1 #include "smp.h"
2 #include <common/cpu.h>
3 #include <common/kprint.h>
4 #include <common/spinlock.h>
5 #include <driver/interrupt/apic/apic.h>
6 #include <exception/gate.h>
7 #include <mm/slab.h>
8 #include <process/process.h>
9
10 #include <process/preempt.h>
11 #include <sched/sched.h>
12 #include <driver/acpi/acpi.h>
13 #include <driver/interrupt/apic/apic.h>
14 #include "ipi.h"
15
16 static void __smp_kick_cpu_handler(uint64_t irq_num, uint64_t param, struct pt_regs *regs);
17 static void __smp__flush_tlb_ipi_handler(uint64_t irq_num, uint64_t param, struct pt_regs *regs);
18
19 static spinlock_t multi_core_starting_lock = {1}; // 多核启动锁
20
21 static struct acpi_Processor_Local_APIC_Structure_t *proc_local_apic_structs[MAX_SUPPORTED_PROCESSOR_NUM];
22 static uint32_t total_processor_num = 0;
23 static int current_starting_cpu = 0;
24
25 static int num_cpu_started = 1;
26 extern void rs_smp_init_idle();
27
28 // 在head.S中定义的,APU启动时,要加载的页表
29 // 由于内存管理模块初始化的时候,重置了页表,因此我们要把当前的页表传给APU
30 extern uint64_t __APU_START_CR3;
31
32 // kick cpu 功能所使用的中断向量号
33 #define KICK_CPU_IRQ_NUM 0xc8
34 #define FLUSH_TLB_IRQ_NUM 0xc9
35
smp_init()36 void smp_init()
37 {
38 spin_init(&multi_core_starting_lock); // 初始化多核启动锁
39 // 设置多核启动时,要加载的页表
40 __APU_START_CR3 = (uint64_t)get_CR3();
41
42 ul tmp_vaddr[MAX_SUPPORTED_PROCESSOR_NUM] = {0};
43
44 apic_get_ics(ACPI_ICS_TYPE_PROCESSOR_LOCAL_APIC, tmp_vaddr, &total_processor_num);
45
46 // kdebug("processor num=%d", total_processor_num);
47 for (int i = 0; i < total_processor_num; ++i)
48 {
49 io_mfence();
50 proc_local_apic_structs[i] = (struct acpi_Processor_Local_APIC_Structure_t *)(tmp_vaddr[i]);
51 }
52
53 // 将引导程序复制到物理地址0x20000处
54 memcpy((unsigned char *)phys_2_virt(0x20000), _apu_boot_start,
55 (unsigned long)&_apu_boot_end - (unsigned long)&_apu_boot_start);
56 io_mfence();
57 // 设置多核IPI中断门
58 for (int i = 200; i < 210; ++i)
59 set_intr_gate(i, 0, SMP_interrupt_table[i - 200]);
60 memset((void *)SMP_IPI_desc, 0, sizeof(irq_desc_t) * SMP_IRQ_NUM);
61
62 io_mfence();
63
64 io_mfence();
65 ipi_send_IPI(DEST_PHYSICAL, IDLE, ICR_LEVEL_DE_ASSERT, EDGE_TRIGGER, 0x00, ICR_INIT, ICR_ALL_EXCLUDE_Self, 0x00);
66
67 kdebug("total_processor_num=%d", total_processor_num);
68 // 注册接收kick_cpu功能的处理函数。(向量号200)
69 ipi_regiserIPI(KICK_CPU_IRQ_NUM, NULL, &__smp_kick_cpu_handler, NULL, NULL, "IPI kick cpu");
70 ipi_regiserIPI(FLUSH_TLB_IRQ_NUM, NULL, &__smp__flush_tlb_ipi_handler, NULL, NULL, "IPI flush tlb");
71
72 int core_to_start = 0;
73 // total_processor_num = 3;
74 for (int i = 0; i < total_processor_num; ++i) // i从1开始,不初始化bsp
75 {
76 io_mfence();
77
78 // 跳过BSP
79 kdebug("[core %d] acpi processor UID=%d, APIC ID=%d, flags=%#010lx", i,
80 proc_local_apic_structs[i]->ACPI_Processor_UID, proc_local_apic_structs[i]->local_apic_id,
81 proc_local_apic_structs[i]->flags);
82 if (proc_local_apic_structs[i]->local_apic_id == 0)
83 {
84 // --total_processor_num;
85 continue;
86 }
87 if (!((proc_local_apic_structs[i]->flags & 0x1) || (proc_local_apic_structs[i]->flags & 0x2)))
88 {
89 // --total_processor_num;
90 kdebug("processor %d cannot be enabled.", proc_local_apic_structs[i]->ACPI_Processor_UID);
91 continue;
92 }
93 ++core_to_start;
94 // continue;
95 io_mfence();
96 spin_lock(&multi_core_starting_lock);
97 preempt_enable(); // 由于ap处理器的pcb与bsp的不同,因此ap处理器放锁时,bsp的自旋锁持有计数不会发生改变,需要手动恢复preempt
98 // count
99 current_starting_cpu = proc_local_apic_structs[i]->ACPI_Processor_UID;
100 io_mfence();
101 // 为每个AP处理器分配栈空间
102 cpu_core_info[current_starting_cpu].stack_start = (uint64_t)kmalloc(STACK_SIZE, 0) + STACK_SIZE;
103 cpu_core_info[current_starting_cpu].ist_stack_start = (uint64_t)(kmalloc(STACK_SIZE, 0)) + STACK_SIZE;
104 io_mfence();
105 memset((void *)cpu_core_info[current_starting_cpu].stack_start - STACK_SIZE, 0, STACK_SIZE);
106 memset((void *)cpu_core_info[current_starting_cpu].ist_stack_start - STACK_SIZE, 0, STACK_SIZE);
107 io_mfence();
108
109 // 设置ap处理器的中断栈及内核栈中的cpu_id
110 ((struct process_control_block *)(cpu_core_info[current_starting_cpu].stack_start - STACK_SIZE))->cpu_id =
111 proc_local_apic_structs[i]->local_apic_id;
112 ((struct process_control_block *)(cpu_core_info[current_starting_cpu].ist_stack_start - STACK_SIZE))->cpu_id =
113 proc_local_apic_structs[i]->local_apic_id;
114
115 cpu_core_info[current_starting_cpu].tss_vaddr = (uint64_t)&initial_tss[current_starting_cpu];
116
117 memset(&initial_tss[current_starting_cpu], 0, sizeof(struct tss_struct));
118 // kdebug("core %d, set tss", current_starting_cpu);
119 set_tss_descriptor(10 + (current_starting_cpu * 2), (void *)(cpu_core_info[current_starting_cpu].tss_vaddr));
120 io_mfence();
121 set_tss64(
122 (uint *)cpu_core_info[current_starting_cpu].tss_vaddr, cpu_core_info[current_starting_cpu].stack_start,
123 cpu_core_info[current_starting_cpu].stack_start, cpu_core_info[current_starting_cpu].stack_start,
124 cpu_core_info[current_starting_cpu].ist_stack_start, cpu_core_info[current_starting_cpu].ist_stack_start,
125 cpu_core_info[current_starting_cpu].ist_stack_start, cpu_core_info[current_starting_cpu].ist_stack_start,
126 cpu_core_info[current_starting_cpu].ist_stack_start, cpu_core_info[current_starting_cpu].ist_stack_start,
127 cpu_core_info[current_starting_cpu].ist_stack_start);
128 io_mfence();
129
130 // kdebug("core %d, to send start up", current_starting_cpu);
131 // 连续发送两次start-up IPI
132 ipi_send_IPI(DEST_PHYSICAL, IDLE, ICR_LEVEL_DE_ASSERT, EDGE_TRIGGER, 0x20, ICR_Start_up, ICR_No_Shorthand,
133 proc_local_apic_structs[i]->local_apic_id);
134 io_mfence();
135 ipi_send_IPI(DEST_PHYSICAL, IDLE, ICR_LEVEL_DE_ASSERT, EDGE_TRIGGER, 0x20, ICR_Start_up, ICR_No_Shorthand,
136 proc_local_apic_structs[i]->local_apic_id);
137 // kdebug("core %d, send start up ok", current_starting_cpu);
138 }
139 io_mfence();
140 while (num_cpu_started != (core_to_start + 1))
141 pause();
142
143 kinfo("Cleaning page table remapping...\n");
144
145 // 由于ap处理器初始化过程需要用到0x00处的地址,因此初始化完毕后才取消内存地址的重映射
146 rs_unmap_at_low_addr();
147 kdebug("init proc's preempt_count=%ld", current_pcb->preempt_count);
148 kinfo("Successfully cleaned page table remapping!\n");
149 }
150
151 /**
152 * @brief AP处理器启动后执行的第一个函数
153 *
154 */
smp_ap_start()155 void smp_ap_start()
156 {
157
158 // 切换栈基地址
159 // uint64_t stack_start = (uint64_t)kmalloc(STACK_SIZE, 0) + STACK_SIZE;
160 __asm__ __volatile__("movq %0, %%rbp \n\t" ::"m"(cpu_core_info[current_starting_cpu].stack_start)
161 : "memory");
162 __asm__ __volatile__("movq %0, %%rsp \n\t" ::"m"(cpu_core_info[current_starting_cpu].stack_start)
163 : "memory");
164
165 ksuccess("AP core %d successfully started!", current_starting_cpu);
166 io_mfence();
167 ++num_cpu_started;
168
169 apic_init_ap_core_local_apic();
170
171 // ============ 为ap处理器初始化IDLE进程 =============
172 memset(current_pcb, 0, sizeof(struct process_control_block));
173
174 barrier();
175 current_pcb->state = PROC_RUNNING;
176 current_pcb->flags = PF_KTHREAD;
177 current_pcb->address_space = NULL;
178 rs_smp_init_idle();
179
180 list_init(¤t_pcb->list);
181 current_pcb->addr_limit = KERNEL_BASE_LINEAR_ADDR;
182 current_pcb->priority = 2;
183 current_pcb->virtual_runtime = 0;
184
185 current_pcb->thread = (struct thread_struct *)(current_pcb + 1); // 将线程结构体放置在pcb后方
186 current_pcb->thread->rbp = cpu_core_info[current_starting_cpu].stack_start;
187 current_pcb->thread->rsp = cpu_core_info[current_starting_cpu].stack_start;
188 current_pcb->thread->fs = KERNEL_DS;
189 current_pcb->thread->gs = KERNEL_DS;
190 current_pcb->cpu_id = current_starting_cpu;
191
192 initial_proc[proc_current_cpu_id] = current_pcb;
193 barrier();
194 load_TR(10 + current_starting_cpu * 2);
195 current_pcb->preempt_count = 0;
196
197 sched_set_cpu_idle(current_starting_cpu, current_pcb);
198
199 io_mfence();
200 spin_unlock(&multi_core_starting_lock);
201 preempt_disable(); // 由于ap处理器的pcb与bsp的不同,因此ap处理器放锁时,需要手动恢复preempt count
202 io_mfence();
203 current_pcb->flags |= PF_NEED_SCHED;
204
205 apic_timer_ap_core_init();
206 sti();
207 sched();
208
209 while (1)
210 {
211 // kdebug("123");
212 hlt();
213 }
214
215 while (1)
216 {
217 printk_color(BLACK, WHITE, "CPU:%d IDLE process.\n", proc_current_cpu_id);
218 }
219 while (1) // 这里要循环hlt,原因是当收到中断后,核心会被唤醒,处理完中断之后不会自动hlt
220 hlt();
221 }
222
223 /**
224 * @brief kick_cpu 核心间通信的处理函数
225 *
226 * @param irq_num
227 * @param param
228 * @param regs
229 */
__smp_kick_cpu_handler(uint64_t irq_num,uint64_t param,struct pt_regs * regs)230 static void __smp_kick_cpu_handler(uint64_t irq_num, uint64_t param, struct pt_regs *regs)
231 {
232 if (user_mode(regs))
233 return;
234 sched();
235 }
236
__smp__flush_tlb_ipi_handler(uint64_t irq_num,uint64_t param,struct pt_regs * regs)237 static void __smp__flush_tlb_ipi_handler(uint64_t irq_num, uint64_t param, struct pt_regs *regs)
238 {
239 if (user_mode(regs))
240 return;
241 flush_tlb();
242 }
243
244 /**
245 * @brief 获取当前全部的cpu数目
246 *
247 * @return uint32_t
248 */
smp_get_total_cpu()249 uint32_t smp_get_total_cpu()
250 {
251 return num_cpu_started;
252 }