1 use core::{
2     hash::Hash,
3     hint::spin_loop,
4     intrinsics::{likely, unlikely},
5     mem::ManuallyDrop,
6     sync::atomic::{compiler_fence, AtomicBool, AtomicIsize, AtomicUsize, Ordering},
7 };
8 
9 use alloc::{
10     string::{String, ToString},
11     sync::{Arc, Weak},
12     vec::Vec,
13 };
14 use hashbrown::HashMap;
15 use system_error::SystemError;
16 
17 use crate::{
18     arch::{
19         ipc::signal::{AtomicSignal, SigSet, Signal},
20         process::ArchPCBInfo,
21         sched::sched,
22         CurrentIrqArch,
23     },
24     driver::tty::tty_core::TtyCore,
25     exception::InterruptArch,
26     filesystem::{
27         procfs::procfs_unregister_pid,
28         vfs::{file::FileDescriptorVec, FileType},
29     },
30     ipc::signal_types::{SigInfo, SigPending, SignalStruct},
31     kdebug, kinfo,
32     libs::{
33         align::AlignedBox,
34         casting::DowncastArc,
35         futex::{
36             constant::{FutexFlag, FUTEX_BITSET_MATCH_ANY},
37             futex::Futex,
38         },
39         lock_free_flags::LockFreeFlags,
40         rwlock::{RwLock, RwLockReadGuard, RwLockUpgradableGuard, RwLockWriteGuard},
41         spinlock::{SpinLock, SpinLockGuard},
42         wait_queue::WaitQueue,
43     },
44     mm::{percpu::PerCpuVar, set_INITIAL_PROCESS_ADDRESS_SPACE, ucontext::AddressSpace, VirtAddr},
45     net::socket::SocketInode,
46     sched::{
47         completion::Completion,
48         core::{sched_enqueue, CPU_EXECUTING},
49         SchedPolicy, SchedPriority,
50     },
51     smp::{
52         cpu::{AtomicProcessorId, ProcessorId},
53         kick_cpu,
54     },
55     syscall::{user_access::clear_user, Syscall},
56 };
57 
58 use self::kthread::WorkerPrivate;
59 
60 pub mod abi;
61 pub mod c_adapter;
62 pub mod exec;
63 pub mod exit;
64 pub mod fork;
65 pub mod idle;
66 pub mod kthread;
67 pub mod pid;
68 pub mod process;
69 pub mod resource;
70 pub mod syscall;
71 
72 /// 系统中所有进程的pcb
73 static ALL_PROCESS: SpinLock<Option<HashMap<Pid, Arc<ProcessControlBlock>>>> = SpinLock::new(None);
74 
75 pub static mut SWITCH_RESULT: Option<PerCpuVar<SwitchResult>> = None;
76 
77 /// 一个只改变1次的全局变量,标志进程管理器是否已经初始化完成
78 static mut __PROCESS_MANAGEMENT_INIT_DONE: bool = false;
79 
80 #[derive(Debug)]
81 pub struct SwitchResult {
82     pub prev_pcb: Option<Arc<ProcessControlBlock>>,
83     pub next_pcb: Option<Arc<ProcessControlBlock>>,
84 }
85 
86 impl SwitchResult {
new() -> Self87     pub fn new() -> Self {
88         Self {
89             prev_pcb: None,
90             next_pcb: None,
91         }
92     }
93 }
94 
95 #[derive(Debug)]
96 pub struct ProcessManager;
97 impl ProcessManager {
98     #[inline(never)]
init()99     fn init() {
100         static INIT_FLAG: AtomicBool = AtomicBool::new(false);
101         if INIT_FLAG
102             .compare_exchange(false, true, Ordering::SeqCst, Ordering::SeqCst)
103             .is_err()
104         {
105             panic!("ProcessManager has been initialized!");
106         }
107 
108         unsafe {
109             compiler_fence(Ordering::SeqCst);
110             kdebug!("To create address space for INIT process.");
111             // test_buddy();
112             set_INITIAL_PROCESS_ADDRESS_SPACE(
113                 AddressSpace::new(true).expect("Failed to create address space for INIT process."),
114             );
115             kdebug!("INIT process address space created.");
116             compiler_fence(Ordering::SeqCst);
117         };
118 
119         ALL_PROCESS.lock_irqsave().replace(HashMap::new());
120         Self::arch_init();
121         kdebug!("process arch init done.");
122         Self::init_idle();
123         kdebug!("process idle init done.");
124 
125         unsafe { __PROCESS_MANAGEMENT_INIT_DONE = true };
126         kinfo!("Process Manager initialized.");
127     }
128 
129     /// 判断进程管理器是否已经初始化完成
initialized() -> bool130     pub fn initialized() -> bool {
131         unsafe { __PROCESS_MANAGEMENT_INIT_DONE }
132     }
133 
134     /// 获取当前进程的pcb
current_pcb() -> Arc<ProcessControlBlock>135     pub fn current_pcb() -> Arc<ProcessControlBlock> {
136         if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) {
137             kerror!("unsafe__PROCESS_MANAGEMENT_INIT_DONE == false");
138             loop {
139                 spin_loop();
140             }
141         }
142         return ProcessControlBlock::arch_current_pcb();
143     }
144 
145     /// 获取当前进程的pid
146     ///
147     /// 如果进程管理器未初始化完成,那么返回0
current_pid() -> Pid148     pub fn current_pid() -> Pid {
149         if unlikely(unsafe { !__PROCESS_MANAGEMENT_INIT_DONE }) {
150             return Pid(0);
151         }
152 
153         return ProcessManager::current_pcb().pid();
154     }
155 
156     /// 增加当前进程的锁持有计数
157     #[inline(always)]
preempt_disable()158     pub fn preempt_disable() {
159         if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) {
160             ProcessManager::current_pcb().preempt_disable();
161         }
162     }
163 
164     /// 减少当前进程的锁持有计数
165     #[inline(always)]
preempt_enable()166     pub fn preempt_enable() {
167         if likely(unsafe { __PROCESS_MANAGEMENT_INIT_DONE }) {
168             ProcessManager::current_pcb().preempt_enable();
169         }
170     }
171 
172     /// 根据pid获取进程的pcb
173     ///
174     /// ## 参数
175     ///
176     /// - `pid` : 进程的pid
177     ///
178     /// ## 返回值
179     ///
180     /// 如果找到了对应的进程,那么返回该进程的pcb,否则返回None
find(pid: Pid) -> Option<Arc<ProcessControlBlock>>181     pub fn find(pid: Pid) -> Option<Arc<ProcessControlBlock>> {
182         return ALL_PROCESS.lock_irqsave().as_ref()?.get(&pid).cloned();
183     }
184 
185     /// 向系统中添加一个进程的pcb
186     ///
187     /// ## 参数
188     ///
189     /// - `pcb` : 进程的pcb
190     ///
191     /// ## 返回值
192     ///
193     /// 无
add_pcb(pcb: Arc<ProcessControlBlock>)194     pub fn add_pcb(pcb: Arc<ProcessControlBlock>) {
195         ALL_PROCESS
196             .lock_irqsave()
197             .as_mut()
198             .unwrap()
199             .insert(pcb.pid(), pcb.clone());
200     }
201 
202     /// 唤醒一个进程
wakeup(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError>203     pub fn wakeup(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> {
204         let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
205         let state = pcb.sched_info().inner_lock_read_irqsave().state();
206         if state.is_blocked() {
207             let mut writer = pcb.sched_info().inner_lock_write_irqsave();
208             let state = writer.state();
209             if state.is_blocked() {
210                 writer.set_state(ProcessState::Runnable);
211                 // avoid deadlock
212                 drop(writer);
213 
214                 sched_enqueue(pcb.clone(), true);
215                 return Ok(());
216             } else if state.is_exited() {
217                 return Err(SystemError::EINVAL);
218             } else {
219                 return Ok(());
220             }
221         } else if state.is_exited() {
222             return Err(SystemError::EINVAL);
223         } else {
224             return Ok(());
225         }
226     }
227 
228     /// 唤醒暂停的进程
wakeup_stop(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError>229     pub fn wakeup_stop(pcb: &Arc<ProcessControlBlock>) -> Result<(), SystemError> {
230         let _guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
231         let state = pcb.sched_info().inner_lock_read_irqsave().state();
232         if let ProcessState::Stopped = state {
233             let mut writer = pcb.sched_info().inner_lock_write_irqsave();
234             let state = writer.state();
235             if let ProcessState::Stopped = state {
236                 writer.set_state(ProcessState::Runnable);
237                 // avoid deadlock
238                 drop(writer);
239 
240                 sched_enqueue(pcb.clone(), true);
241                 return Ok(());
242             } else if state.is_runnable() {
243                 return Ok(());
244             } else {
245                 return Err(SystemError::EINVAL);
246             }
247         } else if state.is_runnable() {
248             return Ok(());
249         } else {
250             return Err(SystemError::EINVAL);
251         }
252     }
253 
254     /// 标志当前进程永久睡眠,但是发起调度的工作,应该由调用者完成
255     ///
256     /// ## 注意
257     ///
258     /// - 进入当前函数之前,不能持有sched_info的锁
259     /// - 进入当前函数之前,必须关闭中断
260     /// - 进入当前函数之后必须保证逻辑的正确性,避免被重复加入调度队列
mark_sleep(interruptable: bool) -> Result<(), SystemError>261     pub fn mark_sleep(interruptable: bool) -> Result<(), SystemError> {
262         assert_eq!(
263             CurrentIrqArch::is_irq_enabled(),
264             false,
265             "interrupt must be disabled before enter ProcessManager::mark_sleep()"
266         );
267 
268         let pcb = ProcessManager::current_pcb();
269         let mut writer = pcb.sched_info().inner_lock_write_irqsave();
270         if !matches!(writer.state(), ProcessState::Exited(_)) {
271             writer.set_state(ProcessState::Blocked(interruptable));
272             pcb.flags().insert(ProcessFlags::NEED_SCHEDULE);
273             drop(writer);
274 
275             return Ok(());
276         }
277         return Err(SystemError::EINTR);
278     }
279 
280     /// 标志当前进程为停止状态,但是发起调度的工作,应该由调用者完成
281     ///
282     /// ## 注意
283     ///
284     /// - 进入当前函数之前,不能持有sched_info的锁
285     /// - 进入当前函数之前,必须关闭中断
mark_stop() -> Result<(), SystemError>286     pub fn mark_stop() -> Result<(), SystemError> {
287         assert_eq!(
288             CurrentIrqArch::is_irq_enabled(),
289             false,
290             "interrupt must be disabled before enter ProcessManager::mark_stop()"
291         );
292 
293         let pcb = ProcessManager::current_pcb();
294         let mut writer = pcb.sched_info().inner_lock_write_irqsave();
295         if !matches!(writer.state(), ProcessState::Exited(_)) {
296             writer.set_state(ProcessState::Stopped);
297             pcb.flags().insert(ProcessFlags::NEED_SCHEDULE);
298             drop(writer);
299 
300             return Ok(());
301         }
302         return Err(SystemError::EINTR);
303     }
304     /// 当子进程退出后向父进程发送通知
exit_notify()305     fn exit_notify() {
306         let current = ProcessManager::current_pcb();
307         // 让INIT进程收养所有子进程
308         if current.pid() != Pid(1) {
309             unsafe {
310                 current
311                     .adopt_childen()
312                     .unwrap_or_else(|e| panic!("adopte_childen failed: error: {e:?}"))
313             };
314             let r = current.parent_pcb.read_irqsave().upgrade();
315             if r.is_none() {
316                 return;
317             }
318             let parent_pcb = r.unwrap();
319             let r = Syscall::kill(parent_pcb.pid(), Signal::SIGCHLD as i32);
320             if r.is_err() {
321                 kwarn!(
322                     "failed to send kill signal to {:?}'s parent pcb {:?}",
323                     current.pid(),
324                     parent_pcb.pid()
325                 );
326             }
327             // todo: 这里需要向父进程发送SIGCHLD信号
328             // todo: 这里还需要根据线程组的信息,决定信号的发送
329         }
330     }
331 
332     /// 退出当前进程
333     ///
334     /// ## 参数
335     ///
336     /// - `exit_code` : 进程的退出码
exit(exit_code: usize) -> !337     pub fn exit(exit_code: usize) -> ! {
338         // 关中断
339         unsafe { CurrentIrqArch::interrupt_disable() };
340         let pcb = ProcessManager::current_pcb();
341         pcb.sched_info
342             .inner_lock_write_irqsave()
343             .set_state(ProcessState::Exited(exit_code));
344         pcb.wait_queue.wakeup(Some(ProcessState::Blocked(true)));
345 
346         // 进行进程退出后的工作
347         let thread = pcb.thread.write_irqsave();
348         if let Some(addr) = thread.set_child_tid {
349             unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") };
350         }
351 
352         if let Some(addr) = thread.clear_child_tid {
353             if Arc::strong_count(&pcb.basic().user_vm().expect("User VM Not found")) > 1 {
354                 let _ =
355                     Futex::futex_wake(addr, FutexFlag::FLAGS_MATCH_NONE, 1, FUTEX_BITSET_MATCH_ANY);
356             }
357             unsafe { clear_user(addr, core::mem::size_of::<i32>()).expect("clear tid failed") };
358         }
359 
360         // 如果是vfork出来的进程,则需要处理completion
361         if thread.vfork_done.is_some() {
362             thread.vfork_done.as_ref().unwrap().complete_all();
363         }
364         drop(thread);
365         unsafe { pcb.basic_mut().set_user_vm(None) };
366         drop(pcb);
367         ProcessManager::exit_notify();
368         unsafe { CurrentIrqArch::interrupt_enable() };
369 
370         sched();
371         loop {}
372     }
373 
release(pid: Pid)374     pub unsafe fn release(pid: Pid) {
375         let pcb = ProcessManager::find(pid);
376         if pcb.is_some() {
377             // let pcb = pcb.unwrap();
378             // 判断该pcb是否在全局没有任何引用
379             // TODO: 当前,pcb的Arc指针存在泄露问题,引用计数不正确,打算在接下来实现debug专用的Arc,方便调试,然后解决这个bug。
380             //          因此目前暂时注释掉,使得能跑
381             // if Arc::strong_count(&pcb) <= 2 {
382             //     drop(pcb);
383             //     ALL_PROCESS.lock().as_mut().unwrap().remove(&pid);
384             // } else {
385             //     // 如果不为1就panic
386             //     let msg = format!("pcb '{:?}' is still referenced, strong count={}",pcb.pid(),  Arc::strong_count(&pcb));
387             //     kerror!("{}", msg);
388             //     panic!()
389             // }
390 
391             ALL_PROCESS.lock_irqsave().as_mut().unwrap().remove(&pid);
392         }
393     }
394 
395     /// 上下文切换完成后的钩子函数
switch_finish_hook()396     unsafe fn switch_finish_hook() {
397         // kdebug!("switch_finish_hook");
398         let prev_pcb = SWITCH_RESULT
399             .as_mut()
400             .unwrap()
401             .get_mut()
402             .prev_pcb
403             .take()
404             .expect("prev_pcb is None");
405         let next_pcb = SWITCH_RESULT
406             .as_mut()
407             .unwrap()
408             .get_mut()
409             .next_pcb
410             .take()
411             .expect("next_pcb is None");
412 
413         // 由于进程切换前使用了SpinLockGuard::leak(),所以这里需要手动释放锁
414         prev_pcb.arch_info.force_unlock();
415         next_pcb.arch_info.force_unlock();
416     }
417 
418     /// 如果目标进程正在目标CPU上运行,那么就让这个cpu陷入内核态
419     ///
420     /// ## 参数
421     ///
422     /// - `pcb` : 进程的pcb
423     #[allow(dead_code)]
kick(pcb: &Arc<ProcessControlBlock>)424     pub fn kick(pcb: &Arc<ProcessControlBlock>) {
425         ProcessManager::current_pcb().preempt_disable();
426         let cpu_id = pcb.sched_info().on_cpu();
427 
428         if let Some(cpu_id) = cpu_id {
429             let cpu_id = cpu_id;
430 
431             if pcb.pid() == CPU_EXECUTING.get(cpu_id) {
432                 kick_cpu(cpu_id).expect("ProcessManager::kick(): Failed to kick cpu");
433             }
434         }
435 
436         ProcessManager::current_pcb().preempt_enable();
437     }
438 }
439 
440 /// 上下文切换的钩子函数,当这个函数return的时候,将会发生上下文切换
441 #[cfg(target_arch = "x86_64")]
442 #[inline(never)]
switch_finish_hook()443 pub unsafe extern "sysv64" fn switch_finish_hook() {
444     ProcessManager::switch_finish_hook();
445 }
446 #[cfg(target_arch = "riscv64")]
switch_finish_hook()447 pub unsafe extern "C" fn switch_finish_hook() {
448     ProcessManager::switch_finish_hook();
449 }
450 
451 int_like!(Pid, AtomicPid, usize, AtomicUsize);
452 
453 impl Pid {
to_string(&self) -> String454     pub fn to_string(&self) -> String {
455         self.0.to_string()
456     }
457 }
458 
459 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
460 pub enum ProcessState {
461     /// The process is running on a CPU or in a run queue.
462     Runnable,
463     /// The process is waiting for an event to occur.
464     /// 其中的bool表示该等待过程是否可以被打断。
465     /// - 如果该bool为true,那么,硬件中断/信号/其他系统事件都可以打断该等待过程,使得该进程重新进入Runnable状态。
466     /// - 如果该bool为false,那么,这个进程必须被显式的唤醒,才能重新进入Runnable状态。
467     Blocked(bool),
468     /// 进程被信号终止
469     Stopped,
470     /// 进程已经退出,usize表示进程的退出码
471     Exited(usize),
472 }
473 
474 #[allow(dead_code)]
475 impl ProcessState {
476     #[inline(always)]
is_runnable(&self) -> bool477     pub fn is_runnable(&self) -> bool {
478         return matches!(self, ProcessState::Runnable);
479     }
480 
481     #[inline(always)]
is_blocked(&self) -> bool482     pub fn is_blocked(&self) -> bool {
483         return matches!(self, ProcessState::Blocked(_));
484     }
485 
486     #[inline(always)]
is_blocked_interruptable(&self) -> bool487     pub fn is_blocked_interruptable(&self) -> bool {
488         return matches!(self, ProcessState::Blocked(true));
489     }
490 
491     /// Returns `true` if the process state is [`Exited`].
492     #[inline(always)]
is_exited(&self) -> bool493     pub fn is_exited(&self) -> bool {
494         return matches!(self, ProcessState::Exited(_));
495     }
496 
497     /// Returns `true` if the process state is [`Stopped`].
498     ///
499     /// [`Stopped`]: ProcessState::Stopped
500     #[inline(always)]
is_stopped(&self) -> bool501     pub fn is_stopped(&self) -> bool {
502         matches!(self, ProcessState::Stopped)
503     }
504 
505     /// Returns exit code if the process state is [`Exited`].
506     #[inline(always)]
exit_code(&self) -> Option<usize>507     pub fn exit_code(&self) -> Option<usize> {
508         match self {
509             ProcessState::Exited(code) => Some(*code),
510             _ => None,
511         }
512     }
513 }
514 
515 bitflags! {
516     /// pcb的标志位
517     pub struct ProcessFlags: usize {
518         /// 当前pcb表示一个内核线程
519         const KTHREAD = 1 << 0;
520         /// 当前进程需要被调度
521         const NEED_SCHEDULE = 1 << 1;
522         /// 进程由于vfork而与父进程存在资源共享
523         const VFORK = 1 << 2;
524         /// 进程不可被冻结
525         const NOFREEZE = 1 << 3;
526         /// 进程正在退出
527         const EXITING = 1 << 4;
528         /// 进程由于接收到终止信号唤醒
529         const WAKEKILL = 1 << 5;
530         /// 进程由于接收到信号而退出.(Killed by a signal)
531         const SIGNALED = 1 << 6;
532         /// 进程需要迁移到其他cpu上
533         const NEED_MIGRATE = 1 << 7;
534         /// 随机化的虚拟地址空间,主要用于动态链接器的加载
535         const RANDOMIZE = 1 << 8;
536     }
537 }
538 
539 #[derive(Debug)]
540 pub struct ProcessControlBlock {
541     /// 当前进程的pid
542     pid: Pid,
543     /// 当前进程的线程组id(这个值在同一个线程组内永远不变)
544     tgid: Pid,
545 
546     basic: RwLock<ProcessBasicInfo>,
547     /// 当前进程的自旋锁持有计数
548     preempt_count: AtomicUsize,
549 
550     flags: LockFreeFlags<ProcessFlags>,
551     worker_private: SpinLock<Option<WorkerPrivate>>,
552     /// 进程的内核栈
553     kernel_stack: RwLock<KernelStack>,
554 
555     /// 系统调用栈
556     syscall_stack: RwLock<KernelStack>,
557 
558     /// 与调度相关的信息
559     sched_info: ProcessSchedulerInfo,
560     /// 与处理器架构相关的信息
561     arch_info: SpinLock<ArchPCBInfo>,
562     /// 与信号处理相关的信息(似乎可以是无锁的)
563     sig_info: RwLock<ProcessSignalInfo>,
564     /// 信号处理结构体
565     sig_struct: SpinLock<SignalStruct>,
566     /// 退出信号S
567     exit_signal: AtomicSignal,
568 
569     /// 父进程指针
570     parent_pcb: RwLock<Weak<ProcessControlBlock>>,
571     /// 真实父进程指针
572     real_parent_pcb: RwLock<Weak<ProcessControlBlock>>,
573 
574     /// 子进程链表
575     children: RwLock<Vec<Pid>>,
576 
577     /// 等待队列
578     wait_queue: WaitQueue,
579 
580     /// 线程信息
581     thread: RwLock<ThreadInfo>,
582 }
583 
584 impl ProcessControlBlock {
585     /// Generate a new pcb.
586     ///
587     /// ## 参数
588     ///
589     /// - `name` : 进程的名字
590     /// - `kstack` : 进程的内核栈
591     ///
592     /// ## 返回值
593     ///
594     /// 返回一个新的pcb
new(name: String, kstack: KernelStack) -> Arc<Self>595     pub fn new(name: String, kstack: KernelStack) -> Arc<Self> {
596         return Self::do_create_pcb(name, kstack, false);
597     }
598 
599     /// 创建一个新的idle进程
600     ///
601     /// 请注意,这个函数只能在进程管理初始化的时候调用。
new_idle(cpu_id: u32, kstack: KernelStack) -> Arc<Self>602     pub fn new_idle(cpu_id: u32, kstack: KernelStack) -> Arc<Self> {
603         let name = format!("idle-{}", cpu_id);
604         return Self::do_create_pcb(name, kstack, true);
605     }
606 
607     #[inline(never)]
do_create_pcb(name: String, kstack: KernelStack, is_idle: bool) -> Arc<Self>608     fn do_create_pcb(name: String, kstack: KernelStack, is_idle: bool) -> Arc<Self> {
609         let (pid, ppid, cwd) = if is_idle {
610             (Pid(0), Pid(0), "/".to_string())
611         } else {
612             let ppid = ProcessManager::current_pcb().pid();
613             let cwd = ProcessManager::current_pcb().basic().cwd();
614             (Self::generate_pid(), ppid, cwd)
615         };
616 
617         let basic_info = ProcessBasicInfo::new(Pid(0), ppid, name, cwd, None);
618         let preempt_count = AtomicUsize::new(0);
619         let flags = unsafe { LockFreeFlags::new(ProcessFlags::empty()) };
620 
621         let sched_info = ProcessSchedulerInfo::new(None);
622         let arch_info = SpinLock::new(ArchPCBInfo::new(&kstack));
623 
624         let ppcb: Weak<ProcessControlBlock> = ProcessManager::find(ppid)
625             .map(|p| Arc::downgrade(&p))
626             .unwrap_or_else(|| Weak::new());
627 
628         let pcb = Self {
629             pid,
630             tgid: pid,
631             basic: basic_info,
632             preempt_count,
633             flags,
634             kernel_stack: RwLock::new(kstack),
635             syscall_stack: RwLock::new(KernelStack::new().unwrap()),
636             worker_private: SpinLock::new(None),
637             sched_info,
638             arch_info,
639             sig_info: RwLock::new(ProcessSignalInfo::default()),
640             sig_struct: SpinLock::new(SignalStruct::new()),
641             exit_signal: AtomicSignal::new(Signal::SIGCHLD),
642             parent_pcb: RwLock::new(ppcb.clone()),
643             real_parent_pcb: RwLock::new(ppcb),
644             children: RwLock::new(Vec::new()),
645             wait_queue: WaitQueue::INIT,
646             thread: RwLock::new(ThreadInfo::new()),
647         };
648 
649         // 初始化系统调用栈
650         #[cfg(target_arch = "x86_64")]
651         pcb.arch_info
652             .lock()
653             .init_syscall_stack(&pcb.syscall_stack.read());
654 
655         let pcb = Arc::new(pcb);
656 
657         // 设置进程的arc指针到内核栈和系统调用栈的最低地址处
658         unsafe {
659             pcb.kernel_stack
660                 .write()
661                 .set_pcb(Arc::downgrade(&pcb))
662                 .unwrap();
663 
664             pcb.syscall_stack
665                 .write()
666                 .set_pcb(Arc::downgrade(&pcb))
667                 .unwrap()
668         };
669 
670         // 将当前pcb加入父进程的子进程哈希表中
671         if pcb.pid() > Pid(1) {
672             if let Some(ppcb_arc) = pcb.parent_pcb.read_irqsave().upgrade() {
673                 let mut children = ppcb_arc.children.write_irqsave();
674                 children.push(pcb.pid());
675             } else {
676                 panic!("parent pcb is None");
677             }
678         }
679 
680         return pcb;
681     }
682 
683     /// 生成一个新的pid
684     #[inline(always)]
generate_pid() -> Pid685     fn generate_pid() -> Pid {
686         static NEXT_PID: AtomicPid = AtomicPid::new(Pid(1));
687         return NEXT_PID.fetch_add(Pid(1), Ordering::SeqCst);
688     }
689 
690     /// 返回当前进程的锁持有计数
691     #[inline(always)]
preempt_count(&self) -> usize692     pub fn preempt_count(&self) -> usize {
693         return self.preempt_count.load(Ordering::SeqCst);
694     }
695 
696     /// 增加当前进程的锁持有计数
697     #[inline(always)]
preempt_disable(&self)698     pub fn preempt_disable(&self) {
699         self.preempt_count.fetch_add(1, Ordering::SeqCst);
700     }
701 
702     /// 减少当前进程的锁持有计数
703     #[inline(always)]
preempt_enable(&self)704     pub fn preempt_enable(&self) {
705         self.preempt_count.fetch_sub(1, Ordering::SeqCst);
706     }
707 
708     #[inline(always)]
set_preempt_count(&self, count: usize)709     pub unsafe fn set_preempt_count(&self, count: usize) {
710         self.preempt_count.store(count, Ordering::SeqCst);
711     }
712 
713     #[inline(always)]
flags(&self) -> &mut ProcessFlags714     pub fn flags(&self) -> &mut ProcessFlags {
715         return self.flags.get_mut();
716     }
717 
718     /// 请注意,这个值能在中断上下文中读取,但不能被中断上下文修改
719     /// 否则会导致死锁
720     #[inline(always)]
basic(&self) -> RwLockReadGuard<ProcessBasicInfo>721     pub fn basic(&self) -> RwLockReadGuard<ProcessBasicInfo> {
722         return self.basic.read_irqsave();
723     }
724 
725     #[inline(always)]
set_name(&self, name: String)726     pub fn set_name(&self, name: String) {
727         self.basic.write().set_name(name);
728     }
729 
730     #[inline(always)]
basic_mut(&self) -> RwLockWriteGuard<ProcessBasicInfo>731     pub fn basic_mut(&self) -> RwLockWriteGuard<ProcessBasicInfo> {
732         return self.basic.write_irqsave();
733     }
734 
735     /// # 获取arch info的锁,同时关闭中断
736     #[inline(always)]
arch_info_irqsave(&self) -> SpinLockGuard<ArchPCBInfo>737     pub fn arch_info_irqsave(&self) -> SpinLockGuard<ArchPCBInfo> {
738         return self.arch_info.lock_irqsave();
739     }
740 
741     /// # 获取arch info的锁,但是不关闭中断
742     ///
743     /// 由于arch info在进程切换的时候会使用到,
744     /// 因此在中断上下文外,获取arch info 而不irqsave是不安全的.
745     ///
746     /// 只能在以下情况下使用这个函数:
747     /// - 在中断上下文中(中断已经禁用),获取arch info的锁。
748     /// - 刚刚创建新的pcb
749     #[inline(always)]
arch_info(&self) -> SpinLockGuard<ArchPCBInfo>750     pub unsafe fn arch_info(&self) -> SpinLockGuard<ArchPCBInfo> {
751         return self.arch_info.lock();
752     }
753 
754     #[inline(always)]
kernel_stack(&self) -> RwLockReadGuard<KernelStack>755     pub fn kernel_stack(&self) -> RwLockReadGuard<KernelStack> {
756         return self.kernel_stack.read();
757     }
758 
759     #[inline(always)]
760     #[allow(dead_code)]
kernel_stack_mut(&self) -> RwLockWriteGuard<KernelStack>761     pub fn kernel_stack_mut(&self) -> RwLockWriteGuard<KernelStack> {
762         return self.kernel_stack.write();
763     }
764 
765     #[inline(always)]
sched_info(&self) -> &ProcessSchedulerInfo766     pub fn sched_info(&self) -> &ProcessSchedulerInfo {
767         return &self.sched_info;
768     }
769 
770     #[inline(always)]
worker_private(&self) -> SpinLockGuard<Option<WorkerPrivate>>771     pub fn worker_private(&self) -> SpinLockGuard<Option<WorkerPrivate>> {
772         return self.worker_private.lock();
773     }
774 
775     #[inline(always)]
pid(&self) -> Pid776     pub fn pid(&self) -> Pid {
777         return self.pid;
778     }
779 
780     #[inline(always)]
tgid(&self) -> Pid781     pub fn tgid(&self) -> Pid {
782         return self.tgid;
783     }
784 
785     /// 获取文件描述符表的Arc指针
786     #[inline(always)]
fd_table(&self) -> Arc<RwLock<FileDescriptorVec>>787     pub fn fd_table(&self) -> Arc<RwLock<FileDescriptorVec>> {
788         return self.basic.read().fd_table().unwrap();
789     }
790 
791     /// 根据文件描述符序号,获取socket对象的Arc指针
792     ///
793     /// ## 参数
794     ///
795     /// - `fd` 文件描述符序号
796     ///
797     /// ## 返回值
798     ///
799     /// Option(&mut Box<dyn Socket>) socket对象的可变引用. 如果文件描述符不是socket,那么返回None
get_socket(&self, fd: i32) -> Option<Arc<SocketInode>>800     pub fn get_socket(&self, fd: i32) -> Option<Arc<SocketInode>> {
801         let binding = ProcessManager::current_pcb().fd_table();
802         let fd_table_guard = binding.read();
803 
804         let f = fd_table_guard.get_file_by_fd(fd)?;
805         drop(fd_table_guard);
806 
807         let guard = f.lock();
808         if guard.file_type() != FileType::Socket {
809             return None;
810         }
811         let socket: Arc<SocketInode> = guard
812             .inode()
813             .downcast_arc::<SocketInode>()
814             .expect("Not a socket inode");
815         return Some(socket);
816     }
817 
818     /// 当前进程退出时,让初始进程收养所有子进程
adopt_childen(&self) -> Result<(), SystemError>819     unsafe fn adopt_childen(&self) -> Result<(), SystemError> {
820         match ProcessManager::find(Pid(1)) {
821             Some(init_pcb) => {
822                 let childen_guard = self.children.write();
823                 let mut init_childen_guard = init_pcb.children.write();
824 
825                 childen_guard.iter().for_each(|pid| {
826                     init_childen_guard.push(*pid);
827                 });
828 
829                 return Ok(());
830             }
831             _ => Err(SystemError::ECHILD),
832         }
833     }
834 
835     /// 生成进程的名字
generate_name(program_path: &str, args: &Vec<String>) -> String836     pub fn generate_name(program_path: &str, args: &Vec<String>) -> String {
837         let mut name = program_path.to_string();
838         for arg in args {
839             name.push(' ');
840             name.push_str(arg);
841         }
842         return name;
843     }
844 
sig_info_irqsave(&self) -> RwLockReadGuard<ProcessSignalInfo>845     pub fn sig_info_irqsave(&self) -> RwLockReadGuard<ProcessSignalInfo> {
846         self.sig_info.read_irqsave()
847     }
848 
try_siginfo_irqsave(&self, times: u8) -> Option<RwLockReadGuard<ProcessSignalInfo>>849     pub fn try_siginfo_irqsave(&self, times: u8) -> Option<RwLockReadGuard<ProcessSignalInfo>> {
850         for _ in 0..times {
851             if let Some(r) = self.sig_info.try_read_irqsave() {
852                 return Some(r);
853             }
854         }
855 
856         return None;
857     }
858 
sig_info_mut(&self) -> RwLockWriteGuard<ProcessSignalInfo>859     pub fn sig_info_mut(&self) -> RwLockWriteGuard<ProcessSignalInfo> {
860         self.sig_info.write_irqsave()
861     }
862 
try_siginfo_mut(&self, times: u8) -> Option<RwLockWriteGuard<ProcessSignalInfo>>863     pub fn try_siginfo_mut(&self, times: u8) -> Option<RwLockWriteGuard<ProcessSignalInfo>> {
864         for _ in 0..times {
865             if let Some(r) = self.sig_info.try_write_irqsave() {
866                 return Some(r);
867             }
868         }
869 
870         return None;
871     }
872 
sig_struct(&self) -> SpinLockGuard<SignalStruct>873     pub fn sig_struct(&self) -> SpinLockGuard<SignalStruct> {
874         self.sig_struct.lock_irqsave()
875     }
876 
try_sig_struct_irqsave(&self, times: u8) -> Option<SpinLockGuard<SignalStruct>>877     pub fn try_sig_struct_irqsave(&self, times: u8) -> Option<SpinLockGuard<SignalStruct>> {
878         for _ in 0..times {
879             if let Ok(r) = self.sig_struct.try_lock_irqsave() {
880                 return Some(r);
881             }
882         }
883 
884         return None;
885     }
886 
sig_struct_irqsave(&self) -> SpinLockGuard<SignalStruct>887     pub fn sig_struct_irqsave(&self) -> SpinLockGuard<SignalStruct> {
888         self.sig_struct.lock_irqsave()
889     }
890 }
891 
892 impl Drop for ProcessControlBlock {
drop(&mut self)893     fn drop(&mut self) {
894         let irq_guard = unsafe { CurrentIrqArch::save_and_disable_irq() };
895         // 在ProcFS中,解除进程的注册
896         procfs_unregister_pid(self.pid())
897             .unwrap_or_else(|e| panic!("procfs_unregister_pid failed: error: {e:?}"));
898 
899         if let Some(ppcb) = self.parent_pcb.read_irqsave().upgrade() {
900             ppcb.children
901                 .write_irqsave()
902                 .retain(|pid| *pid != self.pid());
903         }
904 
905         drop(irq_guard);
906     }
907 }
908 
909 /// 线程信息
910 #[derive(Debug)]
911 pub struct ThreadInfo {
912     // 来自用户空间记录用户线程id的地址,在该线程结束时将该地址置0以通知父进程
913     clear_child_tid: Option<VirtAddr>,
914     set_child_tid: Option<VirtAddr>,
915 
916     vfork_done: Option<Arc<Completion>>,
917     /// 线程组的组长
918     group_leader: Weak<ProcessControlBlock>,
919 }
920 
921 impl ThreadInfo {
new() -> Self922     pub fn new() -> Self {
923         Self {
924             clear_child_tid: None,
925             set_child_tid: None,
926             vfork_done: None,
927             group_leader: Weak::default(),
928         }
929     }
930 
group_leader(&self) -> Option<Arc<ProcessControlBlock>>931     pub fn group_leader(&self) -> Option<Arc<ProcessControlBlock>> {
932         return self.group_leader.upgrade();
933     }
934 }
935 
936 /// 进程的基本信息
937 ///
938 /// 这个结构体保存进程的基本信息,主要是那些不会随着进程的运行而经常改变的信息。
939 #[derive(Debug)]
940 pub struct ProcessBasicInfo {
941     /// 当前进程的进程组id
942     pgid: Pid,
943     /// 当前进程的父进程的pid
944     ppid: Pid,
945     /// 进程的名字
946     name: String,
947 
948     /// 当前进程的工作目录
949     cwd: String,
950 
951     /// 用户地址空间
952     user_vm: Option<Arc<AddressSpace>>,
953 
954     /// 文件描述符表
955     fd_table: Option<Arc<RwLock<FileDescriptorVec>>>,
956 }
957 
958 impl ProcessBasicInfo {
959     #[inline(never)]
new( pgid: Pid, ppid: Pid, name: String, cwd: String, user_vm: Option<Arc<AddressSpace>>, ) -> RwLock<Self>960     pub fn new(
961         pgid: Pid,
962         ppid: Pid,
963         name: String,
964         cwd: String,
965         user_vm: Option<Arc<AddressSpace>>,
966     ) -> RwLock<Self> {
967         let fd_table = Arc::new(RwLock::new(FileDescriptorVec::new()));
968         return RwLock::new(Self {
969             pgid,
970             ppid,
971             name,
972             cwd,
973             user_vm,
974             fd_table: Some(fd_table),
975         });
976     }
977 
pgid(&self) -> Pid978     pub fn pgid(&self) -> Pid {
979         return self.pgid;
980     }
981 
ppid(&self) -> Pid982     pub fn ppid(&self) -> Pid {
983         return self.ppid;
984     }
985 
name(&self) -> &str986     pub fn name(&self) -> &str {
987         return &self.name;
988     }
989 
set_name(&mut self, name: String)990     pub fn set_name(&mut self, name: String) {
991         self.name = name;
992     }
993 
cwd(&self) -> String994     pub fn cwd(&self) -> String {
995         return self.cwd.clone();
996     }
set_cwd(&mut self, path: String)997     pub fn set_cwd(&mut self, path: String) {
998         return self.cwd = path;
999     }
1000 
user_vm(&self) -> Option<Arc<AddressSpace>>1001     pub fn user_vm(&self) -> Option<Arc<AddressSpace>> {
1002         return self.user_vm.clone();
1003     }
1004 
set_user_vm(&mut self, user_vm: Option<Arc<AddressSpace>>)1005     pub unsafe fn set_user_vm(&mut self, user_vm: Option<Arc<AddressSpace>>) {
1006         self.user_vm = user_vm;
1007     }
1008 
fd_table(&self) -> Option<Arc<RwLock<FileDescriptorVec>>>1009     pub fn fd_table(&self) -> Option<Arc<RwLock<FileDescriptorVec>>> {
1010         return self.fd_table.clone();
1011     }
1012 
set_fd_table(&mut self, fd_table: Option<Arc<RwLock<FileDescriptorVec>>>)1013     pub fn set_fd_table(&mut self, fd_table: Option<Arc<RwLock<FileDescriptorVec>>>) {
1014         self.fd_table = fd_table;
1015     }
1016 }
1017 
1018 #[derive(Debug)]
1019 pub struct ProcessSchedulerInfo {
1020     /// 当前进程所在的cpu
1021     on_cpu: AtomicProcessorId,
1022     /// 如果当前进程等待被迁移到另一个cpu核心上(也就是flags中的PF_NEED_MIGRATE被置位),
1023     /// 该字段存储要被迁移到的目标处理器核心号
1024     migrate_to: AtomicProcessorId,
1025     inner_locked: RwLock<InnerSchedInfo>,
1026     /// 进程的调度优先级
1027     priority: SchedPriority,
1028     /// 当前进程的虚拟运行时间
1029     virtual_runtime: AtomicIsize,
1030     /// 由实时调度器管理的时间片
1031     rt_time_slice: AtomicIsize,
1032 }
1033 
1034 #[derive(Debug)]
1035 pub struct InnerSchedInfo {
1036     /// 当前进程的状态
1037     state: ProcessState,
1038     /// 进程的调度策略
1039     sched_policy: SchedPolicy,
1040 }
1041 
1042 impl InnerSchedInfo {
state(&self) -> ProcessState1043     pub fn state(&self) -> ProcessState {
1044         return self.state;
1045     }
1046 
set_state(&mut self, state: ProcessState)1047     pub fn set_state(&mut self, state: ProcessState) {
1048         self.state = state;
1049     }
1050 
policy(&self) -> SchedPolicy1051     pub fn policy(&self) -> SchedPolicy {
1052         return self.sched_policy;
1053     }
1054 }
1055 
1056 impl ProcessSchedulerInfo {
1057     #[inline(never)]
new(on_cpu: Option<ProcessorId>) -> Self1058     pub fn new(on_cpu: Option<ProcessorId>) -> Self {
1059         let cpu_id = on_cpu.unwrap_or(ProcessorId::INVALID);
1060         return Self {
1061             on_cpu: AtomicProcessorId::new(cpu_id),
1062             migrate_to: AtomicProcessorId::new(ProcessorId::INVALID),
1063             inner_locked: RwLock::new(InnerSchedInfo {
1064                 state: ProcessState::Blocked(false),
1065                 sched_policy: SchedPolicy::CFS,
1066             }),
1067             virtual_runtime: AtomicIsize::new(0),
1068             rt_time_slice: AtomicIsize::new(0),
1069             priority: SchedPriority::new(100).unwrap(),
1070         };
1071     }
1072 
on_cpu(&self) -> Option<ProcessorId>1073     pub fn on_cpu(&self) -> Option<ProcessorId> {
1074         let on_cpu = self.on_cpu.load(Ordering::SeqCst);
1075         if on_cpu == ProcessorId::INVALID {
1076             return None;
1077         } else {
1078             return Some(on_cpu);
1079         }
1080     }
1081 
set_on_cpu(&self, on_cpu: Option<ProcessorId>)1082     pub fn set_on_cpu(&self, on_cpu: Option<ProcessorId>) {
1083         if let Some(cpu_id) = on_cpu {
1084             self.on_cpu.store(cpu_id, Ordering::SeqCst);
1085         } else {
1086             self.on_cpu.store(ProcessorId::INVALID, Ordering::SeqCst);
1087         }
1088     }
1089 
migrate_to(&self) -> Option<ProcessorId>1090     pub fn migrate_to(&self) -> Option<ProcessorId> {
1091         let migrate_to = self.migrate_to.load(Ordering::SeqCst);
1092         if migrate_to == ProcessorId::INVALID {
1093             return None;
1094         } else {
1095             return Some(migrate_to);
1096         }
1097     }
1098 
set_migrate_to(&self, migrate_to: Option<ProcessorId>)1099     pub fn set_migrate_to(&self, migrate_to: Option<ProcessorId>) {
1100         if let Some(data) = migrate_to {
1101             self.migrate_to.store(data, Ordering::SeqCst);
1102         } else {
1103             self.migrate_to
1104                 .store(ProcessorId::INVALID, Ordering::SeqCst)
1105         }
1106     }
1107 
inner_lock_write_irqsave(&self) -> RwLockWriteGuard<InnerSchedInfo>1108     pub fn inner_lock_write_irqsave(&self) -> RwLockWriteGuard<InnerSchedInfo> {
1109         return self.inner_locked.write_irqsave();
1110     }
1111 
inner_lock_read_irqsave(&self) -> RwLockReadGuard<InnerSchedInfo>1112     pub fn inner_lock_read_irqsave(&self) -> RwLockReadGuard<InnerSchedInfo> {
1113         return self.inner_locked.read_irqsave();
1114     }
1115 
inner_lock_try_read_irqsave( &self, times: u8, ) -> Option<RwLockReadGuard<InnerSchedInfo>>1116     pub fn inner_lock_try_read_irqsave(
1117         &self,
1118         times: u8,
1119     ) -> Option<RwLockReadGuard<InnerSchedInfo>> {
1120         for _ in 0..times {
1121             if let Some(r) = self.inner_locked.try_read_irqsave() {
1122                 return Some(r);
1123             }
1124         }
1125 
1126         return None;
1127     }
1128 
inner_lock_try_upgradable_read_irqsave( &self, times: u8, ) -> Option<RwLockUpgradableGuard<InnerSchedInfo>>1129     pub fn inner_lock_try_upgradable_read_irqsave(
1130         &self,
1131         times: u8,
1132     ) -> Option<RwLockUpgradableGuard<InnerSchedInfo>> {
1133         for _ in 0..times {
1134             if let Some(r) = self.inner_locked.try_upgradeable_read_irqsave() {
1135                 return Some(r);
1136             }
1137         }
1138 
1139         return None;
1140     }
1141 
virtual_runtime(&self) -> isize1142     pub fn virtual_runtime(&self) -> isize {
1143         return self.virtual_runtime.load(Ordering::SeqCst);
1144     }
1145 
set_virtual_runtime(&self, virtual_runtime: isize)1146     pub fn set_virtual_runtime(&self, virtual_runtime: isize) {
1147         self.virtual_runtime
1148             .store(virtual_runtime, Ordering::SeqCst);
1149     }
increase_virtual_runtime(&self, delta: isize)1150     pub fn increase_virtual_runtime(&self, delta: isize) {
1151         self.virtual_runtime.fetch_add(delta, Ordering::SeqCst);
1152     }
1153 
rt_time_slice(&self) -> isize1154     pub fn rt_time_slice(&self) -> isize {
1155         return self.rt_time_slice.load(Ordering::SeqCst);
1156     }
1157 
set_rt_time_slice(&self, rt_time_slice: isize)1158     pub fn set_rt_time_slice(&self, rt_time_slice: isize) {
1159         self.rt_time_slice.store(rt_time_slice, Ordering::SeqCst);
1160     }
1161 
increase_rt_time_slice(&self, delta: isize)1162     pub fn increase_rt_time_slice(&self, delta: isize) {
1163         self.rt_time_slice.fetch_add(delta, Ordering::SeqCst);
1164     }
1165 
priority(&self) -> SchedPriority1166     pub fn priority(&self) -> SchedPriority {
1167         return self.priority;
1168     }
1169 }
1170 
1171 #[derive(Debug, Clone)]
1172 pub struct KernelStack {
1173     stack: Option<AlignedBox<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>>,
1174     /// 标记该内核栈是否可以被释放
1175     can_be_freed: bool,
1176 }
1177 
1178 impl KernelStack {
1179     pub const SIZE: usize = 0x4000;
1180     pub const ALIGN: usize = 0x4000;
1181 
new() -> Result<Self, SystemError>1182     pub fn new() -> Result<Self, SystemError> {
1183         return Ok(Self {
1184             stack: Some(
1185                 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_zeroed()?,
1186             ),
1187             can_be_freed: true,
1188         });
1189     }
1190 
1191     /// 根据已有的空间,构造一个内核栈结构体
1192     ///
1193     /// 仅仅用于BSP启动时,为idle进程构造内核栈。其他时候使用这个函数,很可能造成错误!
from_existed(base: VirtAddr) -> Result<Self, SystemError>1194     pub unsafe fn from_existed(base: VirtAddr) -> Result<Self, SystemError> {
1195         if base.is_null() || base.check_aligned(Self::ALIGN) == false {
1196             return Err(SystemError::EFAULT);
1197         }
1198 
1199         return Ok(Self {
1200             stack: Some(
1201                 AlignedBox::<[u8; KernelStack::SIZE], { KernelStack::ALIGN }>::new_unchecked(
1202                     base.data() as *mut [u8; KernelStack::SIZE],
1203                 ),
1204             ),
1205             can_be_freed: false,
1206         });
1207     }
1208 
1209     /// 返回内核栈的起始虚拟地址(低地址)
start_address(&self) -> VirtAddr1210     pub fn start_address(&self) -> VirtAddr {
1211         return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize);
1212     }
1213 
1214     /// 返回内核栈的结束虚拟地址(高地址)(不包含该地址)
stack_max_address(&self) -> VirtAddr1215     pub fn stack_max_address(&self) -> VirtAddr {
1216         return VirtAddr::new(self.stack.as_ref().unwrap().as_ptr() as usize + Self::SIZE);
1217     }
1218 
set_pcb(&mut self, pcb: Weak<ProcessControlBlock>) -> Result<(), SystemError>1219     pub unsafe fn set_pcb(&mut self, pcb: Weak<ProcessControlBlock>) -> Result<(), SystemError> {
1220         // 将一个Weak<ProcessControlBlock>放到内核栈的最低地址处
1221         let p: *const ProcessControlBlock = Weak::into_raw(pcb);
1222         let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock;
1223 
1224         // 如果内核栈的最低地址处已经有了一个pcb,那么,这里就不再设置,直接返回错误
1225         if unlikely(unsafe { !(*stack_bottom_ptr).is_null() }) {
1226             kerror!("kernel stack bottom is not null: {:p}", *stack_bottom_ptr);
1227             return Err(SystemError::EPERM);
1228         }
1229         // 将pcb的地址放到内核栈的最低地址处
1230         unsafe {
1231             *stack_bottom_ptr = p;
1232         }
1233 
1234         return Ok(());
1235     }
1236 
1237     /// 清除内核栈的pcb指针
1238     ///
1239     /// ## 参数
1240     ///
1241     /// - `force` : 如果为true,那么,即使该内核栈的pcb指针不为null,也会被强制清除而不处理Weak指针问题
clear_pcb(&mut self, force: bool)1242     pub unsafe fn clear_pcb(&mut self, force: bool) {
1243         let stack_bottom_ptr = self.start_address().data() as *mut *const ProcessControlBlock;
1244         if unlikely(unsafe { (*stack_bottom_ptr).is_null() }) {
1245             return;
1246         }
1247 
1248         if !force {
1249             let pcb_ptr: Weak<ProcessControlBlock> = Weak::from_raw(*stack_bottom_ptr);
1250             drop(pcb_ptr);
1251         }
1252 
1253         *stack_bottom_ptr = core::ptr::null();
1254     }
1255 
1256     /// 返回指向当前内核栈pcb的Arc指针
1257     #[allow(dead_code)]
pcb(&self) -> Option<Arc<ProcessControlBlock>>1258     pub unsafe fn pcb(&self) -> Option<Arc<ProcessControlBlock>> {
1259         // 从内核栈的最低地址处取出pcb的地址
1260         let p = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock;
1261         if unlikely(unsafe { (*p).is_null() }) {
1262             return None;
1263         }
1264 
1265         // 为了防止内核栈的pcb指针被释放,这里需要将其包装一下,使得Arc的drop不会被调用
1266         let weak_wrapper: ManuallyDrop<Weak<ProcessControlBlock>> =
1267             ManuallyDrop::new(Weak::from_raw(*p));
1268 
1269         let new_arc: Arc<ProcessControlBlock> = weak_wrapper.upgrade()?;
1270         return Some(new_arc);
1271     }
1272 }
1273 
1274 impl Drop for KernelStack {
drop(&mut self)1275     fn drop(&mut self) {
1276         if !self.stack.is_none() {
1277             let ptr = self.stack.as_ref().unwrap().as_ptr() as *const *const ProcessControlBlock;
1278             if unsafe { !(*ptr).is_null() } {
1279                 let pcb_ptr: Weak<ProcessControlBlock> = unsafe { Weak::from_raw(*ptr) };
1280                 drop(pcb_ptr);
1281             }
1282         }
1283         // 如果该内核栈不可以被释放,那么,这里就forget,不调用AlignedBox的drop函数
1284         if !self.can_be_freed {
1285             let bx = self.stack.take();
1286             core::mem::forget(bx);
1287         }
1288     }
1289 }
1290 
process_init()1291 pub fn process_init() {
1292     ProcessManager::init();
1293 }
1294 
1295 #[derive(Debug)]
1296 pub struct ProcessSignalInfo {
1297     // 当前进程
1298     sig_block: SigSet,
1299     // sig_pending 中存储当前线程要处理的信号
1300     sig_pending: SigPending,
1301     // sig_shared_pending 中存储当前线程所属进程要处理的信号
1302     sig_shared_pending: SigPending,
1303     // 当前进程对应的tty
1304     tty: Option<Arc<TtyCore>>,
1305 }
1306 
1307 impl ProcessSignalInfo {
sig_block(&self) -> &SigSet1308     pub fn sig_block(&self) -> &SigSet {
1309         &self.sig_block
1310     }
1311 
sig_pending(&self) -> &SigPending1312     pub fn sig_pending(&self) -> &SigPending {
1313         &self.sig_pending
1314     }
1315 
sig_pending_mut(&mut self) -> &mut SigPending1316     pub fn sig_pending_mut(&mut self) -> &mut SigPending {
1317         &mut self.sig_pending
1318     }
1319 
sig_block_mut(&mut self) -> &mut SigSet1320     pub fn sig_block_mut(&mut self) -> &mut SigSet {
1321         &mut self.sig_block
1322     }
1323 
sig_shared_pending_mut(&mut self) -> &mut SigPending1324     pub fn sig_shared_pending_mut(&mut self) -> &mut SigPending {
1325         &mut self.sig_shared_pending
1326     }
1327 
sig_shared_pending(&self) -> &SigPending1328     pub fn sig_shared_pending(&self) -> &SigPending {
1329         &self.sig_shared_pending
1330     }
1331 
tty(&self) -> Option<Arc<TtyCore>>1332     pub fn tty(&self) -> Option<Arc<TtyCore>> {
1333         self.tty.clone()
1334     }
1335 
set_tty(&mut self, tty: Arc<TtyCore>)1336     pub fn set_tty(&mut self, tty: Arc<TtyCore>) {
1337         self.tty = Some(tty);
1338     }
1339 
1340     /// 从 pcb 的 siginfo中取出下一个要处理的信号,先处理线程信号,再处理进程信号
1341     ///
1342     /// ## 参数
1343     ///
1344     /// - `sig_mask` 被忽略掉的信号
1345     ///
dequeue_signal(&mut self, sig_mask: &SigSet) -> (Signal, Option<SigInfo>)1346     pub fn dequeue_signal(&mut self, sig_mask: &SigSet) -> (Signal, Option<SigInfo>) {
1347         let res = self.sig_pending.dequeue_signal(sig_mask);
1348         if res.0 != Signal::INVALID {
1349             return res;
1350         } else {
1351             return self.sig_shared_pending.dequeue_signal(sig_mask);
1352         }
1353     }
1354 }
1355 
1356 impl Default for ProcessSignalInfo {
default() -> Self1357     fn default() -> Self {
1358         Self {
1359             sig_block: SigSet::empty(),
1360             sig_pending: SigPending::default(),
1361             sig_shared_pending: SigPending::default(),
1362             tty: None,
1363         }
1364     }
1365 }
1366