xref: /DragonOS/kernel/src/arch/x86_64/mm/mod.rs (revision 1df85daf8f1b4426fe09d489d815997cdf989a87)
1 pub mod barrier;
2 pub mod bump;
3 pub mod fault;
4 pub mod pkru;
5 
6 use alloc::sync::Arc;
7 use alloc::vec::Vec;
8 use hashbrown::HashSet;
9 use x86::time::rdtsc;
10 use x86_64::registers::model_specific::EferFlags;
11 
12 use crate::driver::serial::serial8250::send_to_default_serial8250_port;
13 use crate::include::bindings::bindings::{
14     multiboot2_get_load_base, multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t,
15     multiboot_tag_load_base_addr_t,
16 };
17 use crate::libs::align::page_align_up;
18 use crate::libs::lib_ui::screen_manager::scm_disable_put_to_window;
19 use crate::libs::spinlock::SpinLock;
20 
21 use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage};
22 use crate::mm::memblock::mem_block_manager;
23 use crate::mm::ucontext::LockedVMA;
24 use crate::{
25     arch::MMArch,
26     mm::allocator::{buddy::BuddyAllocator, bump::BumpAllocator},
27 };
28 
29 use crate::mm::kernel_mapper::KernelMapper;
30 use crate::mm::page::{PageEntry, PageFlags, PAGE_1G_SHIFT};
31 use crate::mm::{MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr};
32 use crate::{kdebug, kinfo, kwarn};
33 use system_error::SystemError;
34 
35 use core::arch::asm;
36 use core::ffi::c_void;
37 use core::fmt::Debug;
38 use core::mem::{self};
39 
40 use core::sync::atomic::{compiler_fence, AtomicBool, Ordering};
41 
42 use super::kvm::vmx::vmcs::VmcsFields;
43 use super::kvm::vmx::vmx_asm_wrapper::vmx_vmread;
44 
45 pub type PageMapper =
46     crate::mm::page::PageMapper<crate::arch::x86_64::mm::X86_64MMArch, LockedFrameAllocator>;
47 
48 /// 初始的CR3寄存器的值,用于内存管理初始化时,创建的第一个内核页表的位置
49 static mut INITIAL_CR3_VALUE: PhysAddr = PhysAddr::new(0);
50 
51 static INNER_ALLOCATOR: SpinLock<Option<BuddyAllocator<MMArch>>> = SpinLock::new(None);
52 
53 #[derive(Clone, Copy, Debug)]
54 pub struct X86_64MMBootstrapInfo {
55     kernel_load_base_paddr: usize,
56     kernel_code_start: usize,
57     kernel_code_end: usize,
58     kernel_data_end: usize,
59     kernel_rodata_end: usize,
60     start_brk: usize,
61 }
62 
63 pub(super) static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None;
64 
65 /// @brief X86_64的内存管理架构结构体
66 #[derive(Debug, Clone, Copy, Hash)]
67 pub struct X86_64MMArch;
68 
69 /// XD标志位是否被保留
70 static XD_RESERVED: AtomicBool = AtomicBool::new(false);
71 
72 impl MemoryManagementArch for X86_64MMArch {
73     /// X86目前支持缺页中断
74     const PAGE_FAULT_ENABLED: bool = true;
75     /// 4K页
76     const PAGE_SHIFT: usize = 12;
77 
78     /// 每个页表项占8字节,总共有512个页表项
79     const PAGE_ENTRY_SHIFT: usize = 9;
80 
81     /// 四级页表(PML4T、PDPT、PDT、PT)
82     const PAGE_LEVELS: usize = 4;
83 
84     /// 页表项的有效位的index。在x86_64中,页表项的第[0, 47]位表示地址和flag,
85     /// 第[48, 51]位表示保留。因此,有效位的index为52。
86     /// 请注意,第63位是XD位,表示是否允许执行。
87     const ENTRY_ADDRESS_SHIFT: usize = 52;
88 
89     const ENTRY_FLAG_DEFAULT_PAGE: usize = Self::ENTRY_FLAG_PRESENT;
90 
91     const ENTRY_FLAG_DEFAULT_TABLE: usize = Self::ENTRY_FLAG_PRESENT;
92 
93     const ENTRY_FLAG_PRESENT: usize = 1 << 0;
94 
95     const ENTRY_FLAG_READONLY: usize = 0;
96 
97     const ENTRY_FLAG_WRITEABLE: usize = 1 << 1;
98     const ENTRY_FLAG_READWRITE: usize = 1 << 1;
99 
100     const ENTRY_FLAG_USER: usize = 1 << 2;
101 
102     const ENTRY_FLAG_WRITE_THROUGH: usize = 1 << 3;
103 
104     const ENTRY_FLAG_CACHE_DISABLE: usize = 1 << 4;
105 
106     const ENTRY_FLAG_NO_EXEC: usize = 1 << 63;
107     /// x86_64不存在EXEC标志位,只有NO_EXEC(XD)标志位
108     const ENTRY_FLAG_EXEC: usize = 0;
109 
110     const ENTRY_FLAG_ACCESSED: usize = 1 << 5;
111     const ENTRY_FLAG_DIRTY: usize = 1 << 6;
112     const ENTRY_FLAG_HUGE_PAGE: usize = 1 << 7;
113     const ENTRY_FLAG_GLOBAL: usize = 1 << 8;
114 
115     /// 物理地址与虚拟地址的偏移量
116     /// 0xffff_8000_0000_0000
117     const PHYS_OFFSET: usize = Self::PAGE_NEGATIVE_MASK + (Self::PAGE_ADDRESS_SIZE >> 1);
118     const KERNEL_LINK_OFFSET: usize = 0x100000;
119 
120     // 参考 https://code.dragonos.org.cn/xref/linux-6.1.9/arch/x86/include/asm/page_64_types.h#75
121     const USER_END_VADDR: VirtAddr =
122         VirtAddr::new((Self::PAGE_ADDRESS_SIZE >> 1) - Self::PAGE_SIZE);
123     const USER_BRK_START: VirtAddr = VirtAddr::new(0x700000000000);
124     const USER_STACK_START: VirtAddr = VirtAddr::new(0x6ffff0a00000);
125 
126     const FIXMAP_START_VADDR: VirtAddr = VirtAddr::new(0xffffb00000000000);
127     /// 设置FIXMAP区域大小为1M
128     const FIXMAP_SIZE: usize = 256 * 4096;
129 
130     const MMIO_BASE: VirtAddr = VirtAddr::new(0xffffa10000000000);
131     const MMIO_SIZE: usize = 1 << PAGE_1G_SHIFT;
132 
133     /// @brief 获取物理内存区域
134     unsafe fn init() {
135         extern "C" {
136             fn _text();
137             fn _etext();
138             fn _edata();
139             fn _erodata();
140             fn _end();
141         }
142 
143         Self::init_xd_rsvd();
144         let load_base_paddr = Self::get_load_base_paddr();
145 
146         let bootstrap_info = X86_64MMBootstrapInfo {
147             kernel_load_base_paddr: load_base_paddr.data(),
148             kernel_code_start: _text as usize,
149             kernel_code_end: _etext as usize,
150             kernel_data_end: _edata as usize,
151             kernel_rodata_end: _erodata as usize,
152             start_brk: _end as usize,
153         };
154 
155         unsafe {
156             BOOTSTRAP_MM_INFO = Some(bootstrap_info);
157         }
158 
159         // 初始化物理内存区域(从multiboot2中获取)
160         Self::init_memory_area_from_multiboot2().expect("init memory area failed");
161 
162         kdebug!("bootstrap info: {:?}", unsafe { BOOTSTRAP_MM_INFO });
163         kdebug!("phys[0]=virt[0x{:x}]", unsafe {
164             MMArch::phys_2_virt(PhysAddr::new(0)).unwrap().data()
165         });
166 
167         // 初始化内存管理器
168         unsafe { allocator_init() };
169 
170         send_to_default_serial8250_port("x86 64 init done\n\0".as_bytes());
171     }
172 
173     /// @brief 刷新TLB中,关于指定虚拟地址的条目
174     unsafe fn invalidate_page(address: VirtAddr) {
175         compiler_fence(Ordering::SeqCst);
176         asm!("invlpg [{0}]", in(reg) address.data(), options(nostack, preserves_flags));
177         compiler_fence(Ordering::SeqCst);
178     }
179 
180     /// @brief 刷新TLB中,所有的条目
181     unsafe fn invalidate_all() {
182         compiler_fence(Ordering::SeqCst);
183         // 通过设置cr3寄存器,来刷新整个TLB
184         Self::set_table(PageTableKind::User, Self::table(PageTableKind::User));
185         compiler_fence(Ordering::SeqCst);
186     }
187 
188     /// @brief 获取顶级页表的物理地址
189     unsafe fn table(table_kind: PageTableKind) -> PhysAddr {
190         match table_kind {
191             PageTableKind::Kernel | PageTableKind::User => {
192                 compiler_fence(Ordering::SeqCst);
193                 let cr3 = x86::controlregs::cr3() as usize;
194                 compiler_fence(Ordering::SeqCst);
195                 return PhysAddr::new(cr3);
196             }
197             PageTableKind::EPT => {
198                 let eptp =
199                     vmx_vmread(VmcsFields::CTRL_EPTP_PTR as u32).expect("Failed to read eptp");
200                 return PhysAddr::new(eptp as usize);
201             }
202         }
203     }
204 
205     /// @brief 设置顶级页表的物理地址到处理器中
206     unsafe fn set_table(_table_kind: PageTableKind, table: PhysAddr) {
207         compiler_fence(Ordering::SeqCst);
208         asm!("mov cr3, {}", in(reg) table.data(), options(nostack, preserves_flags));
209         compiler_fence(Ordering::SeqCst);
210     }
211 
212     /// @brief 判断虚拟地址是否合法
213     fn virt_is_valid(virt: VirtAddr) -> bool {
214         return virt.is_canonical();
215     }
216 
217     /// 获取内存管理初始化时,创建的第一个内核页表的地址
218     fn initial_page_table() -> PhysAddr {
219         unsafe {
220             return INITIAL_CR3_VALUE;
221         }
222     }
223 
224     /// @brief 创建新的顶层页表
225     ///
226     /// 该函数会创建页表并复制内核的映射到新的页表中
227     ///
228     /// @return 新的页表
229     fn setup_new_usermapper() -> Result<crate::mm::ucontext::UserMapper, SystemError> {
230         let new_umapper: crate::mm::page::PageMapper<X86_64MMArch, LockedFrameAllocator> = unsafe {
231             PageMapper::create(PageTableKind::User, LockedFrameAllocator)
232                 .ok_or(SystemError::ENOMEM)?
233         };
234 
235         let current_ktable: KernelMapper = KernelMapper::lock();
236         let copy_mapping = |pml4_entry_no| unsafe {
237             let entry: PageEntry<X86_64MMArch> = current_ktable
238                 .table()
239                 .entry(pml4_entry_no)
240                 .unwrap_or_else(|| panic!("entry {} not found", pml4_entry_no));
241             new_umapper.table().set_entry(pml4_entry_no, entry)
242         };
243 
244         // 复制内核的映射
245         for pml4_entry_no in MMArch::PAGE_KERNEL_INDEX..MMArch::PAGE_ENTRY_NUM {
246             copy_mapping(pml4_entry_no);
247         }
248 
249         return Ok(crate::mm::ucontext::UserMapper::new(new_umapper));
250     }
251 
252     const PAGE_SIZE: usize = 1 << Self::PAGE_SHIFT;
253 
254     const PAGE_OFFSET_MASK: usize = Self::PAGE_SIZE - 1;
255 
256     const PAGE_MASK: usize = !(Self::PAGE_OFFSET_MASK);
257 
258     const PAGE_ADDRESS_SHIFT: usize = Self::PAGE_LEVELS * Self::PAGE_ENTRY_SHIFT + Self::PAGE_SHIFT;
259 
260     const PAGE_ADDRESS_SIZE: usize = 1 << Self::PAGE_ADDRESS_SHIFT;
261 
262     const PAGE_ADDRESS_MASK: usize = Self::PAGE_ADDRESS_SIZE - Self::PAGE_SIZE;
263 
264     const PAGE_ENTRY_SIZE: usize = 1 << (Self::PAGE_SHIFT - Self::PAGE_ENTRY_SHIFT);
265 
266     const PAGE_ENTRY_NUM: usize = 1 << Self::PAGE_ENTRY_SHIFT;
267 
268     const PAGE_ENTRY_MASK: usize = Self::PAGE_ENTRY_NUM - 1;
269 
270     const PAGE_KERNEL_INDEX: usize = (Self::PHYS_OFFSET & Self::PAGE_ADDRESS_MASK)
271         >> (Self::PAGE_ADDRESS_SHIFT - Self::PAGE_ENTRY_SHIFT);
272 
273     const PAGE_NEGATIVE_MASK: usize = !((Self::PAGE_ADDRESS_SIZE) - 1);
274 
275     const ENTRY_ADDRESS_SIZE: usize = 1 << Self::ENTRY_ADDRESS_SHIFT;
276 
277     const ENTRY_ADDRESS_MASK: usize = Self::ENTRY_ADDRESS_SIZE - Self::PAGE_SIZE;
278 
279     const ENTRY_FLAGS_MASK: usize = !Self::ENTRY_ADDRESS_MASK;
280 
281     unsafe fn read<T>(address: VirtAddr) -> T {
282         return core::ptr::read(address.data() as *const T);
283     }
284 
285     unsafe fn write<T>(address: VirtAddr, value: T) {
286         core::ptr::write(address.data() as *mut T, value);
287     }
288 
289     unsafe fn write_bytes(address: VirtAddr, value: u8, count: usize) {
290         core::ptr::write_bytes(address.data() as *mut u8, value, count);
291     }
292 
293     unsafe fn phys_2_virt(phys: PhysAddr) -> Option<VirtAddr> {
294         if let Some(vaddr) = phys.data().checked_add(Self::PHYS_OFFSET) {
295             return Some(VirtAddr::new(vaddr));
296         } else {
297             return None;
298         }
299     }
300 
301     unsafe fn virt_2_phys(virt: VirtAddr) -> Option<PhysAddr> {
302         if let Some(paddr) = virt.data().checked_sub(Self::PHYS_OFFSET) {
303             return Some(PhysAddr::new(paddr));
304         } else {
305             return None;
306         }
307     }
308 
309     #[inline(always)]
310     fn make_entry(paddr: PhysAddr, page_flags: usize) -> usize {
311         return paddr.data() | page_flags;
312     }
313 
314     fn vma_access_permitted(
315         vma: Arc<LockedVMA>,
316         write: bool,
317         execute: bool,
318         foreign: bool,
319     ) -> bool {
320         if execute {
321             return true;
322         }
323         if foreign | vma.is_foreign() {
324             return true;
325         }
326         pkru::pkru_allows_pkey(pkru::vma_pkey(vma), write)
327     }
328 }
329 
330 impl X86_64MMArch {
331     unsafe fn get_load_base_paddr() -> PhysAddr {
332         let mut mb2_lb_info: [multiboot_tag_load_base_addr_t; 512] = mem::zeroed();
333         send_to_default_serial8250_port("get_load_base_paddr begin\n\0".as_bytes());
334 
335         let mut mb2_count: u32 = 0;
336         multiboot2_iter(
337             Some(multiboot2_get_load_base),
338             &mut mb2_lb_info as *mut [multiboot_tag_load_base_addr_t; 512] as usize as *mut c_void,
339             &mut mb2_count,
340         );
341 
342         if mb2_count == 0 {
343             send_to_default_serial8250_port(
344                 "get_load_base_paddr mb2_count == 0, default to 1MB\n\0".as_bytes(),
345             );
346             return PhysAddr::new(0x100000);
347         }
348 
349         let phys = mb2_lb_info[0].load_base_addr as usize;
350 
351         return PhysAddr::new(phys);
352     }
353     unsafe fn init_memory_area_from_multiboot2() -> Result<usize, SystemError> {
354         // 这个数组用来存放内存区域的信息(从C获取)
355         let mut mb2_mem_info: [multiboot_mmap_entry_t; 512] = mem::zeroed();
356         send_to_default_serial8250_port("init_memory_area_from_multiboot2 begin\n\0".as_bytes());
357 
358         let mut mb2_count: u32 = 0;
359         multiboot2_iter(
360             Some(multiboot2_get_memory),
361             &mut mb2_mem_info as *mut [multiboot_mmap_entry_t; 512] as usize as *mut c_void,
362             &mut mb2_count,
363         );
364         send_to_default_serial8250_port("init_memory_area_from_multiboot2 2\n\0".as_bytes());
365 
366         let mb2_count = mb2_count as usize;
367         let mut areas_count = 0usize;
368         let mut total_mem_size = 0usize;
369         for info_entry in mb2_mem_info.iter().take(mb2_count) {
370             // Only use the memory area if its type is 1 (RAM)
371             if info_entry.type_ == 1 {
372                 // Skip the memory area if its len is 0
373                 if info_entry.len == 0 {
374                     continue;
375                 }
376 
377                 total_mem_size += info_entry.len as usize;
378 
379                 mem_block_manager()
380                     .add_block(
381                         PhysAddr::new(info_entry.addr as usize),
382                         info_entry.len as usize,
383                     )
384                     .unwrap_or_else(|e| {
385                         kwarn!(
386                             "Failed to add memory block: base={:#x}, size={:#x}, error={:?}",
387                             info_entry.addr,
388                             info_entry.len,
389                             e
390                         );
391                     });
392                 areas_count += 1;
393             }
394         }
395         send_to_default_serial8250_port("init_memory_area_from_multiboot2 end\n\0".as_bytes());
396         kinfo!("Total memory size: {} MB, total areas from multiboot2: {mb2_count}, valid areas: {areas_count}", total_mem_size / 1024 / 1024);
397         return Ok(areas_count);
398     }
399 
400     fn init_xd_rsvd() {
401         // 读取ia32-EFER寄存器的值
402         let efer: EferFlags = x86_64::registers::model_specific::Efer::read();
403         if !efer.contains(EferFlags::NO_EXECUTE_ENABLE) {
404             // NO_EXECUTE_ENABLE是false,那么就设置xd_reserved为true
405             kdebug!("NO_EXECUTE_ENABLE is false, set XD_RESERVED to true");
406             XD_RESERVED.store(true, Ordering::Relaxed);
407         }
408         compiler_fence(Ordering::SeqCst);
409     }
410 
411     /// 判断XD标志位是否被保留
412     pub fn is_xd_reserved() -> bool {
413         // return XD_RESERVED.load(Ordering::Relaxed);
414 
415         // 由于暂时不支持execute disable,因此直接返回true
416         // 不支持的原因是,目前好像没有能正确的设置page-level的xd位,会触发page fault
417         return true;
418     }
419 }
420 
421 impl VirtAddr {
422     /// @brief 判断虚拟地址是否合法
423     #[inline(always)]
424     pub fn is_canonical(self) -> bool {
425         let x = self.data() & X86_64MMArch::PHYS_OFFSET;
426         // 如果x为0,说明虚拟地址的高位为0,是合法的用户地址
427         // 如果x为PHYS_OFFSET,说明虚拟地址的高位全为1,是合法的内核地址
428         return x == 0 || x == X86_64MMArch::PHYS_OFFSET;
429     }
430 }
431 
432 unsafe fn allocator_init() {
433     let virt_offset = VirtAddr::new(page_align_up(BOOTSTRAP_MM_INFO.unwrap().start_brk));
434 
435     let phy_offset = unsafe { MMArch::virt_2_phys(virt_offset) }.unwrap();
436 
437     mem_block_manager()
438         .reserve_block(PhysAddr::new(0), phy_offset.data())
439         .expect("Failed to reserve block");
440     let mut bump_allocator = BumpAllocator::<X86_64MMArch>::new(phy_offset.data());
441     kdebug!(
442         "BumpAllocator created, offset={:?}",
443         bump_allocator.offset()
444     );
445 
446     // 暂存初始在head.S中指定的页表的地址,后面再考虑是否需要把它加到buddy的可用空间里面!
447     // 现在不加的原因是,我担心会有安全漏洞问题:这些初始的页表,位于内核的数据段。如果归还到buddy,
448     // 可能会产生一定的安全风险(有的代码可能根据虚拟地址来进行安全校验)
449     let _old_page_table = MMArch::table(PageTableKind::Kernel);
450 
451     let new_page_table: PhysAddr;
452     // 使用bump分配器,把所有的内存页都映射到页表
453     {
454         // 用bump allocator创建新的页表
455         let mut mapper: crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>> =
456             crate::mm::page::PageMapper::<MMArch, _>::create(
457                 PageTableKind::Kernel,
458                 &mut bump_allocator,
459             )
460             .expect("Failed to create page mapper");
461         new_page_table = mapper.table().phys();
462         kdebug!("PageMapper created");
463 
464         // 取消最开始时候,在head.S中指定的映射(暂时不刷新TLB)
465         {
466             let table = mapper.table();
467             let empty_entry = PageEntry::<MMArch>::from_usize(0);
468             for i in 0..MMArch::PAGE_ENTRY_NUM {
469                 table
470                     .set_entry(i, empty_entry)
471                     .expect("Failed to empty page table entry");
472             }
473         }
474         kdebug!("Successfully emptied page table");
475 
476         let total_num = mem_block_manager().total_initial_memory_regions();
477         for i in 0..total_num {
478             let area = mem_block_manager().get_initial_memory_region(i).unwrap();
479             // kdebug!("area: base={:?}, size={:#x}, end={:?}", area.base, area.size, area.base + area.size);
480             for i in 0..((area.size + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE) {
481                 let paddr = area.base.add(i * MMArch::PAGE_SIZE);
482                 let vaddr = unsafe { MMArch::phys_2_virt(paddr) }.unwrap();
483                 let flags = kernel_page_flags::<MMArch>(vaddr);
484 
485                 let flusher = mapper
486                     .map_phys(vaddr, paddr, flags)
487                     .expect("Failed to map frame");
488                 // 暂时不刷新TLB
489                 flusher.ignore();
490             }
491         }
492     }
493 
494     unsafe {
495         INITIAL_CR3_VALUE = new_page_table;
496     }
497     kdebug!(
498         "After mapping all physical memory, DragonOS used: {} KB",
499         bump_allocator.offset() / 1024
500     );
501 
502     // 初始化buddy_allocator
503     let buddy_allocator = unsafe { BuddyAllocator::<X86_64MMArch>::new(bump_allocator).unwrap() };
504     // 设置全局的页帧分配器
505     unsafe { set_inner_allocator(buddy_allocator) };
506     kinfo!("Successfully initialized buddy allocator");
507     // 关闭显示输出
508     scm_disable_put_to_window();
509 
510     // make the new page table current
511     {
512         let mut binding = INNER_ALLOCATOR.lock();
513         let mut allocator_guard = binding.as_mut().unwrap();
514         kdebug!("To enable new page table.");
515         compiler_fence(Ordering::SeqCst);
516         let mapper = crate::mm::page::PageMapper::<MMArch, _>::new(
517             PageTableKind::Kernel,
518             new_page_table,
519             &mut allocator_guard,
520         );
521         compiler_fence(Ordering::SeqCst);
522         mapper.make_current();
523         compiler_fence(Ordering::SeqCst);
524         kdebug!("New page table enabled");
525     }
526     kdebug!("Successfully enabled new page table");
527 }
528 
529 #[no_mangle]
530 pub extern "C" fn rs_test_buddy() {
531     test_buddy();
532 }
533 pub fn test_buddy() {
534     // 申请内存然后写入数据然后free掉
535     // 总共申请200MB内存
536     const TOTAL_SIZE: usize = 200 * 1024 * 1024;
537 
538     for i in 0..10 {
539         kdebug!("Test buddy, round: {i}");
540         // 存放申请的内存块
541         let mut v: Vec<(PhysAddr, PageFrameCount)> = Vec::with_capacity(60 * 1024);
542         // 存放已经申请的内存块的地址(用于检查重复)
543         let mut addr_set: HashSet<PhysAddr> = HashSet::new();
544 
545         let mut allocated = 0usize;
546 
547         let mut free_count = 0usize;
548 
549         while allocated < TOTAL_SIZE {
550             let mut random_size = 0u64;
551             unsafe { x86::random::rdrand64(&mut random_size) };
552             // 一次最多申请4M
553             random_size %= 1024 * 4096;
554             if random_size == 0 {
555                 continue;
556             }
557             let random_size =
558                 core::cmp::min(page_align_up(random_size as usize), TOTAL_SIZE - allocated);
559             let random_size = PageFrameCount::from_bytes(random_size.next_power_of_two()).unwrap();
560             // 获取帧
561             let (paddr, allocated_frame_count) =
562                 unsafe { LockedFrameAllocator.allocate(random_size).unwrap() };
563             assert!(allocated_frame_count.data().is_power_of_two());
564             assert!(paddr.data() % MMArch::PAGE_SIZE == 0);
565             unsafe {
566                 assert!(MMArch::phys_2_virt(paddr)
567                     .as_ref()
568                     .unwrap()
569                     .check_aligned(allocated_frame_count.data() * MMArch::PAGE_SIZE));
570             }
571             allocated += allocated_frame_count.data() * MMArch::PAGE_SIZE;
572             v.push((paddr, allocated_frame_count));
573             assert!(addr_set.insert(paddr), "duplicate address: {:?}", paddr);
574 
575             // 写入数据
576             let vaddr = unsafe { MMArch::phys_2_virt(paddr).unwrap() };
577             let slice = unsafe {
578                 core::slice::from_raw_parts_mut(
579                     vaddr.data() as *mut u8,
580                     allocated_frame_count.data() * MMArch::PAGE_SIZE,
581                 )
582             };
583             for (i, item) in slice.iter_mut().enumerate() {
584                 *item = ((i + unsafe { rdtsc() } as usize) % 256) as u8;
585             }
586 
587             // 随机释放一个内存块
588             if !v.is_empty() {
589                 let mut random_index = 0u64;
590                 unsafe { x86::random::rdrand64(&mut random_index) };
591                 // 70%概率释放
592                 if random_index % 10 > 7 {
593                     continue;
594                 }
595                 random_index %= v.len() as u64;
596                 let random_index = random_index as usize;
597                 let (paddr, allocated_frame_count) = v.remove(random_index);
598                 assert!(addr_set.remove(&paddr));
599                 unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
600                 free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
601             }
602         }
603 
604         kdebug!(
605             "Allocated {} MB memory, release: {} MB, no release: {} bytes",
606             allocated / 1024 / 1024,
607             free_count / 1024 / 1024,
608             (allocated - free_count)
609         );
610 
611         kdebug!("Now, to release buddy memory");
612         // 释放所有的内存
613         for (paddr, allocated_frame_count) in v {
614             unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) };
615             assert!(addr_set.remove(&paddr));
616             free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE;
617         }
618 
619         kdebug!("release done!, allocated: {allocated}, free_count: {free_count}");
620     }
621 }
622 
623 /// 全局的页帧分配器
624 #[derive(Debug, Clone, Copy, Hash)]
625 pub struct LockedFrameAllocator;
626 
627 impl FrameAllocator for LockedFrameAllocator {
628     unsafe fn allocate(&mut self, mut count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> {
629         count = count.next_power_of_two();
630         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
631             return allocator.allocate(count);
632         } else {
633             return None;
634         }
635     }
636 
637     unsafe fn free(&mut self, address: crate::mm::PhysAddr, count: PageFrameCount) {
638         assert!(count.data().is_power_of_two());
639         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
640             return allocator.free(address, count);
641         }
642     }
643 
644     unsafe fn usage(&self) -> PageFrameUsage {
645         if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() {
646             return allocator.usage();
647         } else {
648             panic!("usage error");
649         }
650     }
651 }
652 
653 /// 获取内核地址默认的页面标志
654 pub unsafe fn kernel_page_flags<A: MemoryManagementArch>(virt: VirtAddr) -> PageFlags<A> {
655     let info: X86_64MMBootstrapInfo = BOOTSTRAP_MM_INFO.unwrap();
656 
657     if virt.data() >= info.kernel_code_start && virt.data() < info.kernel_code_end {
658         // Remap kernel code  execute
659         return PageFlags::new().set_execute(true).set_write(true);
660     } else if virt.data() >= info.kernel_data_end && virt.data() < info.kernel_rodata_end {
661         // Remap kernel rodata read only
662         return PageFlags::new().set_execute(true);
663     } else {
664         return PageFlags::new().set_write(true).set_execute(true);
665     }
666 }
667 
668 unsafe fn set_inner_allocator(allocator: BuddyAllocator<MMArch>) {
669     static FLAG: AtomicBool = AtomicBool::new(false);
670     if FLAG
671         .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
672         .is_err()
673     {
674         panic!("Cannot set inner allocator twice!");
675     }
676     *INNER_ALLOCATOR.lock() = Some(allocator);
677 }
678 
679 /// 低地址重映射的管理器
680 ///
681 /// 低地址重映射的管理器,在smp初始化完成之前,需要使用低地址的映射,因此需要在smp初始化完成之后,取消这一段映射
682 pub struct LowAddressRemapping;
683 
684 impl LowAddressRemapping {
685     // 映射64M
686     const REMAP_SIZE: usize = 64 * 1024 * 1024;
687 
688     pub unsafe fn remap_at_low_address(mapper: &mut PageMapper) {
689         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
690             let paddr = PhysAddr::new(i * MMArch::PAGE_SIZE);
691             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
692             let flags = kernel_page_flags::<MMArch>(vaddr);
693 
694             let flusher = mapper
695                 .map_phys(vaddr, paddr, flags)
696                 .expect("Failed to map frame");
697             // 暂时不刷新TLB
698             flusher.ignore();
699         }
700     }
701 
702     /// 取消低地址的映射
703     pub unsafe fn unmap_at_low_address(mapper: &mut PageMapper, flush: bool) {
704         for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) {
705             let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE);
706             let (_, _, flusher) = mapper
707                 .unmap_phys(vaddr, true)
708                 .expect("Failed to unmap frame");
709             if !flush {
710                 flusher.ignore();
711             }
712         }
713     }
714 }
715