xref: /DragonOS/kernel/crates/rust-slabmalloc/src/sc.rs (revision 4dd4856f933be0b4624c7f7ffa9e3d0c8c218873)
1 //! A SCAllocator that can allocate fixed size objects.
2 
3 use core::mem;
4 
5 use crate::*;
6 
7 /// A genius(?) const min()
8 ///
9 /// # What this does
10 /// * create an array of the two elements you want to choose between
11 /// * create an arbitrary boolean expression
12 /// * cast said expresison to a usize
13 /// * use that value to index into the array created above
14 ///
15 /// # Source
16 /// https://stackoverflow.com/questions/53619695/calculating-maximum-value-of-a-set-of-constant-expressions-at-compile-time
17 #[cfg(feature = "unstable")]
18 const fn cmin(a: usize, b: usize) -> usize {
19     [a, b][(a > b) as usize]
20 }
21 
22 /// The boring variant of min (not const).
23 #[cfg(not(feature = "unstable"))]
24 fn cmin(a: usize, b: usize) -> usize {
25     core::cmp::min(a, b)
26 }
27 
28 /// A slab allocator allocates elements of a fixed size.
29 ///
30 /// It maintains three internal lists of objects that implement `AllocablePage`
31 /// from which it can allocate memory.
32 ///
33 ///  * `empty_slabs`: Is a list of pages that the SCAllocator maintains, but
34 ///    has 0 allocations in them, these can be given back to a requestor in case
35 ///    of reclamation.
36 ///  * `slabs`: A list of pages partially allocated and still have room for more.
37 ///  * `full_slabs`: A list of pages that are completely allocated.
38 ///
39 /// On allocation we allocate memory from `slabs`, however if the list is empty
40 /// we try to reclaim a page from `empty_slabs` before we return with an out-of-memory
41 /// error. If a page becomes full after the allocation we move it from `slabs` to
42 /// `full_slabs`.
43 ///
44 /// Similarly, on dealloaction we might move a page from `full_slabs` to `slabs`
45 /// or from `slabs` to `empty_slabs` after we deallocated an object.
46 ///
47 /// If an allocation returns `OutOfMemory` a client using SCAllocator can refill
48 /// it using the `refill` function.
49 pub struct SCAllocator<'a, P: AllocablePage> {
50     /// Maximum possible allocation size for this `SCAllocator`.
51     pub(crate) size: usize,
52     /// Keeps track of succeeded allocations.
53     pub(crate) allocation_count: usize,
54     /// max objects per page
55     pub(crate) obj_per_page: usize,
56     /// List of empty ObjectPages (nothing allocated in these).
57     pub(crate) empty_slabs: PageList<'a, P>,
58     /// List of partially used ObjectPage (some objects allocated but pages are not full).
59     pub(crate) slabs: PageList<'a, P>,
60     /// List of full ObjectPages (everything allocated in these don't need to search them).
61     pub(crate) full_slabs: PageList<'a, P>,
62     /// Free objects count
63     pub(crate) free_obj_count: usize,
64     /// Maximum free objects num for this `SCAllocator`.
65     pub(crate) free_limit: usize,
66 }
67 
68 /// Creates an instance of a scallocator, we do this in a macro because we
69 /// re-use the code in const and non-const functions
70 macro_rules! new_sc_allocator {
71     ($size:expr) => {{
72         let obj_per_page = cmin((P::SIZE - OBJECT_PAGE_METADATA_OVERHEAD) / $size, 8 * 64);
73         SCAllocator {
74             size: $size,
75             allocation_count: 0,
76             obj_per_page,
77             empty_slabs: PageList::new(),
78             slabs: PageList::new(),
79             full_slabs: PageList::new(),
80             // TODO: 优化free_limit的计算: https://bbs.dragonos.org.cn/t/topic/358
81             free_limit: 2 * obj_per_page,
82             free_obj_count: 0,
83         }
84     }};
85 }
86 
87 impl<'a, P: AllocablePage> SCAllocator<'a, P> {
88     const REBALANCE_COUNT: usize = 64;
89 
90     /// Create a new SCAllocator.
91     #[cfg(feature = "unstable")]
92     pub const fn new(size: usize) -> SCAllocator<'a, P> {
93         new_sc_allocator!(size)
94     }
95 
96     #[cfg(not(feature = "unstable"))]
97     pub fn new(size: usize) -> SCAllocator<'a, P> {
98         new_sc_allocator!(size)
99     }
100 
101     /// Returns the maximum supported object size of this allocator.
102     pub fn size(&self) -> usize {
103         self.size
104     }
105 
106     /// Add a new ObjectPage.
107     fn insert_partial_slab(&mut self, new_head: &'a mut P) {
108         self.slabs.insert_front(new_head);
109     }
110 
111     /// Add page to empty list.
112     fn insert_empty(&mut self, new_head: &'a mut P) {
113         assert_eq!(
114             new_head as *const P as usize % P::SIZE,
115             0,
116             "Inserted page is not aligned to page-size."
117         );
118         self.empty_slabs.insert_front(new_head);
119     }
120 
121     /// Since `dealloc` can not reassign pages without requiring a lock
122     /// we check slabs and full slabs periodically as part of `alloc`
123     /// and move them to the empty or partially allocated slab lists.
124     pub(crate) fn check_page_assignments(&mut self) {
125         for slab_page in self.full_slabs.iter_mut() {
126             if !slab_page.is_full() {
127                 // We need to move it from self.full_slabs -> self.slabs
128                 trace!("move {:p} full -> partial", slab_page);
129                 self.move_full_to_partial(slab_page);
130             }
131         }
132 
133         for slab_page in self.slabs.iter_mut() {
134             if slab_page.is_empty(self.obj_per_page) {
135                 // We need to move it from self.slabs -> self.empty_slabs
136                 trace!("move {:p} partial -> empty", slab_page);
137                 self.move_to_empty(slab_page);
138             }
139         }
140     }
141 
142     /// Move a page from `slabs` to `empty_slabs`.
143     fn move_to_empty(&mut self, page: &'a mut P) {
144         let page_ptr = page as *const P;
145 
146         debug_assert!(self.slabs.contains(page_ptr));
147         debug_assert!(
148             !self.empty_slabs.contains(page_ptr),
149             "Page {:p} already in emtpy_slabs",
150             page_ptr
151         );
152 
153         self.slabs.remove_from_list(page);
154         self.empty_slabs.insert_front(page);
155 
156         debug_assert!(!self.slabs.contains(page_ptr));
157         debug_assert!(self.empty_slabs.contains(page_ptr));
158     }
159 
160     /// Move a page from `full_slabs` to `slab`.
161     fn move_partial_to_full(&mut self, page: &'a mut P) {
162         let page_ptr = page as *const P;
163 
164         debug_assert!(self.slabs.contains(page_ptr));
165         debug_assert!(!self.full_slabs.contains(page_ptr));
166 
167         self.slabs.remove_from_list(page);
168         self.full_slabs.insert_front(page);
169 
170         debug_assert!(!self.slabs.contains(page_ptr));
171         debug_assert!(self.full_slabs.contains(page_ptr));
172     }
173 
174     /// Move a page from `full_slabs` to `slab`.
175     fn move_full_to_partial(&mut self, page: &'a mut P) {
176         let page_ptr = page as *const P;
177 
178         debug_assert!(!self.slabs.contains(page_ptr));
179         debug_assert!(self.full_slabs.contains(page_ptr));
180 
181         self.full_slabs.remove_from_list(page);
182         self.slabs.insert_front(page);
183 
184         debug_assert!(self.slabs.contains(page_ptr));
185         debug_assert!(!self.full_slabs.contains(page_ptr));
186     }
187 
188     /// Tries to allocate a block of memory with respect to the `layout`.
189     /// Searches within already allocated slab pages, if no suitable spot is found
190     /// will try to use a page from the empty page list.
191     ///
192     /// # Arguments
193     ///  * `sc_layout`: This is not the original layout but adjusted for the
194     ///     SCAllocator size (>= original).
195     fn try_allocate_from_pagelist(&mut self, sc_layout: Layout) -> *mut u8 {
196         // TODO: Do we really need to check multiple slab pages (due to alignment)
197         // If not we can get away with a singly-linked list and have 8 more bytes
198         // for the bitfield in an ObjectPage.
199 
200         for slab_page in self.slabs.iter_mut() {
201             let ptr = slab_page.allocate(sc_layout);
202             if !ptr.is_null() {
203                 if slab_page.is_full() {
204                     trace!("move {:p} partial -> full", slab_page);
205                     self.move_partial_to_full(slab_page);
206                 }
207                 self.allocation_count += 1;
208                 return ptr;
209             } else {
210                 continue;
211             }
212         }
213 
214         // Periodically rebalance page-lists (since dealloc can't do it for us)
215         if self.allocation_count > SCAllocator::<P>::REBALANCE_COUNT {
216             self.check_page_assignments();
217             self.allocation_count = 0;
218         }
219 
220         ptr::null_mut()
221     }
222 
223     pub fn try_reclaim_pages<F>(&mut self, to_reclaim: usize, dealloc: &mut F) -> usize
224     where
225         F: FnMut(*mut P),
226     {
227         self.check_page_assignments();
228         let mut reclaimed = 0;
229         while reclaimed < to_reclaim {
230             if let Some(page) = self.empty_slabs.pop() {
231                 dealloc(page as *mut P);
232                 reclaimed += 1;
233             } else {
234                 break;
235             }
236         }
237 
238         reclaimed
239     }
240 
241     /// Refill the SCAllocator
242     ///
243     /// # Safety
244     /// ObjectPage needs to be empty etc.
245     pub unsafe fn refill(&mut self, page: &'a mut P) {
246         page.bitfield_mut()
247             .initialize(self.size, P::SIZE - OBJECT_PAGE_METADATA_OVERHEAD);
248         *page.prev() = Rawlink::none();
249         *page.next() = Rawlink::none();
250         trace!("adding page to SCAllocator {:p}", page);
251         self.insert_empty(page);
252         self.free_obj_count += self.obj_per_page;
253     }
254 
255     /// Allocates a block of memory descriped by `layout`.
256     ///
257     /// Returns a pointer to a valid region of memory or an
258     /// AllocationError.
259     ///
260     /// The function may also move around pages between lists
261     /// (empty -> partial or partial -> full).
262     pub fn allocate(&mut self, layout: Layout) -> Result<NonNull<u8>, AllocationError> {
263         trace!(
264             "SCAllocator({}) is trying to allocate {:?}",
265             self.size,
266             layout
267         );
268         assert!(layout.size() <= self.size);
269         assert!(self.size <= (P::SIZE - OBJECT_PAGE_METADATA_OVERHEAD));
270         let new_layout = unsafe { Layout::from_size_align_unchecked(self.size, layout.align()) };
271         assert!(new_layout.size() >= layout.size());
272 
273         let ptr = {
274             // Try to allocate from partial slabs,
275             // if we fail check if we have empty pages and allocate from there
276             let ptr = self.try_allocate_from_pagelist(new_layout);
277             if ptr.is_null() && self.empty_slabs.head.is_some() {
278                 // Re-try allocation in empty page
279                 let empty_page = self.empty_slabs.pop().expect("We checked head.is_some()");
280                 debug_assert!(!self.empty_slabs.contains(empty_page));
281 
282                 let ptr = empty_page.allocate(layout);
283                 debug_assert!(!ptr.is_null(), "Allocation must have succeeded here.");
284 
285                 trace!(
286                     "move {:p} empty -> partial empty count {}",
287                     empty_page,
288                     self.empty_slabs.elements
289                 );
290                 // Move empty page to partial pages
291                 self.insert_partial_slab(empty_page);
292                 ptr
293             } else {
294                 ptr
295             }
296         };
297 
298         let res = NonNull::new(ptr).ok_or(AllocationError::OutOfMemory);
299 
300         if !ptr.is_null() {
301             trace!(
302                 "SCAllocator({}) allocated ptr=0x{:x}",
303                 self.size,
304                 ptr as usize
305             );
306             self.free_obj_count -= 1;
307         }
308 
309         res
310     }
311 
312     /// Deallocates a previously allocated `ptr` described by `Layout`.
313     ///
314     /// May return an error in case an invalid `layout` is provided.
315     /// The function may also move internal slab pages between lists partial -> empty
316     /// or full -> partial lists.
317     pub unsafe fn deallocate(
318         &mut self,
319         ptr: NonNull<u8>,
320         layout: Layout,
321         slab_callback: &'static dyn CallBack,
322     ) -> Result<(), AllocationError> {
323         assert!(layout.size() <= self.size);
324         assert!(self.size <= (P::SIZE - OBJECT_PAGE_METADATA_OVERHEAD));
325         trace!(
326             "SCAllocator({}) is trying to deallocate ptr = {:p} layout={:?} P.size= {}",
327             self.size,
328             ptr,
329             layout,
330             P::SIZE
331         );
332 
333         let page = (ptr.as_ptr() as usize) & !(P::SIZE - 1);
334 
335         // Figure out which page we are on and construct a reference to it
336         // TODO: The linked list will have another &mut reference
337         let slab_page = unsafe { mem::transmute::<VAddr, &'a mut P>(page) };
338         let new_layout = unsafe { Layout::from_size_align_unchecked(self.size, layout.align()) };
339 
340         let ret = slab_page.deallocate(ptr, new_layout);
341         debug_assert!(ret.is_ok(), "Slab page deallocate won't fail at the moment");
342         self.free_obj_count += 1;
343         let is_empty_after_dealloc = slab_page.is_empty(self.obj_per_page);
344 
345         // 如果slab_page是空白的,且空闲块数大于free_limit,将slab_page归还buddy
346         if self.free_obj_count >= self.free_limit && is_empty_after_dealloc {
347             self.slabs.remove_from_list(slab_page);
348             // 将slab_page归还buddy
349             slab_callback.free_slab_page(slab_page as *const P as *mut u8, P::SIZE);
350         }
351         self.check_page_assignments();
352 
353         ret
354     }
355 }
356