xref: /DragonOS/kernel/src/arch/x86_64/mm/mod.rs (revision 9284987850c1da2ce607a539eeae8a353a8f6df9)
1 pub mod barrier;
2 pub mod bump;
3 mod c_adapter;
4 
5 use alloc::vec::Vec;
6 use hashbrown::HashSet;
7 use x86::time::rdtsc;
8 use x86_64::registers::model_specific::EferFlags;
9 
10 use crate::driver::tty::serial::serial8250::send_to_default_serial8250_port;
11 use crate::filesystem::procfs::kmsg::kmsg_init;
12 use crate::include::bindings::bindings::{
13     multiboot2_get_load_base, multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t,
14     multiboot_tag_load_base_addr_t,
15 };
16 use crate::libs::align::page_align_up;
17 use crate::libs::lib_ui::screen_manager::scm_disable_put_to_window;
18 use crate::libs::printk::PrintkWriter;
19 use crate::libs::spinlock::SpinLock;
20 
21 use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage};
22 use crate::mm::memblock::mem_block_manager;
23 use crate::mm::mmio_buddy::mmio_init;
24 use crate::{
25     arch::MMArch,
26     mm::allocator::{buddy::BuddyAllocator, bump::BumpAllocator},
27 };
28 
29 use crate::mm::kernel_mapper::KernelMapper;
30 use crate::mm::page::{PageEntry, PageFlags};
31 use crate::mm::{MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr};
32 use crate::{kdebug, kinfo, kwarn};
33 use system_error::SystemError;
34 
35 use core::arch::asm;
36 use core::ffi::c_void;
37 use core::fmt::{Debug, Write};
38 use core::mem::{self};
39 
40 use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
41 
42 use super::kvm::vmx::vmcs::VmcsFields;
43 use super::kvm::vmx::vmx_asm_wrapper::vmx_vmread;
44 
45 pub type PageMapper =
46     crate::mm::page::PageMapper<crate::arch::x86_64::mm::X86_64MMArch, LockedFrameAllocator>;
47 
48 /// 初始的CR3寄存器的值,用于内存管理初始化时,创建的第一个内核页表的位置
49 static mut INITIAL_CR3_VALUE: PhysAddr = PhysAddr::new(0);
50 
51 /// 内核的第一个页表在pml4中的索引
52 /// 顶级页表的[256, 512)项是内核的页表
53 static KERNEL_PML4E_NO: usize = (X86_64MMArch::PHYS_OFFSET & ((1 << 48) - 1)) >> 39;
54 
55 static INNER_ALLOCATOR: SpinLock<Option<BuddyAllocator<MMArch>>> = SpinLock::new(None);
56 
57 #[derive(Clone, Copy, Debug)]
58 pub struct X86_64MMBootstrapInfo {
59     kernel_load_base_paddr: usize,
60     kernel_code_start: usize,
61     kernel_code_end: usize,
62     kernel_data_end: usize,
63     kernel_rodata_end: usize,
64     start_brk: usize,
65 }
66 
67 pub(super) static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None;
68 
69 /// @brief X86_64的内存管理架构结构体
70 #[derive(Debug, Clone, Copy, Hash)]
71 pub struct X86_64MMArch;
72 
73 /// XD标志位是否被保留
74 static XD_RESERVED: AtomicBool = AtomicBool::new(false);
75 
76 impl MemoryManagementArch for X86_64MMArch {
77     /// 4K页
78     const PAGE_SHIFT: usize = 12;
79 
80     /// 每个页表项占8字节,总共有512个页表项
81     const PAGE_ENTRY_SHIFT: usize = 9;
82 
83     /// 四级页表(PML4T、PDPT、PDT、PT)
84     const PAGE_LEVELS: usize = 4;
85 
86     /// 页表项的有效位的index。在x86_64中,页表项的第[0, 47]位表示地址和flag,
87     /// 第[48, 51]位表示保留。因此,有效位的index为52。
88     /// 请注意,第63位是XD位,表示是否允许执行。
89     const ENTRY_ADDRESS_SHIFT: usize = 52;
90 
91     const ENTRY_FLAG_DEFAULT_PAGE: usize = Self::ENTRY_FLAG_PRESENT;
92 
93     const ENTRY_FLAG_DEFAULT_TABLE: usize = Self::ENTRY_FLAG_PRESENT;
94 
95     const ENTRY_FLAG_PRESENT: usize = 1 << 0;
96 
97     const ENTRY_FLAG_READONLY: usize = 0;
98 
99     const ENTRY_FLAG_READWRITE: usize = 1 << 1;
100 
101     const ENTRY_FLAG_USER: usize = 1 << 2;
102 
103     const ENTRY_FLAG_WRITE_THROUGH: usize = 1 << 3;
104 
105     const ENTRY_FLAG_CACHE_DISABLE: usize = 1 << 4;
106 
107     const ENTRY_FLAG_NO_EXEC: usize = 1 << 63;
108     /// x86_64不存在EXEC标志位,只有NO_EXEC(XD)标志位
109     const ENTRY_FLAG_EXEC: usize = 0;
110 
111     const ENTRY_FLAG_ACCESSED: usize = 0;
112     const ENTRY_FLAG_DIRTY: usize = 0;
113 
114     /// 物理地址与虚拟地址的偏移量
115     /// 0xffff_8000_0000_0000
116     const PHYS_OFFSET: usize = Self::PAGE_NEGATIVE_MASK + (Self::PAGE_ADDRESS_SIZE >> 1);
117 
118     const USER_END_VADDR: VirtAddr = VirtAddr::new(0x0000_7eff_ffff_ffff);
119     const USER_BRK_START: VirtAddr = VirtAddr::new(0x700000000000);
120     const USER_STACK_START: VirtAddr = VirtAddr::new(0x6ffff0a00000);
121 
122     const FIXMAP_START_VADDR: VirtAddr = VirtAddr::new(0xffffb00000000000);
123     /// 设置FIXMAP区域大小为1M
124     const FIXMAP_SIZE: usize = 256 * 4096;
125 
126     /// @brief 获取物理内存区域
127     unsafe fn init() {
128         extern "C" {
129             fn _text();
130             fn _etext();
131             fn _edata();
132             fn _erodata();
133             fn _end();
134         }
135 
136         Self::init_xd_rsvd();
137         let load_base_paddr = Self::get_load_base_paddr();
138 
139         let bootstrap_info = X86_64MMBootstrapInfo {
140             kernel_load_base_paddr: load_base_paddr.data(),
141             kernel_code_start: _text as usize,
142             kernel_code_end: _etext as usize,
143             kernel_data_end: _edata as usize,
144             kernel_rodata_end: _erodata as usize,
145             start_brk: _end as usize,
146         };
147 
148         unsafe {
149             BOOTSTRAP_MM_INFO = Some(bootstrap_info);
150         }
151 
152         // 初始化物理内存区域(从multiboot2中获取)
153         Self::init_memory_area_from_multiboot2().expect("init memory area failed");
154 
155         send_to_default_serial8250_port("x86 64 init end\n\0".as_bytes());
156     }
157 
158     /// @brief 刷新TLB中,关于指定虚拟地址的条目
159     unsafe fn invalidate_page(address: VirtAddr) {
160         compiler_fence(Ordering::SeqCst);
161         asm!("invlpg [{0}]", in(reg) address.data(), options(nostack, preserves_flags));
162         compiler_fence(Ordering::SeqCst);
163     }
164 
165     /// @brief 刷新TLB中,所有的条目
166     unsafe fn invalidate_all() {
167         compiler_fence(Ordering::SeqCst);
168         // 通过设置cr3寄存器,来刷新整个TLB
169         Self::set_table(PageTableKind::User, Self::table(PageTableKind::User));
170         compiler_fence(Ordering::SeqCst);
171     }
172 
173     /// @brief 获取顶级页表的物理地址
174     unsafe fn table(table_kind: PageTableKind) -> PhysAddr {
175         match table_kind {
176             PageTableKind::Kernel | PageTableKind::User => {
177                 let paddr: usize;
178                 compiler_fence(Ordering::SeqCst);
179                 asm!("mov {}, cr3", out(reg) paddr, options(nomem, nostack, preserves_flags));
180                 compiler_fence(Ordering::SeqCst);
181                 return PhysAddr::new(paddr);
182             }
183             PageTableKind::EPT => {
184                 let eptp =
185                     vmx_vmread(VmcsFields::CTRL_EPTP_PTR as u32).expect("Failed to read eptp");
186                 return PhysAddr::new(eptp as usize);
187             }
188         }
189     }
190 
191     /// @brief 设置顶级页表的物理地址到处理器中
192     unsafe fn set_table(_table_kind: PageTableKind, table: PhysAddr) {
193         compiler_fence(Ordering::SeqCst);
194         asm!("mov cr3, {}", in(reg) table.data(), options(nostack, preserves_flags));
195         compiler_fence(Ordering::SeqCst);
196     }
197 
198     /// @brief 判断虚拟地址是否合法
199     fn virt_is_valid(virt: VirtAddr) -> bool {
200         return virt.is_canonical();
201     }
202 
203     /// 获取内存管理初始化时,创建的第一个内核页表的地址
204     fn initial_page_table() -> PhysAddr {
205         unsafe {
206             return INITIAL_CR3_VALUE;
207         }
208     }
209 
210     /// @brief 创建新的顶层页表
211     ///
212     /// 该函数会创建页表并复制内核的映射到新的页表中
213     ///
214     /// @return 新的页表
215     fn setup_new_usermapper() -> Result<crate::mm::ucontext::UserMapper, SystemError> {
216         let new_umapper: crate::mm::page::PageMapper<X86_64MMArch, LockedFrameAllocator> = unsafe {
217             PageMapper::create(PageTableKind::User, LockedFrameAllocator)
218                 .ok_or(SystemError::ENOMEM)?
219         };
220 
221         let current_ktable: KernelMapper = KernelMapper::lock();
222         let copy_mapping = |pml4_entry_no| unsafe {
223             let entry: PageEntry<X86_64MMArch> = current_ktable
224                 .table()
225                 .entry(pml4_entry_no)
226                 .unwrap_or_else(|| panic!("entry {} not found", pml4_entry_no));
227             new_umapper.table().set_entry(pml4_entry_no, entry)
228         };
229 
230         // 复制内核的映射
231         for pml4_entry_no in KERNEL_PML4E_NO..512 {
232             copy_mapping(pml4_entry_no);
233         }
234 
235         return Ok(crate::mm::ucontext::UserMapper::new(new_umapper));
236     }
237 
238     const PAGE_SIZE: usize = 1 << Self::PAGE_SHIFT;
239 
240     const PAGE_OFFSET_MASK: usize = Self::PAGE_SIZE - 1;
241 
242     const PAGE_MASK: usize = !(Self::PAGE_OFFSET_MASK);
243 
244     const PAGE_ADDRESS_SHIFT: usize = Self::PAGE_LEVELS * Self::PAGE_ENTRY_SHIFT + Self::PAGE_SHIFT;
245 
246     const PAGE_ADDRESS_SIZE: usize = 1 << Self::PAGE_ADDRESS_SHIFT;
247 
248     const PAGE_ADDRESS_MASK: usize = Self::PAGE_ADDRESS_SIZE - Self::PAGE_SIZE;
249 
250     const PAGE_ENTRY_SIZE: usize = 1 << (Self::PAGE_SHIFT - Self::PAGE_ENTRY_SHIFT);
251 
252     const PAGE_ENTRY_NUM: usize = 1 << Self::PAGE_ENTRY_SHIFT;
253 
254     const PAGE_ENTRY_MASK: usize = Self::PAGE_ENTRY_NUM - 1;
255 
256     const PAGE_NEGATIVE_MASK: usize = !((Self::PAGE_ADDRESS_SIZE) - 1);
257 
258     const ENTRY_ADDRESS_SIZE: usize = 1 << Self::ENTRY_ADDRESS_SHIFT;
259 
260     const ENTRY_ADDRESS_MASK: usize = Self::ENTRY_ADDRESS_SIZE - Self::PAGE_SIZE;
261 
262     const ENTRY_FLAGS_MASK: usize = !Self::ENTRY_ADDRESS_MASK;
263 
264     unsafe fn read<T>(address: VirtAddr) -> T {
265         return core::ptr::read(address.data() as *const T);
266     }
267 
268     unsafe fn write<T>(address: VirtAddr, value: T) {
269         core::ptr::write(address.data() as *mut T, value);
270     }
271 
272     unsafe fn write_bytes(address: VirtAddr, value: u8, count: usize) {
273         core::ptr::write_bytes(address.data() as *mut u8, value, count);
274     }
275 
276     unsafe fn phys_2_virt(phys: PhysAddr) -> Option<VirtAddr> {
277         if let Some(vaddr) = phys.data().checked_add(Self::PHYS_OFFSET) {
278             return Some(VirtAddr::new(vaddr));
279         } else {
280             return None;
281         }
282     }
283 
284     unsafe fn virt_2_phys(virt: VirtAddr) -> Option<PhysAddr> {
285         if let Some(paddr) = virt.data().checked_sub(Self::PHYS_OFFSET) {
286             return Some(PhysAddr::new(paddr));
287         } else {
288             return None;
289         }
290     }
291 
292     #[inline(always)]
293     fn make_entry(paddr: PhysAddr, page_flags: usize) -> usize {
294         return paddr.data() | page_flags;
295     }
296 }
297 
298 impl X86_64MMArch {
299     unsafe fn get_load_base_paddr() -> PhysAddr {
300         let mut mb2_lb_info: [multiboot_tag_load_base_addr_t; 512] = mem::zeroed();
301         send_to_default_serial8250_port("get_load_base_paddr begin\n\0".as_bytes());
302 
303         let mut mb2_count: u32 = 0;
304         multiboot2_iter(
305             Some(multiboot2_get_load_base),
306             &mut mb2_lb_info as *mut [multiboot_tag_load_base_addr_t; 512] as usize as *mut c_void,
307             &mut mb2_count,
308         );
309 
310         if mb2_count == 0 {
311             send_to_default_serial8250_port(
312                 "get_load_base_paddr mb2_count == 0, default to 1MB\n\0".as_bytes(),
313             );
314             return PhysAddr::new(0x100000);
315         }
316 
317         let phys = mb2_lb_info[0].load_base_addr as usize;
318 
319         return PhysAddr::new(phys);
320     }
321     unsafe fn init_memory_area_from_multiboot2() -> Result<usize, SystemError> {
322         // 这个数组用来存放内存区域的信息(从C获取)
323         let mut mb2_mem_info: [multiboot_mmap_entry_t; 512] = mem::zeroed();
324         send_to_default_serial8250_port("init_memory_area_from_multiboot2 begin\n\0".as_bytes());
325 
326         let mut mb2_count: u32 = 0;
327         multiboot2_iter(
328             Some(multiboot2_get_memory),
329             &mut mb2_mem_info as *mut [multiboot_mmap_entry_t; 512] as usize as *mut c_void,
330             &mut mb2_count,
331         );
332         send_to_default_serial8250_port("init_memory_area_from_multiboot2 2\n\0".as_bytes());
333 
334         let mb2_count = mb2_count as usize;
335         let mut areas_count = 0usize;
336         let mut total_mem_size = 0usize;
337         for i in 0..mb2_count {
338             // Only use the memory area if its type is 1 (RAM)
339             if mb2_mem_info[i].type_ == 1 {
340                 // Skip the memory area if its len is 0
341                 if mb2_mem_info[i].len == 0 {
342                     continue;
343                 }
344 
345                 total_mem_size += mb2_mem_info[i].len as usize;
346 
347                 mem_block_manager()
348                     .add_block(
349                         PhysAddr::new(mb2_mem_info[i].addr as usize),
350                         mb2_mem_info[i].len as usize,
351                     )
352                     .unwrap_or_else(|e| {
353                         kwarn!(
354                             "Failed to add memory block: base={:#x}, size={:#x}, error={:?}",
355                             mb2_mem_info[i].addr,
356                             mb2_mem_info[i].len,
357                             e
358                         );
359                     });
360                 areas_count += 1;
361             }
362         }
363         send_to_default_serial8250_port("init_memory_area_from_multiboot2 end\n\0".as_bytes());
364         kinfo!("Total memory size: {} MB, total areas from multiboot2: {mb2_count}, valid areas: {areas_count}", total_mem_size / 1024 / 1024);
365         return Ok(areas_count);
366     }
367 
368     fn init_xd_rsvd() {
369         // 读取ia32-EFER寄存器的值
370         let efer: EferFlags = x86_64::registers::model_specific::Efer::read();
371         if !efer.contains(EferFlags::NO_EXECUTE_ENABLE) {
372             // NO_EXECUTE_ENABLE是false,那么就设置xd_reserved为true
373             kdebug!("NO_EXECUTE_ENABLE is false, set XD_RESERVED to true");
374             XD_RESERVED.store(true, Ordering::Relaxed);
375         }
376         compiler_fence(Ordering::SeqCst);
377     }
378 
379     /// 判断XD标志位是否被保留
380     pub fn is_xd_reserved() -> bool {
381         // return XD_RESERVED.load(Ordering::Relaxed);
382 
383         // 由于暂时不支持execute disable,因此直接返回true
384         // 不支持的原因是,目前好像没有能正确的设置page-level的xd位,会触发page fault
385         return true;
386     }
387 }
388 
389 impl VirtAddr {
390     /// @brief 判断虚拟地址是否合法
391     #[inline(always)]
392     pub fn is_canonical(self) -> bool {
393         let x = self.data() & X86_64MMArch::PHYS_OFFSET;
394         // 如果x为0,说明虚拟地址的高位为0,是合法的用户地址
395         // 如果x为PHYS_OFFSET,说明虚拟地址的高位全为1,是合法的内核地址
396         return x == 0 || x == X86_64MMArch::PHYS_OFFSET;
397     }
398 }
399 
400 /// @brief 初始化内存管理模块
401 pub fn mm_init() {
402     send_to_default_serial8250_port("mm_init\n\0".as_bytes());
403     PrintkWriter
404         .write_fmt(format_args!("mm_init() called\n"))
405         .unwrap();
406     // printk_color!(GREEN, BLACK, "mm_init() called\n");
407     static _CALL_ONCE: AtomicBool = AtomicBool::new(false);
408     if _CALL_ONCE
409         .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
410         .is_err()
411     {
412         send_to_default_serial8250_port("mm_init err\n\0".as_bytes());
413         panic!("mm_init() can only be called once");
414     }
415 
416     unsafe { X86_64MMArch::init() };
417     kdebug!("bootstrap info: {:?}", unsafe { BOOTSTRAP_MM_INFO });
418     kdebug!("phys[0]=virt[0x{:x}]", unsafe {
419         MMArch::phys_2_virt(PhysAddr::new(0)).unwrap().data()
420     });
421 
422     // 初始化内存管理器
423     unsafe { allocator_init() };
424     // enable mmio
425     mmio_init();
426     // enable KMSG
427     kmsg_init();
428 }
429 
430 unsafe fn allocator_init() {
431     let virt_offset = BOOTSTRAP_MM_INFO.unwrap().start_brk;
432     let phy_offset =
433         unsafe { MMArch::virt_2_phys(VirtAddr::new(page_align_up(virt_offset))) }.unwrap();
434 
435     let mut bump_allocator = BumpAllocator::<X86_64MMArch>::new(phy_offset.data());
436     kdebug!(
437         "BumpAllocator created, offset={:?}",
438         bump_allocator.offset()
439     );
440 
441     // 暂存初始在head.S中指定的页表的地址,后面再考虑是否需要把它加到buddy的可用空间里面!
442     // 现在不加的原因是,我担心会有安全漏洞问题:这些初始的页表,位于内核的数据段。如果归还到buddy,
443     // 可能会产生一定的安全风险(有的代码可能根据虚拟地址来进行安全校验)
444     let _old_page_table = MMArch::table(PageTableKind::Kernel);
445 
446     let new_page_table: PhysAddr;
447     // 使用bump分配器,把所有的内存页都映射到页表
448     {
449         // 用bump allocator创建新的页表
450         let mut mapper: crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>> =
451             crate::mm::page::PageMapper::<MMArch, _>::create(
452                 PageTableKind::Kernel,
453                 &mut bump_allocator,
454             )
455             .expect("Failed to create page mapper");
456         new_page_table = mapper.table().phys();
457         kdebug!("PageMapper created");
458 
459         // 取消最开始时候,在head.S中指定的映射(暂时不刷新TLB)
460         {
461             let table = mapper.table();
462             let empty_entry = PageEntry::<MMArch>::from_usize(0);
463             for i in 0..MMArch::PAGE_ENTRY_NUM {
464                 table
465                     .set_entry(i, empty_entry)
466                     .expect("Failed to empty page table entry");
467             }
468         }
469         kdebug!("Successfully emptied page table");
470 
471         let total_num = mem_block_manager().total_initial_memory_regions();
472         for i in 0..total_num {
473             let area = mem_block_manager().get_initial_memory_region(i).unwrap();
474             // kdebug!("area: base={:?}, size={:#x}, end={:?}", area.base, area.size, area.base + area.size);
475             for i in 0..((area.size + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE) {
476                 let paddr = area.base.add(i * MMArch::PAGE_SIZE);
477                 let vaddr = unsafe { MMArch::phys_2_virt(paddr) }.unwrap();
478                 let flags = kernel_page_flags::<MMArch>(vaddr);
479 
480                 let flusher = mapper
481                     .map_phys(vaddr, paddr, flags)
482                     .expect("Failed to map frame");
483                 // 暂时不刷新TLB
484                 flusher.ignore();
485             }
486         }
487 
488         // 添加低地址的映射(在smp完成初始化之前,需要使用低地址的映射.初始化之后需要取消这一段映射)
489         LowAddressRemapping::remap_at_low_address(&mut mapper);
490     }
491 
492     unsafe {
493         INITIAL_CR3_VALUE = new_page_table;
494     }
495     kdebug!(
496         "After mapping all physical memory, DragonOS used: {} KB",
497         bump_allocator.offset() / 1024
498     );
499 
500     // 初始化buddy_allocator
501     let buddy_allocator = unsafe { BuddyAllocator::<X86_64MMArch>::new(bump_allocator).unwrap() };
502     // 设置全局的页帧分配器
503     unsafe { set_inner_allocator(buddy_allocator) };
504     kinfo!("Successfully initialized buddy allocator");
505     // 关闭显示输出
506     scm_disable_put_to_window();
507 
508     // make the new page table current
509     {
510         let mut binding = INNER_ALLOCATOR.lock();
511         let mut allocator_guard = binding.as_mut().unwrap();
512         kdebug!("To enable new page table.");
513         compiler_fence(Ordering::SeqCst);
514         let mapper = crate::mm::page::PageMapper::<MMArch, _>::new(
515             PageTableKind::Kernel,
516             new_page_table,
517             &mut allocator_guard,
518         );
519         compiler_fence(Ordering::SeqCst);
520         mapper.make_current();
521         compiler_fence(Ordering::SeqCst);
522         kdebug!("New page table enabled");
523     }
524     kdebug!("Successfully enabled new page table");
525 }
526 
527 #[no_mangle]
528 pub extern "C" fn rs_test_buddy() {
529     test_buddy();
530 }
531 pub fn test_buddy() {
532     // 申请内存然后写入数据然后free掉
533     // 总共申请200MB内存
534     const TOTAL_SIZE: usize = 200 * 1024 * 1024;
535 
536     for i in 0..10 {
537         kdebug!("Test buddy, round: {i}");
538         // 存放申请的内存块
539         let mut v: Vec<(PhysAddr, PageFrameCount)> = Vec::with_capacity(60 * 1024);
540         // 存放已经申请的内存块的地址(用于检查重复)
541         let mut addr_set: HashSet<PhysAddr> = HashSet::new();
542 
543         let mut allocated = 0usize;
544 
545         let mut free_count = 0usize;
546 
547         while allocated < TOTAL_SIZE {
548             let mut random_size = 0u64;
549             unsafe { x86::random::rdrand64(&mut random_size) };
550             // 一次最多申请4M
551             random_size = random_size % (1024 * 4096);
552             if random_size == 0 {
553                 continue;
554             }
555             let random_size =
556                 core::cmp::min(page_align_up(random_size as usize), TOTAL_SIZE - allocated);
557             let random_size = PageFrameCount::from_bytes(random_size.next_power_of_two()).unwrap();
558             // 获取帧
559             let (paddr, allocated_frame_count) =
560                 unsafe { LockedFrameAllocator.allocate(random_size).unwrap() };
561             assert!(allocated_frame_count.data().is_power_of_two());
562             assert!(paddr.data() % MMArch::PAGE_SIZE == 0);
563             unsafe {
564                 assert!(MMArch::phys_2_virt(paddr)
565                     .as_ref()
566                     .unwrap()
567                     .check_aligned(allocated_frame_count.data() * MMArch::PAGE_SIZE));
568             }
569             allocated += allocated_frame_count.data() * MMArch::PAGE_SIZE;
570             v.push((paddr, allocated_frame_count));
571             assert!(addr_set.insert(paddr), "duplicate address: {:?}", paddr);
572 
573             // 写入数据
574             let vaddr = unsafe { MMArch::phys_2_virt(paddr).unwrap() };
575             let slice = unsafe {
576                 core::slice::from_raw_parts_mut(
577                     vaddr.data() as *mut u8,
578                     allocated_frame_count.data() * MMArch::PAGE_SIZE,
579                 )
580             };
581             for i in 0..slice.len() {
582                 slice[i] = ((i + unsafe { rdtsc() } as usize) % 256) as u8;
583             }
584 
585             // 随机释放一个内存块
586             if v.len() > 0 {
587                 let mut random_index = 0u64;
588                 unsafe { x86::random::rdrand64(&mut random_index) };
589                 // 70%概率释放
590                 if random_index % 10 > 7 {
591                     continue;
592                 }
593                 random_index = random_index % v.len() as u64;
594                 let random_index = random_index as usize;
595                 let (paddr, allocated_frame_count) = v.remove(random_index);
596                 assert!(addr_set.remove(&paddr));
597                 unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
598                 free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
599             }
600         }
601 
602         kdebug!(
603             "Allocated {} MB memory, release: {} MB, no release: {} bytes",
604             allocated / 1024 / 1024,
605             free_count / 1024 / 1024,
606             (allocated - free_count)
607         );
608 
609         kdebug!("Now, to release buddy memory");
610         // 释放所有的内存
611         for (paddr, allocated_frame_count) in v {
612             unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
613             assert!(addr_set.remove(&paddr));
614             free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
615         }
616 
617         kdebug!("release done!, allocated: {allocated}, free_count: {free_count}");
618     }
619 }
620 
621 /// 全局的页帧分配器
622 #[derive(Debug, Clone, Copy, Hash)]
623 pub struct LockedFrameAllocator;
624 
625 impl FrameAllocator for LockedFrameAllocator {
626     unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
627         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
628             return allocator.allocate(count);
629         } else {
630             return None;
631         }
632     }
633 
634     unsafe fn free(&mut self, address: crate::mm::PhysAddr, count: PageFrameCount) {
635         assert!(count.data().is_power_of_two());
636         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
637             return allocator.free(address, count);
638         }
639     }
640 
641     unsafe fn usage(&self) -> PageFrameUsage {
642         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
643             return allocator.usage();
644         } else {
645             panic!("usage error");
646         }
647     }
648 }
649 
650 /// 获取内核地址默认的页面标志
651 pub unsafe fn kernel_page_flags<A: MemoryManagementArch>(virt: VirtAddr) -> PageFlags<A> {
652     let info: X86_64MMBootstrapInfo = BOOTSTRAP_MM_INFO.clone().unwrap();
653 
654     if virt.data() >= info.kernel_code_start && virt.data() < info.kernel_code_end {
655         // Remap kernel code  execute
656         return PageFlags::new().set_execute(true).set_write(true);
657     } else if virt.data() >= info.kernel_data_end && virt.data() < info.kernel_rodata_end {
658         // Remap kernel rodata read only
659         return PageFlags::new().set_execute(true);
660     } else {
661         return PageFlags::new().set_write(true).set_execute(true);
662     }
663 }
664 
665 unsafe fn set_inner_allocator(allocator: BuddyAllocator<MMArch>) {
666     static FLAG: AtomicBool = AtomicBool::new(false);
667     if FLAG
668         .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
669         .is_err()
670     {
671         panic!("Cannot set inner allocator twice!");
672     }
673     *INNER_ALLOCATOR.lock() = Some(allocator);
674 }
675 
676 /// 低地址重映射的管理器
677 ///
678 /// 低地址重映射的管理器,在smp初始化完成之前,需要使用低地址的映射,因此需要在smp初始化完成之后,取消这一段映射
679 pub struct LowAddressRemapping;
680 
681 impl LowAddressRemapping {
682     // 映射32M
683     const REMAP_SIZE: usize = 32 * 1024 * 1024;
684 
685     pub unsafe fn remap_at_low_address(
686         mapper: &mut crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>>,
687     ) {
688         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
689             let paddr = PhysAddr::new(i * MMArch::PAGE_SIZE);
690             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
691             let flags = kernel_page_flags::<MMArch>(vaddr);
692 
693             let flusher = mapper
694                 .map_phys(vaddr, paddr, flags)
695                 .expect("Failed to map frame");
696             // 暂时不刷新TLB
697             flusher.ignore();
698         }
699     }
700 
701     /// 取消低地址的映射
702     pub unsafe fn unmap_at_low_address(flush: bool) {
703         let mut mapper = KernelMapper::lock();
704         assert!(mapper.as_mut().is_some());
705         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
706             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
707             let (_, _, flusher) = mapper
708                 .as_mut()
709                 .unwrap()
710                 .unmap_phys(vaddr, true)
711                 .expect("Failed to unmap frame");
712             if flush == false {
713                 flusher.ignore();
714             }
715         }
716     }
717 }
718 #[no_mangle]
719 pub extern "C" fn rs_mm_init() {
720     mm_init();
721 }
722