xref: /DragonOS/kernel/src/arch/x86_64/mm/mod.rs (revision b7b843beddea12cdedda90f6129b7c9980876112)
1 pub mod barrier;
2 
3 use alloc::vec::Vec;
4 use hashbrown::HashSet;
5 use x86::time::rdtsc;
6 use x86_64::registers::model_specific::EferFlags;
7 
8 use crate::driver::uart::uart_device::c_uart_send_str;
9 use crate::include::bindings::bindings::{
10     multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t,
11 };
12 use crate::libs::align::page_align_up;
13 use crate::libs::lib_ui::screen_manager::scm_disable_put_to_window;
14 use crate::libs::printk::PrintkWriter;
15 use crate::libs::spinlock::SpinLock;
16 
17 use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage};
18 use crate::mm::mmio_buddy::mmio_init;
19 use crate::{
20     arch::MMArch,
21     mm::allocator::{buddy::BuddyAllocator, bump::BumpAllocator},
22 };
23 
24 use crate::mm::kernel_mapper::KernelMapper;
25 use crate::mm::page::{PageEntry, PageFlags};
26 use crate::mm::{MemoryManagementArch, PageTableKind, PhysAddr, PhysMemoryArea, VirtAddr};
27 use crate::syscall::SystemError;
28 use crate::{kdebug, kinfo};
29 
30 use core::arch::asm;
31 use core::ffi::c_void;
32 use core::fmt::{Debug, Write};
33 use core::mem::{self};
34 
35 use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
36 
37 pub type PageMapper =
38     crate::mm::page::PageMapper<crate::arch::x86_64::mm::X86_64MMArch, LockedFrameAllocator>;
39 
40 /// @brief 用于存储物理内存区域的数组
41 static mut PHYS_MEMORY_AREAS: [PhysMemoryArea; 512] = [PhysMemoryArea {
42     base: PhysAddr::new(0),
43     size: 0,
44 }; 512];
45 
46 /// 初始的CR3寄存器的值,用于内存管理初始化时,创建的第一个内核页表的位置
47 static mut INITIAL_CR3_VALUE: PhysAddr = PhysAddr::new(0);
48 
49 /// 内核的第一个页表在pml4中的索引
50 /// 顶级页表的[256, 512)项是内核的页表
51 static KERNEL_PML4E_NO: usize = (X86_64MMArch::PHYS_OFFSET & ((1 << 48) - 1)) >> 39;
52 
53 static INNER_ALLOCATOR: SpinLock<Option<BuddyAllocator<MMArch>>> = SpinLock::new(None);
54 
55 #[derive(Clone, Copy)]
56 pub struct X86_64MMBootstrapInfo {
57     kernel_code_start: usize,
58     kernel_code_end: usize,
59     kernel_data_end: usize,
60     kernel_rodata_end: usize,
61     start_brk: usize,
62 }
63 
64 impl Debug for X86_64MMBootstrapInfo {
65     fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
66         write!(
67             f,
68             "kernel_code_start: {:x}, kernel_code_end: {:x}, kernel_data_end: {:x}, kernel_rodata_end: {:x}, start_brk: {:x}",
69             self.kernel_code_start, self.kernel_code_end, self.kernel_data_end, self.kernel_rodata_end, self.start_brk)
70     }
71 }
72 
73 pub static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None;
74 
75 /// @brief X86_64的内存管理架构结构体
76 #[derive(Debug, Clone, Copy, Hash)]
77 pub struct X86_64MMArch;
78 
79 /// XD标志位是否被保留
80 static XD_RESERVED: AtomicBool = AtomicBool::new(false);
81 
82 impl MemoryManagementArch for X86_64MMArch {
83     /// 4K页
84     const PAGE_SHIFT: usize = 12;
85 
86     /// 每个页表项占8字节,总共有512个页表项
87     const PAGE_ENTRY_SHIFT: usize = 9;
88 
89     /// 四级页表(PML4T、PDPT、PDT、PT)
90     const PAGE_LEVELS: usize = 4;
91 
92     /// 页表项的有效位的index。在x86_64中,页表项的第[0, 47]位表示地址和flag,
93     /// 第[48, 51]位表示保留。因此,有效位的index为52。
94     /// 请注意,第63位是XD位,表示是否允许执行。
95     const ENTRY_ADDRESS_SHIFT: usize = 52;
96 
97     const ENTRY_FLAG_DEFAULT_PAGE: usize = Self::ENTRY_FLAG_PRESENT;
98 
99     const ENTRY_FLAG_DEFAULT_TABLE: usize = Self::ENTRY_FLAG_PRESENT;
100 
101     const ENTRY_FLAG_PRESENT: usize = 1 << 0;
102 
103     const ENTRY_FLAG_READONLY: usize = 0;
104 
105     const ENTRY_FLAG_READWRITE: usize = 1 << 1;
106 
107     const ENTRY_FLAG_USER: usize = 1 << 2;
108 
109     const ENTRY_FLAG_WRITE_THROUGH: usize = 1 << 3;
110 
111     const ENTRY_FLAG_CACHE_DISABLE: usize = 1 << 4;
112 
113     const ENTRY_FLAG_NO_EXEC: usize = 1 << 63;
114     /// x86_64不存在EXEC标志位,只有NO_EXEC(XD)标志位
115     const ENTRY_FLAG_EXEC: usize = 0;
116 
117     /// 物理地址与虚拟地址的偏移量
118     /// 0xffff_8000_0000_0000
119     const PHYS_OFFSET: usize = Self::PAGE_NEGATIVE_MASK + (Self::PAGE_ADDRESS_SIZE >> 1);
120 
121     const USER_END_VADDR: VirtAddr = VirtAddr::new(0x0000_7eff_ffff_ffff);
122     const USER_BRK_START: VirtAddr = VirtAddr::new(0x700000000000);
123     const USER_STACK_START: VirtAddr = VirtAddr::new(0x6ffff0a00000);
124 
125     /// @brief 获取物理内存区域
126     unsafe fn init() -> &'static [crate::mm::PhysMemoryArea] {
127         extern "C" {
128             fn _text();
129             fn _etext();
130             fn _edata();
131             fn _erodata();
132             fn _end();
133         }
134 
135         Self::init_xd_rsvd();
136 
137         let bootstrap_info = X86_64MMBootstrapInfo {
138             kernel_code_start: _text as usize,
139             kernel_code_end: _etext as usize,
140             kernel_data_end: _edata as usize,
141             kernel_rodata_end: _erodata as usize,
142             start_brk: _end as usize,
143         };
144         unsafe {
145             BOOTSTRAP_MM_INFO = Some(bootstrap_info);
146         }
147 
148         // 初始化物理内存区域(从multiboot2中获取)
149         let areas_count =
150             Self::init_memory_area_from_multiboot2().expect("init memory area failed");
151         c_uart_send_str(0x3f8, "x86 64 init end\n\0".as_ptr());
152 
153         return &PHYS_MEMORY_AREAS[0..areas_count];
154     }
155 
156     /// @brief 刷新TLB中,关于指定虚拟地址的条目
157     unsafe fn invalidate_page(address: VirtAddr) {
158         compiler_fence(Ordering::SeqCst);
159         asm!("invlpg [{0}]", in(reg) address.data(), options(nostack, preserves_flags));
160         compiler_fence(Ordering::SeqCst);
161     }
162 
163     /// @brief 刷新TLB中,所有的条目
164     unsafe fn invalidate_all() {
165         compiler_fence(Ordering::SeqCst);
166         // 通过设置cr3寄存器,来刷新整个TLB
167         Self::set_table(PageTableKind::User, Self::table(PageTableKind::User));
168         compiler_fence(Ordering::SeqCst);
169     }
170 
171     /// @brief 获取顶级页表的物理地址
172     unsafe fn table(_table_kind: PageTableKind) -> PhysAddr {
173         let paddr: usize;
174         compiler_fence(Ordering::SeqCst);
175         asm!("mov {}, cr3", out(reg) paddr, options(nomem, nostack, preserves_flags));
176         compiler_fence(Ordering::SeqCst);
177         return PhysAddr::new(paddr);
178     }
179 
180     /// @brief 设置顶级页表的物理地址到处理器中
181     unsafe fn set_table(_table_kind: PageTableKind, table: PhysAddr) {
182         compiler_fence(Ordering::SeqCst);
183         asm!("mov cr3, {}", in(reg) table.data(), options(nostack, preserves_flags));
184         compiler_fence(Ordering::SeqCst);
185     }
186 
187     /// @brief 判断虚拟地址是否合法
188     fn virt_is_valid(virt: VirtAddr) -> bool {
189         return virt.is_canonical();
190     }
191 
192     /// 获取内存管理初始化时,创建的第一个内核页表的地址
193     fn initial_page_table() -> PhysAddr {
194         unsafe {
195             return INITIAL_CR3_VALUE;
196         }
197     }
198 
199     /// @brief 创建新的顶层页表
200     ///
201     /// 该函数会创建页表并复制内核的映射到新的页表中
202     ///
203     /// @return 新的页表
204     fn setup_new_usermapper() -> Result<crate::mm::ucontext::UserMapper, SystemError> {
205         let new_umapper: crate::mm::page::PageMapper<X86_64MMArch, LockedFrameAllocator> = unsafe {
206             PageMapper::create(PageTableKind::User, LockedFrameAllocator)
207                 .ok_or(SystemError::ENOMEM)?
208         };
209 
210         let current_ktable: KernelMapper = KernelMapper::lock();
211         let copy_mapping = |pml4_entry_no| unsafe {
212             let entry: PageEntry<X86_64MMArch> = current_ktable
213                 .table()
214                 .entry(pml4_entry_no)
215                 .unwrap_or_else(|| panic!("entry {} not found", pml4_entry_no));
216             new_umapper.table().set_entry(pml4_entry_no, entry)
217         };
218 
219         // 复制内核的映射
220         for pml4_entry_no in KERNEL_PML4E_NO..512 {
221             copy_mapping(pml4_entry_no);
222         }
223 
224         return Ok(crate::mm::ucontext::UserMapper::new(new_umapper));
225     }
226 }
227 
228 impl X86_64MMArch {
229     unsafe fn init_memory_area_from_multiboot2() -> Result<usize, SystemError> {
230         // 这个数组用来存放内存区域的信息(从C获取)
231         let mut mb2_mem_info: [multiboot_mmap_entry_t; 512] = mem::zeroed();
232         c_uart_send_str(0x3f8, "init_memory_area_from_multiboot2 begin\n\0".as_ptr());
233 
234         let mut mb2_count: u32 = 0;
235         multiboot2_iter(
236             Some(multiboot2_get_memory),
237             &mut mb2_mem_info as *mut [multiboot_mmap_entry_t; 512] as usize as *mut c_void,
238             &mut mb2_count,
239         );
240         c_uart_send_str(0x3f8, "init_memory_area_from_multiboot2 2\n\0".as_ptr());
241 
242         let mb2_count = mb2_count as usize;
243         let mut areas_count = 0usize;
244         let mut total_mem_size = 0usize;
245         for i in 0..mb2_count {
246             // Only use the memory area if its type is 1 (RAM)
247             if mb2_mem_info[i].type_ == 1 {
248                 // Skip the memory area if its len is 0
249                 if mb2_mem_info[i].len == 0 {
250                     continue;
251                 }
252                 total_mem_size += mb2_mem_info[i].len as usize;
253                 PHYS_MEMORY_AREAS[areas_count].base = PhysAddr::new(mb2_mem_info[i].addr as usize);
254                 PHYS_MEMORY_AREAS[areas_count].size = mb2_mem_info[i].len as usize;
255                 areas_count += 1;
256             }
257         }
258         c_uart_send_str(0x3f8, "init_memory_area_from_multiboot2 end\n\0".as_ptr());
259         kinfo!("Total memory size: {} MB, total areas from multiboot2: {mb2_count}, valid areas: {areas_count}", total_mem_size / 1024 / 1024);
260 
261         return Ok(areas_count);
262     }
263 
264     fn init_xd_rsvd() {
265         // 读取ia32-EFER寄存器的值
266         let efer: EferFlags = x86_64::registers::model_specific::Efer::read();
267         if !efer.contains(EferFlags::NO_EXECUTE_ENABLE) {
268             // NO_EXECUTE_ENABLE是false,那么就设置xd_reserved为true
269             kdebug!("NO_EXECUTE_ENABLE is false, set XD_RESERVED to true");
270             XD_RESERVED.store(true, Ordering::Relaxed);
271         }
272         compiler_fence(Ordering::SeqCst);
273     }
274 
275     /// 判断XD标志位是否被保留
276     pub fn is_xd_reserved() -> bool {
277         return XD_RESERVED.load(Ordering::Relaxed);
278     }
279 }
280 
281 impl VirtAddr {
282     /// @brief 判断虚拟地址是否合法
283     #[inline(always)]
284     pub fn is_canonical(self) -> bool {
285         let x = self.data() & X86_64MMArch::PHYS_OFFSET;
286         // 如果x为0,说明虚拟地址的高位为0,是合法的用户地址
287         // 如果x为PHYS_OFFSET,说明虚拟地址的高位全为1,是合法的内核地址
288         return x == 0 || x == X86_64MMArch::PHYS_OFFSET;
289     }
290 }
291 
292 /// @brief 初始化内存管理模块
293 pub fn mm_init() {
294     c_uart_send_str(0x3f8, "mm_init\n\0".as_ptr());
295     PrintkWriter
296         .write_fmt(format_args!("mm_init() called\n"))
297         .unwrap();
298     // printk_color!(GREEN, BLACK, "mm_init() called\n");
299     static _CALL_ONCE: AtomicBool = AtomicBool::new(false);
300     if _CALL_ONCE
301         .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
302         .is_err()
303     {
304         c_uart_send_str(0x3f8, "mm_init err\n\0".as_ptr());
305         panic!("mm_init() can only be called once");
306     }
307 
308     unsafe { X86_64MMArch::init() };
309     kdebug!("bootstrap info: {:?}", unsafe { BOOTSTRAP_MM_INFO });
310     kdebug!("phys[0]=virt[0x{:x}]", unsafe {
311         MMArch::phys_2_virt(PhysAddr::new(0)).unwrap().data()
312     });
313 
314     // 初始化内存管理器
315     unsafe { allocator_init() };
316     // enable mmio
317     mmio_init();
318 }
319 
320 unsafe fn allocator_init() {
321     let virt_offset = BOOTSTRAP_MM_INFO.unwrap().start_brk;
322     let phy_offset =
323         unsafe { MMArch::virt_2_phys(VirtAddr::new(page_align_up(virt_offset))) }.unwrap();
324 
325     kdebug!("PhysArea[0..10] = {:?}", &PHYS_MEMORY_AREAS[0..10]);
326     let mut bump_allocator =
327         BumpAllocator::<X86_64MMArch>::new(&PHYS_MEMORY_AREAS, phy_offset.data());
328     kdebug!(
329         "BumpAllocator created, offset={:?}",
330         bump_allocator.offset()
331     );
332 
333     // 暂存初始在head.S中指定的页表的地址,后面再考虑是否需要把它加到buddy的可用空间里面!
334     // 现在不加的原因是,我担心会有安全漏洞问题:这些初始的页表,位于内核的数据段。如果归还到buddy,
335     // 可能会产生一定的安全风险(有的代码可能根据虚拟地址来进行安全校验)
336     let _old_page_table = MMArch::table(PageTableKind::Kernel);
337 
338     let new_page_table: PhysAddr;
339     // 使用bump分配器,把所有的内存页都映射到页表
340     {
341         // 用bump allocator创建新的页表
342         let mut mapper: crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>> =
343             crate::mm::page::PageMapper::<MMArch, _>::create(
344                 PageTableKind::Kernel,
345                 &mut bump_allocator,
346             )
347             .expect("Failed to create page mapper");
348         new_page_table = mapper.table().phys();
349         kdebug!("PageMapper created");
350 
351         // 取消最开始时候,在head.S中指定的映射(暂时不刷新TLB)
352         {
353             let table = mapper.table();
354             let empty_entry = PageEntry::<MMArch>::new(0);
355             for i in 0..MMArch::PAGE_ENTRY_NUM {
356                 table
357                     .set_entry(i, empty_entry)
358                     .expect("Failed to empty page table entry");
359             }
360         }
361         kdebug!("Successfully emptied page table");
362 
363         for area in PHYS_MEMORY_AREAS.iter() {
364             // kdebug!("area: base={:?}, size={:#x}, end={:?}", area.base, area.size, area.base + area.size);
365             for i in 0..((area.size + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE) {
366                 let paddr = area.base.add(i * MMArch::PAGE_SIZE);
367                 let vaddr = unsafe { MMArch::phys_2_virt(paddr) }.unwrap();
368                 let flags = kernel_page_flags::<MMArch>(vaddr);
369 
370                 let flusher = mapper
371                     .map_phys(vaddr, paddr, flags)
372                     .expect("Failed to map frame");
373                 // 暂时不刷新TLB
374                 flusher.ignore();
375             }
376         }
377 
378         // 添加低地址的映射(在smp完成初始化之前,需要使用低地址的映射.初始化之后需要取消这一段映射)
379         LowAddressRemapping::remap_at_low_address(&mut mapper);
380     }
381 
382     unsafe {
383         INITIAL_CR3_VALUE = new_page_table;
384     }
385     kdebug!(
386         "After mapping all physical memory, DragonOS used: {} KB",
387         bump_allocator.offset() / 1024
388     );
389 
390     // 初始化buddy_allocator
391     let buddy_allocator = unsafe { BuddyAllocator::<X86_64MMArch>::new(bump_allocator).unwrap() };
392     // 设置全局的页帧分配器
393     unsafe { set_inner_allocator(buddy_allocator) };
394     kinfo!("Successfully initialized buddy allocator");
395     // 关闭显示输出
396     scm_disable_put_to_window();
397 
398     // make the new page table current
399     {
400         let mut binding = INNER_ALLOCATOR.lock();
401         let mut allocator_guard = binding.as_mut().unwrap();
402         kdebug!("To enable new page table.");
403         compiler_fence(Ordering::SeqCst);
404         let mapper = crate::mm::page::PageMapper::<MMArch, _>::new(
405             PageTableKind::Kernel,
406             new_page_table,
407             &mut allocator_guard,
408         );
409         compiler_fence(Ordering::SeqCst);
410         mapper.make_current();
411         compiler_fence(Ordering::SeqCst);
412         kdebug!("New page table enabled");
413     }
414     kdebug!("Successfully enabled new page table");
415 }
416 
417 #[no_mangle]
418 pub extern "C" fn rs_test_buddy() {
419     test_buddy();
420 }
421 pub fn test_buddy() {
422     // 申请内存然后写入数据然后free掉
423     // 总共申请200MB内存
424     const TOTAL_SIZE: usize = 200 * 1024 * 1024;
425 
426     for i in 0..10 {
427         kdebug!("Test buddy, round: {i}");
428         // 存放申请的内存块
429         let mut v: Vec<(PhysAddr, PageFrameCount)> = Vec::with_capacity(60 * 1024);
430         // 存放已经申请的内存块的地址(用于检查重复)
431         let mut addr_set: HashSet<PhysAddr> = HashSet::new();
432 
433         let mut allocated = 0usize;
434 
435         let mut free_count = 0usize;
436 
437         while allocated < TOTAL_SIZE {
438             let mut random_size = 0u64;
439             unsafe { x86::random::rdrand64(&mut random_size) };
440             // 一次最多申请4M
441             random_size = random_size % (1024 * 4096);
442             if random_size == 0 {
443                 continue;
444             }
445             let random_size =
446                 core::cmp::min(page_align_up(random_size as usize), TOTAL_SIZE - allocated);
447             let random_size = PageFrameCount::from_bytes(random_size.next_power_of_two()).unwrap();
448             // 获取帧
449             let (paddr, allocated_frame_count) =
450                 unsafe { LockedFrameAllocator.allocate(random_size).unwrap() };
451             assert!(allocated_frame_count.data().is_power_of_two());
452             assert!(paddr.data() % MMArch::PAGE_SIZE == 0);
453             unsafe {
454                 assert!(MMArch::phys_2_virt(paddr)
455                     .as_ref()
456                     .unwrap()
457                     .check_aligned(allocated_frame_count.data() * MMArch::PAGE_SIZE));
458             }
459             allocated += allocated_frame_count.data() * MMArch::PAGE_SIZE;
460             v.push((paddr, allocated_frame_count));
461             assert!(addr_set.insert(paddr), "duplicate address: {:?}", paddr);
462 
463             // 写入数据
464             let vaddr = unsafe { MMArch::phys_2_virt(paddr).unwrap() };
465             let slice = unsafe {
466                 core::slice::from_raw_parts_mut(
467                     vaddr.data() as *mut u8,
468                     allocated_frame_count.data() * MMArch::PAGE_SIZE,
469                 )
470             };
471             for i in 0..slice.len() {
472                 slice[i] = ((i + unsafe { rdtsc() } as usize) % 256) as u8;
473             }
474 
475             // 随机释放一个内存块
476             if v.len() > 0 {
477                 let mut random_index = 0u64;
478                 unsafe { x86::random::rdrand64(&mut random_index) };
479                 // 70%概率释放
480                 if random_index % 10 > 7 {
481                     continue;
482                 }
483                 random_index = random_index % v.len() as u64;
484                 let random_index = random_index as usize;
485                 let (paddr, allocated_frame_count) = v.remove(random_index);
486                 assert!(addr_set.remove(&paddr));
487                 unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
488                 free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
489             }
490         }
491 
492         kdebug!(
493             "Allocated {} MB memory, release: {} MB, no release: {} bytes",
494             allocated / 1024 / 1024,
495             free_count / 1024 / 1024,
496             (allocated - free_count)
497         );
498 
499         kdebug!("Now, to release buddy memory");
500         // 释放所有的内存
501         for (paddr, allocated_frame_count) in v {
502             unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
503             assert!(addr_set.remove(&paddr));
504             free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
505         }
506 
507         kdebug!("release done!, allocated: {allocated}, free_count: {free_count}");
508     }
509 }
510 /// 全局的页帧分配器
511 #[derive(Debug, Clone, Copy, Hash)]
512 pub struct LockedFrameAllocator;
513 
514 impl FrameAllocator for LockedFrameAllocator {
515     unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
516         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
517             return allocator.allocate(count);
518         } else {
519             return None;
520         }
521     }
522 
523     unsafe fn free(&mut self, address: crate::mm::PhysAddr, count: PageFrameCount) {
524         assert!(count.data().is_power_of_two());
525         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
526             return allocator.free(address, count);
527         }
528     }
529 
530     unsafe fn usage(&self) -> PageFrameUsage {
531         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
532             return allocator.usage();
533         } else {
534             panic!("usage error");
535         }
536     }
537 }
538 
539 impl LockedFrameAllocator {
540     pub fn get_usage(&self) -> PageFrameUsage {
541         unsafe { self.usage() }
542     }
543 }
544 
545 /// 获取内核地址默认的页面标志
546 pub unsafe fn kernel_page_flags<A: MemoryManagementArch>(virt: VirtAddr) -> PageFlags<A> {
547     let info: X86_64MMBootstrapInfo = BOOTSTRAP_MM_INFO.clone().unwrap();
548 
549     if virt.data() >= info.kernel_code_start && virt.data() < info.kernel_code_end {
550         // Remap kernel code  execute
551         return PageFlags::new().set_execute(true).set_write(true);
552     } else if virt.data() >= info.kernel_data_end && virt.data() < info.kernel_rodata_end {
553         // Remap kernel rodata read only
554         return PageFlags::new().set_execute(true);
555     } else {
556         return PageFlags::new().set_write(true).set_execute(true);
557     }
558 }
559 
560 unsafe fn set_inner_allocator(allocator: BuddyAllocator<MMArch>) {
561     static FLAG: AtomicBool = AtomicBool::new(false);
562     if FLAG
563         .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
564         .is_err()
565     {
566         panic!("Cannot set inner allocator twice!");
567     }
568     *INNER_ALLOCATOR.lock() = Some(allocator);
569 }
570 
571 /// 低地址重映射的管理器
572 ///
573 /// 低地址重映射的管理器,在smp初始化完成之前,需要使用低地址的映射,因此需要在smp初始化完成之后,取消这一段映射
574 pub struct LowAddressRemapping;
575 
576 impl LowAddressRemapping {
577     // 映射32M
578     const REMAP_SIZE: usize = 32 * 1024 * 1024;
579 
580     pub unsafe fn remap_at_low_address(
581         mapper: &mut crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>>,
582     ) {
583         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
584             let paddr = PhysAddr::new(i * MMArch::PAGE_SIZE);
585             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
586             let flags = kernel_page_flags::<MMArch>(vaddr);
587 
588             let flusher = mapper
589                 .map_phys(vaddr, paddr, flags)
590                 .expect("Failed to map frame");
591             // 暂时不刷新TLB
592             flusher.ignore();
593         }
594     }
595 
596     /// 取消低地址的映射
597     pub unsafe fn unmap_at_low_address(flush: bool) {
598         let mut mapper = KernelMapper::lock();
599         assert!(mapper.as_mut().is_some());
600         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
601             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
602             let (_, _, flusher) = mapper
603                 .as_mut()
604                 .unwrap()
605                 .unmap_phys(vaddr, true)
606                 .expect("Failed to unmap frame");
607             if flush == false {
608                 flusher.ignore();
609             }
610         }
611     }
612 }
613 #[no_mangle]
614 pub extern "C" fn rs_mm_init() {
615     mm_init();
616 }
617