xref: /DragonOS/kernel/src/arch/x86_64/mm/mod.rs (revision 5d549a76ab0cf66651a6614be92dcb481fe7af2a)
1 pub mod barrier;
2 pub mod bump;
3 mod c_adapter;
4 
5 use alloc::vec::Vec;
6 use hashbrown::HashSet;
7 use x86::time::rdtsc;
8 use x86_64::registers::model_specific::EferFlags;
9 
10 use crate::driver::tty::serial::serial8250::send_to_default_serial8250_port;
11 use crate::filesystem::procfs::kmsg::kmsg_init;
12 use crate::include::bindings::bindings::{
13     multiboot2_get_load_base, multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t,
14     multiboot_tag_load_base_addr_t,
15 };
16 use crate::libs::align::page_align_up;
17 use crate::libs::lib_ui::screen_manager::scm_disable_put_to_window;
18 use crate::libs::printk::PrintkWriter;
19 use crate::libs::spinlock::SpinLock;
20 
21 use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage};
22 use crate::mm::memblock::mem_block_manager;
23 use crate::mm::mmio_buddy::mmio_init;
24 use crate::{
25     arch::MMArch,
26     mm::allocator::{buddy::BuddyAllocator, bump::BumpAllocator},
27 };
28 
29 use crate::mm::kernel_mapper::KernelMapper;
30 use crate::mm::page::{PageEntry, PageFlags};
31 use crate::mm::{MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr};
32 use crate::{kdebug, kinfo, kwarn};
33 use system_error::SystemError;
34 
35 use core::arch::asm;
36 use core::ffi::c_void;
37 use core::fmt::{Debug, Write};
38 use core::mem::{self};
39 
40 use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
41 
42 use super::kvm::vmx::vmcs::VmcsFields;
43 use super::kvm::vmx::vmx_asm_wrapper::vmx_vmread;
44 
45 pub type PageMapper =
46     crate::mm::page::PageMapper<crate::arch::x86_64::mm::X86_64MMArch, LockedFrameAllocator>;
47 
48 /// 初始的CR3寄存器的值,用于内存管理初始化时,创建的第一个内核页表的位置
49 static mut INITIAL_CR3_VALUE: PhysAddr = PhysAddr::new(0);
50 
51 /// 内核的第一个页表在pml4中的索引
52 /// 顶级页表的[256, 512)项是内核的页表
53 static KERNEL_PML4E_NO: usize = (X86_64MMArch::PHYS_OFFSET & ((1 << 48) - 1)) >> 39;
54 
55 static INNER_ALLOCATOR: SpinLock<Option<BuddyAllocator<MMArch>>> = SpinLock::new(None);
56 
57 #[derive(Clone, Copy, Debug)]
58 pub struct X86_64MMBootstrapInfo {
59     kernel_load_base_paddr: usize,
60     kernel_code_start: usize,
61     kernel_code_end: usize,
62     kernel_data_end: usize,
63     kernel_rodata_end: usize,
64     start_brk: usize,
65 }
66 
67 pub(super) static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None;
68 
69 /// @brief X86_64的内存管理架构结构体
70 #[derive(Debug, Clone, Copy, Hash)]
71 pub struct X86_64MMArch;
72 
73 /// XD标志位是否被保留
74 static XD_RESERVED: AtomicBool = AtomicBool::new(false);
75 
76 impl MemoryManagementArch for X86_64MMArch {
77     /// 4K页
78     const PAGE_SHIFT: usize = 12;
79 
80     /// 每个页表项占8字节,总共有512个页表项
81     const PAGE_ENTRY_SHIFT: usize = 9;
82 
83     /// 四级页表(PML4T、PDPT、PDT、PT)
84     const PAGE_LEVELS: usize = 4;
85 
86     /// 页表项的有效位的index。在x86_64中,页表项的第[0, 47]位表示地址和flag,
87     /// 第[48, 51]位表示保留。因此,有效位的index为52。
88     /// 请注意,第63位是XD位,表示是否允许执行。
89     const ENTRY_ADDRESS_SHIFT: usize = 52;
90 
91     const ENTRY_FLAG_DEFAULT_PAGE: usize = Self::ENTRY_FLAG_PRESENT;
92 
93     const ENTRY_FLAG_DEFAULT_TABLE: usize = Self::ENTRY_FLAG_PRESENT;
94 
95     const ENTRY_FLAG_PRESENT: usize = 1 << 0;
96 
97     const ENTRY_FLAG_READONLY: usize = 0;
98 
99     const ENTRY_FLAG_READWRITE: usize = 1 << 1;
100 
101     const ENTRY_FLAG_USER: usize = 1 << 2;
102 
103     const ENTRY_FLAG_WRITE_THROUGH: usize = 1 << 3;
104 
105     const ENTRY_FLAG_CACHE_DISABLE: usize = 1 << 4;
106 
107     const ENTRY_FLAG_NO_EXEC: usize = 1 << 63;
108     /// x86_64不存在EXEC标志位,只有NO_EXEC(XD)标志位
109     const ENTRY_FLAG_EXEC: usize = 0;
110 
111     const ENTRY_FLAG_ACCESSED: usize = 0;
112     const ENTRY_FLAG_DIRTY: usize = 0;
113 
114     /// 物理地址与虚拟地址的偏移量
115     /// 0xffff_8000_0000_0000
116     const PHYS_OFFSET: usize = Self::PAGE_NEGATIVE_MASK + (Self::PAGE_ADDRESS_SIZE >> 1);
117 
118     // 参考 https://code.dragonos.org.cn/xref/linux-6.1.9/arch/x86/include/asm/page_64_types.h#75
119     const USER_END_VADDR: VirtAddr =
120         VirtAddr::new((Self::PAGE_ADDRESS_SIZE >> 1) - Self::PAGE_SIZE);
121     const USER_BRK_START: VirtAddr = VirtAddr::new(0x700000000000);
122     const USER_STACK_START: VirtAddr = VirtAddr::new(0x6ffff0a00000);
123 
124     const FIXMAP_START_VADDR: VirtAddr = VirtAddr::new(0xffffb00000000000);
125     /// 设置FIXMAP区域大小为1M
126     const FIXMAP_SIZE: usize = 256 * 4096;
127 
128     /// @brief 获取物理内存区域
129     unsafe fn init() {
130         extern "C" {
131             fn _text();
132             fn _etext();
133             fn _edata();
134             fn _erodata();
135             fn _end();
136         }
137 
138         Self::init_xd_rsvd();
139         let load_base_paddr = Self::get_load_base_paddr();
140 
141         let bootstrap_info = X86_64MMBootstrapInfo {
142             kernel_load_base_paddr: load_base_paddr.data(),
143             kernel_code_start: _text as usize,
144             kernel_code_end: _etext as usize,
145             kernel_data_end: _edata as usize,
146             kernel_rodata_end: _erodata as usize,
147             start_brk: _end as usize,
148         };
149 
150         unsafe {
151             BOOTSTRAP_MM_INFO = Some(bootstrap_info);
152         }
153 
154         // 初始化物理内存区域(从multiboot2中获取)
155         Self::init_memory_area_from_multiboot2().expect("init memory area failed");
156 
157         send_to_default_serial8250_port("x86 64 init end\n\0".as_bytes());
158     }
159 
160     /// @brief 刷新TLB中,关于指定虚拟地址的条目
161     unsafe fn invalidate_page(address: VirtAddr) {
162         compiler_fence(Ordering::SeqCst);
163         asm!("invlpg [{0}]", in(reg) address.data(), options(nostack, preserves_flags));
164         compiler_fence(Ordering::SeqCst);
165     }
166 
167     /// @brief 刷新TLB中,所有的条目
168     unsafe fn invalidate_all() {
169         compiler_fence(Ordering::SeqCst);
170         // 通过设置cr3寄存器,来刷新整个TLB
171         Self::set_table(PageTableKind::User, Self::table(PageTableKind::User));
172         compiler_fence(Ordering::SeqCst);
173     }
174 
175     /// @brief 获取顶级页表的物理地址
176     unsafe fn table(table_kind: PageTableKind) -> PhysAddr {
177         match table_kind {
178             PageTableKind::Kernel | PageTableKind::User => {
179                 let paddr: usize;
180                 compiler_fence(Ordering::SeqCst);
181                 asm!("mov {}, cr3", out(reg) paddr, options(nomem, nostack, preserves_flags));
182                 compiler_fence(Ordering::SeqCst);
183                 return PhysAddr::new(paddr);
184             }
185             PageTableKind::EPT => {
186                 let eptp =
187                     vmx_vmread(VmcsFields::CTRL_EPTP_PTR as u32).expect("Failed to read eptp");
188                 return PhysAddr::new(eptp as usize);
189             }
190         }
191     }
192 
193     /// @brief 设置顶级页表的物理地址到处理器中
194     unsafe fn set_table(_table_kind: PageTableKind, table: PhysAddr) {
195         compiler_fence(Ordering::SeqCst);
196         asm!("mov cr3, {}", in(reg) table.data(), options(nostack, preserves_flags));
197         compiler_fence(Ordering::SeqCst);
198     }
199 
200     /// @brief 判断虚拟地址是否合法
201     fn virt_is_valid(virt: VirtAddr) -> bool {
202         return virt.is_canonical();
203     }
204 
205     /// 获取内存管理初始化时,创建的第一个内核页表的地址
206     fn initial_page_table() -> PhysAddr {
207         unsafe {
208             return INITIAL_CR3_VALUE;
209         }
210     }
211 
212     /// @brief 创建新的顶层页表
213     ///
214     /// 该函数会创建页表并复制内核的映射到新的页表中
215     ///
216     /// @return 新的页表
217     fn setup_new_usermapper() -> Result<crate::mm::ucontext::UserMapper, SystemError> {
218         let new_umapper: crate::mm::page::PageMapper<X86_64MMArch, LockedFrameAllocator> = unsafe {
219             PageMapper::create(PageTableKind::User, LockedFrameAllocator)
220                 .ok_or(SystemError::ENOMEM)?
221         };
222 
223         let current_ktable: KernelMapper = KernelMapper::lock();
224         let copy_mapping = |pml4_entry_no| unsafe {
225             let entry: PageEntry<X86_64MMArch> = current_ktable
226                 .table()
227                 .entry(pml4_entry_no)
228                 .unwrap_or_else(|| panic!("entry {} not found", pml4_entry_no));
229             new_umapper.table().set_entry(pml4_entry_no, entry)
230         };
231 
232         // 复制内核的映射
233         for pml4_entry_no in KERNEL_PML4E_NO..512 {
234             copy_mapping(pml4_entry_no);
235         }
236 
237         return Ok(crate::mm::ucontext::UserMapper::new(new_umapper));
238     }
239 
240     const PAGE_SIZE: usize = 1 << Self::PAGE_SHIFT;
241 
242     const PAGE_OFFSET_MASK: usize = Self::PAGE_SIZE - 1;
243 
244     const PAGE_MASK: usize = !(Self::PAGE_OFFSET_MASK);
245 
246     const PAGE_ADDRESS_SHIFT: usize = Self::PAGE_LEVELS * Self::PAGE_ENTRY_SHIFT + Self::PAGE_SHIFT;
247 
248     const PAGE_ADDRESS_SIZE: usize = 1 << Self::PAGE_ADDRESS_SHIFT;
249 
250     const PAGE_ADDRESS_MASK: usize = Self::PAGE_ADDRESS_SIZE - Self::PAGE_SIZE;
251 
252     const PAGE_ENTRY_SIZE: usize = 1 << (Self::PAGE_SHIFT - Self::PAGE_ENTRY_SHIFT);
253 
254     const PAGE_ENTRY_NUM: usize = 1 << Self::PAGE_ENTRY_SHIFT;
255 
256     const PAGE_ENTRY_MASK: usize = Self::PAGE_ENTRY_NUM - 1;
257 
258     const PAGE_NEGATIVE_MASK: usize = !((Self::PAGE_ADDRESS_SIZE) - 1);
259 
260     const ENTRY_ADDRESS_SIZE: usize = 1 << Self::ENTRY_ADDRESS_SHIFT;
261 
262     const ENTRY_ADDRESS_MASK: usize = Self::ENTRY_ADDRESS_SIZE - Self::PAGE_SIZE;
263 
264     const ENTRY_FLAGS_MASK: usize = !Self::ENTRY_ADDRESS_MASK;
265 
266     unsafe fn read<T>(address: VirtAddr) -> T {
267         return core::ptr::read(address.data() as *const T);
268     }
269 
270     unsafe fn write<T>(address: VirtAddr, value: T) {
271         core::ptr::write(address.data() as *mut T, value);
272     }
273 
274     unsafe fn write_bytes(address: VirtAddr, value: u8, count: usize) {
275         core::ptr::write_bytes(address.data() as *mut u8, value, count);
276     }
277 
278     unsafe fn phys_2_virt(phys: PhysAddr) -> Option<VirtAddr> {
279         if let Some(vaddr) = phys.data().checked_add(Self::PHYS_OFFSET) {
280             return Some(VirtAddr::new(vaddr));
281         } else {
282             return None;
283         }
284     }
285 
286     unsafe fn virt_2_phys(virt: VirtAddr) -> Option<PhysAddr> {
287         if let Some(paddr) = virt.data().checked_sub(Self::PHYS_OFFSET) {
288             return Some(PhysAddr::new(paddr));
289         } else {
290             return None;
291         }
292     }
293 
294     #[inline(always)]
295     fn make_entry(paddr: PhysAddr, page_flags: usize) -> usize {
296         return paddr.data() | page_flags;
297     }
298 }
299 
300 impl X86_64MMArch {
301     unsafe fn get_load_base_paddr() -> PhysAddr {
302         let mut mb2_lb_info: [multiboot_tag_load_base_addr_t; 512] = mem::zeroed();
303         send_to_default_serial8250_port("get_load_base_paddr begin\n\0".as_bytes());
304 
305         let mut mb2_count: u32 = 0;
306         multiboot2_iter(
307             Some(multiboot2_get_load_base),
308             &mut mb2_lb_info as *mut [multiboot_tag_load_base_addr_t; 512] as usize as *mut c_void,
309             &mut mb2_count,
310         );
311 
312         if mb2_count == 0 {
313             send_to_default_serial8250_port(
314                 "get_load_base_paddr mb2_count == 0, default to 1MB\n\0".as_bytes(),
315             );
316             return PhysAddr::new(0x100000);
317         }
318 
319         let phys = mb2_lb_info[0].load_base_addr as usize;
320 
321         return PhysAddr::new(phys);
322     }
323     unsafe fn init_memory_area_from_multiboot2() -> Result<usize, SystemError> {
324         // 这个数组用来存放内存区域的信息(从C获取)
325         let mut mb2_mem_info: [multiboot_mmap_entry_t; 512] = mem::zeroed();
326         send_to_default_serial8250_port("init_memory_area_from_multiboot2 begin\n\0".as_bytes());
327 
328         let mut mb2_count: u32 = 0;
329         multiboot2_iter(
330             Some(multiboot2_get_memory),
331             &mut mb2_mem_info as *mut [multiboot_mmap_entry_t; 512] as usize as *mut c_void,
332             &mut mb2_count,
333         );
334         send_to_default_serial8250_port("init_memory_area_from_multiboot2 2\n\0".as_bytes());
335 
336         let mb2_count = mb2_count as usize;
337         let mut areas_count = 0usize;
338         let mut total_mem_size = 0usize;
339         for i in 0..mb2_count {
340             // Only use the memory area if its type is 1 (RAM)
341             if mb2_mem_info[i].type_ == 1 {
342                 // Skip the memory area if its len is 0
343                 if mb2_mem_info[i].len == 0 {
344                     continue;
345                 }
346 
347                 total_mem_size += mb2_mem_info[i].len as usize;
348 
349                 mem_block_manager()
350                     .add_block(
351                         PhysAddr::new(mb2_mem_info[i].addr as usize),
352                         mb2_mem_info[i].len as usize,
353                     )
354                     .unwrap_or_else(|e| {
355                         kwarn!(
356                             "Failed to add memory block: base={:#x}, size={:#x}, error={:?}",
357                             mb2_mem_info[i].addr,
358                             mb2_mem_info[i].len,
359                             e
360                         );
361                     });
362                 areas_count += 1;
363             }
364         }
365         send_to_default_serial8250_port("init_memory_area_from_multiboot2 end\n\0".as_bytes());
366         kinfo!("Total memory size: {} MB, total areas from multiboot2: {mb2_count}, valid areas: {areas_count}", total_mem_size / 1024 / 1024);
367         return Ok(areas_count);
368     }
369 
370     fn init_xd_rsvd() {
371         // 读取ia32-EFER寄存器的值
372         let efer: EferFlags = x86_64::registers::model_specific::Efer::read();
373         if !efer.contains(EferFlags::NO_EXECUTE_ENABLE) {
374             // NO_EXECUTE_ENABLE是false,那么就设置xd_reserved为true
375             kdebug!("NO_EXECUTE_ENABLE is false, set XD_RESERVED to true");
376             XD_RESERVED.store(true, Ordering::Relaxed);
377         }
378         compiler_fence(Ordering::SeqCst);
379     }
380 
381     /// 判断XD标志位是否被保留
382     pub fn is_xd_reserved() -> bool {
383         // return XD_RESERVED.load(Ordering::Relaxed);
384 
385         // 由于暂时不支持execute disable,因此直接返回true
386         // 不支持的原因是,目前好像没有能正确的设置page-level的xd位,会触发page fault
387         return true;
388     }
389 }
390 
391 impl VirtAddr {
392     /// @brief 判断虚拟地址是否合法
393     #[inline(always)]
394     pub fn is_canonical(self) -> bool {
395         let x = self.data() & X86_64MMArch::PHYS_OFFSET;
396         // 如果x为0,说明虚拟地址的高位为0,是合法的用户地址
397         // 如果x为PHYS_OFFSET,说明虚拟地址的高位全为1,是合法的内核地址
398         return x == 0 || x == X86_64MMArch::PHYS_OFFSET;
399     }
400 }
401 
402 /// @brief 初始化内存管理模块
403 pub fn mm_init() {
404     send_to_default_serial8250_port("mm_init\n\0".as_bytes());
405     PrintkWriter
406         .write_fmt(format_args!("mm_init() called\n"))
407         .unwrap();
408     // printk_color!(GREEN, BLACK, "mm_init() called\n");
409     static _CALL_ONCE: AtomicBool = AtomicBool::new(false);
410     if _CALL_ONCE
411         .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
412         .is_err()
413     {
414         send_to_default_serial8250_port("mm_init err\n\0".as_bytes());
415         panic!("mm_init() can only be called once");
416     }
417 
418     unsafe { X86_64MMArch::init() };
419     kdebug!("bootstrap info: {:?}", unsafe { BOOTSTRAP_MM_INFO });
420     kdebug!("phys[0]=virt[0x{:x}]", unsafe {
421         MMArch::phys_2_virt(PhysAddr::new(0)).unwrap().data()
422     });
423 
424     // 初始化内存管理器
425     unsafe { allocator_init() };
426     // enable mmio
427     mmio_init();
428     // enable KMSG
429     kmsg_init();
430 }
431 
432 unsafe fn allocator_init() {
433     let virt_offset = BOOTSTRAP_MM_INFO.unwrap().start_brk;
434     let phy_offset =
435         unsafe { MMArch::virt_2_phys(VirtAddr::new(page_align_up(virt_offset))) }.unwrap();
436 
437     let mut bump_allocator = BumpAllocator::<X86_64MMArch>::new(phy_offset.data());
438     kdebug!(
439         "BumpAllocator created, offset={:?}",
440         bump_allocator.offset()
441     );
442 
443     // 暂存初始在head.S中指定的页表的地址,后面再考虑是否需要把它加到buddy的可用空间里面!
444     // 现在不加的原因是,我担心会有安全漏洞问题:这些初始的页表,位于内核的数据段。如果归还到buddy,
445     // 可能会产生一定的安全风险(有的代码可能根据虚拟地址来进行安全校验)
446     let _old_page_table = MMArch::table(PageTableKind::Kernel);
447 
448     let new_page_table: PhysAddr;
449     // 使用bump分配器,把所有的内存页都映射到页表
450     {
451         // 用bump allocator创建新的页表
452         let mut mapper: crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>> =
453             crate::mm::page::PageMapper::<MMArch, _>::create(
454                 PageTableKind::Kernel,
455                 &mut bump_allocator,
456             )
457             .expect("Failed to create page mapper");
458         new_page_table = mapper.table().phys();
459         kdebug!("PageMapper created");
460 
461         // 取消最开始时候,在head.S中指定的映射(暂时不刷新TLB)
462         {
463             let table = mapper.table();
464             let empty_entry = PageEntry::<MMArch>::from_usize(0);
465             for i in 0..MMArch::PAGE_ENTRY_NUM {
466                 table
467                     .set_entry(i, empty_entry)
468                     .expect("Failed to empty page table entry");
469             }
470         }
471         kdebug!("Successfully emptied page table");
472 
473         let total_num = mem_block_manager().total_initial_memory_regions();
474         for i in 0..total_num {
475             let area = mem_block_manager().get_initial_memory_region(i).unwrap();
476             // kdebug!("area: base={:?}, size={:#x}, end={:?}", area.base, area.size, area.base + area.size);
477             for i in 0..((area.size + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE) {
478                 let paddr = area.base.add(i * MMArch::PAGE_SIZE);
479                 let vaddr = unsafe { MMArch::phys_2_virt(paddr) }.unwrap();
480                 let flags = kernel_page_flags::<MMArch>(vaddr);
481 
482                 let flusher = mapper
483                     .map_phys(vaddr, paddr, flags)
484                     .expect("Failed to map frame");
485                 // 暂时不刷新TLB
486                 flusher.ignore();
487             }
488         }
489 
490         // 添加低地址的映射(在smp完成初始化之前,需要使用低地址的映射.初始化之后需要取消这一段映射)
491         LowAddressRemapping::remap_at_low_address(&mut mapper);
492     }
493 
494     unsafe {
495         INITIAL_CR3_VALUE = new_page_table;
496     }
497     kdebug!(
498         "After mapping all physical memory, DragonOS used: {} KB",
499         bump_allocator.offset() / 1024
500     );
501 
502     // 初始化buddy_allocator
503     let buddy_allocator = unsafe { BuddyAllocator::<X86_64MMArch>::new(bump_allocator).unwrap() };
504     // 设置全局的页帧分配器
505     unsafe { set_inner_allocator(buddy_allocator) };
506     kinfo!("Successfully initialized buddy allocator");
507     // 关闭显示输出
508     scm_disable_put_to_window();
509 
510     // make the new page table current
511     {
512         let mut binding = INNER_ALLOCATOR.lock();
513         let mut allocator_guard = binding.as_mut().unwrap();
514         kdebug!("To enable new page table.");
515         compiler_fence(Ordering::SeqCst);
516         let mapper = crate::mm::page::PageMapper::<MMArch, _>::new(
517             PageTableKind::Kernel,
518             new_page_table,
519             &mut allocator_guard,
520         );
521         compiler_fence(Ordering::SeqCst);
522         mapper.make_current();
523         compiler_fence(Ordering::SeqCst);
524         kdebug!("New page table enabled");
525     }
526     kdebug!("Successfully enabled new page table");
527 }
528 
529 #[no_mangle]
530 pub extern "C" fn rs_test_buddy() {
531     test_buddy();
532 }
533 pub fn test_buddy() {
534     // 申请内存然后写入数据然后free掉
535     // 总共申请200MB内存
536     const TOTAL_SIZE: usize = 200 * 1024 * 1024;
537 
538     for i in 0..10 {
539         kdebug!("Test buddy, round: {i}");
540         // 存放申请的内存块
541         let mut v: Vec<(PhysAddr, PageFrameCount)> = Vec::with_capacity(60 * 1024);
542         // 存放已经申请的内存块的地址(用于检查重复)
543         let mut addr_set: HashSet<PhysAddr> = HashSet::new();
544 
545         let mut allocated = 0usize;
546 
547         let mut free_count = 0usize;
548 
549         while allocated < TOTAL_SIZE {
550             let mut random_size = 0u64;
551             unsafe { x86::random::rdrand64(&mut random_size) };
552             // 一次最多申请4M
553             random_size = random_size % (1024 * 4096);
554             if random_size == 0 {
555                 continue;
556             }
557             let random_size =
558                 core::cmp::min(page_align_up(random_size as usize), TOTAL_SIZE - allocated);
559             let random_size = PageFrameCount::from_bytes(random_size.next_power_of_two()).unwrap();
560             // 获取帧
561             let (paddr, allocated_frame_count) =
562                 unsafe { LockedFrameAllocator.allocate(random_size).unwrap() };
563             assert!(allocated_frame_count.data().is_power_of_two());
564             assert!(paddr.data() % MMArch::PAGE_SIZE == 0);
565             unsafe {
566                 assert!(MMArch::phys_2_virt(paddr)
567                     .as_ref()
568                     .unwrap()
569                     .check_aligned(allocated_frame_count.data() * MMArch::PAGE_SIZE));
570             }
571             allocated += allocated_frame_count.data() * MMArch::PAGE_SIZE;
572             v.push((paddr, allocated_frame_count));
573             assert!(addr_set.insert(paddr), "duplicate address: {:?}", paddr);
574 
575             // 写入数据
576             let vaddr = unsafe { MMArch::phys_2_virt(paddr).unwrap() };
577             let slice = unsafe {
578                 core::slice::from_raw_parts_mut(
579                     vaddr.data() as *mut u8,
580                     allocated_frame_count.data() * MMArch::PAGE_SIZE,
581                 )
582             };
583             for i in 0..slice.len() {
584                 slice[i] = ((i + unsafe { rdtsc() } as usize) % 256) as u8;
585             }
586 
587             // 随机释放一个内存块
588             if v.len() > 0 {
589                 let mut random_index = 0u64;
590                 unsafe { x86::random::rdrand64(&mut random_index) };
591                 // 70%概率释放
592                 if random_index % 10 > 7 {
593                     continue;
594                 }
595                 random_index = random_index % v.len() as u64;
596                 let random_index = random_index as usize;
597                 let (paddr, allocated_frame_count) = v.remove(random_index);
598                 assert!(addr_set.remove(&paddr));
599                 unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
600                 free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
601             }
602         }
603 
604         kdebug!(
605             "Allocated {} MB memory, release: {} MB, no release: {} bytes",
606             allocated / 1024 / 1024,
607             free_count / 1024 / 1024,
608             (allocated - free_count)
609         );
610 
611         kdebug!("Now, to release buddy memory");
612         // 释放所有的内存
613         for (paddr, allocated_frame_count) in v {
614             unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
615             assert!(addr_set.remove(&paddr));
616             free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
617         }
618 
619         kdebug!("release done!, allocated: {allocated}, free_count: {free_count}");
620     }
621 }
622 
623 /// 全局的页帧分配器
624 #[derive(Debug, Clone, Copy, Hash)]
625 pub struct LockedFrameAllocator;
626 
627 impl FrameAllocator for LockedFrameAllocator {
628     unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
629         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
630             return allocator.allocate(count);
631         } else {
632             return None;
633         }
634     }
635 
636     unsafe fn free(&mut self, address: crate::mm::PhysAddr, count: PageFrameCount) {
637         assert!(count.data().is_power_of_two());
638         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
639             return allocator.free(address, count);
640         }
641     }
642 
643     unsafe fn usage(&self) -> PageFrameUsage {
644         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
645             return allocator.usage();
646         } else {
647             panic!("usage error");
648         }
649     }
650 }
651 
652 /// 获取内核地址默认的页面标志
653 pub unsafe fn kernel_page_flags<A: MemoryManagementArch>(virt: VirtAddr) -> PageFlags<A> {
654     let info: X86_64MMBootstrapInfo = BOOTSTRAP_MM_INFO.clone().unwrap();
655 
656     if virt.data() >= info.kernel_code_start && virt.data() < info.kernel_code_end {
657         // Remap kernel code  execute
658         return PageFlags::new().set_execute(true).set_write(true);
659     } else if virt.data() >= info.kernel_data_end && virt.data() < info.kernel_rodata_end {
660         // Remap kernel rodata read only
661         return PageFlags::new().set_execute(true);
662     } else {
663         return PageFlags::new().set_write(true).set_execute(true);
664     }
665 }
666 
667 unsafe fn set_inner_allocator(allocator: BuddyAllocator<MMArch>) {
668     static FLAG: AtomicBool = AtomicBool::new(false);
669     if FLAG
670         .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
671         .is_err()
672     {
673         panic!("Cannot set inner allocator twice!");
674     }
675     *INNER_ALLOCATOR.lock() = Some(allocator);
676 }
677 
678 /// 低地址重映射的管理器
679 ///
680 /// 低地址重映射的管理器,在smp初始化完成之前,需要使用低地址的映射,因此需要在smp初始化完成之后,取消这一段映射
681 pub struct LowAddressRemapping;
682 
683 impl LowAddressRemapping {
684     // 映射32M
685     const REMAP_SIZE: usize = 32 * 1024 * 1024;
686 
687     pub unsafe fn remap_at_low_address(
688         mapper: &mut crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>>,
689     ) {
690         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
691             let paddr = PhysAddr::new(i * MMArch::PAGE_SIZE);
692             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
693             let flags = kernel_page_flags::<MMArch>(vaddr);
694 
695             let flusher = mapper
696                 .map_phys(vaddr, paddr, flags)
697                 .expect("Failed to map frame");
698             // 暂时不刷新TLB
699             flusher.ignore();
700         }
701     }
702 
703     /// 取消低地址的映射
704     pub unsafe fn unmap_at_low_address(flush: bool) {
705         let mut mapper = KernelMapper::lock();
706         assert!(mapper.as_mut().is_some());
707         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
708             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
709             let (_, _, flusher) = mapper
710                 .as_mut()
711                 .unwrap()
712                 .unmap_phys(vaddr, true)
713                 .expect("Failed to unmap frame");
714             if flush == false {
715                 flusher.ignore();
716             }
717         }
718     }
719 }
720 #[no_mangle]
721 pub extern "C" fn rs_mm_init() {
722     mm_init();
723 }
724