1d4f3de93Slogin pub mod barrier; 299dbf38dSLoGin pub mod bump; 340fe15e0SLoGin 440fe15e0SLoGin use alloc::vec::Vec; 540fe15e0SLoGin use hashbrown::HashSet; 640fe15e0SLoGin use x86::time::rdtsc; 740fe15e0SLoGin use x86_64::registers::model_specific::EferFlags; 840fe15e0SLoGin 952da9a59SGnoCiYeH use crate::driver::serial::serial8250::send_to_default_serial8250_port; 1040fe15e0SLoGin use crate::include::bindings::bindings::{ 1199dbf38dSLoGin multiboot2_get_load_base, multiboot2_get_memory, multiboot2_iter, multiboot_mmap_entry_t, 1299dbf38dSLoGin multiboot_tag_load_base_addr_t, 1340fe15e0SLoGin }; 1440fe15e0SLoGin use crate::libs::align::page_align_up; 15abe3a6eaShanjiezhou use crate::libs::lib_ui::screen_manager::scm_disable_put_to_window; 1640fe15e0SLoGin use crate::libs::spinlock::SpinLock; 1740fe15e0SLoGin 1834e6d6c8Syuyi2439 use crate::mm::allocator::page_frame::{FrameAllocator, PageFrameCount, PageFrameUsage}; 1945626c85SLoGin use crate::mm::memblock::mem_block_manager; 2040fe15e0SLoGin use crate::{ 2140fe15e0SLoGin arch::MMArch, 2240fe15e0SLoGin mm::allocator::{buddy::BuddyAllocator, bump::BumpAllocator}, 2340fe15e0SLoGin }; 2440fe15e0SLoGin 2540fe15e0SLoGin use crate::mm::kernel_mapper::KernelMapper; 26*23ef2b33SLoGin use crate::mm::page::{PageEntry, PageFlags, PAGE_1G_SHIFT}; 2745626c85SLoGin use crate::mm::{MemoryManagementArch, PageTableKind, PhysAddr, VirtAddr}; 2845626c85SLoGin use crate::{kdebug, kinfo, kwarn}; 2991e9d4abSLoGin use system_error::SystemError; 30d4f3de93Slogin 31d4f3de93Slogin use core::arch::asm; 3240fe15e0SLoGin use core::ffi::c_void; 33453452ccSLoGin use core::fmt::Debug; 3440fe15e0SLoGin use core::mem::{self}; 35d4f3de93Slogin 3640fe15e0SLoGin use core::sync::atomic::{compiler_fence, AtomicBool, Ordering}; 37d4f3de93Slogin 3840314b30SXiaoye Zheng use super::kvm::vmx::vmcs::VmcsFields; 3940314b30SXiaoye Zheng use super::kvm::vmx::vmx_asm_wrapper::vmx_vmread; 4040314b30SXiaoye Zheng 4140fe15e0SLoGin pub type PageMapper = 4240fe15e0SLoGin crate::mm::page::PageMapper<crate::arch::x86_64::mm::X86_64MMArch, LockedFrameAllocator>; 4340fe15e0SLoGin 4440fe15e0SLoGin /// 初始的CR3寄存器的值,用于内存管理初始化时,创建的第一个内核页表的位置 4540fe15e0SLoGin static mut INITIAL_CR3_VALUE: PhysAddr = PhysAddr::new(0); 4640fe15e0SLoGin 4740fe15e0SLoGin /// 内核的第一个页表在pml4中的索引 4840fe15e0SLoGin /// 顶级页表的[256, 512)项是内核的页表 4940fe15e0SLoGin static KERNEL_PML4E_NO: usize = (X86_64MMArch::PHYS_OFFSET & ((1 << 48) - 1)) >> 39; 5040fe15e0SLoGin 5140fe15e0SLoGin static INNER_ALLOCATOR: SpinLock<Option<BuddyAllocator<MMArch>>> = SpinLock::new(None); 5240fe15e0SLoGin 5399dbf38dSLoGin #[derive(Clone, Copy, Debug)] 5440fe15e0SLoGin pub struct X86_64MMBootstrapInfo { 5599dbf38dSLoGin kernel_load_base_paddr: usize, 5640fe15e0SLoGin kernel_code_start: usize, 5740fe15e0SLoGin kernel_code_end: usize, 5840fe15e0SLoGin kernel_data_end: usize, 5940fe15e0SLoGin kernel_rodata_end: usize, 6040fe15e0SLoGin start_brk: usize, 6140fe15e0SLoGin } 6240fe15e0SLoGin 6399dbf38dSLoGin pub(super) static mut BOOTSTRAP_MM_INFO: Option<X86_64MMBootstrapInfo> = None; 6440fe15e0SLoGin 6540fe15e0SLoGin /// @brief X86_64的内存管理架构结构体 6640fe15e0SLoGin #[derive(Debug, Clone, Copy, Hash)] 6740fe15e0SLoGin pub struct X86_64MMArch; 6840fe15e0SLoGin 6940fe15e0SLoGin /// XD标志位是否被保留 7040fe15e0SLoGin static XD_RESERVED: AtomicBool = AtomicBool::new(false); 7140fe15e0SLoGin 7240fe15e0SLoGin impl MemoryManagementArch for X86_64MMArch { 7340fe15e0SLoGin /// 4K页 7440fe15e0SLoGin const PAGE_SHIFT: usize = 12; 7540fe15e0SLoGin 7640fe15e0SLoGin /// 每个页表项占8字节,总共有512个页表项 7740fe15e0SLoGin const PAGE_ENTRY_SHIFT: usize = 9; 7840fe15e0SLoGin 7940fe15e0SLoGin /// 四级页表(PML4T、PDPT、PDT、PT) 8040fe15e0SLoGin const PAGE_LEVELS: usize = 4; 8140fe15e0SLoGin 8240fe15e0SLoGin /// 页表项的有效位的index。在x86_64中,页表项的第[0, 47]位表示地址和flag, 8340fe15e0SLoGin /// 第[48, 51]位表示保留。因此,有效位的index为52。 8440fe15e0SLoGin /// 请注意,第63位是XD位,表示是否允许执行。 8540fe15e0SLoGin const ENTRY_ADDRESS_SHIFT: usize = 52; 8640fe15e0SLoGin 8740fe15e0SLoGin const ENTRY_FLAG_DEFAULT_PAGE: usize = Self::ENTRY_FLAG_PRESENT; 8840fe15e0SLoGin 8940fe15e0SLoGin const ENTRY_FLAG_DEFAULT_TABLE: usize = Self::ENTRY_FLAG_PRESENT; 9040fe15e0SLoGin 9140fe15e0SLoGin const ENTRY_FLAG_PRESENT: usize = 1 << 0; 9240fe15e0SLoGin 9340fe15e0SLoGin const ENTRY_FLAG_READONLY: usize = 0; 9440fe15e0SLoGin 9540fe15e0SLoGin const ENTRY_FLAG_READWRITE: usize = 1 << 1; 9640fe15e0SLoGin 9740fe15e0SLoGin const ENTRY_FLAG_USER: usize = 1 << 2; 9840fe15e0SLoGin 9940fe15e0SLoGin const ENTRY_FLAG_WRITE_THROUGH: usize = 1 << 3; 10040fe15e0SLoGin 10140fe15e0SLoGin const ENTRY_FLAG_CACHE_DISABLE: usize = 1 << 4; 10240fe15e0SLoGin 10340fe15e0SLoGin const ENTRY_FLAG_NO_EXEC: usize = 1 << 63; 10440fe15e0SLoGin /// x86_64不存在EXEC标志位,只有NO_EXEC(XD)标志位 10540fe15e0SLoGin const ENTRY_FLAG_EXEC: usize = 0; 10640fe15e0SLoGin 10792849878SLoGin const ENTRY_FLAG_ACCESSED: usize = 0; 10892849878SLoGin const ENTRY_FLAG_DIRTY: usize = 0; 10992849878SLoGin 11040fe15e0SLoGin /// 物理地址与虚拟地址的偏移量 11140fe15e0SLoGin /// 0xffff_8000_0000_0000 11240fe15e0SLoGin const PHYS_OFFSET: usize = Self::PAGE_NEGATIVE_MASK + (Self::PAGE_ADDRESS_SIZE >> 1); 113453452ccSLoGin const KERNEL_LINK_OFFSET: usize = 0x100000; 11440fe15e0SLoGin 1155d549a76SChiichen // 参考 https://code.dragonos.org.cn/xref/linux-6.1.9/arch/x86/include/asm/page_64_types.h#75 1165d549a76SChiichen const USER_END_VADDR: VirtAddr = 1175d549a76SChiichen VirtAddr::new((Self::PAGE_ADDRESS_SIZE >> 1) - Self::PAGE_SIZE); 11840fe15e0SLoGin const USER_BRK_START: VirtAddr = VirtAddr::new(0x700000000000); 11940fe15e0SLoGin const USER_STACK_START: VirtAddr = VirtAddr::new(0x6ffff0a00000); 12040fe15e0SLoGin 12174ffde66SLoGin const FIXMAP_START_VADDR: VirtAddr = VirtAddr::new(0xffffb00000000000); 12274ffde66SLoGin /// 设置FIXMAP区域大小为1M 12374ffde66SLoGin const FIXMAP_SIZE: usize = 256 * 4096; 12474ffde66SLoGin 125*23ef2b33SLoGin const MMIO_BASE: VirtAddr = VirtAddr::new(0xffffa10000000000); 126*23ef2b33SLoGin const MMIO_SIZE: usize = 1 << PAGE_1G_SHIFT; 127*23ef2b33SLoGin 12840fe15e0SLoGin /// @brief 获取物理内存区域 12945626c85SLoGin unsafe fn init() { 13040fe15e0SLoGin extern "C" { 13140fe15e0SLoGin fn _text(); 13240fe15e0SLoGin fn _etext(); 13340fe15e0SLoGin fn _edata(); 13440fe15e0SLoGin fn _erodata(); 13540fe15e0SLoGin fn _end(); 13640fe15e0SLoGin } 13740fe15e0SLoGin 13840fe15e0SLoGin Self::init_xd_rsvd(); 13999dbf38dSLoGin let load_base_paddr = Self::get_load_base_paddr(); 14040fe15e0SLoGin 14140fe15e0SLoGin let bootstrap_info = X86_64MMBootstrapInfo { 14299dbf38dSLoGin kernel_load_base_paddr: load_base_paddr.data(), 14340fe15e0SLoGin kernel_code_start: _text as usize, 14440fe15e0SLoGin kernel_code_end: _etext as usize, 14540fe15e0SLoGin kernel_data_end: _edata as usize, 14640fe15e0SLoGin kernel_rodata_end: _erodata as usize, 14740fe15e0SLoGin start_brk: _end as usize, 14840fe15e0SLoGin }; 14999dbf38dSLoGin 15040fe15e0SLoGin unsafe { 15140fe15e0SLoGin BOOTSTRAP_MM_INFO = Some(bootstrap_info); 15240fe15e0SLoGin } 15340fe15e0SLoGin 15440fe15e0SLoGin // 初始化物理内存区域(从multiboot2中获取) 15540fe15e0SLoGin Self::init_memory_area_from_multiboot2().expect("init memory area failed"); 15699dbf38dSLoGin 157453452ccSLoGin kdebug!("bootstrap info: {:?}", unsafe { BOOTSTRAP_MM_INFO }); 158453452ccSLoGin kdebug!("phys[0]=virt[0x{:x}]", unsafe { 159453452ccSLoGin MMArch::phys_2_virt(PhysAddr::new(0)).unwrap().data() 160453452ccSLoGin }); 161453452ccSLoGin 162453452ccSLoGin // 初始化内存管理器 163453452ccSLoGin unsafe { allocator_init() }; 1648cb2e9b3SLoGin 165453452ccSLoGin send_to_default_serial8250_port("x86 64 init done\n\0".as_bytes()); 16640fe15e0SLoGin } 16740fe15e0SLoGin 16840fe15e0SLoGin /// @brief 刷新TLB中,关于指定虚拟地址的条目 16940fe15e0SLoGin unsafe fn invalidate_page(address: VirtAddr) { 17040fe15e0SLoGin compiler_fence(Ordering::SeqCst); 17140fe15e0SLoGin asm!("invlpg [{0}]", in(reg) address.data(), options(nostack, preserves_flags)); 17240fe15e0SLoGin compiler_fence(Ordering::SeqCst); 17340fe15e0SLoGin } 17440fe15e0SLoGin 17540fe15e0SLoGin /// @brief 刷新TLB中,所有的条目 17640fe15e0SLoGin unsafe fn invalidate_all() { 17740fe15e0SLoGin compiler_fence(Ordering::SeqCst); 17840fe15e0SLoGin // 通过设置cr3寄存器,来刷新整个TLB 17940fe15e0SLoGin Self::set_table(PageTableKind::User, Self::table(PageTableKind::User)); 18040fe15e0SLoGin compiler_fence(Ordering::SeqCst); 18140fe15e0SLoGin } 18240fe15e0SLoGin 18340fe15e0SLoGin /// @brief 获取顶级页表的物理地址 18440314b30SXiaoye Zheng unsafe fn table(table_kind: PageTableKind) -> PhysAddr { 18540314b30SXiaoye Zheng match table_kind { 18640314b30SXiaoye Zheng PageTableKind::Kernel | PageTableKind::User => { 18740fe15e0SLoGin compiler_fence(Ordering::SeqCst); 1888cb2e9b3SLoGin let cr3 = x86::controlregs::cr3() as usize; 18940fe15e0SLoGin compiler_fence(Ordering::SeqCst); 1908cb2e9b3SLoGin return PhysAddr::new(cr3); 19140fe15e0SLoGin } 19240314b30SXiaoye Zheng PageTableKind::EPT => { 19340314b30SXiaoye Zheng let eptp = 19440314b30SXiaoye Zheng vmx_vmread(VmcsFields::CTRL_EPTP_PTR as u32).expect("Failed to read eptp"); 19540314b30SXiaoye Zheng return PhysAddr::new(eptp as usize); 19640314b30SXiaoye Zheng } 19740314b30SXiaoye Zheng } 19840314b30SXiaoye Zheng } 19940fe15e0SLoGin 20040fe15e0SLoGin /// @brief 设置顶级页表的物理地址到处理器中 20140fe15e0SLoGin unsafe fn set_table(_table_kind: PageTableKind, table: PhysAddr) { 20240fe15e0SLoGin compiler_fence(Ordering::SeqCst); 20340fe15e0SLoGin asm!("mov cr3, {}", in(reg) table.data(), options(nostack, preserves_flags)); 20440fe15e0SLoGin compiler_fence(Ordering::SeqCst); 20540fe15e0SLoGin } 20640fe15e0SLoGin 20740fe15e0SLoGin /// @brief 判断虚拟地址是否合法 20840fe15e0SLoGin fn virt_is_valid(virt: VirtAddr) -> bool { 20940fe15e0SLoGin return virt.is_canonical(); 21040fe15e0SLoGin } 21140fe15e0SLoGin 21240fe15e0SLoGin /// 获取内存管理初始化时,创建的第一个内核页表的地址 21340fe15e0SLoGin fn initial_page_table() -> PhysAddr { 21440fe15e0SLoGin unsafe { 21540fe15e0SLoGin return INITIAL_CR3_VALUE; 21640fe15e0SLoGin } 21740fe15e0SLoGin } 21840fe15e0SLoGin 21940fe15e0SLoGin /// @brief 创建新的顶层页表 220d4f3de93Slogin /// 22140fe15e0SLoGin /// 该函数会创建页表并复制内核的映射到新的页表中 222d4f3de93Slogin /// 22340fe15e0SLoGin /// @return 新的页表 22440fe15e0SLoGin fn setup_new_usermapper() -> Result<crate::mm::ucontext::UserMapper, SystemError> { 22540fe15e0SLoGin let new_umapper: crate::mm::page::PageMapper<X86_64MMArch, LockedFrameAllocator> = unsafe { 22640fe15e0SLoGin PageMapper::create(PageTableKind::User, LockedFrameAllocator) 22740fe15e0SLoGin .ok_or(SystemError::ENOMEM)? 22840fe15e0SLoGin }; 22940fe15e0SLoGin 23040fe15e0SLoGin let current_ktable: KernelMapper = KernelMapper::lock(); 23140fe15e0SLoGin let copy_mapping = |pml4_entry_no| unsafe { 23240fe15e0SLoGin let entry: PageEntry<X86_64MMArch> = current_ktable 23340fe15e0SLoGin .table() 23440fe15e0SLoGin .entry(pml4_entry_no) 23540fe15e0SLoGin .unwrap_or_else(|| panic!("entry {} not found", pml4_entry_no)); 23640fe15e0SLoGin new_umapper.table().set_entry(pml4_entry_no, entry) 23740fe15e0SLoGin }; 23840fe15e0SLoGin 23940fe15e0SLoGin // 复制内核的映射 24040fe15e0SLoGin for pml4_entry_no in KERNEL_PML4E_NO..512 { 24140fe15e0SLoGin copy_mapping(pml4_entry_no); 24240fe15e0SLoGin } 24340fe15e0SLoGin 24440fe15e0SLoGin return Ok(crate::mm::ucontext::UserMapper::new(new_umapper)); 24540fe15e0SLoGin } 2464fda81ceSLoGin 2474fda81ceSLoGin const PAGE_SIZE: usize = 1 << Self::PAGE_SHIFT; 2484fda81ceSLoGin 2494fda81ceSLoGin const PAGE_OFFSET_MASK: usize = Self::PAGE_SIZE - 1; 2504fda81ceSLoGin 2514fda81ceSLoGin const PAGE_MASK: usize = !(Self::PAGE_OFFSET_MASK); 2524fda81ceSLoGin 2534fda81ceSLoGin const PAGE_ADDRESS_SHIFT: usize = Self::PAGE_LEVELS * Self::PAGE_ENTRY_SHIFT + Self::PAGE_SHIFT; 2544fda81ceSLoGin 2554fda81ceSLoGin const PAGE_ADDRESS_SIZE: usize = 1 << Self::PAGE_ADDRESS_SHIFT; 2564fda81ceSLoGin 2574fda81ceSLoGin const PAGE_ADDRESS_MASK: usize = Self::PAGE_ADDRESS_SIZE - Self::PAGE_SIZE; 2584fda81ceSLoGin 2594fda81ceSLoGin const PAGE_ENTRY_SIZE: usize = 1 << (Self::PAGE_SHIFT - Self::PAGE_ENTRY_SHIFT); 2604fda81ceSLoGin 2614fda81ceSLoGin const PAGE_ENTRY_NUM: usize = 1 << Self::PAGE_ENTRY_SHIFT; 2624fda81ceSLoGin 2634fda81ceSLoGin const PAGE_ENTRY_MASK: usize = Self::PAGE_ENTRY_NUM - 1; 2644fda81ceSLoGin 2654fda81ceSLoGin const PAGE_NEGATIVE_MASK: usize = !((Self::PAGE_ADDRESS_SIZE) - 1); 2664fda81ceSLoGin 2674fda81ceSLoGin const ENTRY_ADDRESS_SIZE: usize = 1 << Self::ENTRY_ADDRESS_SHIFT; 2684fda81ceSLoGin 2694fda81ceSLoGin const ENTRY_ADDRESS_MASK: usize = Self::ENTRY_ADDRESS_SIZE - Self::PAGE_SIZE; 2704fda81ceSLoGin 2714fda81ceSLoGin const ENTRY_FLAGS_MASK: usize = !Self::ENTRY_ADDRESS_MASK; 2724fda81ceSLoGin 2734fda81ceSLoGin unsafe fn read<T>(address: VirtAddr) -> T { 2744fda81ceSLoGin return core::ptr::read(address.data() as *const T); 2754fda81ceSLoGin } 2764fda81ceSLoGin 2774fda81ceSLoGin unsafe fn write<T>(address: VirtAddr, value: T) { 2784fda81ceSLoGin core::ptr::write(address.data() as *mut T, value); 2794fda81ceSLoGin } 2804fda81ceSLoGin 2814fda81ceSLoGin unsafe fn write_bytes(address: VirtAddr, value: u8, count: usize) { 2824fda81ceSLoGin core::ptr::write_bytes(address.data() as *mut u8, value, count); 2834fda81ceSLoGin } 2844fda81ceSLoGin 2854fda81ceSLoGin unsafe fn phys_2_virt(phys: PhysAddr) -> Option<VirtAddr> { 2864fda81ceSLoGin if let Some(vaddr) = phys.data().checked_add(Self::PHYS_OFFSET) { 2874fda81ceSLoGin return Some(VirtAddr::new(vaddr)); 2884fda81ceSLoGin } else { 2894fda81ceSLoGin return None; 2904fda81ceSLoGin } 2914fda81ceSLoGin } 2924fda81ceSLoGin 2934fda81ceSLoGin unsafe fn virt_2_phys(virt: VirtAddr) -> Option<PhysAddr> { 2944fda81ceSLoGin if let Some(paddr) = virt.data().checked_sub(Self::PHYS_OFFSET) { 2954fda81ceSLoGin return Some(PhysAddr::new(paddr)); 2964fda81ceSLoGin } else { 2974fda81ceSLoGin return None; 2984fda81ceSLoGin } 2994fda81ceSLoGin } 3007a29d4fcSLoGin 3017a29d4fcSLoGin #[inline(always)] 3027a29d4fcSLoGin fn make_entry(paddr: PhysAddr, page_flags: usize) -> usize { 3037a29d4fcSLoGin return paddr.data() | page_flags; 3047a29d4fcSLoGin } 30540fe15e0SLoGin } 30640fe15e0SLoGin 30740fe15e0SLoGin impl X86_64MMArch { 30899dbf38dSLoGin unsafe fn get_load_base_paddr() -> PhysAddr { 30999dbf38dSLoGin let mut mb2_lb_info: [multiboot_tag_load_base_addr_t; 512] = mem::zeroed(); 31099dbf38dSLoGin send_to_default_serial8250_port("get_load_base_paddr begin\n\0".as_bytes()); 31199dbf38dSLoGin 31299dbf38dSLoGin let mut mb2_count: u32 = 0; 31399dbf38dSLoGin multiboot2_iter( 31499dbf38dSLoGin Some(multiboot2_get_load_base), 31599dbf38dSLoGin &mut mb2_lb_info as *mut [multiboot_tag_load_base_addr_t; 512] as usize as *mut c_void, 31699dbf38dSLoGin &mut mb2_count, 31799dbf38dSLoGin ); 31899dbf38dSLoGin 31999dbf38dSLoGin if mb2_count == 0 { 32099dbf38dSLoGin send_to_default_serial8250_port( 32199dbf38dSLoGin "get_load_base_paddr mb2_count == 0, default to 1MB\n\0".as_bytes(), 32299dbf38dSLoGin ); 32399dbf38dSLoGin return PhysAddr::new(0x100000); 32499dbf38dSLoGin } 32599dbf38dSLoGin 32699dbf38dSLoGin let phys = mb2_lb_info[0].load_base_addr as usize; 32799dbf38dSLoGin 32899dbf38dSLoGin return PhysAddr::new(phys); 32999dbf38dSLoGin } 33040fe15e0SLoGin unsafe fn init_memory_area_from_multiboot2() -> Result<usize, SystemError> { 33140fe15e0SLoGin // 这个数组用来存放内存区域的信息(从C获取) 33240fe15e0SLoGin let mut mb2_mem_info: [multiboot_mmap_entry_t; 512] = mem::zeroed(); 333a03c4f9dSLoGin send_to_default_serial8250_port("init_memory_area_from_multiboot2 begin\n\0".as_bytes()); 33440fe15e0SLoGin 33540fe15e0SLoGin let mut mb2_count: u32 = 0; 33640fe15e0SLoGin multiboot2_iter( 33740fe15e0SLoGin Some(multiboot2_get_memory), 33840fe15e0SLoGin &mut mb2_mem_info as *mut [multiboot_mmap_entry_t; 512] as usize as *mut c_void, 33940fe15e0SLoGin &mut mb2_count, 34040fe15e0SLoGin ); 341a03c4f9dSLoGin send_to_default_serial8250_port("init_memory_area_from_multiboot2 2\n\0".as_bytes()); 34240fe15e0SLoGin 34340fe15e0SLoGin let mb2_count = mb2_count as usize; 34440fe15e0SLoGin let mut areas_count = 0usize; 34540fe15e0SLoGin let mut total_mem_size = 0usize; 346b5b571e0SLoGin for info_entry in mb2_mem_info.iter().take(mb2_count) { 34740fe15e0SLoGin // Only use the memory area if its type is 1 (RAM) 348b5b571e0SLoGin if info_entry.type_ == 1 { 34940fe15e0SLoGin // Skip the memory area if its len is 0 350b5b571e0SLoGin if info_entry.len == 0 { 35140fe15e0SLoGin continue; 35240fe15e0SLoGin } 35345626c85SLoGin 354b5b571e0SLoGin total_mem_size += info_entry.len as usize; 35545626c85SLoGin 35645626c85SLoGin mem_block_manager() 35745626c85SLoGin .add_block( 358b5b571e0SLoGin PhysAddr::new(info_entry.addr as usize), 359b5b571e0SLoGin info_entry.len as usize, 36045626c85SLoGin ) 36145626c85SLoGin .unwrap_or_else(|e| { 36245626c85SLoGin kwarn!( 36345626c85SLoGin "Failed to add memory block: base={:#x}, size={:#x}, error={:?}", 364b5b571e0SLoGin info_entry.addr, 365b5b571e0SLoGin info_entry.len, 36645626c85SLoGin e 36745626c85SLoGin ); 36845626c85SLoGin }); 36940fe15e0SLoGin areas_count += 1; 37040fe15e0SLoGin } 37140fe15e0SLoGin } 372a03c4f9dSLoGin send_to_default_serial8250_port("init_memory_area_from_multiboot2 end\n\0".as_bytes()); 37340fe15e0SLoGin kinfo!("Total memory size: {} MB, total areas from multiboot2: {mb2_count}, valid areas: {areas_count}", total_mem_size / 1024 / 1024); 37440fe15e0SLoGin return Ok(areas_count); 37540fe15e0SLoGin } 37640fe15e0SLoGin 37740fe15e0SLoGin fn init_xd_rsvd() { 37840fe15e0SLoGin // 读取ia32-EFER寄存器的值 37940fe15e0SLoGin let efer: EferFlags = x86_64::registers::model_specific::Efer::read(); 38040fe15e0SLoGin if !efer.contains(EferFlags::NO_EXECUTE_ENABLE) { 38140fe15e0SLoGin // NO_EXECUTE_ENABLE是false,那么就设置xd_reserved为true 38240fe15e0SLoGin kdebug!("NO_EXECUTE_ENABLE is false, set XD_RESERVED to true"); 38340fe15e0SLoGin XD_RESERVED.store(true, Ordering::Relaxed); 38440fe15e0SLoGin } 38540fe15e0SLoGin compiler_fence(Ordering::SeqCst); 38640fe15e0SLoGin } 38740fe15e0SLoGin 38840fe15e0SLoGin /// 判断XD标志位是否被保留 38940fe15e0SLoGin pub fn is_xd_reserved() -> bool { 39099dbf38dSLoGin // return XD_RESERVED.load(Ordering::Relaxed); 39199dbf38dSLoGin 39299dbf38dSLoGin // 由于暂时不支持execute disable,因此直接返回true 39399dbf38dSLoGin // 不支持的原因是,目前好像没有能正确的设置page-level的xd位,会触发page fault 39499dbf38dSLoGin return true; 39540fe15e0SLoGin } 39640fe15e0SLoGin } 39740fe15e0SLoGin 39840fe15e0SLoGin impl VirtAddr { 39940fe15e0SLoGin /// @brief 判断虚拟地址是否合法 400d4f3de93Slogin #[inline(always)] 40140fe15e0SLoGin pub fn is_canonical(self) -> bool { 40240fe15e0SLoGin let x = self.data() & X86_64MMArch::PHYS_OFFSET; 40340fe15e0SLoGin // 如果x为0,说明虚拟地址的高位为0,是合法的用户地址 40440fe15e0SLoGin // 如果x为PHYS_OFFSET,说明虚拟地址的高位全为1,是合法的内核地址 40540fe15e0SLoGin return x == 0 || x == X86_64MMArch::PHYS_OFFSET; 40640fe15e0SLoGin } 40740fe15e0SLoGin } 40840fe15e0SLoGin 40940fe15e0SLoGin unsafe fn allocator_init() { 410da152319SLoGin let virt_offset = VirtAddr::new(page_align_up(BOOTSTRAP_MM_INFO.unwrap().start_brk)); 41140fe15e0SLoGin 412da152319SLoGin let phy_offset = unsafe { MMArch::virt_2_phys(virt_offset) }.unwrap(); 413da152319SLoGin 414da152319SLoGin mem_block_manager() 415da152319SLoGin .reserve_block(PhysAddr::new(0), phy_offset.data()) 416da152319SLoGin .expect("Failed to reserve block"); 41745626c85SLoGin let mut bump_allocator = BumpAllocator::<X86_64MMArch>::new(phy_offset.data()); 41840fe15e0SLoGin kdebug!( 41940fe15e0SLoGin "BumpAllocator created, offset={:?}", 42040fe15e0SLoGin bump_allocator.offset() 42140fe15e0SLoGin ); 42240fe15e0SLoGin 42340fe15e0SLoGin // 暂存初始在head.S中指定的页表的地址,后面再考虑是否需要把它加到buddy的可用空间里面! 42440fe15e0SLoGin // 现在不加的原因是,我担心会有安全漏洞问题:这些初始的页表,位于内核的数据段。如果归还到buddy, 42540fe15e0SLoGin // 可能会产生一定的安全风险(有的代码可能根据虚拟地址来进行安全校验) 42640fe15e0SLoGin let _old_page_table = MMArch::table(PageTableKind::Kernel); 42740fe15e0SLoGin 42840fe15e0SLoGin let new_page_table: PhysAddr; 42940fe15e0SLoGin // 使用bump分配器,把所有的内存页都映射到页表 43040fe15e0SLoGin { 43140fe15e0SLoGin // 用bump allocator创建新的页表 43240fe15e0SLoGin let mut mapper: crate::mm::page::PageMapper<MMArch, &mut BumpAllocator<MMArch>> = 43340fe15e0SLoGin crate::mm::page::PageMapper::<MMArch, _>::create( 43440fe15e0SLoGin PageTableKind::Kernel, 43540fe15e0SLoGin &mut bump_allocator, 43640fe15e0SLoGin ) 43740fe15e0SLoGin .expect("Failed to create page mapper"); 43840fe15e0SLoGin new_page_table = mapper.table().phys(); 43940fe15e0SLoGin kdebug!("PageMapper created"); 44040fe15e0SLoGin 44140fe15e0SLoGin // 取消最开始时候,在head.S中指定的映射(暂时不刷新TLB) 44240fe15e0SLoGin { 44340fe15e0SLoGin let table = mapper.table(); 4447a29d4fcSLoGin let empty_entry = PageEntry::<MMArch>::from_usize(0); 44540fe15e0SLoGin for i in 0..MMArch::PAGE_ENTRY_NUM { 44640fe15e0SLoGin table 44740fe15e0SLoGin .set_entry(i, empty_entry) 44840fe15e0SLoGin .expect("Failed to empty page table entry"); 44940fe15e0SLoGin } 45040fe15e0SLoGin } 45140fe15e0SLoGin kdebug!("Successfully emptied page table"); 45240fe15e0SLoGin 45345626c85SLoGin let total_num = mem_block_manager().total_initial_memory_regions(); 45445626c85SLoGin for i in 0..total_num { 45545626c85SLoGin let area = mem_block_manager().get_initial_memory_region(i).unwrap(); 45640fe15e0SLoGin // kdebug!("area: base={:?}, size={:#x}, end={:?}", area.base, area.size, area.base + area.size); 45740fe15e0SLoGin for i in 0..((area.size + MMArch::PAGE_SIZE - 1) / MMArch::PAGE_SIZE) { 45840fe15e0SLoGin let paddr = area.base.add(i * MMArch::PAGE_SIZE); 45940fe15e0SLoGin let vaddr = unsafe { MMArch::phys_2_virt(paddr) }.unwrap(); 46040fe15e0SLoGin let flags = kernel_page_flags::<MMArch>(vaddr); 46140fe15e0SLoGin 46240fe15e0SLoGin let flusher = mapper 46340fe15e0SLoGin .map_phys(vaddr, paddr, flags) 46440fe15e0SLoGin .expect("Failed to map frame"); 46540fe15e0SLoGin // 暂时不刷新TLB 46640fe15e0SLoGin flusher.ignore(); 46740fe15e0SLoGin } 46840fe15e0SLoGin } 46940fe15e0SLoGin } 470d4f3de93Slogin 471d4f3de93Slogin unsafe { 47240fe15e0SLoGin INITIAL_CR3_VALUE = new_page_table; 473d4f3de93Slogin } 47440fe15e0SLoGin kdebug!( 47540fe15e0SLoGin "After mapping all physical memory, DragonOS used: {} KB", 47640fe15e0SLoGin bump_allocator.offset() / 1024 47740fe15e0SLoGin ); 47840fe15e0SLoGin 47940fe15e0SLoGin // 初始化buddy_allocator 48040fe15e0SLoGin let buddy_allocator = unsafe { BuddyAllocator::<X86_64MMArch>::new(bump_allocator).unwrap() }; 48140fe15e0SLoGin // 设置全局的页帧分配器 48240fe15e0SLoGin unsafe { set_inner_allocator(buddy_allocator) }; 48340fe15e0SLoGin kinfo!("Successfully initialized buddy allocator"); 48440fe15e0SLoGin // 关闭显示输出 485abe3a6eaShanjiezhou scm_disable_put_to_window(); 486abe3a6eaShanjiezhou 48740fe15e0SLoGin // make the new page table current 48840fe15e0SLoGin { 48940fe15e0SLoGin let mut binding = INNER_ALLOCATOR.lock(); 49040fe15e0SLoGin let mut allocator_guard = binding.as_mut().unwrap(); 49140fe15e0SLoGin kdebug!("To enable new page table."); 49240fe15e0SLoGin compiler_fence(Ordering::SeqCst); 49340fe15e0SLoGin let mapper = crate::mm::page::PageMapper::<MMArch, _>::new( 49440fe15e0SLoGin PageTableKind::Kernel, 49540fe15e0SLoGin new_page_table, 49640fe15e0SLoGin &mut allocator_guard, 49740fe15e0SLoGin ); 49840fe15e0SLoGin compiler_fence(Ordering::SeqCst); 49940fe15e0SLoGin mapper.make_current(); 50040fe15e0SLoGin compiler_fence(Ordering::SeqCst); 50140fe15e0SLoGin kdebug!("New page table enabled"); 50240fe15e0SLoGin } 50340fe15e0SLoGin kdebug!("Successfully enabled new page table"); 50440fe15e0SLoGin } 50540fe15e0SLoGin 50640fe15e0SLoGin #[no_mangle] 50740fe15e0SLoGin pub extern "C" fn rs_test_buddy() { 50840fe15e0SLoGin test_buddy(); 50940fe15e0SLoGin } 51040fe15e0SLoGin pub fn test_buddy() { 51140fe15e0SLoGin // 申请内存然后写入数据然后free掉 51240fe15e0SLoGin // 总共申请200MB内存 51340fe15e0SLoGin const TOTAL_SIZE: usize = 200 * 1024 * 1024; 51440fe15e0SLoGin 51540fe15e0SLoGin for i in 0..10 { 51640fe15e0SLoGin kdebug!("Test buddy, round: {i}"); 51740fe15e0SLoGin // 存放申请的内存块 51840fe15e0SLoGin let mut v: Vec<(PhysAddr, PageFrameCount)> = Vec::with_capacity(60 * 1024); 51940fe15e0SLoGin // 存放已经申请的内存块的地址(用于检查重复) 52040fe15e0SLoGin let mut addr_set: HashSet<PhysAddr> = HashSet::new(); 52140fe15e0SLoGin 52240fe15e0SLoGin let mut allocated = 0usize; 52340fe15e0SLoGin 52440fe15e0SLoGin let mut free_count = 0usize; 52540fe15e0SLoGin 52640fe15e0SLoGin while allocated < TOTAL_SIZE { 52740fe15e0SLoGin let mut random_size = 0u64; 52840fe15e0SLoGin unsafe { x86::random::rdrand64(&mut random_size) }; 52940fe15e0SLoGin // 一次最多申请4M 530b5b571e0SLoGin random_size %= 1024 * 4096; 53140fe15e0SLoGin if random_size == 0 { 53240fe15e0SLoGin continue; 53340fe15e0SLoGin } 53440fe15e0SLoGin let random_size = 53540fe15e0SLoGin core::cmp::min(page_align_up(random_size as usize), TOTAL_SIZE - allocated); 53640fe15e0SLoGin let random_size = PageFrameCount::from_bytes(random_size.next_power_of_two()).unwrap(); 53740fe15e0SLoGin // 获取帧 53840fe15e0SLoGin let (paddr, allocated_frame_count) = 53940fe15e0SLoGin unsafe { LockedFrameAllocator.allocate(random_size).unwrap() }; 54040fe15e0SLoGin assert!(allocated_frame_count.data().is_power_of_two()); 54140fe15e0SLoGin assert!(paddr.data() % MMArch::PAGE_SIZE == 0); 54240fe15e0SLoGin unsafe { 54340fe15e0SLoGin assert!(MMArch::phys_2_virt(paddr) 54440fe15e0SLoGin .as_ref() 54540fe15e0SLoGin .unwrap() 54640fe15e0SLoGin .check_aligned(allocated_frame_count.data() * MMArch::PAGE_SIZE)); 54740fe15e0SLoGin } 54840fe15e0SLoGin allocated += allocated_frame_count.data() * MMArch::PAGE_SIZE; 54940fe15e0SLoGin v.push((paddr, allocated_frame_count)); 55040fe15e0SLoGin assert!(addr_set.insert(paddr), "duplicate address: {:?}", paddr); 55140fe15e0SLoGin 55240fe15e0SLoGin // 写入数据 55340fe15e0SLoGin let vaddr = unsafe { MMArch::phys_2_virt(paddr).unwrap() }; 55440fe15e0SLoGin let slice = unsafe { 55540fe15e0SLoGin core::slice::from_raw_parts_mut( 55640fe15e0SLoGin vaddr.data() as *mut u8, 55740fe15e0SLoGin allocated_frame_count.data() * MMArch::PAGE_SIZE, 55840fe15e0SLoGin ) 55940fe15e0SLoGin }; 560b5b571e0SLoGin for (i, item) in slice.iter_mut().enumerate() { 561b5b571e0SLoGin *item = ((i + unsafe { rdtsc() } as usize) % 256) as u8; 56240fe15e0SLoGin } 56340fe15e0SLoGin 56440fe15e0SLoGin // 随机释放一个内存块 565b5b571e0SLoGin if !v.is_empty() { 56640fe15e0SLoGin let mut random_index = 0u64; 56740fe15e0SLoGin unsafe { x86::random::rdrand64(&mut random_index) }; 56840fe15e0SLoGin // 70%概率释放 56940fe15e0SLoGin if random_index % 10 > 7 { 57040fe15e0SLoGin continue; 57140fe15e0SLoGin } 572b5b571e0SLoGin random_index %= v.len() as u64; 57340fe15e0SLoGin let random_index = random_index as usize; 57440fe15e0SLoGin let (paddr, allocated_frame_count) = v.remove(random_index); 57540fe15e0SLoGin assert!(addr_set.remove(&paddr)); 57640fe15e0SLoGin unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) }; 57740fe15e0SLoGin free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE; 57840fe15e0SLoGin } 57940fe15e0SLoGin } 58040fe15e0SLoGin 58140fe15e0SLoGin kdebug!( 58240fe15e0SLoGin "Allocated {} MB memory, release: {} MB, no release: {} bytes", 58340fe15e0SLoGin allocated / 1024 / 1024, 58440fe15e0SLoGin free_count / 1024 / 1024, 58540fe15e0SLoGin (allocated - free_count) 58640fe15e0SLoGin ); 58740fe15e0SLoGin 58840fe15e0SLoGin kdebug!("Now, to release buddy memory"); 58940fe15e0SLoGin // 释放所有的内存 59040fe15e0SLoGin for (paddr, allocated_frame_count) in v { 59140fe15e0SLoGin unsafe { LockedFrameAllocator.free(paddr, allocated_frame_count) }; 59240fe15e0SLoGin assert!(addr_set.remove(&paddr)); 59340fe15e0SLoGin free_count += allocated_frame_count.data() * MMArch::PAGE_SIZE; 59440fe15e0SLoGin } 59540fe15e0SLoGin 59640fe15e0SLoGin kdebug!("release done!, allocated: {allocated}, free_count: {free_count}"); 59740fe15e0SLoGin } 59840fe15e0SLoGin } 5994fda81ceSLoGin 60040fe15e0SLoGin /// 全局的页帧分配器 60140fe15e0SLoGin #[derive(Debug, Clone, Copy, Hash)] 60240fe15e0SLoGin pub struct LockedFrameAllocator; 60340fe15e0SLoGin 60440fe15e0SLoGin impl FrameAllocator for LockedFrameAllocator { 60534e6d6c8Syuyi2439 unsafe fn allocate(&mut self, count: PageFrameCount) -> Option<(PhysAddr, PageFrameCount)> { 60640fe15e0SLoGin if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() { 60740fe15e0SLoGin return allocator.allocate(count); 60840fe15e0SLoGin } else { 60940fe15e0SLoGin return None; 61040fe15e0SLoGin } 61140fe15e0SLoGin } 61240fe15e0SLoGin 61334e6d6c8Syuyi2439 unsafe fn free(&mut self, address: crate::mm::PhysAddr, count: PageFrameCount) { 61440fe15e0SLoGin assert!(count.data().is_power_of_two()); 61540fe15e0SLoGin if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() { 61640fe15e0SLoGin return allocator.free(address, count); 61740fe15e0SLoGin } 61840fe15e0SLoGin } 61940fe15e0SLoGin 62034e6d6c8Syuyi2439 unsafe fn usage(&self) -> PageFrameUsage { 62134e6d6c8Syuyi2439 if let Some(ref mut allocator) = *INNER_ALLOCATOR.lock_irqsave() { 62234e6d6c8Syuyi2439 return allocator.usage(); 62334e6d6c8Syuyi2439 } else { 62434e6d6c8Syuyi2439 panic!("usage error"); 62534e6d6c8Syuyi2439 } 62634e6d6c8Syuyi2439 } 62734e6d6c8Syuyi2439 } 62834e6d6c8Syuyi2439 62940fe15e0SLoGin /// 获取内核地址默认的页面标志 63040fe15e0SLoGin pub unsafe fn kernel_page_flags<A: MemoryManagementArch>(virt: VirtAddr) -> PageFlags<A> { 631b5b571e0SLoGin let info: X86_64MMBootstrapInfo = BOOTSTRAP_MM_INFO.unwrap(); 63240fe15e0SLoGin 63340fe15e0SLoGin if virt.data() >= info.kernel_code_start && virt.data() < info.kernel_code_end { 63440fe15e0SLoGin // Remap kernel code execute 63540fe15e0SLoGin return PageFlags::new().set_execute(true).set_write(true); 63640fe15e0SLoGin } else if virt.data() >= info.kernel_data_end && virt.data() < info.kernel_rodata_end { 63740fe15e0SLoGin // Remap kernel rodata read only 63840fe15e0SLoGin return PageFlags::new().set_execute(true); 63940fe15e0SLoGin } else { 64040fe15e0SLoGin return PageFlags::new().set_write(true).set_execute(true); 64140fe15e0SLoGin } 64240fe15e0SLoGin } 64340fe15e0SLoGin 64440fe15e0SLoGin unsafe fn set_inner_allocator(allocator: BuddyAllocator<MMArch>) { 64540fe15e0SLoGin static FLAG: AtomicBool = AtomicBool::new(false); 64640fe15e0SLoGin if FLAG 64740fe15e0SLoGin .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst) 64840fe15e0SLoGin .is_err() 64940fe15e0SLoGin { 65040fe15e0SLoGin panic!("Cannot set inner allocator twice!"); 65140fe15e0SLoGin } 65240fe15e0SLoGin *INNER_ALLOCATOR.lock() = Some(allocator); 65340fe15e0SLoGin } 65440fe15e0SLoGin 65540fe15e0SLoGin /// 低地址重映射的管理器 65640fe15e0SLoGin /// 65740fe15e0SLoGin /// 低地址重映射的管理器,在smp初始化完成之前,需要使用低地址的映射,因此需要在smp初始化完成之后,取消这一段映射 65840fe15e0SLoGin pub struct LowAddressRemapping; 65940fe15e0SLoGin 66040fe15e0SLoGin impl LowAddressRemapping { 661453452ccSLoGin // 映射64M 662453452ccSLoGin const REMAP_SIZE: usize = 64 * 1024 * 1024; 66340fe15e0SLoGin 6648cb2e9b3SLoGin pub unsafe fn remap_at_low_address(mapper: &mut PageMapper) { 66540fe15e0SLoGin for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) { 66640fe15e0SLoGin let paddr = PhysAddr::new(i * MMArch::PAGE_SIZE); 66740fe15e0SLoGin let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE); 66840fe15e0SLoGin let flags = kernel_page_flags::<MMArch>(vaddr); 66940fe15e0SLoGin 67040fe15e0SLoGin let flusher = mapper 67140fe15e0SLoGin .map_phys(vaddr, paddr, flags) 67240fe15e0SLoGin .expect("Failed to map frame"); 67340fe15e0SLoGin // 暂时不刷新TLB 67440fe15e0SLoGin flusher.ignore(); 67540fe15e0SLoGin } 67640fe15e0SLoGin } 67740fe15e0SLoGin 67840fe15e0SLoGin /// 取消低地址的映射 6798cb2e9b3SLoGin pub unsafe fn unmap_at_low_address(mapper: &mut PageMapper, flush: bool) { 68040fe15e0SLoGin for i in 0..(Self::REMAP_SIZE / MMArch::PAGE_SIZE) { 68140fe15e0SLoGin let vaddr = VirtAddr::new(i * MMArch::PAGE_SIZE); 68226887c63SLoGin let (_, _, flusher) = mapper 68326887c63SLoGin .unmap_phys(vaddr, true) 68440fe15e0SLoGin .expect("Failed to unmap frame"); 685b5b571e0SLoGin if !flush { 68640fe15e0SLoGin flusher.ignore(); 68740fe15e0SLoGin } 68840fe15e0SLoGin } 68940fe15e0SLoGin } 69040fe15e0SLoGin } 691