remap kernel rodata read only 589 return PageFlags::new().set_execute(true); 590 } else { 591 return PageFlags::new().set_write(true).set_execute(true); 592 } 593 } 594 595 unsafe fn set_inner_allocator(allocator: BuddyAllocator<MMArch>) { 596 static FLAG: AtomicBool = AtomicBool::new(false); 597 if FLAG 598 .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst) 599 .is_err() 600 { 601 panic!("Cannot set inner allocator twice!"); 602 } 603 *INNER_ALLOCATOR.lock() = Some(allocator); 604 } 605 606 /// 低地址重映射的管理器 607 /// 608 /// 低地址重映射的管理器,在smp初始化完成之前,需要使用低地址的映射,因此需要在smp初始化完成之后,取消这一段映射 609 pub struct LowAddressRemapping; 610 611 impl LowAddressRemapping { 612 // 映射32M 613 const REMAP_SIZE: usize = 32 * 1024 * 1024; 614 615 pub unsafe fn remap_at_low_address( 616 mapper: &mut crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>>, 617 ) { 618 for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) { 619 let paddr = PhysAddr::new(i * MMArch::PAGE_SIZE); 620 let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE); 621 let flags = kernel_page_flags::<MMArch>(vaddr); 622 623 let flusher = mapper 624 .map_phys(vaddr, paddr, flags) 625 .expect("Failed to map frame"); 626 // 暂时不刷新TLB 627 flusher.ignore(); 628 } 629 } 630 631 /// 取消低地址的映射 632 pub unsafe fn unmap_at_low_address(flush: bool) { 633 let mut mapper = KernelMapper::lock(); 634 assert!(mapper.as_mut().is_some()); 635 for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) { 636 let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE); 637 let (_, _, flusher) = mapper 638 .as_mut() 639 .unwrap() 640 .unmap_phys(vaddr, true) 641 .expect("Failed to unmap frame"); 642 if flush == false { 643 flusher.ignore(); 644 } 645 } 646 } 647 } 648 #[no_mangle] 649 pub extern "C" fn rs_mm_init() { 650 mm_init(); 651 } 652