1 /*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #ifndef _TLS_OFFLOAD_H
35 #define _TLS_OFFLOAD_H
36
37 #include <linux/types.h>
38 #include <asm/byteorder.h>
39 #include <linux/crypto.h>
40 #include <linux/socket.h>
41 #include <linux/tcp.h>
42 #include <linux/mutex.h>
43 #include <linux/netdevice.h>
44 #include <linux/rcupdate.h>
45
46 #include <net/net_namespace.h>
47 #include <net/tcp.h>
48 #include <net/strparser.h>
49 #include <crypto/aead.h>
50 #include <uapi/linux/tls.h>
51
52 struct tls_rec;
53
54 /* Maximum data size carried in a TLS record */
55 #define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14)
56
57 #define TLS_HEADER_SIZE 5
58 #define TLS_NONCE_OFFSET TLS_HEADER_SIZE
59
60 #define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type)
61
62 #define TLS_AAD_SPACE_SIZE 13
63
64 #define MAX_IV_SIZE 16
65 #define TLS_TAG_SIZE 16
66 #define TLS_MAX_REC_SEQ_SIZE 8
67 #define TLS_MAX_AAD_SIZE TLS_AAD_SPACE_SIZE
68
69 /* For CCM mode, the full 16-bytes of IV is made of '4' fields of given sizes.
70 *
71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72 *
73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74 * Hence b0 contains (3 - 1) = 2.
75 */
76 #define TLS_AES_CCM_IV_B0_BYTE 2
77 #define TLS_SM4_CCM_IV_B0_BYTE 2
78
79 enum {
80 TLS_BASE,
81 TLS_SW,
82 TLS_HW,
83 TLS_HW_RECORD,
84 TLS_NUM_CONFIG,
85 };
86
87 struct tx_work {
88 struct delayed_work work;
89 struct sock *sk;
90 };
91
92 struct tls_sw_context_tx {
93 struct crypto_aead *aead_send;
94 struct crypto_wait async_wait;
95 struct tx_work tx_work;
96 struct tls_rec *open_rec;
97 struct list_head tx_list;
98 atomic_t encrypt_pending;
99 u8 async_capable:1;
100
101 #define BIT_TX_SCHEDULED 0
102 #define BIT_TX_CLOSING 1
103 unsigned long tx_bitmask;
104 };
105
106 struct tls_strparser {
107 struct sock *sk;
108
109 u32 mark : 8;
110 u32 stopped : 1;
111 u32 copy_mode : 1;
112 u32 mixed_decrypted : 1;
113 u32 msg_ready : 1;
114
115 struct strp_msg stm;
116
117 struct sk_buff *anchor;
118 struct work_struct work;
119 };
120
121 struct tls_sw_context_rx {
122 struct crypto_aead *aead_recv;
123 struct crypto_wait async_wait;
124 struct sk_buff_head rx_list; /* list of decrypted 'data' records */
125 void (*saved_data_ready)(struct sock *sk);
126
127 u8 reader_present;
128 u8 async_capable:1;
129 u8 zc_capable:1;
130 u8 reader_contended:1;
131
132 struct tls_strparser strp;
133
134 atomic_t decrypt_pending;
135 struct sk_buff_head async_hold;
136 struct wait_queue_head wq;
137 };
138
139 struct tls_record_info {
140 struct list_head list;
141 u32 end_seq;
142 int len;
143 int num_frags;
144 skb_frag_t frags[MAX_SKB_FRAGS];
145 };
146
147 struct tls_offload_context_tx {
148 struct crypto_aead *aead_send;
149 spinlock_t lock; /* protects records list */
150 struct list_head records_list;
151 struct tls_record_info *open_record;
152 struct tls_record_info *retransmit_hint;
153 u64 hint_record_sn;
154 u64 unacked_record_sn;
155
156 struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
157 void (*sk_destruct)(struct sock *sk);
158 struct work_struct destruct_work;
159 struct tls_context *ctx;
160 u8 driver_state[] __aligned(8);
161 /* The TLS layer reserves room for driver specific state
162 * Currently the belief is that there is not enough
163 * driver specific state to justify another layer of indirection
164 */
165 #define TLS_DRIVER_STATE_SIZE_TX 16
166 };
167
168 #define TLS_OFFLOAD_CONTEXT_SIZE_TX \
169 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
170
171 enum tls_context_flags {
172 /* tls_device_down was called after the netdev went down, device state
173 * was released, and kTLS works in software, even though rx_conf is
174 * still TLS_HW (needed for transition).
175 */
176 TLS_RX_DEV_DEGRADED = 0,
177 /* Unlike RX where resync is driven entirely by the core in TX only
178 * the driver knows when things went out of sync, so we need the flag
179 * to be atomic.
180 */
181 TLS_TX_SYNC_SCHED = 1,
182 /* tls_dev_del was called for the RX side, device state was released,
183 * but tls_ctx->netdev might still be kept, because TX-side driver
184 * resources might not be released yet. Used to prevent the second
185 * tls_dev_del call in tls_device_down if it happens simultaneously.
186 */
187 TLS_RX_DEV_CLOSED = 2,
188 };
189
190 struct cipher_context {
191 char *iv;
192 char *rec_seq;
193 };
194
195 union tls_crypto_context {
196 struct tls_crypto_info info;
197 union {
198 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
199 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
200 struct tls12_crypto_info_chacha20_poly1305 chacha20_poly1305;
201 struct tls12_crypto_info_sm4_gcm sm4_gcm;
202 struct tls12_crypto_info_sm4_ccm sm4_ccm;
203 };
204 };
205
206 struct tls_prot_info {
207 u16 version;
208 u16 cipher_type;
209 u16 prepend_size;
210 u16 tag_size;
211 u16 overhead_size;
212 u16 iv_size;
213 u16 salt_size;
214 u16 rec_seq_size;
215 u16 aad_size;
216 u16 tail_size;
217 };
218
219 struct tls_context {
220 /* read-only cache line */
221 struct tls_prot_info prot_info;
222
223 u8 tx_conf:3;
224 u8 rx_conf:3;
225 u8 zerocopy_sendfile:1;
226 u8 rx_no_pad:1;
227
228 int (*push_pending_record)(struct sock *sk, int flags);
229 void (*sk_write_space)(struct sock *sk);
230
231 void *priv_ctx_tx;
232 void *priv_ctx_rx;
233
234 struct net_device __rcu *netdev;
235
236 /* rw cache line */
237 struct cipher_context tx;
238 struct cipher_context rx;
239
240 struct scatterlist *partially_sent_record;
241 u16 partially_sent_offset;
242
243 bool splicing_pages;
244 bool pending_open_record_frags;
245
246 struct mutex tx_lock; /* protects partially_sent_* fields and
247 * per-type TX fields
248 */
249 unsigned long flags;
250
251 /* cache cold stuff */
252 struct proto *sk_proto;
253 struct sock *sk;
254
255 void (*sk_destruct)(struct sock *sk);
256
257 union tls_crypto_context crypto_send;
258 union tls_crypto_context crypto_recv;
259
260 struct list_head list;
261 refcount_t refcount;
262 struct rcu_head rcu;
263 };
264
265 enum tls_offload_ctx_dir {
266 TLS_OFFLOAD_CTX_DIR_RX,
267 TLS_OFFLOAD_CTX_DIR_TX,
268 };
269
270 struct tlsdev_ops {
271 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
272 enum tls_offload_ctx_dir direction,
273 struct tls_crypto_info *crypto_info,
274 u32 start_offload_tcp_sn);
275 void (*tls_dev_del)(struct net_device *netdev,
276 struct tls_context *ctx,
277 enum tls_offload_ctx_dir direction);
278 int (*tls_dev_resync)(struct net_device *netdev,
279 struct sock *sk, u32 seq, u8 *rcd_sn,
280 enum tls_offload_ctx_dir direction);
281 };
282
283 enum tls_offload_sync_type {
284 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
285 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
286 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
287 };
288
289 #define TLS_DEVICE_RESYNC_NH_START_IVAL 2
290 #define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128
291
292 #define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13
293 struct tls_offload_resync_async {
294 atomic64_t req;
295 u16 loglen;
296 u16 rcd_delta;
297 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
298 };
299
300 struct tls_offload_context_rx {
301 /* sw must be the first member of tls_offload_context_rx */
302 struct tls_sw_context_rx sw;
303 enum tls_offload_sync_type resync_type;
304 /* this member is set regardless of resync_type, to avoid branches */
305 u8 resync_nh_reset:1;
306 /* CORE_NEXT_HINT-only member, but use the hole here */
307 u8 resync_nh_do_now:1;
308 union {
309 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
310 struct {
311 atomic64_t resync_req;
312 };
313 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
314 struct {
315 u32 decrypted_failed;
316 u32 decrypted_tgt;
317 } resync_nh;
318 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
319 struct {
320 struct tls_offload_resync_async *resync_async;
321 };
322 };
323 u8 driver_state[] __aligned(8);
324 /* The TLS layer reserves room for driver specific state
325 * Currently the belief is that there is not enough
326 * driver specific state to justify another layer of indirection
327 */
328 #define TLS_DRIVER_STATE_SIZE_RX 8
329 };
330
331 #define TLS_OFFLOAD_CONTEXT_SIZE_RX \
332 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
333
334 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
335 u32 seq, u64 *p_record_sn);
336
tls_record_is_start_marker(struct tls_record_info * rec)337 static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
338 {
339 return rec->len == 0;
340 }
341
tls_record_start_seq(struct tls_record_info * rec)342 static inline u32 tls_record_start_seq(struct tls_record_info *rec)
343 {
344 return rec->end_seq - rec->len;
345 }
346
347 struct sk_buff *
348 tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
349 struct sk_buff *skb);
350 struct sk_buff *
351 tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
352 struct sk_buff *skb);
353
tls_is_skb_tx_device_offloaded(const struct sk_buff * skb)354 static inline bool tls_is_skb_tx_device_offloaded(const struct sk_buff *skb)
355 {
356 #ifdef CONFIG_TLS_DEVICE
357 struct sock *sk = skb->sk;
358
359 return sk && sk_fullsock(sk) &&
360 (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
361 &tls_validate_xmit_skb);
362 #else
363 return false;
364 #endif
365 }
366
tls_get_ctx(const struct sock * sk)367 static inline struct tls_context *tls_get_ctx(const struct sock *sk)
368 {
369 struct inet_connection_sock *icsk = inet_csk(sk);
370
371 /* Use RCU on icsk_ulp_data only for sock diag code,
372 * TLS data path doesn't need rcu_dereference().
373 */
374 return (__force void *)icsk->icsk_ulp_data;
375 }
376
tls_sw_ctx_rx(const struct tls_context * tls_ctx)377 static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
378 const struct tls_context *tls_ctx)
379 {
380 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
381 }
382
tls_sw_ctx_tx(const struct tls_context * tls_ctx)383 static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
384 const struct tls_context *tls_ctx)
385 {
386 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
387 }
388
389 static inline struct tls_offload_context_tx *
tls_offload_ctx_tx(const struct tls_context * tls_ctx)390 tls_offload_ctx_tx(const struct tls_context *tls_ctx)
391 {
392 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
393 }
394
tls_sw_has_ctx_tx(const struct sock * sk)395 static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
396 {
397 struct tls_context *ctx = tls_get_ctx(sk);
398
399 if (!ctx)
400 return false;
401 return !!tls_sw_ctx_tx(ctx);
402 }
403
tls_sw_has_ctx_rx(const struct sock * sk)404 static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
405 {
406 struct tls_context *ctx = tls_get_ctx(sk);
407
408 if (!ctx)
409 return false;
410 return !!tls_sw_ctx_rx(ctx);
411 }
412
413 static inline struct tls_offload_context_rx *
tls_offload_ctx_rx(const struct tls_context * tls_ctx)414 tls_offload_ctx_rx(const struct tls_context *tls_ctx)
415 {
416 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
417 }
418
__tls_driver_ctx(struct tls_context * tls_ctx,enum tls_offload_ctx_dir direction)419 static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
420 enum tls_offload_ctx_dir direction)
421 {
422 if (direction == TLS_OFFLOAD_CTX_DIR_TX)
423 return tls_offload_ctx_tx(tls_ctx)->driver_state;
424 else
425 return tls_offload_ctx_rx(tls_ctx)->driver_state;
426 }
427
428 static inline void *
tls_driver_ctx(const struct sock * sk,enum tls_offload_ctx_dir direction)429 tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
430 {
431 return __tls_driver_ctx(tls_get_ctx(sk), direction);
432 }
433
434 #define RESYNC_REQ BIT(0)
435 #define RESYNC_REQ_ASYNC BIT(1)
436 /* The TLS context is valid until sk_destruct is called */
tls_offload_rx_resync_request(struct sock * sk,__be32 seq)437 static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
438 {
439 struct tls_context *tls_ctx = tls_get_ctx(sk);
440 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
441
442 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
443 }
444
445 /* Log all TLS record header TCP sequences in [seq, seq+len] */
446 static inline void
tls_offload_rx_resync_async_request_start(struct sock * sk,__be32 seq,u16 len)447 tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
448 {
449 struct tls_context *tls_ctx = tls_get_ctx(sk);
450 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
451
452 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
453 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
454 rx_ctx->resync_async->loglen = 0;
455 rx_ctx->resync_async->rcd_delta = 0;
456 }
457
458 static inline void
tls_offload_rx_resync_async_request_end(struct sock * sk,__be32 seq)459 tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
460 {
461 struct tls_context *tls_ctx = tls_get_ctx(sk);
462 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
463
464 atomic64_set(&rx_ctx->resync_async->req,
465 ((u64)ntohl(seq) << 32) | RESYNC_REQ);
466 }
467
468 static inline void
tls_offload_rx_resync_set_type(struct sock * sk,enum tls_offload_sync_type type)469 tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
470 {
471 struct tls_context *tls_ctx = tls_get_ctx(sk);
472
473 tls_offload_ctx_rx(tls_ctx)->resync_type = type;
474 }
475
476 /* Driver's seq tracking has to be disabled until resync succeeded */
tls_offload_tx_resync_pending(struct sock * sk)477 static inline bool tls_offload_tx_resync_pending(struct sock *sk)
478 {
479 struct tls_context *tls_ctx = tls_get_ctx(sk);
480 bool ret;
481
482 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
483 smp_mb__after_atomic();
484 return ret;
485 }
486
487 struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
488
489 #ifdef CONFIG_TLS_DEVICE
490 void tls_device_sk_destruct(struct sock *sk);
491 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
492
tls_is_sk_rx_device_offloaded(struct sock * sk)493 static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
494 {
495 if (!sk_fullsock(sk) ||
496 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
497 return false;
498 return tls_get_ctx(sk)->rx_conf == TLS_HW;
499 }
500 #endif
501 #endif /* _TLS_OFFLOAD_H */
502