1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright(c) 1999 - 2018 Intel Corporation. */
3
4 /* 82562G 10/100 Network Connection
5 * 82562G-2 10/100 Network Connection
6 * 82562GT 10/100 Network Connection
7 * 82562GT-2 10/100 Network Connection
8 * 82562V 10/100 Network Connection
9 * 82562V-2 10/100 Network Connection
10 * 82566DC-2 Gigabit Network Connection
11 * 82566DC Gigabit Network Connection
12 * 82566DM-2 Gigabit Network Connection
13 * 82566DM Gigabit Network Connection
14 * 82566MC Gigabit Network Connection
15 * 82566MM Gigabit Network Connection
16 * 82567LM Gigabit Network Connection
17 * 82567LF Gigabit Network Connection
18 * 82567V Gigabit Network Connection
19 * 82567LM-2 Gigabit Network Connection
20 * 82567LF-2 Gigabit Network Connection
21 * 82567V-2 Gigabit Network Connection
22 * 82567LF-3 Gigabit Network Connection
23 * 82567LM-3 Gigabit Network Connection
24 * 82567LM-4 Gigabit Network Connection
25 * 82577LM Gigabit Network Connection
26 * 82577LC Gigabit Network Connection
27 * 82578DM Gigabit Network Connection
28 * 82578DC Gigabit Network Connection
29 * 82579LM Gigabit Network Connection
30 * 82579V Gigabit Network Connection
31 * Ethernet Connection I217-LM
32 * Ethernet Connection I217-V
33 * Ethernet Connection I218-V
34 * Ethernet Connection I218-LM
35 * Ethernet Connection (2) I218-LM
36 * Ethernet Connection (2) I218-V
37 * Ethernet Connection (3) I218-LM
38 * Ethernet Connection (3) I218-V
39 */
40
41 #include "e1000.h"
42
43 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
44 /* Offset 04h HSFSTS */
45 union ich8_hws_flash_status {
46 struct ich8_hsfsts {
47 u16 flcdone:1; /* bit 0 Flash Cycle Done */
48 u16 flcerr:1; /* bit 1 Flash Cycle Error */
49 u16 dael:1; /* bit 2 Direct Access error Log */
50 u16 berasesz:2; /* bit 4:3 Sector Erase Size */
51 u16 flcinprog:1; /* bit 5 flash cycle in Progress */
52 u16 reserved1:2; /* bit 13:6 Reserved */
53 u16 reserved2:6; /* bit 13:6 Reserved */
54 u16 fldesvalid:1; /* bit 14 Flash Descriptor Valid */
55 u16 flockdn:1; /* bit 15 Flash Config Lock-Down */
56 } hsf_status;
57 u16 regval;
58 };
59
60 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
61 /* Offset 06h FLCTL */
62 union ich8_hws_flash_ctrl {
63 struct ich8_hsflctl {
64 u16 flcgo:1; /* 0 Flash Cycle Go */
65 u16 flcycle:2; /* 2:1 Flash Cycle */
66 u16 reserved:5; /* 7:3 Reserved */
67 u16 fldbcount:2; /* 9:8 Flash Data Byte Count */
68 u16 flockdn:6; /* 15:10 Reserved */
69 } hsf_ctrl;
70 u16 regval;
71 };
72
73 /* ICH Flash Region Access Permissions */
74 union ich8_hws_flash_regacc {
75 struct ich8_flracc {
76 u32 grra:8; /* 0:7 GbE region Read Access */
77 u32 grwa:8; /* 8:15 GbE region Write Access */
78 u32 gmrag:8; /* 23:16 GbE Master Read Access Grant */
79 u32 gmwag:8; /* 31:24 GbE Master Write Access Grant */
80 } hsf_flregacc;
81 u16 regval;
82 };
83
84 /* ICH Flash Protected Region */
85 union ich8_flash_protected_range {
86 struct ich8_pr {
87 u32 base:13; /* 0:12 Protected Range Base */
88 u32 reserved1:2; /* 13:14 Reserved */
89 u32 rpe:1; /* 15 Read Protection Enable */
90 u32 limit:13; /* 16:28 Protected Range Limit */
91 u32 reserved2:2; /* 29:30 Reserved */
92 u32 wpe:1; /* 31 Write Protection Enable */
93 } range;
94 u32 regval;
95 };
96
97 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw);
98 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw);
99 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank);
100 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
101 u32 offset, u8 byte);
102 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
103 u8 *data);
104 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
105 u16 *data);
106 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
107 u8 size, u16 *data);
108 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
109 u32 *data);
110 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw,
111 u32 offset, u32 *data);
112 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw,
113 u32 offset, u32 data);
114 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
115 u32 offset, u32 dword);
116 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw);
117 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw);
118 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw);
119 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw);
120 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw);
121 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw);
122 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw);
123 static s32 e1000_led_on_pchlan(struct e1000_hw *hw);
124 static s32 e1000_led_off_pchlan(struct e1000_hw *hw);
125 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active);
126 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw);
127 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw);
128 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link);
129 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw);
130 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw);
131 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw);
132 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index);
133 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index);
134 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw);
135 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw);
136 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate);
137 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force);
138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw);
139 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state);
140
__er16flash(struct e1000_hw * hw,unsigned long reg)141 static inline u16 __er16flash(struct e1000_hw *hw, unsigned long reg)
142 {
143 return readw(hw->flash_address + reg);
144 }
145
__er32flash(struct e1000_hw * hw,unsigned long reg)146 static inline u32 __er32flash(struct e1000_hw *hw, unsigned long reg)
147 {
148 return readl(hw->flash_address + reg);
149 }
150
__ew16flash(struct e1000_hw * hw,unsigned long reg,u16 val)151 static inline void __ew16flash(struct e1000_hw *hw, unsigned long reg, u16 val)
152 {
153 writew(val, hw->flash_address + reg);
154 }
155
__ew32flash(struct e1000_hw * hw,unsigned long reg,u32 val)156 static inline void __ew32flash(struct e1000_hw *hw, unsigned long reg, u32 val)
157 {
158 writel(val, hw->flash_address + reg);
159 }
160
161 #define er16flash(reg) __er16flash(hw, (reg))
162 #define er32flash(reg) __er32flash(hw, (reg))
163 #define ew16flash(reg, val) __ew16flash(hw, (reg), (val))
164 #define ew32flash(reg, val) __ew32flash(hw, (reg), (val))
165
166 /**
167 * e1000_phy_is_accessible_pchlan - Check if able to access PHY registers
168 * @hw: pointer to the HW structure
169 *
170 * Test access to the PHY registers by reading the PHY ID registers. If
171 * the PHY ID is already known (e.g. resume path) compare it with known ID,
172 * otherwise assume the read PHY ID is correct if it is valid.
173 *
174 * Assumes the sw/fw/hw semaphore is already acquired.
175 **/
e1000_phy_is_accessible_pchlan(struct e1000_hw * hw)176 static bool e1000_phy_is_accessible_pchlan(struct e1000_hw *hw)
177 {
178 u16 phy_reg = 0;
179 u32 phy_id = 0;
180 s32 ret_val = 0;
181 u16 retry_count;
182 u32 mac_reg = 0;
183
184 for (retry_count = 0; retry_count < 2; retry_count++) {
185 ret_val = e1e_rphy_locked(hw, MII_PHYSID1, &phy_reg);
186 if (ret_val || (phy_reg == 0xFFFF))
187 continue;
188 phy_id = (u32)(phy_reg << 16);
189
190 ret_val = e1e_rphy_locked(hw, MII_PHYSID2, &phy_reg);
191 if (ret_val || (phy_reg == 0xFFFF)) {
192 phy_id = 0;
193 continue;
194 }
195 phy_id |= (u32)(phy_reg & PHY_REVISION_MASK);
196 break;
197 }
198
199 if (hw->phy.id) {
200 if (hw->phy.id == phy_id)
201 goto out;
202 } else if (phy_id) {
203 hw->phy.id = phy_id;
204 hw->phy.revision = (u32)(phy_reg & ~PHY_REVISION_MASK);
205 goto out;
206 }
207
208 /* In case the PHY needs to be in mdio slow mode,
209 * set slow mode and try to get the PHY id again.
210 */
211 if (hw->mac.type < e1000_pch_lpt) {
212 hw->phy.ops.release(hw);
213 ret_val = e1000_set_mdio_slow_mode_hv(hw);
214 if (!ret_val)
215 ret_val = e1000e_get_phy_id(hw);
216 hw->phy.ops.acquire(hw);
217 }
218
219 if (ret_val)
220 return false;
221 out:
222 if (hw->mac.type >= e1000_pch_lpt) {
223 /* Only unforce SMBus if ME is not active */
224 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
225 /* Unforce SMBus mode in PHY */
226 e1e_rphy_locked(hw, CV_SMB_CTRL, &phy_reg);
227 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
228 e1e_wphy_locked(hw, CV_SMB_CTRL, phy_reg);
229
230 /* Unforce SMBus mode in MAC */
231 mac_reg = er32(CTRL_EXT);
232 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
233 ew32(CTRL_EXT, mac_reg);
234 }
235 }
236
237 return true;
238 }
239
240 /**
241 * e1000_toggle_lanphypc_pch_lpt - toggle the LANPHYPC pin value
242 * @hw: pointer to the HW structure
243 *
244 * Toggling the LANPHYPC pin value fully power-cycles the PHY and is
245 * used to reset the PHY to a quiescent state when necessary.
246 **/
e1000_toggle_lanphypc_pch_lpt(struct e1000_hw * hw)247 static void e1000_toggle_lanphypc_pch_lpt(struct e1000_hw *hw)
248 {
249 u32 mac_reg;
250
251 /* Set Phy Config Counter to 50msec */
252 mac_reg = er32(FEXTNVM3);
253 mac_reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
254 mac_reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
255 ew32(FEXTNVM3, mac_reg);
256
257 /* Toggle LANPHYPC Value bit */
258 mac_reg = er32(CTRL);
259 mac_reg |= E1000_CTRL_LANPHYPC_OVERRIDE;
260 mac_reg &= ~E1000_CTRL_LANPHYPC_VALUE;
261 ew32(CTRL, mac_reg);
262 e1e_flush();
263 usleep_range(10, 20);
264 mac_reg &= ~E1000_CTRL_LANPHYPC_OVERRIDE;
265 ew32(CTRL, mac_reg);
266 e1e_flush();
267
268 if (hw->mac.type < e1000_pch_lpt) {
269 msleep(50);
270 } else {
271 u16 count = 20;
272
273 do {
274 usleep_range(5000, 6000);
275 } while (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LPCD) && count--);
276
277 msleep(30);
278 }
279 }
280
281 /**
282 * e1000_init_phy_workarounds_pchlan - PHY initialization workarounds
283 * @hw: pointer to the HW structure
284 *
285 * Workarounds/flow necessary for PHY initialization during driver load
286 * and resume paths.
287 **/
e1000_init_phy_workarounds_pchlan(struct e1000_hw * hw)288 static s32 e1000_init_phy_workarounds_pchlan(struct e1000_hw *hw)
289 {
290 struct e1000_adapter *adapter = hw->adapter;
291 u32 mac_reg, fwsm = er32(FWSM);
292 s32 ret_val;
293
294 /* Gate automatic PHY configuration by hardware on managed and
295 * non-managed 82579 and newer adapters.
296 */
297 e1000_gate_hw_phy_config_ich8lan(hw, true);
298
299 /* It is not possible to be certain of the current state of ULP
300 * so forcibly disable it.
301 */
302 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_unknown;
303 ret_val = e1000_disable_ulp_lpt_lp(hw, true);
304 if (ret_val)
305 e_warn("Failed to disable ULP\n");
306
307 ret_val = hw->phy.ops.acquire(hw);
308 if (ret_val) {
309 e_dbg("Failed to initialize PHY flow\n");
310 goto out;
311 }
312
313 /* The MAC-PHY interconnect may be in SMBus mode. If the PHY is
314 * inaccessible and resetting the PHY is not blocked, toggle the
315 * LANPHYPC Value bit to force the interconnect to PCIe mode.
316 */
317 switch (hw->mac.type) {
318 case e1000_pch_lpt:
319 case e1000_pch_spt:
320 case e1000_pch_cnp:
321 case e1000_pch_tgp:
322 case e1000_pch_adp:
323 case e1000_pch_mtp:
324 case e1000_pch_lnp:
325 case e1000_pch_ptp:
326 case e1000_pch_nvp:
327 if (e1000_phy_is_accessible_pchlan(hw))
328 break;
329
330 /* Before toggling LANPHYPC, see if PHY is accessible by
331 * forcing MAC to SMBus mode first.
332 */
333 mac_reg = er32(CTRL_EXT);
334 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
335 ew32(CTRL_EXT, mac_reg);
336
337 /* Wait 50 milliseconds for MAC to finish any retries
338 * that it might be trying to perform from previous
339 * attempts to acknowledge any phy read requests.
340 */
341 msleep(50);
342
343 fallthrough;
344 case e1000_pch2lan:
345 if (e1000_phy_is_accessible_pchlan(hw))
346 break;
347
348 fallthrough;
349 case e1000_pchlan:
350 if ((hw->mac.type == e1000_pchlan) &&
351 (fwsm & E1000_ICH_FWSM_FW_VALID))
352 break;
353
354 if (hw->phy.ops.check_reset_block(hw)) {
355 e_dbg("Required LANPHYPC toggle blocked by ME\n");
356 ret_val = -E1000_ERR_PHY;
357 break;
358 }
359
360 /* Toggle LANPHYPC Value bit */
361 e1000_toggle_lanphypc_pch_lpt(hw);
362 if (hw->mac.type >= e1000_pch_lpt) {
363 if (e1000_phy_is_accessible_pchlan(hw))
364 break;
365
366 /* Toggling LANPHYPC brings the PHY out of SMBus mode
367 * so ensure that the MAC is also out of SMBus mode
368 */
369 mac_reg = er32(CTRL_EXT);
370 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
371 ew32(CTRL_EXT, mac_reg);
372
373 if (e1000_phy_is_accessible_pchlan(hw))
374 break;
375
376 ret_val = -E1000_ERR_PHY;
377 }
378 break;
379 default:
380 break;
381 }
382
383 hw->phy.ops.release(hw);
384 if (!ret_val) {
385
386 /* Check to see if able to reset PHY. Print error if not */
387 if (hw->phy.ops.check_reset_block(hw)) {
388 e_err("Reset blocked by ME\n");
389 goto out;
390 }
391
392 /* Reset the PHY before any access to it. Doing so, ensures
393 * that the PHY is in a known good state before we read/write
394 * PHY registers. The generic reset is sufficient here,
395 * because we haven't determined the PHY type yet.
396 */
397 ret_val = e1000e_phy_hw_reset_generic(hw);
398 if (ret_val)
399 goto out;
400
401 /* On a successful reset, possibly need to wait for the PHY
402 * to quiesce to an accessible state before returning control
403 * to the calling function. If the PHY does not quiesce, then
404 * return E1000E_BLK_PHY_RESET, as this is the condition that
405 * the PHY is in.
406 */
407 ret_val = hw->phy.ops.check_reset_block(hw);
408 if (ret_val)
409 e_err("ME blocked access to PHY after reset\n");
410 }
411
412 out:
413 /* Ungate automatic PHY configuration on non-managed 82579 */
414 if ((hw->mac.type == e1000_pch2lan) &&
415 !(fwsm & E1000_ICH_FWSM_FW_VALID)) {
416 usleep_range(10000, 11000);
417 e1000_gate_hw_phy_config_ich8lan(hw, false);
418 }
419
420 return ret_val;
421 }
422
423 /**
424 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
425 * @hw: pointer to the HW structure
426 *
427 * Initialize family-specific PHY parameters and function pointers.
428 **/
e1000_init_phy_params_pchlan(struct e1000_hw * hw)429 static s32 e1000_init_phy_params_pchlan(struct e1000_hw *hw)
430 {
431 struct e1000_phy_info *phy = &hw->phy;
432 s32 ret_val;
433
434 phy->addr = 1;
435 phy->reset_delay_us = 100;
436
437 phy->ops.set_page = e1000_set_page_igp;
438 phy->ops.read_reg = e1000_read_phy_reg_hv;
439 phy->ops.read_reg_locked = e1000_read_phy_reg_hv_locked;
440 phy->ops.read_reg_page = e1000_read_phy_reg_page_hv;
441 phy->ops.set_d0_lplu_state = e1000_set_lplu_state_pchlan;
442 phy->ops.set_d3_lplu_state = e1000_set_lplu_state_pchlan;
443 phy->ops.write_reg = e1000_write_phy_reg_hv;
444 phy->ops.write_reg_locked = e1000_write_phy_reg_hv_locked;
445 phy->ops.write_reg_page = e1000_write_phy_reg_page_hv;
446 phy->ops.power_up = e1000_power_up_phy_copper;
447 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
448 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
449
450 phy->id = e1000_phy_unknown;
451
452 ret_val = e1000_init_phy_workarounds_pchlan(hw);
453 if (ret_val)
454 return ret_val;
455
456 if (phy->id == e1000_phy_unknown)
457 switch (hw->mac.type) {
458 default:
459 ret_val = e1000e_get_phy_id(hw);
460 if (ret_val)
461 return ret_val;
462 if ((phy->id != 0) && (phy->id != PHY_REVISION_MASK))
463 break;
464 fallthrough;
465 case e1000_pch2lan:
466 case e1000_pch_lpt:
467 case e1000_pch_spt:
468 case e1000_pch_cnp:
469 case e1000_pch_tgp:
470 case e1000_pch_adp:
471 case e1000_pch_mtp:
472 case e1000_pch_lnp:
473 case e1000_pch_ptp:
474 case e1000_pch_nvp:
475 /* In case the PHY needs to be in mdio slow mode,
476 * set slow mode and try to get the PHY id again.
477 */
478 ret_val = e1000_set_mdio_slow_mode_hv(hw);
479 if (ret_val)
480 return ret_val;
481 ret_val = e1000e_get_phy_id(hw);
482 if (ret_val)
483 return ret_val;
484 break;
485 }
486 phy->type = e1000e_get_phy_type_from_id(phy->id);
487
488 switch (phy->type) {
489 case e1000_phy_82577:
490 case e1000_phy_82579:
491 case e1000_phy_i217:
492 phy->ops.check_polarity = e1000_check_polarity_82577;
493 phy->ops.force_speed_duplex =
494 e1000_phy_force_speed_duplex_82577;
495 phy->ops.get_cable_length = e1000_get_cable_length_82577;
496 phy->ops.get_info = e1000_get_phy_info_82577;
497 phy->ops.commit = e1000e_phy_sw_reset;
498 break;
499 case e1000_phy_82578:
500 phy->ops.check_polarity = e1000_check_polarity_m88;
501 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
502 phy->ops.get_cable_length = e1000e_get_cable_length_m88;
503 phy->ops.get_info = e1000e_get_phy_info_m88;
504 break;
505 default:
506 ret_val = -E1000_ERR_PHY;
507 break;
508 }
509
510 return ret_val;
511 }
512
513 /**
514 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
515 * @hw: pointer to the HW structure
516 *
517 * Initialize family-specific PHY parameters and function pointers.
518 **/
e1000_init_phy_params_ich8lan(struct e1000_hw * hw)519 static s32 e1000_init_phy_params_ich8lan(struct e1000_hw *hw)
520 {
521 struct e1000_phy_info *phy = &hw->phy;
522 s32 ret_val;
523 u16 i = 0;
524
525 phy->addr = 1;
526 phy->reset_delay_us = 100;
527
528 phy->ops.power_up = e1000_power_up_phy_copper;
529 phy->ops.power_down = e1000_power_down_phy_copper_ich8lan;
530
531 /* We may need to do this twice - once for IGP and if that fails,
532 * we'll set BM func pointers and try again
533 */
534 ret_val = e1000e_determine_phy_address(hw);
535 if (ret_val) {
536 phy->ops.write_reg = e1000e_write_phy_reg_bm;
537 phy->ops.read_reg = e1000e_read_phy_reg_bm;
538 ret_val = e1000e_determine_phy_address(hw);
539 if (ret_val) {
540 e_dbg("Cannot determine PHY addr. Erroring out\n");
541 return ret_val;
542 }
543 }
544
545 phy->id = 0;
546 while ((e1000_phy_unknown == e1000e_get_phy_type_from_id(phy->id)) &&
547 (i++ < 100)) {
548 usleep_range(1000, 1100);
549 ret_val = e1000e_get_phy_id(hw);
550 if (ret_val)
551 return ret_val;
552 }
553
554 /* Verify phy id */
555 switch (phy->id) {
556 case IGP03E1000_E_PHY_ID:
557 phy->type = e1000_phy_igp_3;
558 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
559 phy->ops.read_reg_locked = e1000e_read_phy_reg_igp_locked;
560 phy->ops.write_reg_locked = e1000e_write_phy_reg_igp_locked;
561 phy->ops.get_info = e1000e_get_phy_info_igp;
562 phy->ops.check_polarity = e1000_check_polarity_igp;
563 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_igp;
564 break;
565 case IFE_E_PHY_ID:
566 case IFE_PLUS_E_PHY_ID:
567 case IFE_C_E_PHY_ID:
568 phy->type = e1000_phy_ife;
569 phy->autoneg_mask = E1000_ALL_NOT_GIG;
570 phy->ops.get_info = e1000_get_phy_info_ife;
571 phy->ops.check_polarity = e1000_check_polarity_ife;
572 phy->ops.force_speed_duplex = e1000_phy_force_speed_duplex_ife;
573 break;
574 case BME1000_E_PHY_ID:
575 phy->type = e1000_phy_bm;
576 phy->autoneg_mask = AUTONEG_ADVERTISE_SPEED_DEFAULT;
577 phy->ops.read_reg = e1000e_read_phy_reg_bm;
578 phy->ops.write_reg = e1000e_write_phy_reg_bm;
579 phy->ops.commit = e1000e_phy_sw_reset;
580 phy->ops.get_info = e1000e_get_phy_info_m88;
581 phy->ops.check_polarity = e1000_check_polarity_m88;
582 phy->ops.force_speed_duplex = e1000e_phy_force_speed_duplex_m88;
583 break;
584 default:
585 return -E1000_ERR_PHY;
586 }
587
588 return 0;
589 }
590
591 /**
592 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
593 * @hw: pointer to the HW structure
594 *
595 * Initialize family-specific NVM parameters and function
596 * pointers.
597 **/
e1000_init_nvm_params_ich8lan(struct e1000_hw * hw)598 static s32 e1000_init_nvm_params_ich8lan(struct e1000_hw *hw)
599 {
600 struct e1000_nvm_info *nvm = &hw->nvm;
601 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
602 u32 gfpreg, sector_base_addr, sector_end_addr;
603 u16 i;
604 u32 nvm_size;
605
606 nvm->type = e1000_nvm_flash_sw;
607
608 if (hw->mac.type >= e1000_pch_spt) {
609 /* in SPT, gfpreg doesn't exist. NVM size is taken from the
610 * STRAP register. This is because in SPT the GbE Flash region
611 * is no longer accessed through the flash registers. Instead,
612 * the mechanism has changed, and the Flash region access
613 * registers are now implemented in GbE memory space.
614 */
615 nvm->flash_base_addr = 0;
616 nvm_size = (((er32(STRAP) >> 1) & 0x1F) + 1)
617 * NVM_SIZE_MULTIPLIER;
618 nvm->flash_bank_size = nvm_size / 2;
619 /* Adjust to word count */
620 nvm->flash_bank_size /= sizeof(u16);
621 /* Set the base address for flash register access */
622 hw->flash_address = hw->hw_addr + E1000_FLASH_BASE_ADDR;
623 } else {
624 /* Can't read flash registers if register set isn't mapped. */
625 if (!hw->flash_address) {
626 e_dbg("ERROR: Flash registers not mapped\n");
627 return -E1000_ERR_CONFIG;
628 }
629
630 gfpreg = er32flash(ICH_FLASH_GFPREG);
631
632 /* sector_X_addr is a "sector"-aligned address (4096 bytes)
633 * Add 1 to sector_end_addr since this sector is included in
634 * the overall size.
635 */
636 sector_base_addr = gfpreg & FLASH_GFPREG_BASE_MASK;
637 sector_end_addr = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK) + 1;
638
639 /* flash_base_addr is byte-aligned */
640 nvm->flash_base_addr = sector_base_addr
641 << FLASH_SECTOR_ADDR_SHIFT;
642
643 /* find total size of the NVM, then cut in half since the total
644 * size represents two separate NVM banks.
645 */
646 nvm->flash_bank_size = ((sector_end_addr - sector_base_addr)
647 << FLASH_SECTOR_ADDR_SHIFT);
648 nvm->flash_bank_size /= 2;
649 /* Adjust to word count */
650 nvm->flash_bank_size /= sizeof(u16);
651 }
652
653 nvm->word_size = E1000_ICH8_SHADOW_RAM_WORDS;
654
655 /* Clear shadow ram */
656 for (i = 0; i < nvm->word_size; i++) {
657 dev_spec->shadow_ram[i].modified = false;
658 dev_spec->shadow_ram[i].value = 0xFFFF;
659 }
660
661 return 0;
662 }
663
664 /**
665 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
666 * @hw: pointer to the HW structure
667 *
668 * Initialize family-specific MAC parameters and function
669 * pointers.
670 **/
e1000_init_mac_params_ich8lan(struct e1000_hw * hw)671 static s32 e1000_init_mac_params_ich8lan(struct e1000_hw *hw)
672 {
673 struct e1000_mac_info *mac = &hw->mac;
674
675 /* Set media type function pointer */
676 hw->phy.media_type = e1000_media_type_copper;
677
678 /* Set mta register count */
679 mac->mta_reg_count = 32;
680 /* Set rar entry count */
681 mac->rar_entry_count = E1000_ICH_RAR_ENTRIES;
682 if (mac->type == e1000_ich8lan)
683 mac->rar_entry_count--;
684 /* FWSM register */
685 mac->has_fwsm = true;
686 /* ARC subsystem not supported */
687 mac->arc_subsystem_valid = false;
688 /* Adaptive IFS supported */
689 mac->adaptive_ifs = true;
690
691 /* LED and other operations */
692 switch (mac->type) {
693 case e1000_ich8lan:
694 case e1000_ich9lan:
695 case e1000_ich10lan:
696 /* check management mode */
697 mac->ops.check_mng_mode = e1000_check_mng_mode_ich8lan;
698 /* ID LED init */
699 mac->ops.id_led_init = e1000e_id_led_init_generic;
700 /* blink LED */
701 mac->ops.blink_led = e1000e_blink_led_generic;
702 /* setup LED */
703 mac->ops.setup_led = e1000e_setup_led_generic;
704 /* cleanup LED */
705 mac->ops.cleanup_led = e1000_cleanup_led_ich8lan;
706 /* turn on/off LED */
707 mac->ops.led_on = e1000_led_on_ich8lan;
708 mac->ops.led_off = e1000_led_off_ich8lan;
709 break;
710 case e1000_pch2lan:
711 mac->rar_entry_count = E1000_PCH2_RAR_ENTRIES;
712 mac->ops.rar_set = e1000_rar_set_pch2lan;
713 fallthrough;
714 case e1000_pch_lpt:
715 case e1000_pch_spt:
716 case e1000_pch_cnp:
717 case e1000_pch_tgp:
718 case e1000_pch_adp:
719 case e1000_pch_mtp:
720 case e1000_pch_lnp:
721 case e1000_pch_ptp:
722 case e1000_pch_nvp:
723 case e1000_pchlan:
724 /* check management mode */
725 mac->ops.check_mng_mode = e1000_check_mng_mode_pchlan;
726 /* ID LED init */
727 mac->ops.id_led_init = e1000_id_led_init_pchlan;
728 /* setup LED */
729 mac->ops.setup_led = e1000_setup_led_pchlan;
730 /* cleanup LED */
731 mac->ops.cleanup_led = e1000_cleanup_led_pchlan;
732 /* turn on/off LED */
733 mac->ops.led_on = e1000_led_on_pchlan;
734 mac->ops.led_off = e1000_led_off_pchlan;
735 break;
736 default:
737 break;
738 }
739
740 if (mac->type >= e1000_pch_lpt) {
741 mac->rar_entry_count = E1000_PCH_LPT_RAR_ENTRIES;
742 mac->ops.rar_set = e1000_rar_set_pch_lpt;
743 mac->ops.setup_physical_interface =
744 e1000_setup_copper_link_pch_lpt;
745 mac->ops.rar_get_count = e1000_rar_get_count_pch_lpt;
746 }
747
748 /* Enable PCS Lock-loss workaround for ICH8 */
749 if (mac->type == e1000_ich8lan)
750 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw, true);
751
752 return 0;
753 }
754
755 /**
756 * __e1000_access_emi_reg_locked - Read/write EMI register
757 * @hw: pointer to the HW structure
758 * @address: EMI address to program
759 * @data: pointer to value to read/write from/to the EMI address
760 * @read: boolean flag to indicate read or write
761 *
762 * This helper function assumes the SW/FW/HW Semaphore is already acquired.
763 **/
__e1000_access_emi_reg_locked(struct e1000_hw * hw,u16 address,u16 * data,bool read)764 static s32 __e1000_access_emi_reg_locked(struct e1000_hw *hw, u16 address,
765 u16 *data, bool read)
766 {
767 s32 ret_val;
768
769 ret_val = e1e_wphy_locked(hw, I82579_EMI_ADDR, address);
770 if (ret_val)
771 return ret_val;
772
773 if (read)
774 ret_val = e1e_rphy_locked(hw, I82579_EMI_DATA, data);
775 else
776 ret_val = e1e_wphy_locked(hw, I82579_EMI_DATA, *data);
777
778 return ret_val;
779 }
780
781 /**
782 * e1000_read_emi_reg_locked - Read Extended Management Interface register
783 * @hw: pointer to the HW structure
784 * @addr: EMI address to program
785 * @data: value to be read from the EMI address
786 *
787 * Assumes the SW/FW/HW Semaphore is already acquired.
788 **/
e1000_read_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 * data)789 s32 e1000_read_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 *data)
790 {
791 return __e1000_access_emi_reg_locked(hw, addr, data, true);
792 }
793
794 /**
795 * e1000_write_emi_reg_locked - Write Extended Management Interface register
796 * @hw: pointer to the HW structure
797 * @addr: EMI address to program
798 * @data: value to be written to the EMI address
799 *
800 * Assumes the SW/FW/HW Semaphore is already acquired.
801 **/
e1000_write_emi_reg_locked(struct e1000_hw * hw,u16 addr,u16 data)802 s32 e1000_write_emi_reg_locked(struct e1000_hw *hw, u16 addr, u16 data)
803 {
804 return __e1000_access_emi_reg_locked(hw, addr, &data, false);
805 }
806
807 /**
808 * e1000_set_eee_pchlan - Enable/disable EEE support
809 * @hw: pointer to the HW structure
810 *
811 * Enable/disable EEE based on setting in dev_spec structure, the duplex of
812 * the link and the EEE capabilities of the link partner. The LPI Control
813 * register bits will remain set only if/when link is up.
814 *
815 * EEE LPI must not be asserted earlier than one second after link is up.
816 * On 82579, EEE LPI should not be enabled until such time otherwise there
817 * can be link issues with some switches. Other devices can have EEE LPI
818 * enabled immediately upon link up since they have a timer in hardware which
819 * prevents LPI from being asserted too early.
820 **/
e1000_set_eee_pchlan(struct e1000_hw * hw)821 s32 e1000_set_eee_pchlan(struct e1000_hw *hw)
822 {
823 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
824 s32 ret_val;
825 u16 lpa, pcs_status, adv, adv_addr, lpi_ctrl, data;
826
827 switch (hw->phy.type) {
828 case e1000_phy_82579:
829 lpa = I82579_EEE_LP_ABILITY;
830 pcs_status = I82579_EEE_PCS_STATUS;
831 adv_addr = I82579_EEE_ADVERTISEMENT;
832 break;
833 case e1000_phy_i217:
834 lpa = I217_EEE_LP_ABILITY;
835 pcs_status = I217_EEE_PCS_STATUS;
836 adv_addr = I217_EEE_ADVERTISEMENT;
837 break;
838 default:
839 return 0;
840 }
841
842 ret_val = hw->phy.ops.acquire(hw);
843 if (ret_val)
844 return ret_val;
845
846 ret_val = e1e_rphy_locked(hw, I82579_LPI_CTRL, &lpi_ctrl);
847 if (ret_val)
848 goto release;
849
850 /* Clear bits that enable EEE in various speeds */
851 lpi_ctrl &= ~I82579_LPI_CTRL_ENABLE_MASK;
852
853 /* Enable EEE if not disabled by user */
854 if (!dev_spec->eee_disable) {
855 /* Save off link partner's EEE ability */
856 ret_val = e1000_read_emi_reg_locked(hw, lpa,
857 &dev_spec->eee_lp_ability);
858 if (ret_val)
859 goto release;
860
861 /* Read EEE advertisement */
862 ret_val = e1000_read_emi_reg_locked(hw, adv_addr, &adv);
863 if (ret_val)
864 goto release;
865
866 /* Enable EEE only for speeds in which the link partner is
867 * EEE capable and for which we advertise EEE.
868 */
869 if (adv & dev_spec->eee_lp_ability & I82579_EEE_1000_SUPPORTED)
870 lpi_ctrl |= I82579_LPI_CTRL_1000_ENABLE;
871
872 if (adv & dev_spec->eee_lp_ability & I82579_EEE_100_SUPPORTED) {
873 e1e_rphy_locked(hw, MII_LPA, &data);
874 if (data & LPA_100FULL)
875 lpi_ctrl |= I82579_LPI_CTRL_100_ENABLE;
876 else
877 /* EEE is not supported in 100Half, so ignore
878 * partner's EEE in 100 ability if full-duplex
879 * is not advertised.
880 */
881 dev_spec->eee_lp_ability &=
882 ~I82579_EEE_100_SUPPORTED;
883 }
884 }
885
886 if (hw->phy.type == e1000_phy_82579) {
887 ret_val = e1000_read_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
888 &data);
889 if (ret_val)
890 goto release;
891
892 data &= ~I82579_LPI_100_PLL_SHUT;
893 ret_val = e1000_write_emi_reg_locked(hw, I82579_LPI_PLL_SHUT,
894 data);
895 }
896
897 /* R/Clr IEEE MMD 3.1 bits 11:10 - Tx/Rx LPI Received */
898 ret_val = e1000_read_emi_reg_locked(hw, pcs_status, &data);
899 if (ret_val)
900 goto release;
901
902 ret_val = e1e_wphy_locked(hw, I82579_LPI_CTRL, lpi_ctrl);
903 release:
904 hw->phy.ops.release(hw);
905
906 return ret_val;
907 }
908
909 /**
910 * e1000_k1_workaround_lpt_lp - K1 workaround on Lynxpoint-LP
911 * @hw: pointer to the HW structure
912 * @link: link up bool flag
913 *
914 * When K1 is enabled for 1Gbps, the MAC can miss 2 DMA completion indications
915 * preventing further DMA write requests. Workaround the issue by disabling
916 * the de-assertion of the clock request when in 1Gpbs mode.
917 * Also, set appropriate Tx re-transmission timeouts for 10 and 100Half link
918 * speeds in order to avoid Tx hangs.
919 **/
e1000_k1_workaround_lpt_lp(struct e1000_hw * hw,bool link)920 static s32 e1000_k1_workaround_lpt_lp(struct e1000_hw *hw, bool link)
921 {
922 u32 fextnvm6 = er32(FEXTNVM6);
923 u32 status = er32(STATUS);
924 s32 ret_val = 0;
925 u16 reg;
926
927 if (link && (status & E1000_STATUS_SPEED_1000)) {
928 ret_val = hw->phy.ops.acquire(hw);
929 if (ret_val)
930 return ret_val;
931
932 ret_val =
933 e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
934 ®);
935 if (ret_val)
936 goto release;
937
938 ret_val =
939 e1000e_write_kmrn_reg_locked(hw,
940 E1000_KMRNCTRLSTA_K1_CONFIG,
941 reg &
942 ~E1000_KMRNCTRLSTA_K1_ENABLE);
943 if (ret_val)
944 goto release;
945
946 usleep_range(10, 20);
947
948 ew32(FEXTNVM6, fextnvm6 | E1000_FEXTNVM6_REQ_PLL_CLK);
949
950 ret_val =
951 e1000e_write_kmrn_reg_locked(hw,
952 E1000_KMRNCTRLSTA_K1_CONFIG,
953 reg);
954 release:
955 hw->phy.ops.release(hw);
956 } else {
957 /* clear FEXTNVM6 bit 8 on link down or 10/100 */
958 fextnvm6 &= ~E1000_FEXTNVM6_REQ_PLL_CLK;
959
960 if ((hw->phy.revision > 5) || !link ||
961 ((status & E1000_STATUS_SPEED_100) &&
962 (status & E1000_STATUS_FD)))
963 goto update_fextnvm6;
964
965 ret_val = e1e_rphy(hw, I217_INBAND_CTRL, ®);
966 if (ret_val)
967 return ret_val;
968
969 /* Clear link status transmit timeout */
970 reg &= ~I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_MASK;
971
972 if (status & E1000_STATUS_SPEED_100) {
973 /* Set inband Tx timeout to 5x10us for 100Half */
974 reg |= 5 << I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
975
976 /* Do not extend the K1 entry latency for 100Half */
977 fextnvm6 &= ~E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
978 } else {
979 /* Set inband Tx timeout to 50x10us for 10Full/Half */
980 reg |= 50 <<
981 I217_INBAND_CTRL_LINK_STAT_TX_TIMEOUT_SHIFT;
982
983 /* Extend the K1 entry latency for 10 Mbps */
984 fextnvm6 |= E1000_FEXTNVM6_ENABLE_K1_ENTRY_CONDITION;
985 }
986
987 ret_val = e1e_wphy(hw, I217_INBAND_CTRL, reg);
988 if (ret_val)
989 return ret_val;
990
991 update_fextnvm6:
992 ew32(FEXTNVM6, fextnvm6);
993 }
994
995 return ret_val;
996 }
997
998 /**
999 * e1000_platform_pm_pch_lpt - Set platform power management values
1000 * @hw: pointer to the HW structure
1001 * @link: bool indicating link status
1002 *
1003 * Set the Latency Tolerance Reporting (LTR) values for the "PCIe-like"
1004 * GbE MAC in the Lynx Point PCH based on Rx buffer size and link speed
1005 * when link is up (which must not exceed the maximum latency supported
1006 * by the platform), otherwise specify there is no LTR requirement.
1007 * Unlike true-PCIe devices which set the LTR maximum snoop/no-snoop
1008 * latencies in the LTR Extended Capability Structure in the PCIe Extended
1009 * Capability register set, on this device LTR is set by writing the
1010 * equivalent snoop/no-snoop latencies in the LTRV register in the MAC and
1011 * set the SEND bit to send an Intel On-chip System Fabric sideband (IOSF-SB)
1012 * message to the PMC.
1013 **/
e1000_platform_pm_pch_lpt(struct e1000_hw * hw,bool link)1014 static s32 e1000_platform_pm_pch_lpt(struct e1000_hw *hw, bool link)
1015 {
1016 u32 reg = link << (E1000_LTRV_REQ_SHIFT + E1000_LTRV_NOSNOOP_SHIFT) |
1017 link << E1000_LTRV_REQ_SHIFT | E1000_LTRV_SEND;
1018 u32 max_ltr_enc_d = 0; /* maximum LTR decoded by platform */
1019 u32 lat_enc_d = 0; /* latency decoded */
1020 u16 lat_enc = 0; /* latency encoded */
1021
1022 if (link) {
1023 u16 speed, duplex, scale = 0;
1024 u16 max_snoop, max_nosnoop;
1025 u16 max_ltr_enc; /* max LTR latency encoded */
1026 u64 value;
1027 u32 rxa;
1028
1029 if (!hw->adapter->max_frame_size) {
1030 e_dbg("max_frame_size not set.\n");
1031 return -E1000_ERR_CONFIG;
1032 }
1033
1034 hw->mac.ops.get_link_up_info(hw, &speed, &duplex);
1035 if (!speed) {
1036 e_dbg("Speed not set.\n");
1037 return -E1000_ERR_CONFIG;
1038 }
1039
1040 /* Rx Packet Buffer Allocation size (KB) */
1041 rxa = er32(PBA) & E1000_PBA_RXA_MASK;
1042
1043 /* Determine the maximum latency tolerated by the device.
1044 *
1045 * Per the PCIe spec, the tolerated latencies are encoded as
1046 * a 3-bit encoded scale (only 0-5 are valid) multiplied by
1047 * a 10-bit value (0-1023) to provide a range from 1 ns to
1048 * 2^25*(2^10-1) ns. The scale is encoded as 0=2^0ns,
1049 * 1=2^5ns, 2=2^10ns,...5=2^25ns.
1050 */
1051 rxa *= 512;
1052 value = (rxa > hw->adapter->max_frame_size) ?
1053 (rxa - hw->adapter->max_frame_size) * (16000 / speed) :
1054 0;
1055
1056 while (value > PCI_LTR_VALUE_MASK) {
1057 scale++;
1058 value = DIV_ROUND_UP(value, BIT(5));
1059 }
1060 if (scale > E1000_LTRV_SCALE_MAX) {
1061 e_dbg("Invalid LTR latency scale %d\n", scale);
1062 return -E1000_ERR_CONFIG;
1063 }
1064 lat_enc = (u16)((scale << PCI_LTR_SCALE_SHIFT) | value);
1065
1066 /* Determine the maximum latency tolerated by the platform */
1067 pci_read_config_word(hw->adapter->pdev, E1000_PCI_LTR_CAP_LPT,
1068 &max_snoop);
1069 pci_read_config_word(hw->adapter->pdev,
1070 E1000_PCI_LTR_CAP_LPT + 2, &max_nosnoop);
1071 max_ltr_enc = max_t(u16, max_snoop, max_nosnoop);
1072
1073 lat_enc_d = (lat_enc & E1000_LTRV_VALUE_MASK) *
1074 (1U << (E1000_LTRV_SCALE_FACTOR *
1075 ((lat_enc & E1000_LTRV_SCALE_MASK)
1076 >> E1000_LTRV_SCALE_SHIFT)));
1077
1078 max_ltr_enc_d = (max_ltr_enc & E1000_LTRV_VALUE_MASK) *
1079 (1U << (E1000_LTRV_SCALE_FACTOR *
1080 ((max_ltr_enc & E1000_LTRV_SCALE_MASK)
1081 >> E1000_LTRV_SCALE_SHIFT)));
1082
1083 if (lat_enc_d > max_ltr_enc_d)
1084 lat_enc = max_ltr_enc;
1085 }
1086
1087 /* Set Snoop and No-Snoop latencies the same */
1088 reg |= lat_enc | (lat_enc << E1000_LTRV_NOSNOOP_SHIFT);
1089 ew32(LTRV, reg);
1090
1091 return 0;
1092 }
1093
1094 /**
1095 * e1000_enable_ulp_lpt_lp - configure Ultra Low Power mode for LynxPoint-LP
1096 * @hw: pointer to the HW structure
1097 * @to_sx: boolean indicating a system power state transition to Sx
1098 *
1099 * When link is down, configure ULP mode to significantly reduce the power
1100 * to the PHY. If on a Manageability Engine (ME) enabled system, tell the
1101 * ME firmware to start the ULP configuration. If not on an ME enabled
1102 * system, configure the ULP mode by software.
1103 */
e1000_enable_ulp_lpt_lp(struct e1000_hw * hw,bool to_sx)1104 s32 e1000_enable_ulp_lpt_lp(struct e1000_hw *hw, bool to_sx)
1105 {
1106 u32 mac_reg;
1107 s32 ret_val = 0;
1108 u16 phy_reg;
1109 u16 oem_reg = 0;
1110
1111 if ((hw->mac.type < e1000_pch_lpt) ||
1112 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1113 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1114 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1115 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1116 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_on))
1117 return 0;
1118
1119 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1120 /* Request ME configure ULP mode in the PHY */
1121 mac_reg = er32(H2ME);
1122 mac_reg |= E1000_H2ME_ULP | E1000_H2ME_ENFORCE_SETTINGS;
1123 ew32(H2ME, mac_reg);
1124
1125 goto out;
1126 }
1127
1128 if (!to_sx) {
1129 int i = 0;
1130
1131 /* Poll up to 5 seconds for Cable Disconnected indication */
1132 while (!(er32(FEXT) & E1000_FEXT_PHY_CABLE_DISCONNECTED)) {
1133 /* Bail if link is re-acquired */
1134 if (er32(STATUS) & E1000_STATUS_LU)
1135 return -E1000_ERR_PHY;
1136
1137 if (i++ == 100)
1138 break;
1139
1140 msleep(50);
1141 }
1142 e_dbg("CABLE_DISCONNECTED %s set after %dmsec\n",
1143 (er32(FEXT) &
1144 E1000_FEXT_PHY_CABLE_DISCONNECTED) ? "" : "not", i * 50);
1145 }
1146
1147 ret_val = hw->phy.ops.acquire(hw);
1148 if (ret_val)
1149 goto out;
1150
1151 /* Force SMBus mode in PHY */
1152 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1153 if (ret_val)
1154 goto release;
1155 phy_reg |= CV_SMB_CTRL_FORCE_SMBUS;
1156 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1157
1158 /* Force SMBus mode in MAC */
1159 mac_reg = er32(CTRL_EXT);
1160 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1161 ew32(CTRL_EXT, mac_reg);
1162
1163 /* Si workaround for ULP entry flow on i127/rev6 h/w. Enable
1164 * LPLU and disable Gig speed when entering ULP
1165 */
1166 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6)) {
1167 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_OEM_BITS,
1168 &oem_reg);
1169 if (ret_val)
1170 goto release;
1171
1172 phy_reg = oem_reg;
1173 phy_reg |= HV_OEM_BITS_LPLU | HV_OEM_BITS_GBE_DIS;
1174
1175 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1176 phy_reg);
1177
1178 if (ret_val)
1179 goto release;
1180 }
1181
1182 /* Set Inband ULP Exit, Reset to SMBus mode and
1183 * Disable SMBus Release on PERST# in PHY
1184 */
1185 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1186 if (ret_val)
1187 goto release;
1188 phy_reg |= (I218_ULP_CONFIG1_RESET_TO_SMBUS |
1189 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1190 if (to_sx) {
1191 if (er32(WUFC) & E1000_WUFC_LNKC)
1192 phy_reg |= I218_ULP_CONFIG1_WOL_HOST;
1193 else
1194 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1195
1196 phy_reg |= I218_ULP_CONFIG1_STICKY_ULP;
1197 phy_reg &= ~I218_ULP_CONFIG1_INBAND_EXIT;
1198 } else {
1199 phy_reg |= I218_ULP_CONFIG1_INBAND_EXIT;
1200 phy_reg &= ~I218_ULP_CONFIG1_STICKY_ULP;
1201 phy_reg &= ~I218_ULP_CONFIG1_WOL_HOST;
1202 }
1203 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1204
1205 /* Set Disable SMBus Release on PERST# in MAC */
1206 mac_reg = er32(FEXTNVM7);
1207 mac_reg |= E1000_FEXTNVM7_DISABLE_SMB_PERST;
1208 ew32(FEXTNVM7, mac_reg);
1209
1210 /* Commit ULP changes in PHY by starting auto ULP configuration */
1211 phy_reg |= I218_ULP_CONFIG1_START;
1212 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1213
1214 if ((hw->phy.type == e1000_phy_i217) && (hw->phy.revision == 6) &&
1215 to_sx && (er32(STATUS) & E1000_STATUS_LU)) {
1216 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_OEM_BITS,
1217 oem_reg);
1218 if (ret_val)
1219 goto release;
1220 }
1221
1222 release:
1223 hw->phy.ops.release(hw);
1224 out:
1225 if (ret_val)
1226 e_dbg("Error in ULP enable flow: %d\n", ret_val);
1227 else
1228 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_on;
1229
1230 return ret_val;
1231 }
1232
1233 /**
1234 * e1000_disable_ulp_lpt_lp - unconfigure Ultra Low Power mode for LynxPoint-LP
1235 * @hw: pointer to the HW structure
1236 * @force: boolean indicating whether or not to force disabling ULP
1237 *
1238 * Un-configure ULP mode when link is up, the system is transitioned from
1239 * Sx or the driver is unloaded. If on a Manageability Engine (ME) enabled
1240 * system, poll for an indication from ME that ULP has been un-configured.
1241 * If not on an ME enabled system, un-configure the ULP mode by software.
1242 *
1243 * During nominal operation, this function is called when link is acquired
1244 * to disable ULP mode (force=false); otherwise, for example when unloading
1245 * the driver or during Sx->S0 transitions, this is called with force=true
1246 * to forcibly disable ULP.
1247 */
e1000_disable_ulp_lpt_lp(struct e1000_hw * hw,bool force)1248 static s32 e1000_disable_ulp_lpt_lp(struct e1000_hw *hw, bool force)
1249 {
1250 s32 ret_val = 0;
1251 u32 mac_reg;
1252 u16 phy_reg;
1253 int i = 0;
1254
1255 if ((hw->mac.type < e1000_pch_lpt) ||
1256 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_LM) ||
1257 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPT_I217_V) ||
1258 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM2) ||
1259 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V2) ||
1260 (hw->dev_spec.ich8lan.ulp_state == e1000_ulp_state_off))
1261 return 0;
1262
1263 if (er32(FWSM) & E1000_ICH_FWSM_FW_VALID) {
1264 struct e1000_adapter *adapter = hw->adapter;
1265 bool firmware_bug = false;
1266
1267 if (force) {
1268 /* Request ME un-configure ULP mode in the PHY */
1269 mac_reg = er32(H2ME);
1270 mac_reg &= ~E1000_H2ME_ULP;
1271 mac_reg |= E1000_H2ME_ENFORCE_SETTINGS;
1272 ew32(H2ME, mac_reg);
1273 }
1274
1275 /* Poll up to 2.5 seconds for ME to clear ULP_CFG_DONE.
1276 * If this takes more than 1 second, show a warning indicating a
1277 * firmware bug
1278 */
1279 while (er32(FWSM) & E1000_FWSM_ULP_CFG_DONE) {
1280 if (i++ == 250) {
1281 ret_val = -E1000_ERR_PHY;
1282 goto out;
1283 }
1284 if (i > 100 && !firmware_bug)
1285 firmware_bug = true;
1286
1287 usleep_range(10000, 11000);
1288 }
1289 if (firmware_bug)
1290 e_warn("ULP_CONFIG_DONE took %d msec. This is a firmware bug\n",
1291 i * 10);
1292 else
1293 e_dbg("ULP_CONFIG_DONE cleared after %d msec\n",
1294 i * 10);
1295
1296 if (force) {
1297 mac_reg = er32(H2ME);
1298 mac_reg &= ~E1000_H2ME_ENFORCE_SETTINGS;
1299 ew32(H2ME, mac_reg);
1300 } else {
1301 /* Clear H2ME.ULP after ME ULP configuration */
1302 mac_reg = er32(H2ME);
1303 mac_reg &= ~E1000_H2ME_ULP;
1304 ew32(H2ME, mac_reg);
1305 }
1306
1307 goto out;
1308 }
1309
1310 ret_val = hw->phy.ops.acquire(hw);
1311 if (ret_val)
1312 goto out;
1313
1314 if (force)
1315 /* Toggle LANPHYPC Value bit */
1316 e1000_toggle_lanphypc_pch_lpt(hw);
1317
1318 /* Unforce SMBus mode in PHY */
1319 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL, &phy_reg);
1320 if (ret_val) {
1321 /* The MAC might be in PCIe mode, so temporarily force to
1322 * SMBus mode in order to access the PHY.
1323 */
1324 mac_reg = er32(CTRL_EXT);
1325 mac_reg |= E1000_CTRL_EXT_FORCE_SMBUS;
1326 ew32(CTRL_EXT, mac_reg);
1327
1328 msleep(50);
1329
1330 ret_val = e1000_read_phy_reg_hv_locked(hw, CV_SMB_CTRL,
1331 &phy_reg);
1332 if (ret_val)
1333 goto release;
1334 }
1335 phy_reg &= ~CV_SMB_CTRL_FORCE_SMBUS;
1336 e1000_write_phy_reg_hv_locked(hw, CV_SMB_CTRL, phy_reg);
1337
1338 /* Unforce SMBus mode in MAC */
1339 mac_reg = er32(CTRL_EXT);
1340 mac_reg &= ~E1000_CTRL_EXT_FORCE_SMBUS;
1341 ew32(CTRL_EXT, mac_reg);
1342
1343 /* When ULP mode was previously entered, K1 was disabled by the
1344 * hardware. Re-Enable K1 in the PHY when exiting ULP.
1345 */
1346 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_PM_CTRL, &phy_reg);
1347 if (ret_val)
1348 goto release;
1349 phy_reg |= HV_PM_CTRL_K1_ENABLE;
1350 e1000_write_phy_reg_hv_locked(hw, HV_PM_CTRL, phy_reg);
1351
1352 /* Clear ULP enabled configuration */
1353 ret_val = e1000_read_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, &phy_reg);
1354 if (ret_val)
1355 goto release;
1356 phy_reg &= ~(I218_ULP_CONFIG1_IND |
1357 I218_ULP_CONFIG1_STICKY_ULP |
1358 I218_ULP_CONFIG1_RESET_TO_SMBUS |
1359 I218_ULP_CONFIG1_WOL_HOST |
1360 I218_ULP_CONFIG1_INBAND_EXIT |
1361 I218_ULP_CONFIG1_EN_ULP_LANPHYPC |
1362 I218_ULP_CONFIG1_DIS_CLR_STICKY_ON_PERST |
1363 I218_ULP_CONFIG1_DISABLE_SMB_PERST);
1364 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1365
1366 /* Commit ULP changes by starting auto ULP configuration */
1367 phy_reg |= I218_ULP_CONFIG1_START;
1368 e1000_write_phy_reg_hv_locked(hw, I218_ULP_CONFIG1, phy_reg);
1369
1370 /* Clear Disable SMBus Release on PERST# in MAC */
1371 mac_reg = er32(FEXTNVM7);
1372 mac_reg &= ~E1000_FEXTNVM7_DISABLE_SMB_PERST;
1373 ew32(FEXTNVM7, mac_reg);
1374
1375 release:
1376 hw->phy.ops.release(hw);
1377 if (force) {
1378 e1000_phy_hw_reset(hw);
1379 msleep(50);
1380 }
1381 out:
1382 if (ret_val)
1383 e_dbg("Error in ULP disable flow: %d\n", ret_val);
1384 else
1385 hw->dev_spec.ich8lan.ulp_state = e1000_ulp_state_off;
1386
1387 return ret_val;
1388 }
1389
1390 /**
1391 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
1392 * @hw: pointer to the HW structure
1393 *
1394 * Checks to see of the link status of the hardware has changed. If a
1395 * change in link status has been detected, then we read the PHY registers
1396 * to get the current speed/duplex if link exists.
1397 **/
e1000_check_for_copper_link_ich8lan(struct e1000_hw * hw)1398 static s32 e1000_check_for_copper_link_ich8lan(struct e1000_hw *hw)
1399 {
1400 struct e1000_mac_info *mac = &hw->mac;
1401 s32 ret_val, tipg_reg = 0;
1402 u16 emi_addr, emi_val = 0;
1403 bool link;
1404 u16 phy_reg;
1405
1406 /* We only want to go out to the PHY registers to see if Auto-Neg
1407 * has completed and/or if our link status has changed. The
1408 * get_link_status flag is set upon receiving a Link Status
1409 * Change or Rx Sequence Error interrupt.
1410 */
1411 if (!mac->get_link_status)
1412 return 0;
1413 mac->get_link_status = false;
1414
1415 /* First we want to see if the MII Status Register reports
1416 * link. If so, then we want to get the current speed/duplex
1417 * of the PHY.
1418 */
1419 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
1420 if (ret_val)
1421 goto out;
1422
1423 if (hw->mac.type == e1000_pchlan) {
1424 ret_val = e1000_k1_gig_workaround_hv(hw, link);
1425 if (ret_val)
1426 goto out;
1427 }
1428
1429 /* When connected at 10Mbps half-duplex, some parts are excessively
1430 * aggressive resulting in many collisions. To avoid this, increase
1431 * the IPG and reduce Rx latency in the PHY.
1432 */
1433 if ((hw->mac.type >= e1000_pch2lan) && link) {
1434 u16 speed, duplex;
1435
1436 e1000e_get_speed_and_duplex_copper(hw, &speed, &duplex);
1437 tipg_reg = er32(TIPG);
1438 tipg_reg &= ~E1000_TIPG_IPGT_MASK;
1439
1440 if (duplex == HALF_DUPLEX && speed == SPEED_10) {
1441 tipg_reg |= 0xFF;
1442 /* Reduce Rx latency in analog PHY */
1443 emi_val = 0;
1444 } else if (hw->mac.type >= e1000_pch_spt &&
1445 duplex == FULL_DUPLEX && speed != SPEED_1000) {
1446 tipg_reg |= 0xC;
1447 emi_val = 1;
1448 } else {
1449
1450 /* Roll back the default values */
1451 tipg_reg |= 0x08;
1452 emi_val = 1;
1453 }
1454
1455 ew32(TIPG, tipg_reg);
1456
1457 ret_val = hw->phy.ops.acquire(hw);
1458 if (ret_val)
1459 goto out;
1460
1461 if (hw->mac.type == e1000_pch2lan)
1462 emi_addr = I82579_RX_CONFIG;
1463 else
1464 emi_addr = I217_RX_CONFIG;
1465 ret_val = e1000_write_emi_reg_locked(hw, emi_addr, emi_val);
1466
1467 if (hw->mac.type >= e1000_pch_lpt) {
1468 u16 phy_reg;
1469
1470 e1e_rphy_locked(hw, I217_PLL_CLOCK_GATE_REG, &phy_reg);
1471 phy_reg &= ~I217_PLL_CLOCK_GATE_MASK;
1472 if (speed == SPEED_100 || speed == SPEED_10)
1473 phy_reg |= 0x3E8;
1474 else
1475 phy_reg |= 0xFA;
1476 e1e_wphy_locked(hw, I217_PLL_CLOCK_GATE_REG, phy_reg);
1477
1478 if (speed == SPEED_1000) {
1479 hw->phy.ops.read_reg_locked(hw, HV_PM_CTRL,
1480 &phy_reg);
1481
1482 phy_reg |= HV_PM_CTRL_K1_CLK_REQ;
1483
1484 hw->phy.ops.write_reg_locked(hw, HV_PM_CTRL,
1485 phy_reg);
1486 }
1487 }
1488 hw->phy.ops.release(hw);
1489
1490 if (ret_val)
1491 goto out;
1492
1493 if (hw->mac.type >= e1000_pch_spt) {
1494 u16 data;
1495 u16 ptr_gap;
1496
1497 if (speed == SPEED_1000) {
1498 ret_val = hw->phy.ops.acquire(hw);
1499 if (ret_val)
1500 goto out;
1501
1502 ret_val = e1e_rphy_locked(hw,
1503 PHY_REG(776, 20),
1504 &data);
1505 if (ret_val) {
1506 hw->phy.ops.release(hw);
1507 goto out;
1508 }
1509
1510 ptr_gap = (data & (0x3FF << 2)) >> 2;
1511 if (ptr_gap < 0x18) {
1512 data &= ~(0x3FF << 2);
1513 data |= (0x18 << 2);
1514 ret_val =
1515 e1e_wphy_locked(hw,
1516 PHY_REG(776, 20),
1517 data);
1518 }
1519 hw->phy.ops.release(hw);
1520 if (ret_val)
1521 goto out;
1522 } else {
1523 ret_val = hw->phy.ops.acquire(hw);
1524 if (ret_val)
1525 goto out;
1526
1527 ret_val = e1e_wphy_locked(hw,
1528 PHY_REG(776, 20),
1529 0xC023);
1530 hw->phy.ops.release(hw);
1531 if (ret_val)
1532 goto out;
1533
1534 }
1535 }
1536 }
1537
1538 /* I217 Packet Loss issue:
1539 * ensure that FEXTNVM4 Beacon Duration is set correctly
1540 * on power up.
1541 * Set the Beacon Duration for I217 to 8 usec
1542 */
1543 if (hw->mac.type >= e1000_pch_lpt) {
1544 u32 mac_reg;
1545
1546 mac_reg = er32(FEXTNVM4);
1547 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
1548 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_8USEC;
1549 ew32(FEXTNVM4, mac_reg);
1550 }
1551
1552 /* Work-around I218 hang issue */
1553 if ((hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
1554 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
1555 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_LM3) ||
1556 (hw->adapter->pdev->device == E1000_DEV_ID_PCH_I218_V3)) {
1557 ret_val = e1000_k1_workaround_lpt_lp(hw, link);
1558 if (ret_val)
1559 goto out;
1560 }
1561 if (hw->mac.type >= e1000_pch_lpt) {
1562 /* Set platform power management values for
1563 * Latency Tolerance Reporting (LTR)
1564 */
1565 ret_val = e1000_platform_pm_pch_lpt(hw, link);
1566 if (ret_val)
1567 goto out;
1568 }
1569
1570 /* Clear link partner's EEE ability */
1571 hw->dev_spec.ich8lan.eee_lp_ability = 0;
1572
1573 if (hw->mac.type >= e1000_pch_lpt) {
1574 u32 fextnvm6 = er32(FEXTNVM6);
1575
1576 if (hw->mac.type == e1000_pch_spt) {
1577 /* FEXTNVM6 K1-off workaround - for SPT only */
1578 u32 pcieanacfg = er32(PCIEANACFG);
1579
1580 if (pcieanacfg & E1000_FEXTNVM6_K1_OFF_ENABLE)
1581 fextnvm6 |= E1000_FEXTNVM6_K1_OFF_ENABLE;
1582 else
1583 fextnvm6 &= ~E1000_FEXTNVM6_K1_OFF_ENABLE;
1584 }
1585
1586 ew32(FEXTNVM6, fextnvm6);
1587 }
1588
1589 if (!link)
1590 goto out;
1591
1592 switch (hw->mac.type) {
1593 case e1000_pch2lan:
1594 ret_val = e1000_k1_workaround_lv(hw);
1595 if (ret_val)
1596 return ret_val;
1597 fallthrough;
1598 case e1000_pchlan:
1599 if (hw->phy.type == e1000_phy_82578) {
1600 ret_val = e1000_link_stall_workaround_hv(hw);
1601 if (ret_val)
1602 return ret_val;
1603 }
1604
1605 /* Workaround for PCHx parts in half-duplex:
1606 * Set the number of preambles removed from the packet
1607 * when it is passed from the PHY to the MAC to prevent
1608 * the MAC from misinterpreting the packet type.
1609 */
1610 e1e_rphy(hw, HV_KMRN_FIFO_CTRLSTA, &phy_reg);
1611 phy_reg &= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK;
1612
1613 if ((er32(STATUS) & E1000_STATUS_FD) != E1000_STATUS_FD)
1614 phy_reg |= BIT(HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT);
1615
1616 e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, phy_reg);
1617 break;
1618 default:
1619 break;
1620 }
1621
1622 /* Check if there was DownShift, must be checked
1623 * immediately after link-up
1624 */
1625 e1000e_check_downshift(hw);
1626
1627 /* Enable/Disable EEE after link up */
1628 if (hw->phy.type > e1000_phy_82579) {
1629 ret_val = e1000_set_eee_pchlan(hw);
1630 if (ret_val)
1631 return ret_val;
1632 }
1633
1634 /* If we are forcing speed/duplex, then we simply return since
1635 * we have already determined whether we have link or not.
1636 */
1637 if (!mac->autoneg)
1638 return -E1000_ERR_CONFIG;
1639
1640 /* Auto-Neg is enabled. Auto Speed Detection takes care
1641 * of MAC speed/duplex configuration. So we only need to
1642 * configure Collision Distance in the MAC.
1643 */
1644 mac->ops.config_collision_dist(hw);
1645
1646 /* Configure Flow Control now that Auto-Neg has completed.
1647 * First, we need to restore the desired flow control
1648 * settings because we may have had to re-autoneg with a
1649 * different link partner.
1650 */
1651 ret_val = e1000e_config_fc_after_link_up(hw);
1652 if (ret_val)
1653 e_dbg("Error configuring flow control\n");
1654
1655 return ret_val;
1656
1657 out:
1658 mac->get_link_status = true;
1659 return ret_val;
1660 }
1661
e1000_get_variants_ich8lan(struct e1000_adapter * adapter)1662 static s32 e1000_get_variants_ich8lan(struct e1000_adapter *adapter)
1663 {
1664 struct e1000_hw *hw = &adapter->hw;
1665 s32 rc;
1666
1667 rc = e1000_init_mac_params_ich8lan(hw);
1668 if (rc)
1669 return rc;
1670
1671 rc = e1000_init_nvm_params_ich8lan(hw);
1672 if (rc)
1673 return rc;
1674
1675 switch (hw->mac.type) {
1676 case e1000_ich8lan:
1677 case e1000_ich9lan:
1678 case e1000_ich10lan:
1679 rc = e1000_init_phy_params_ich8lan(hw);
1680 break;
1681 case e1000_pchlan:
1682 case e1000_pch2lan:
1683 case e1000_pch_lpt:
1684 case e1000_pch_spt:
1685 case e1000_pch_cnp:
1686 case e1000_pch_tgp:
1687 case e1000_pch_adp:
1688 case e1000_pch_mtp:
1689 case e1000_pch_lnp:
1690 case e1000_pch_ptp:
1691 case e1000_pch_nvp:
1692 rc = e1000_init_phy_params_pchlan(hw);
1693 break;
1694 default:
1695 break;
1696 }
1697 if (rc)
1698 return rc;
1699
1700 /* Disable Jumbo Frame support on parts with Intel 10/100 PHY or
1701 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
1702 */
1703 if ((adapter->hw.phy.type == e1000_phy_ife) ||
1704 ((adapter->hw.mac.type >= e1000_pch2lan) &&
1705 (!(er32(CTRL_EXT) & E1000_CTRL_EXT_LSECCK)))) {
1706 adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES;
1707 adapter->max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
1708
1709 hw->mac.ops.blink_led = NULL;
1710 }
1711
1712 if ((adapter->hw.mac.type == e1000_ich8lan) &&
1713 (adapter->hw.phy.type != e1000_phy_ife))
1714 adapter->flags |= FLAG_LSC_GIG_SPEED_DROP;
1715
1716 /* Enable workaround for 82579 w/ ME enabled */
1717 if ((adapter->hw.mac.type == e1000_pch2lan) &&
1718 (er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
1719 adapter->flags2 |= FLAG2_PCIM2PCI_ARBITER_WA;
1720
1721 return 0;
1722 }
1723
1724 static DEFINE_MUTEX(nvm_mutex);
1725
1726 /**
1727 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
1728 * @hw: pointer to the HW structure
1729 *
1730 * Acquires the mutex for performing NVM operations.
1731 **/
e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused * hw)1732 static s32 e1000_acquire_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1733 {
1734 mutex_lock(&nvm_mutex);
1735
1736 return 0;
1737 }
1738
1739 /**
1740 * e1000_release_nvm_ich8lan - Release NVM mutex
1741 * @hw: pointer to the HW structure
1742 *
1743 * Releases the mutex used while performing NVM operations.
1744 **/
e1000_release_nvm_ich8lan(struct e1000_hw __always_unused * hw)1745 static void e1000_release_nvm_ich8lan(struct e1000_hw __always_unused *hw)
1746 {
1747 mutex_unlock(&nvm_mutex);
1748 }
1749
1750 /**
1751 * e1000_acquire_swflag_ich8lan - Acquire software control flag
1752 * @hw: pointer to the HW structure
1753 *
1754 * Acquires the software control flag for performing PHY and select
1755 * MAC CSR accesses.
1756 **/
e1000_acquire_swflag_ich8lan(struct e1000_hw * hw)1757 static s32 e1000_acquire_swflag_ich8lan(struct e1000_hw *hw)
1758 {
1759 u32 extcnf_ctrl, timeout = PHY_CFG_TIMEOUT;
1760 s32 ret_val = 0;
1761
1762 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE,
1763 &hw->adapter->state)) {
1764 e_dbg("contention for Phy access\n");
1765 return -E1000_ERR_PHY;
1766 }
1767
1768 while (timeout) {
1769 extcnf_ctrl = er32(EXTCNF_CTRL);
1770 if (!(extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG))
1771 break;
1772
1773 mdelay(1);
1774 timeout--;
1775 }
1776
1777 if (!timeout) {
1778 e_dbg("SW has already locked the resource.\n");
1779 ret_val = -E1000_ERR_CONFIG;
1780 goto out;
1781 }
1782
1783 timeout = SW_FLAG_TIMEOUT;
1784
1785 extcnf_ctrl |= E1000_EXTCNF_CTRL_SWFLAG;
1786 ew32(EXTCNF_CTRL, extcnf_ctrl);
1787
1788 while (timeout) {
1789 extcnf_ctrl = er32(EXTCNF_CTRL);
1790 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG)
1791 break;
1792
1793 mdelay(1);
1794 timeout--;
1795 }
1796
1797 if (!timeout) {
1798 e_dbg("Failed to acquire the semaphore, FW or HW has it: FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
1799 er32(FWSM), extcnf_ctrl);
1800 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1801 ew32(EXTCNF_CTRL, extcnf_ctrl);
1802 ret_val = -E1000_ERR_CONFIG;
1803 goto out;
1804 }
1805
1806 out:
1807 if (ret_val)
1808 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1809
1810 return ret_val;
1811 }
1812
1813 /**
1814 * e1000_release_swflag_ich8lan - Release software control flag
1815 * @hw: pointer to the HW structure
1816 *
1817 * Releases the software control flag for performing PHY and select
1818 * MAC CSR accesses.
1819 **/
e1000_release_swflag_ich8lan(struct e1000_hw * hw)1820 static void e1000_release_swflag_ich8lan(struct e1000_hw *hw)
1821 {
1822 u32 extcnf_ctrl;
1823
1824 extcnf_ctrl = er32(EXTCNF_CTRL);
1825
1826 if (extcnf_ctrl & E1000_EXTCNF_CTRL_SWFLAG) {
1827 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_SWFLAG;
1828 ew32(EXTCNF_CTRL, extcnf_ctrl);
1829 } else {
1830 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
1831 }
1832
1833 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
1834 }
1835
1836 /**
1837 * e1000_check_mng_mode_ich8lan - Checks management mode
1838 * @hw: pointer to the HW structure
1839 *
1840 * This checks if the adapter has any manageability enabled.
1841 * This is a function pointer entry point only called by read/write
1842 * routines for the PHY and NVM parts.
1843 **/
e1000_check_mng_mode_ich8lan(struct e1000_hw * hw)1844 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw *hw)
1845 {
1846 u32 fwsm;
1847
1848 fwsm = er32(FWSM);
1849 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1850 ((fwsm & E1000_FWSM_MODE_MASK) ==
1851 (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1852 }
1853
1854 /**
1855 * e1000_check_mng_mode_pchlan - Checks management mode
1856 * @hw: pointer to the HW structure
1857 *
1858 * This checks if the adapter has iAMT enabled.
1859 * This is a function pointer entry point only called by read/write
1860 * routines for the PHY and NVM parts.
1861 **/
e1000_check_mng_mode_pchlan(struct e1000_hw * hw)1862 static bool e1000_check_mng_mode_pchlan(struct e1000_hw *hw)
1863 {
1864 u32 fwsm;
1865
1866 fwsm = er32(FWSM);
1867 return (fwsm & E1000_ICH_FWSM_FW_VALID) &&
1868 (fwsm & (E1000_ICH_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT));
1869 }
1870
1871 /**
1872 * e1000_rar_set_pch2lan - Set receive address register
1873 * @hw: pointer to the HW structure
1874 * @addr: pointer to the receive address
1875 * @index: receive address array register
1876 *
1877 * Sets the receive address array register at index to the address passed
1878 * in by addr. For 82579, RAR[0] is the base address register that is to
1879 * contain the MAC address but RAR[1-6] are reserved for manageability (ME).
1880 * Use SHRA[0-3] in place of those reserved for ME.
1881 **/
e1000_rar_set_pch2lan(struct e1000_hw * hw,u8 * addr,u32 index)1882 static int e1000_rar_set_pch2lan(struct e1000_hw *hw, u8 *addr, u32 index)
1883 {
1884 u32 rar_low, rar_high;
1885
1886 /* HW expects these in little endian so we reverse the byte order
1887 * from network order (big endian) to little endian
1888 */
1889 rar_low = ((u32)addr[0] |
1890 ((u32)addr[1] << 8) |
1891 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1892
1893 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1894
1895 /* If MAC address zero, no need to set the AV bit */
1896 if (rar_low || rar_high)
1897 rar_high |= E1000_RAH_AV;
1898
1899 if (index == 0) {
1900 ew32(RAL(index), rar_low);
1901 e1e_flush();
1902 ew32(RAH(index), rar_high);
1903 e1e_flush();
1904 return 0;
1905 }
1906
1907 /* RAR[1-6] are owned by manageability. Skip those and program the
1908 * next address into the SHRA register array.
1909 */
1910 if (index < (u32)(hw->mac.rar_entry_count)) {
1911 s32 ret_val;
1912
1913 ret_val = e1000_acquire_swflag_ich8lan(hw);
1914 if (ret_val)
1915 goto out;
1916
1917 ew32(SHRAL(index - 1), rar_low);
1918 e1e_flush();
1919 ew32(SHRAH(index - 1), rar_high);
1920 e1e_flush();
1921
1922 e1000_release_swflag_ich8lan(hw);
1923
1924 /* verify the register updates */
1925 if ((er32(SHRAL(index - 1)) == rar_low) &&
1926 (er32(SHRAH(index - 1)) == rar_high))
1927 return 0;
1928
1929 e_dbg("SHRA[%d] might be locked by ME - FWSM=0x%8.8x\n",
1930 (index - 1), er32(FWSM));
1931 }
1932
1933 out:
1934 e_dbg("Failed to write receive address at index %d\n", index);
1935 return -E1000_ERR_CONFIG;
1936 }
1937
1938 /**
1939 * e1000_rar_get_count_pch_lpt - Get the number of available SHRA
1940 * @hw: pointer to the HW structure
1941 *
1942 * Get the number of available receive registers that the Host can
1943 * program. SHRA[0-10] are the shared receive address registers
1944 * that are shared between the Host and manageability engine (ME).
1945 * ME can reserve any number of addresses and the host needs to be
1946 * able to tell how many available registers it has access to.
1947 **/
e1000_rar_get_count_pch_lpt(struct e1000_hw * hw)1948 static u32 e1000_rar_get_count_pch_lpt(struct e1000_hw *hw)
1949 {
1950 u32 wlock_mac;
1951 u32 num_entries;
1952
1953 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
1954 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
1955
1956 switch (wlock_mac) {
1957 case 0:
1958 /* All SHRA[0..10] and RAR[0] available */
1959 num_entries = hw->mac.rar_entry_count;
1960 break;
1961 case 1:
1962 /* Only RAR[0] available */
1963 num_entries = 1;
1964 break;
1965 default:
1966 /* SHRA[0..(wlock_mac - 1)] available + RAR[0] */
1967 num_entries = wlock_mac + 1;
1968 break;
1969 }
1970
1971 return num_entries;
1972 }
1973
1974 /**
1975 * e1000_rar_set_pch_lpt - Set receive address registers
1976 * @hw: pointer to the HW structure
1977 * @addr: pointer to the receive address
1978 * @index: receive address array register
1979 *
1980 * Sets the receive address register array at index to the address passed
1981 * in by addr. For LPT, RAR[0] is the base address register that is to
1982 * contain the MAC address. SHRA[0-10] are the shared receive address
1983 * registers that are shared between the Host and manageability engine (ME).
1984 **/
e1000_rar_set_pch_lpt(struct e1000_hw * hw,u8 * addr,u32 index)1985 static int e1000_rar_set_pch_lpt(struct e1000_hw *hw, u8 *addr, u32 index)
1986 {
1987 u32 rar_low, rar_high;
1988 u32 wlock_mac;
1989
1990 /* HW expects these in little endian so we reverse the byte order
1991 * from network order (big endian) to little endian
1992 */
1993 rar_low = ((u32)addr[0] | ((u32)addr[1] << 8) |
1994 ((u32)addr[2] << 16) | ((u32)addr[3] << 24));
1995
1996 rar_high = ((u32)addr[4] | ((u32)addr[5] << 8));
1997
1998 /* If MAC address zero, no need to set the AV bit */
1999 if (rar_low || rar_high)
2000 rar_high |= E1000_RAH_AV;
2001
2002 if (index == 0) {
2003 ew32(RAL(index), rar_low);
2004 e1e_flush();
2005 ew32(RAH(index), rar_high);
2006 e1e_flush();
2007 return 0;
2008 }
2009
2010 /* The manageability engine (ME) can lock certain SHRAR registers that
2011 * it is using - those registers are unavailable for use.
2012 */
2013 if (index < hw->mac.rar_entry_count) {
2014 wlock_mac = er32(FWSM) & E1000_FWSM_WLOCK_MAC_MASK;
2015 wlock_mac >>= E1000_FWSM_WLOCK_MAC_SHIFT;
2016
2017 /* Check if all SHRAR registers are locked */
2018 if (wlock_mac == 1)
2019 goto out;
2020
2021 if ((wlock_mac == 0) || (index <= wlock_mac)) {
2022 s32 ret_val;
2023
2024 ret_val = e1000_acquire_swflag_ich8lan(hw);
2025
2026 if (ret_val)
2027 goto out;
2028
2029 ew32(SHRAL_PCH_LPT(index - 1), rar_low);
2030 e1e_flush();
2031 ew32(SHRAH_PCH_LPT(index - 1), rar_high);
2032 e1e_flush();
2033
2034 e1000_release_swflag_ich8lan(hw);
2035
2036 /* verify the register updates */
2037 if ((er32(SHRAL_PCH_LPT(index - 1)) == rar_low) &&
2038 (er32(SHRAH_PCH_LPT(index - 1)) == rar_high))
2039 return 0;
2040 }
2041 }
2042
2043 out:
2044 e_dbg("Failed to write receive address at index %d\n", index);
2045 return -E1000_ERR_CONFIG;
2046 }
2047
2048 /**
2049 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
2050 * @hw: pointer to the HW structure
2051 *
2052 * Checks if firmware is blocking the reset of the PHY.
2053 * This is a function pointer entry point only called by
2054 * reset routines.
2055 **/
e1000_check_reset_block_ich8lan(struct e1000_hw * hw)2056 static s32 e1000_check_reset_block_ich8lan(struct e1000_hw *hw)
2057 {
2058 bool blocked = false;
2059 int i = 0;
2060
2061 while ((blocked = !(er32(FWSM) & E1000_ICH_FWSM_RSPCIPHY)) &&
2062 (i++ < 30))
2063 usleep_range(10000, 11000);
2064 return blocked ? E1000_BLK_PHY_RESET : 0;
2065 }
2066
2067 /**
2068 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
2069 * @hw: pointer to the HW structure
2070 *
2071 * Assumes semaphore already acquired.
2072 *
2073 **/
e1000_write_smbus_addr(struct e1000_hw * hw)2074 static s32 e1000_write_smbus_addr(struct e1000_hw *hw)
2075 {
2076 u16 phy_data;
2077 u32 strap = er32(STRAP);
2078 u32 freq = (strap & E1000_STRAP_SMT_FREQ_MASK) >>
2079 E1000_STRAP_SMT_FREQ_SHIFT;
2080 s32 ret_val;
2081
2082 strap &= E1000_STRAP_SMBUS_ADDRESS_MASK;
2083
2084 ret_val = e1000_read_phy_reg_hv_locked(hw, HV_SMB_ADDR, &phy_data);
2085 if (ret_val)
2086 return ret_val;
2087
2088 phy_data &= ~HV_SMB_ADDR_MASK;
2089 phy_data |= (strap >> E1000_STRAP_SMBUS_ADDRESS_SHIFT);
2090 phy_data |= HV_SMB_ADDR_PEC_EN | HV_SMB_ADDR_VALID;
2091
2092 if (hw->phy.type == e1000_phy_i217) {
2093 /* Restore SMBus frequency */
2094 if (freq--) {
2095 phy_data &= ~HV_SMB_ADDR_FREQ_MASK;
2096 phy_data |= (freq & BIT(0)) <<
2097 HV_SMB_ADDR_FREQ_LOW_SHIFT;
2098 phy_data |= (freq & BIT(1)) <<
2099 (HV_SMB_ADDR_FREQ_HIGH_SHIFT - 1);
2100 } else {
2101 e_dbg("Unsupported SMB frequency in PHY\n");
2102 }
2103 }
2104
2105 return e1000_write_phy_reg_hv_locked(hw, HV_SMB_ADDR, phy_data);
2106 }
2107
2108 /**
2109 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
2110 * @hw: pointer to the HW structure
2111 *
2112 * SW should configure the LCD from the NVM extended configuration region
2113 * as a workaround for certain parts.
2114 **/
e1000_sw_lcd_config_ich8lan(struct e1000_hw * hw)2115 static s32 e1000_sw_lcd_config_ich8lan(struct e1000_hw *hw)
2116 {
2117 struct e1000_phy_info *phy = &hw->phy;
2118 u32 i, data, cnf_size, cnf_base_addr, sw_cfg_mask;
2119 s32 ret_val = 0;
2120 u16 word_addr, reg_data, reg_addr, phy_page = 0;
2121
2122 /* Initialize the PHY from the NVM on ICH platforms. This
2123 * is needed due to an issue where the NVM configuration is
2124 * not properly autoloaded after power transitions.
2125 * Therefore, after each PHY reset, we will load the
2126 * configuration data out of the NVM manually.
2127 */
2128 switch (hw->mac.type) {
2129 case e1000_ich8lan:
2130 if (phy->type != e1000_phy_igp_3)
2131 return ret_val;
2132
2133 if ((hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_AMT) ||
2134 (hw->adapter->pdev->device == E1000_DEV_ID_ICH8_IGP_C)) {
2135 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG;
2136 break;
2137 }
2138 fallthrough;
2139 case e1000_pchlan:
2140 case e1000_pch2lan:
2141 case e1000_pch_lpt:
2142 case e1000_pch_spt:
2143 case e1000_pch_cnp:
2144 case e1000_pch_tgp:
2145 case e1000_pch_adp:
2146 case e1000_pch_mtp:
2147 case e1000_pch_lnp:
2148 case e1000_pch_ptp:
2149 case e1000_pch_nvp:
2150 sw_cfg_mask = E1000_FEXTNVM_SW_CONFIG_ICH8M;
2151 break;
2152 default:
2153 return ret_val;
2154 }
2155
2156 ret_val = hw->phy.ops.acquire(hw);
2157 if (ret_val)
2158 return ret_val;
2159
2160 data = er32(FEXTNVM);
2161 if (!(data & sw_cfg_mask))
2162 goto release;
2163
2164 /* Make sure HW does not configure LCD from PHY
2165 * extended configuration before SW configuration
2166 */
2167 data = er32(EXTCNF_CTRL);
2168 if ((hw->mac.type < e1000_pch2lan) &&
2169 (data & E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE))
2170 goto release;
2171
2172 cnf_size = er32(EXTCNF_SIZE);
2173 cnf_size &= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK;
2174 cnf_size >>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT;
2175 if (!cnf_size)
2176 goto release;
2177
2178 cnf_base_addr = data & E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK;
2179 cnf_base_addr >>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT;
2180
2181 if (((hw->mac.type == e1000_pchlan) &&
2182 !(data & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)) ||
2183 (hw->mac.type > e1000_pchlan)) {
2184 /* HW configures the SMBus address and LEDs when the
2185 * OEM and LCD Write Enable bits are set in the NVM.
2186 * When both NVM bits are cleared, SW will configure
2187 * them instead.
2188 */
2189 ret_val = e1000_write_smbus_addr(hw);
2190 if (ret_val)
2191 goto release;
2192
2193 data = er32(LEDCTL);
2194 ret_val = e1000_write_phy_reg_hv_locked(hw, HV_LED_CONFIG,
2195 (u16)data);
2196 if (ret_val)
2197 goto release;
2198 }
2199
2200 /* Configure LCD from extended configuration region. */
2201
2202 /* cnf_base_addr is in DWORD */
2203 word_addr = (u16)(cnf_base_addr << 1);
2204
2205 for (i = 0; i < cnf_size; i++) {
2206 ret_val = e1000_read_nvm(hw, (word_addr + i * 2), 1, ®_data);
2207 if (ret_val)
2208 goto release;
2209
2210 ret_val = e1000_read_nvm(hw, (word_addr + i * 2 + 1),
2211 1, ®_addr);
2212 if (ret_val)
2213 goto release;
2214
2215 /* Save off the PHY page for future writes. */
2216 if (reg_addr == IGP01E1000_PHY_PAGE_SELECT) {
2217 phy_page = reg_data;
2218 continue;
2219 }
2220
2221 reg_addr &= PHY_REG_MASK;
2222 reg_addr |= phy_page;
2223
2224 ret_val = e1e_wphy_locked(hw, (u32)reg_addr, reg_data);
2225 if (ret_val)
2226 goto release;
2227 }
2228
2229 release:
2230 hw->phy.ops.release(hw);
2231 return ret_val;
2232 }
2233
2234 /**
2235 * e1000_k1_gig_workaround_hv - K1 Si workaround
2236 * @hw: pointer to the HW structure
2237 * @link: link up bool flag
2238 *
2239 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
2240 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
2241 * If link is down, the function will restore the default K1 setting located
2242 * in the NVM.
2243 **/
e1000_k1_gig_workaround_hv(struct e1000_hw * hw,bool link)2244 static s32 e1000_k1_gig_workaround_hv(struct e1000_hw *hw, bool link)
2245 {
2246 s32 ret_val = 0;
2247 u16 status_reg = 0;
2248 bool k1_enable = hw->dev_spec.ich8lan.nvm_k1_enabled;
2249
2250 if (hw->mac.type != e1000_pchlan)
2251 return 0;
2252
2253 /* Wrap the whole flow with the sw flag */
2254 ret_val = hw->phy.ops.acquire(hw);
2255 if (ret_val)
2256 return ret_val;
2257
2258 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
2259 if (link) {
2260 if (hw->phy.type == e1000_phy_82578) {
2261 ret_val = e1e_rphy_locked(hw, BM_CS_STATUS,
2262 &status_reg);
2263 if (ret_val)
2264 goto release;
2265
2266 status_reg &= (BM_CS_STATUS_LINK_UP |
2267 BM_CS_STATUS_RESOLVED |
2268 BM_CS_STATUS_SPEED_MASK);
2269
2270 if (status_reg == (BM_CS_STATUS_LINK_UP |
2271 BM_CS_STATUS_RESOLVED |
2272 BM_CS_STATUS_SPEED_1000))
2273 k1_enable = false;
2274 }
2275
2276 if (hw->phy.type == e1000_phy_82577) {
2277 ret_val = e1e_rphy_locked(hw, HV_M_STATUS, &status_reg);
2278 if (ret_val)
2279 goto release;
2280
2281 status_reg &= (HV_M_STATUS_LINK_UP |
2282 HV_M_STATUS_AUTONEG_COMPLETE |
2283 HV_M_STATUS_SPEED_MASK);
2284
2285 if (status_reg == (HV_M_STATUS_LINK_UP |
2286 HV_M_STATUS_AUTONEG_COMPLETE |
2287 HV_M_STATUS_SPEED_1000))
2288 k1_enable = false;
2289 }
2290
2291 /* Link stall fix for link up */
2292 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x0100);
2293 if (ret_val)
2294 goto release;
2295
2296 } else {
2297 /* Link stall fix for link down */
2298 ret_val = e1e_wphy_locked(hw, PHY_REG(770, 19), 0x4100);
2299 if (ret_val)
2300 goto release;
2301 }
2302
2303 ret_val = e1000_configure_k1_ich8lan(hw, k1_enable);
2304
2305 release:
2306 hw->phy.ops.release(hw);
2307
2308 return ret_val;
2309 }
2310
2311 /**
2312 * e1000_configure_k1_ich8lan - Configure K1 power state
2313 * @hw: pointer to the HW structure
2314 * @k1_enable: K1 state to configure
2315 *
2316 * Configure the K1 power state based on the provided parameter.
2317 * Assumes semaphore already acquired.
2318 *
2319 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2320 **/
e1000_configure_k1_ich8lan(struct e1000_hw * hw,bool k1_enable)2321 s32 e1000_configure_k1_ich8lan(struct e1000_hw *hw, bool k1_enable)
2322 {
2323 s32 ret_val;
2324 u32 ctrl_reg = 0;
2325 u32 ctrl_ext = 0;
2326 u32 reg = 0;
2327 u16 kmrn_reg = 0;
2328
2329 ret_val = e1000e_read_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2330 &kmrn_reg);
2331 if (ret_val)
2332 return ret_val;
2333
2334 if (k1_enable)
2335 kmrn_reg |= E1000_KMRNCTRLSTA_K1_ENABLE;
2336 else
2337 kmrn_reg &= ~E1000_KMRNCTRLSTA_K1_ENABLE;
2338
2339 ret_val = e1000e_write_kmrn_reg_locked(hw, E1000_KMRNCTRLSTA_K1_CONFIG,
2340 kmrn_reg);
2341 if (ret_val)
2342 return ret_val;
2343
2344 usleep_range(20, 40);
2345 ctrl_ext = er32(CTRL_EXT);
2346 ctrl_reg = er32(CTRL);
2347
2348 reg = ctrl_reg & ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
2349 reg |= E1000_CTRL_FRCSPD;
2350 ew32(CTRL, reg);
2351
2352 ew32(CTRL_EXT, ctrl_ext | E1000_CTRL_EXT_SPD_BYPS);
2353 e1e_flush();
2354 usleep_range(20, 40);
2355 ew32(CTRL, ctrl_reg);
2356 ew32(CTRL_EXT, ctrl_ext);
2357 e1e_flush();
2358 usleep_range(20, 40);
2359
2360 return 0;
2361 }
2362
2363 /**
2364 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
2365 * @hw: pointer to the HW structure
2366 * @d0_state: boolean if entering d0 or d3 device state
2367 *
2368 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
2369 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
2370 * in NVM determines whether HW should configure LPLU and Gbe Disable.
2371 **/
e1000_oem_bits_config_ich8lan(struct e1000_hw * hw,bool d0_state)2372 static s32 e1000_oem_bits_config_ich8lan(struct e1000_hw *hw, bool d0_state)
2373 {
2374 s32 ret_val = 0;
2375 u32 mac_reg;
2376 u16 oem_reg;
2377
2378 if (hw->mac.type < e1000_pchlan)
2379 return ret_val;
2380
2381 ret_val = hw->phy.ops.acquire(hw);
2382 if (ret_val)
2383 return ret_val;
2384
2385 if (hw->mac.type == e1000_pchlan) {
2386 mac_reg = er32(EXTCNF_CTRL);
2387 if (mac_reg & E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE)
2388 goto release;
2389 }
2390
2391 mac_reg = er32(FEXTNVM);
2392 if (!(mac_reg & E1000_FEXTNVM_SW_CONFIG_ICH8M))
2393 goto release;
2394
2395 mac_reg = er32(PHY_CTRL);
2396
2397 ret_val = e1e_rphy_locked(hw, HV_OEM_BITS, &oem_reg);
2398 if (ret_val)
2399 goto release;
2400
2401 oem_reg &= ~(HV_OEM_BITS_GBE_DIS | HV_OEM_BITS_LPLU);
2402
2403 if (d0_state) {
2404 if (mac_reg & E1000_PHY_CTRL_GBE_DISABLE)
2405 oem_reg |= HV_OEM_BITS_GBE_DIS;
2406
2407 if (mac_reg & E1000_PHY_CTRL_D0A_LPLU)
2408 oem_reg |= HV_OEM_BITS_LPLU;
2409 } else {
2410 if (mac_reg & (E1000_PHY_CTRL_GBE_DISABLE |
2411 E1000_PHY_CTRL_NOND0A_GBE_DISABLE))
2412 oem_reg |= HV_OEM_BITS_GBE_DIS;
2413
2414 if (mac_reg & (E1000_PHY_CTRL_D0A_LPLU |
2415 E1000_PHY_CTRL_NOND0A_LPLU))
2416 oem_reg |= HV_OEM_BITS_LPLU;
2417 }
2418
2419 /* Set Restart auto-neg to activate the bits */
2420 if ((d0_state || (hw->mac.type != e1000_pchlan)) &&
2421 !hw->phy.ops.check_reset_block(hw))
2422 oem_reg |= HV_OEM_BITS_RESTART_AN;
2423
2424 ret_val = e1e_wphy_locked(hw, HV_OEM_BITS, oem_reg);
2425
2426 release:
2427 hw->phy.ops.release(hw);
2428
2429 return ret_val;
2430 }
2431
2432 /**
2433 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
2434 * @hw: pointer to the HW structure
2435 **/
e1000_set_mdio_slow_mode_hv(struct e1000_hw * hw)2436 static s32 e1000_set_mdio_slow_mode_hv(struct e1000_hw *hw)
2437 {
2438 s32 ret_val;
2439 u16 data;
2440
2441 ret_val = e1e_rphy(hw, HV_KMRN_MODE_CTRL, &data);
2442 if (ret_val)
2443 return ret_val;
2444
2445 data |= HV_KMRN_MDIO_SLOW;
2446
2447 ret_val = e1e_wphy(hw, HV_KMRN_MODE_CTRL, data);
2448
2449 return ret_val;
2450 }
2451
2452 /**
2453 * e1000_hv_phy_workarounds_ich8lan - apply PHY workarounds
2454 * @hw: pointer to the HW structure
2455 *
2456 * A series of PHY workarounds to be done after every PHY reset.
2457 **/
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw * hw)2458 static s32 e1000_hv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2459 {
2460 s32 ret_val = 0;
2461 u16 phy_data;
2462
2463 if (hw->mac.type != e1000_pchlan)
2464 return 0;
2465
2466 /* Set MDIO slow mode before any other MDIO access */
2467 if (hw->phy.type == e1000_phy_82577) {
2468 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2469 if (ret_val)
2470 return ret_val;
2471 }
2472
2473 if (((hw->phy.type == e1000_phy_82577) &&
2474 ((hw->phy.revision == 1) || (hw->phy.revision == 2))) ||
2475 ((hw->phy.type == e1000_phy_82578) && (hw->phy.revision == 1))) {
2476 /* Disable generation of early preamble */
2477 ret_val = e1e_wphy(hw, PHY_REG(769, 25), 0x4431);
2478 if (ret_val)
2479 return ret_val;
2480
2481 /* Preamble tuning for SSC */
2482 ret_val = e1e_wphy(hw, HV_KMRN_FIFO_CTRLSTA, 0xA204);
2483 if (ret_val)
2484 return ret_val;
2485 }
2486
2487 if (hw->phy.type == e1000_phy_82578) {
2488 /* Return registers to default by doing a soft reset then
2489 * writing 0x3140 to the control register.
2490 */
2491 if (hw->phy.revision < 2) {
2492 e1000e_phy_sw_reset(hw);
2493 ret_val = e1e_wphy(hw, MII_BMCR, 0x3140);
2494 if (ret_val)
2495 return ret_val;
2496 }
2497 }
2498
2499 /* Select page 0 */
2500 ret_val = hw->phy.ops.acquire(hw);
2501 if (ret_val)
2502 return ret_val;
2503
2504 hw->phy.addr = 1;
2505 ret_val = e1000e_write_phy_reg_mdic(hw, IGP01E1000_PHY_PAGE_SELECT, 0);
2506 hw->phy.ops.release(hw);
2507 if (ret_val)
2508 return ret_val;
2509
2510 /* Configure the K1 Si workaround during phy reset assuming there is
2511 * link so that it disables K1 if link is in 1Gbps.
2512 */
2513 ret_val = e1000_k1_gig_workaround_hv(hw, true);
2514 if (ret_val)
2515 return ret_val;
2516
2517 /* Workaround for link disconnects on a busy hub in half duplex */
2518 ret_val = hw->phy.ops.acquire(hw);
2519 if (ret_val)
2520 return ret_val;
2521 ret_val = e1e_rphy_locked(hw, BM_PORT_GEN_CFG, &phy_data);
2522 if (ret_val)
2523 goto release;
2524 ret_val = e1e_wphy_locked(hw, BM_PORT_GEN_CFG, phy_data & 0x00FF);
2525 if (ret_val)
2526 goto release;
2527
2528 /* set MSE higher to enable link to stay up when noise is high */
2529 ret_val = e1000_write_emi_reg_locked(hw, I82577_MSE_THRESHOLD, 0x0034);
2530 release:
2531 hw->phy.ops.release(hw);
2532
2533 return ret_val;
2534 }
2535
2536 /**
2537 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
2538 * @hw: pointer to the HW structure
2539 **/
e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw * hw)2540 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw *hw)
2541 {
2542 u32 mac_reg;
2543 u16 i, phy_reg = 0;
2544 s32 ret_val;
2545
2546 ret_val = hw->phy.ops.acquire(hw);
2547 if (ret_val)
2548 return;
2549 ret_val = e1000_enable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2550 if (ret_val)
2551 goto release;
2552
2553 /* Copy both RAL/H (rar_entry_count) and SHRAL/H to PHY */
2554 for (i = 0; i < (hw->mac.rar_entry_count); i++) {
2555 mac_reg = er32(RAL(i));
2556 hw->phy.ops.write_reg_page(hw, BM_RAR_L(i),
2557 (u16)(mac_reg & 0xFFFF));
2558 hw->phy.ops.write_reg_page(hw, BM_RAR_M(i),
2559 (u16)((mac_reg >> 16) & 0xFFFF));
2560
2561 mac_reg = er32(RAH(i));
2562 hw->phy.ops.write_reg_page(hw, BM_RAR_H(i),
2563 (u16)(mac_reg & 0xFFFF));
2564 hw->phy.ops.write_reg_page(hw, BM_RAR_CTRL(i),
2565 (u16)((mac_reg & E1000_RAH_AV)
2566 >> 16));
2567 }
2568
2569 e1000_disable_phy_wakeup_reg_access_bm(hw, &phy_reg);
2570
2571 release:
2572 hw->phy.ops.release(hw);
2573 }
2574
2575 /**
2576 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
2577 * with 82579 PHY
2578 * @hw: pointer to the HW structure
2579 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
2580 **/
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw * hw,bool enable)2581 s32 e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw *hw, bool enable)
2582 {
2583 s32 ret_val = 0;
2584 u16 phy_reg, data;
2585 u32 mac_reg;
2586 u16 i;
2587
2588 if (hw->mac.type < e1000_pch2lan)
2589 return 0;
2590
2591 /* disable Rx path while enabling/disabling workaround */
2592 e1e_rphy(hw, PHY_REG(769, 20), &phy_reg);
2593 ret_val = e1e_wphy(hw, PHY_REG(769, 20), phy_reg | BIT(14));
2594 if (ret_val)
2595 return ret_val;
2596
2597 if (enable) {
2598 /* Write Rx addresses (rar_entry_count for RAL/H, and
2599 * SHRAL/H) and initial CRC values to the MAC
2600 */
2601 for (i = 0; i < hw->mac.rar_entry_count; i++) {
2602 u8 mac_addr[ETH_ALEN] = { 0 };
2603 u32 addr_high, addr_low;
2604
2605 addr_high = er32(RAH(i));
2606 if (!(addr_high & E1000_RAH_AV))
2607 continue;
2608 addr_low = er32(RAL(i));
2609 mac_addr[0] = (addr_low & 0xFF);
2610 mac_addr[1] = ((addr_low >> 8) & 0xFF);
2611 mac_addr[2] = ((addr_low >> 16) & 0xFF);
2612 mac_addr[3] = ((addr_low >> 24) & 0xFF);
2613 mac_addr[4] = (addr_high & 0xFF);
2614 mac_addr[5] = ((addr_high >> 8) & 0xFF);
2615
2616 ew32(PCH_RAICC(i), ~ether_crc_le(ETH_ALEN, mac_addr));
2617 }
2618
2619 /* Write Rx addresses to the PHY */
2620 e1000_copy_rx_addrs_to_phy_ich8lan(hw);
2621
2622 /* Enable jumbo frame workaround in the MAC */
2623 mac_reg = er32(FFLT_DBG);
2624 mac_reg &= ~BIT(14);
2625 mac_reg |= (7 << 15);
2626 ew32(FFLT_DBG, mac_reg);
2627
2628 mac_reg = er32(RCTL);
2629 mac_reg |= E1000_RCTL_SECRC;
2630 ew32(RCTL, mac_reg);
2631
2632 ret_val = e1000e_read_kmrn_reg(hw,
2633 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2634 &data);
2635 if (ret_val)
2636 return ret_val;
2637 ret_val = e1000e_write_kmrn_reg(hw,
2638 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2639 data | BIT(0));
2640 if (ret_val)
2641 return ret_val;
2642 ret_val = e1000e_read_kmrn_reg(hw,
2643 E1000_KMRNCTRLSTA_HD_CTRL,
2644 &data);
2645 if (ret_val)
2646 return ret_val;
2647 data &= ~(0xF << 8);
2648 data |= (0xB << 8);
2649 ret_val = e1000e_write_kmrn_reg(hw,
2650 E1000_KMRNCTRLSTA_HD_CTRL,
2651 data);
2652 if (ret_val)
2653 return ret_val;
2654
2655 /* Enable jumbo frame workaround in the PHY */
2656 e1e_rphy(hw, PHY_REG(769, 23), &data);
2657 data &= ~(0x7F << 5);
2658 data |= (0x37 << 5);
2659 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2660 if (ret_val)
2661 return ret_val;
2662 e1e_rphy(hw, PHY_REG(769, 16), &data);
2663 data &= ~BIT(13);
2664 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2665 if (ret_val)
2666 return ret_val;
2667 e1e_rphy(hw, PHY_REG(776, 20), &data);
2668 data &= ~(0x3FF << 2);
2669 data |= (E1000_TX_PTR_GAP << 2);
2670 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2671 if (ret_val)
2672 return ret_val;
2673 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0xF100);
2674 if (ret_val)
2675 return ret_val;
2676 e1e_rphy(hw, HV_PM_CTRL, &data);
2677 ret_val = e1e_wphy(hw, HV_PM_CTRL, data | BIT(10));
2678 if (ret_val)
2679 return ret_val;
2680 } else {
2681 /* Write MAC register values back to h/w defaults */
2682 mac_reg = er32(FFLT_DBG);
2683 mac_reg &= ~(0xF << 14);
2684 ew32(FFLT_DBG, mac_reg);
2685
2686 mac_reg = er32(RCTL);
2687 mac_reg &= ~E1000_RCTL_SECRC;
2688 ew32(RCTL, mac_reg);
2689
2690 ret_val = e1000e_read_kmrn_reg(hw,
2691 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2692 &data);
2693 if (ret_val)
2694 return ret_val;
2695 ret_val = e1000e_write_kmrn_reg(hw,
2696 E1000_KMRNCTRLSTA_CTRL_OFFSET,
2697 data & ~BIT(0));
2698 if (ret_val)
2699 return ret_val;
2700 ret_val = e1000e_read_kmrn_reg(hw,
2701 E1000_KMRNCTRLSTA_HD_CTRL,
2702 &data);
2703 if (ret_val)
2704 return ret_val;
2705 data &= ~(0xF << 8);
2706 data |= (0xB << 8);
2707 ret_val = e1000e_write_kmrn_reg(hw,
2708 E1000_KMRNCTRLSTA_HD_CTRL,
2709 data);
2710 if (ret_val)
2711 return ret_val;
2712
2713 /* Write PHY register values back to h/w defaults */
2714 e1e_rphy(hw, PHY_REG(769, 23), &data);
2715 data &= ~(0x7F << 5);
2716 ret_val = e1e_wphy(hw, PHY_REG(769, 23), data);
2717 if (ret_val)
2718 return ret_val;
2719 e1e_rphy(hw, PHY_REG(769, 16), &data);
2720 data |= BIT(13);
2721 ret_val = e1e_wphy(hw, PHY_REG(769, 16), data);
2722 if (ret_val)
2723 return ret_val;
2724 e1e_rphy(hw, PHY_REG(776, 20), &data);
2725 data &= ~(0x3FF << 2);
2726 data |= (0x8 << 2);
2727 ret_val = e1e_wphy(hw, PHY_REG(776, 20), data);
2728 if (ret_val)
2729 return ret_val;
2730 ret_val = e1e_wphy(hw, PHY_REG(776, 23), 0x7E00);
2731 if (ret_val)
2732 return ret_val;
2733 e1e_rphy(hw, HV_PM_CTRL, &data);
2734 ret_val = e1e_wphy(hw, HV_PM_CTRL, data & ~BIT(10));
2735 if (ret_val)
2736 return ret_val;
2737 }
2738
2739 /* re-enable Rx path after enabling/disabling workaround */
2740 return e1e_wphy(hw, PHY_REG(769, 20), phy_reg & ~BIT(14));
2741 }
2742
2743 /**
2744 * e1000_lv_phy_workarounds_ich8lan - apply ich8 specific workarounds
2745 * @hw: pointer to the HW structure
2746 *
2747 * A series of PHY workarounds to be done after every PHY reset.
2748 **/
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw * hw)2749 static s32 e1000_lv_phy_workarounds_ich8lan(struct e1000_hw *hw)
2750 {
2751 s32 ret_val = 0;
2752
2753 if (hw->mac.type != e1000_pch2lan)
2754 return 0;
2755
2756 /* Set MDIO slow mode before any other MDIO access */
2757 ret_val = e1000_set_mdio_slow_mode_hv(hw);
2758 if (ret_val)
2759 return ret_val;
2760
2761 ret_val = hw->phy.ops.acquire(hw);
2762 if (ret_val)
2763 return ret_val;
2764 /* set MSE higher to enable link to stay up when noise is high */
2765 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_THRESHOLD, 0x0034);
2766 if (ret_val)
2767 goto release;
2768 /* drop link after 5 times MSE threshold was reached */
2769 ret_val = e1000_write_emi_reg_locked(hw, I82579_MSE_LINK_DOWN, 0x0005);
2770 release:
2771 hw->phy.ops.release(hw);
2772
2773 return ret_val;
2774 }
2775
2776 /**
2777 * e1000_k1_workaround_lv - K1 Si workaround
2778 * @hw: pointer to the HW structure
2779 *
2780 * Workaround to set the K1 beacon duration for 82579 parts in 10Mbps
2781 * Disable K1 in 1000Mbps and 100Mbps
2782 **/
e1000_k1_workaround_lv(struct e1000_hw * hw)2783 static s32 e1000_k1_workaround_lv(struct e1000_hw *hw)
2784 {
2785 s32 ret_val = 0;
2786 u16 status_reg = 0;
2787
2788 if (hw->mac.type != e1000_pch2lan)
2789 return 0;
2790
2791 /* Set K1 beacon duration based on 10Mbs speed */
2792 ret_val = e1e_rphy(hw, HV_M_STATUS, &status_reg);
2793 if (ret_val)
2794 return ret_val;
2795
2796 if ((status_reg & (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE))
2797 == (HV_M_STATUS_LINK_UP | HV_M_STATUS_AUTONEG_COMPLETE)) {
2798 if (status_reg &
2799 (HV_M_STATUS_SPEED_1000 | HV_M_STATUS_SPEED_100)) {
2800 u16 pm_phy_reg;
2801
2802 /* LV 1G/100 Packet drop issue wa */
2803 ret_val = e1e_rphy(hw, HV_PM_CTRL, &pm_phy_reg);
2804 if (ret_val)
2805 return ret_val;
2806 pm_phy_reg &= ~HV_PM_CTRL_K1_ENABLE;
2807 ret_val = e1e_wphy(hw, HV_PM_CTRL, pm_phy_reg);
2808 if (ret_val)
2809 return ret_val;
2810 } else {
2811 u32 mac_reg;
2812
2813 mac_reg = er32(FEXTNVM4);
2814 mac_reg &= ~E1000_FEXTNVM4_BEACON_DURATION_MASK;
2815 mac_reg |= E1000_FEXTNVM4_BEACON_DURATION_16USEC;
2816 ew32(FEXTNVM4, mac_reg);
2817 }
2818 }
2819
2820 return ret_val;
2821 }
2822
2823 /**
2824 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
2825 * @hw: pointer to the HW structure
2826 * @gate: boolean set to true to gate, false to ungate
2827 *
2828 * Gate/ungate the automatic PHY configuration via hardware; perform
2829 * the configuration via software instead.
2830 **/
e1000_gate_hw_phy_config_ich8lan(struct e1000_hw * hw,bool gate)2831 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw *hw, bool gate)
2832 {
2833 u32 extcnf_ctrl;
2834
2835 if (hw->mac.type < e1000_pch2lan)
2836 return;
2837
2838 extcnf_ctrl = er32(EXTCNF_CTRL);
2839
2840 if (gate)
2841 extcnf_ctrl |= E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2842 else
2843 extcnf_ctrl &= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG;
2844
2845 ew32(EXTCNF_CTRL, extcnf_ctrl);
2846 }
2847
2848 /**
2849 * e1000_lan_init_done_ich8lan - Check for PHY config completion
2850 * @hw: pointer to the HW structure
2851 *
2852 * Check the appropriate indication the MAC has finished configuring the
2853 * PHY after a software reset.
2854 **/
e1000_lan_init_done_ich8lan(struct e1000_hw * hw)2855 static void e1000_lan_init_done_ich8lan(struct e1000_hw *hw)
2856 {
2857 u32 data, loop = E1000_ICH8_LAN_INIT_TIMEOUT;
2858
2859 /* Wait for basic configuration completes before proceeding */
2860 do {
2861 data = er32(STATUS);
2862 data &= E1000_STATUS_LAN_INIT_DONE;
2863 usleep_range(100, 200);
2864 } while ((!data) && --loop);
2865
2866 /* If basic configuration is incomplete before the above loop
2867 * count reaches 0, loading the configuration from NVM will
2868 * leave the PHY in a bad state possibly resulting in no link.
2869 */
2870 if (loop == 0)
2871 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
2872
2873 /* Clear the Init Done bit for the next init event */
2874 data = er32(STATUS);
2875 data &= ~E1000_STATUS_LAN_INIT_DONE;
2876 ew32(STATUS, data);
2877 }
2878
2879 /**
2880 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
2881 * @hw: pointer to the HW structure
2882 **/
e1000_post_phy_reset_ich8lan(struct e1000_hw * hw)2883 static s32 e1000_post_phy_reset_ich8lan(struct e1000_hw *hw)
2884 {
2885 s32 ret_val = 0;
2886 u16 reg;
2887
2888 if (hw->phy.ops.check_reset_block(hw))
2889 return 0;
2890
2891 /* Allow time for h/w to get to quiescent state after reset */
2892 usleep_range(10000, 11000);
2893
2894 /* Perform any necessary post-reset workarounds */
2895 switch (hw->mac.type) {
2896 case e1000_pchlan:
2897 ret_val = e1000_hv_phy_workarounds_ich8lan(hw);
2898 if (ret_val)
2899 return ret_val;
2900 break;
2901 case e1000_pch2lan:
2902 ret_val = e1000_lv_phy_workarounds_ich8lan(hw);
2903 if (ret_val)
2904 return ret_val;
2905 break;
2906 default:
2907 break;
2908 }
2909
2910 /* Clear the host wakeup bit after lcd reset */
2911 if (hw->mac.type >= e1000_pchlan) {
2912 e1e_rphy(hw, BM_PORT_GEN_CFG, ®);
2913 reg &= ~BM_WUC_HOST_WU_BIT;
2914 e1e_wphy(hw, BM_PORT_GEN_CFG, reg);
2915 }
2916
2917 /* Configure the LCD with the extended configuration region in NVM */
2918 ret_val = e1000_sw_lcd_config_ich8lan(hw);
2919 if (ret_val)
2920 return ret_val;
2921
2922 /* Configure the LCD with the OEM bits in NVM */
2923 ret_val = e1000_oem_bits_config_ich8lan(hw, true);
2924
2925 if (hw->mac.type == e1000_pch2lan) {
2926 /* Ungate automatic PHY configuration on non-managed 82579 */
2927 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
2928 usleep_range(10000, 11000);
2929 e1000_gate_hw_phy_config_ich8lan(hw, false);
2930 }
2931
2932 /* Set EEE LPI Update Timer to 200usec */
2933 ret_val = hw->phy.ops.acquire(hw);
2934 if (ret_val)
2935 return ret_val;
2936 ret_val = e1000_write_emi_reg_locked(hw,
2937 I82579_LPI_UPDATE_TIMER,
2938 0x1387);
2939 hw->phy.ops.release(hw);
2940 }
2941
2942 return ret_val;
2943 }
2944
2945 /**
2946 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
2947 * @hw: pointer to the HW structure
2948 *
2949 * Resets the PHY
2950 * This is a function pointer entry point called by drivers
2951 * or other shared routines.
2952 **/
e1000_phy_hw_reset_ich8lan(struct e1000_hw * hw)2953 static s32 e1000_phy_hw_reset_ich8lan(struct e1000_hw *hw)
2954 {
2955 s32 ret_val = 0;
2956
2957 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
2958 if ((hw->mac.type == e1000_pch2lan) &&
2959 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
2960 e1000_gate_hw_phy_config_ich8lan(hw, true);
2961
2962 ret_val = e1000e_phy_hw_reset_generic(hw);
2963 if (ret_val)
2964 return ret_val;
2965
2966 return e1000_post_phy_reset_ich8lan(hw);
2967 }
2968
2969 /**
2970 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
2971 * @hw: pointer to the HW structure
2972 * @active: true to enable LPLU, false to disable
2973 *
2974 * Sets the LPLU state according to the active flag. For PCH, if OEM write
2975 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
2976 * the phy speed. This function will manually set the LPLU bit and restart
2977 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
2978 * since it configures the same bit.
2979 **/
e1000_set_lplu_state_pchlan(struct e1000_hw * hw,bool active)2980 static s32 e1000_set_lplu_state_pchlan(struct e1000_hw *hw, bool active)
2981 {
2982 s32 ret_val;
2983 u16 oem_reg;
2984
2985 ret_val = e1e_rphy(hw, HV_OEM_BITS, &oem_reg);
2986 if (ret_val)
2987 return ret_val;
2988
2989 if (active)
2990 oem_reg |= HV_OEM_BITS_LPLU;
2991 else
2992 oem_reg &= ~HV_OEM_BITS_LPLU;
2993
2994 if (!hw->phy.ops.check_reset_block(hw))
2995 oem_reg |= HV_OEM_BITS_RESTART_AN;
2996
2997 return e1e_wphy(hw, HV_OEM_BITS, oem_reg);
2998 }
2999
3000 /**
3001 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
3002 * @hw: pointer to the HW structure
3003 * @active: true to enable LPLU, false to disable
3004 *
3005 * Sets the LPLU D0 state according to the active flag. When
3006 * activating LPLU this function also disables smart speed
3007 * and vice versa. LPLU will not be activated unless the
3008 * device autonegotiation advertisement meets standards of
3009 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3010 * This is a function pointer entry point only called by
3011 * PHY setup routines.
3012 **/
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw * hw,bool active)3013 static s32 e1000_set_d0_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3014 {
3015 struct e1000_phy_info *phy = &hw->phy;
3016 u32 phy_ctrl;
3017 s32 ret_val = 0;
3018 u16 data;
3019
3020 if (phy->type == e1000_phy_ife)
3021 return 0;
3022
3023 phy_ctrl = er32(PHY_CTRL);
3024
3025 if (active) {
3026 phy_ctrl |= E1000_PHY_CTRL_D0A_LPLU;
3027 ew32(PHY_CTRL, phy_ctrl);
3028
3029 if (phy->type != e1000_phy_igp_3)
3030 return 0;
3031
3032 /* Call gig speed drop workaround on LPLU before accessing
3033 * any PHY registers
3034 */
3035 if (hw->mac.type == e1000_ich8lan)
3036 e1000e_gig_downshift_workaround_ich8lan(hw);
3037
3038 /* When LPLU is enabled, we should disable SmartSpeed */
3039 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3040 if (ret_val)
3041 return ret_val;
3042 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3043 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3044 if (ret_val)
3045 return ret_val;
3046 } else {
3047 phy_ctrl &= ~E1000_PHY_CTRL_D0A_LPLU;
3048 ew32(PHY_CTRL, phy_ctrl);
3049
3050 if (phy->type != e1000_phy_igp_3)
3051 return 0;
3052
3053 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3054 * during Dx states where the power conservation is most
3055 * important. During driver activity we should enable
3056 * SmartSpeed, so performance is maintained.
3057 */
3058 if (phy->smart_speed == e1000_smart_speed_on) {
3059 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3060 &data);
3061 if (ret_val)
3062 return ret_val;
3063
3064 data |= IGP01E1000_PSCFR_SMART_SPEED;
3065 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3066 data);
3067 if (ret_val)
3068 return ret_val;
3069 } else if (phy->smart_speed == e1000_smart_speed_off) {
3070 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3071 &data);
3072 if (ret_val)
3073 return ret_val;
3074
3075 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3076 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3077 data);
3078 if (ret_val)
3079 return ret_val;
3080 }
3081 }
3082
3083 return 0;
3084 }
3085
3086 /**
3087 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
3088 * @hw: pointer to the HW structure
3089 * @active: true to enable LPLU, false to disable
3090 *
3091 * Sets the LPLU D3 state according to the active flag. When
3092 * activating LPLU this function also disables smart speed
3093 * and vice versa. LPLU will not be activated unless the
3094 * device autonegotiation advertisement meets standards of
3095 * either 10 or 10/100 or 10/100/1000 at all duplexes.
3096 * This is a function pointer entry point only called by
3097 * PHY setup routines.
3098 **/
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw * hw,bool active)3099 static s32 e1000_set_d3_lplu_state_ich8lan(struct e1000_hw *hw, bool active)
3100 {
3101 struct e1000_phy_info *phy = &hw->phy;
3102 u32 phy_ctrl;
3103 s32 ret_val = 0;
3104 u16 data;
3105
3106 phy_ctrl = er32(PHY_CTRL);
3107
3108 if (!active) {
3109 phy_ctrl &= ~E1000_PHY_CTRL_NOND0A_LPLU;
3110 ew32(PHY_CTRL, phy_ctrl);
3111
3112 if (phy->type != e1000_phy_igp_3)
3113 return 0;
3114
3115 /* LPLU and SmartSpeed are mutually exclusive. LPLU is used
3116 * during Dx states where the power conservation is most
3117 * important. During driver activity we should enable
3118 * SmartSpeed, so performance is maintained.
3119 */
3120 if (phy->smart_speed == e1000_smart_speed_on) {
3121 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3122 &data);
3123 if (ret_val)
3124 return ret_val;
3125
3126 data |= IGP01E1000_PSCFR_SMART_SPEED;
3127 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3128 data);
3129 if (ret_val)
3130 return ret_val;
3131 } else if (phy->smart_speed == e1000_smart_speed_off) {
3132 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3133 &data);
3134 if (ret_val)
3135 return ret_val;
3136
3137 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3138 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
3139 data);
3140 if (ret_val)
3141 return ret_val;
3142 }
3143 } else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
3144 (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
3145 (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
3146 phy_ctrl |= E1000_PHY_CTRL_NOND0A_LPLU;
3147 ew32(PHY_CTRL, phy_ctrl);
3148
3149 if (phy->type != e1000_phy_igp_3)
3150 return 0;
3151
3152 /* Call gig speed drop workaround on LPLU before accessing
3153 * any PHY registers
3154 */
3155 if (hw->mac.type == e1000_ich8lan)
3156 e1000e_gig_downshift_workaround_ich8lan(hw);
3157
3158 /* When LPLU is enabled, we should disable SmartSpeed */
3159 ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
3160 if (ret_val)
3161 return ret_val;
3162
3163 data &= ~IGP01E1000_PSCFR_SMART_SPEED;
3164 ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
3165 }
3166
3167 return ret_val;
3168 }
3169
3170 /**
3171 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
3172 * @hw: pointer to the HW structure
3173 * @bank: pointer to the variable that returns the active bank
3174 *
3175 * Reads signature byte from the NVM using the flash access registers.
3176 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
3177 **/
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw * hw,u32 * bank)3178 static s32 e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw *hw, u32 *bank)
3179 {
3180 u32 eecd;
3181 struct e1000_nvm_info *nvm = &hw->nvm;
3182 u32 bank1_offset = nvm->flash_bank_size * sizeof(u16);
3183 u32 act_offset = E1000_ICH_NVM_SIG_WORD * 2 + 1;
3184 u32 nvm_dword = 0;
3185 u8 sig_byte = 0;
3186 s32 ret_val;
3187
3188 switch (hw->mac.type) {
3189 case e1000_pch_spt:
3190 case e1000_pch_cnp:
3191 case e1000_pch_tgp:
3192 case e1000_pch_adp:
3193 case e1000_pch_mtp:
3194 case e1000_pch_lnp:
3195 case e1000_pch_ptp:
3196 case e1000_pch_nvp:
3197 bank1_offset = nvm->flash_bank_size;
3198 act_offset = E1000_ICH_NVM_SIG_WORD;
3199
3200 /* set bank to 0 in case flash read fails */
3201 *bank = 0;
3202
3203 /* Check bank 0 */
3204 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset,
3205 &nvm_dword);
3206 if (ret_val)
3207 return ret_val;
3208 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3209 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3210 E1000_ICH_NVM_SIG_VALUE) {
3211 *bank = 0;
3212 return 0;
3213 }
3214
3215 /* Check bank 1 */
3216 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset +
3217 bank1_offset,
3218 &nvm_dword);
3219 if (ret_val)
3220 return ret_val;
3221 sig_byte = (u8)((nvm_dword & 0xFF00) >> 8);
3222 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3223 E1000_ICH_NVM_SIG_VALUE) {
3224 *bank = 1;
3225 return 0;
3226 }
3227
3228 e_dbg("ERROR: No valid NVM bank present\n");
3229 return -E1000_ERR_NVM;
3230 case e1000_ich8lan:
3231 case e1000_ich9lan:
3232 eecd = er32(EECD);
3233 if ((eecd & E1000_EECD_SEC1VAL_VALID_MASK) ==
3234 E1000_EECD_SEC1VAL_VALID_MASK) {
3235 if (eecd & E1000_EECD_SEC1VAL)
3236 *bank = 1;
3237 else
3238 *bank = 0;
3239
3240 return 0;
3241 }
3242 e_dbg("Unable to determine valid NVM bank via EEC - reading flash signature\n");
3243 fallthrough;
3244 default:
3245 /* set bank to 0 in case flash read fails */
3246 *bank = 0;
3247
3248 /* Check bank 0 */
3249 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset,
3250 &sig_byte);
3251 if (ret_val)
3252 return ret_val;
3253 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3254 E1000_ICH_NVM_SIG_VALUE) {
3255 *bank = 0;
3256 return 0;
3257 }
3258
3259 /* Check bank 1 */
3260 ret_val = e1000_read_flash_byte_ich8lan(hw, act_offset +
3261 bank1_offset,
3262 &sig_byte);
3263 if (ret_val)
3264 return ret_val;
3265 if ((sig_byte & E1000_ICH_NVM_VALID_SIG_MASK) ==
3266 E1000_ICH_NVM_SIG_VALUE) {
3267 *bank = 1;
3268 return 0;
3269 }
3270
3271 e_dbg("ERROR: No valid NVM bank present\n");
3272 return -E1000_ERR_NVM;
3273 }
3274 }
3275
3276 /**
3277 * e1000_read_nvm_spt - NVM access for SPT
3278 * @hw: pointer to the HW structure
3279 * @offset: The offset (in bytes) of the word(s) to read.
3280 * @words: Size of data to read in words.
3281 * @data: pointer to the word(s) to read at offset.
3282 *
3283 * Reads a word(s) from the NVM
3284 **/
e1000_read_nvm_spt(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3285 static s32 e1000_read_nvm_spt(struct e1000_hw *hw, u16 offset, u16 words,
3286 u16 *data)
3287 {
3288 struct e1000_nvm_info *nvm = &hw->nvm;
3289 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3290 u32 act_offset;
3291 s32 ret_val = 0;
3292 u32 bank = 0;
3293 u32 dword = 0;
3294 u16 offset_to_read;
3295 u16 i;
3296
3297 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3298 (words == 0)) {
3299 e_dbg("nvm parameter(s) out of bounds\n");
3300 ret_val = -E1000_ERR_NVM;
3301 goto out;
3302 }
3303
3304 nvm->ops.acquire(hw);
3305
3306 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3307 if (ret_val) {
3308 e_dbg("Could not detect valid bank, assuming bank 0\n");
3309 bank = 0;
3310 }
3311
3312 act_offset = (bank) ? nvm->flash_bank_size : 0;
3313 act_offset += offset;
3314
3315 ret_val = 0;
3316
3317 for (i = 0; i < words; i += 2) {
3318 if (words - i == 1) {
3319 if (dev_spec->shadow_ram[offset + i].modified) {
3320 data[i] =
3321 dev_spec->shadow_ram[offset + i].value;
3322 } else {
3323 offset_to_read = act_offset + i -
3324 ((act_offset + i) % 2);
3325 ret_val =
3326 e1000_read_flash_dword_ich8lan(hw,
3327 offset_to_read,
3328 &dword);
3329 if (ret_val)
3330 break;
3331 if ((act_offset + i) % 2 == 0)
3332 data[i] = (u16)(dword & 0xFFFF);
3333 else
3334 data[i] = (u16)((dword >> 16) & 0xFFFF);
3335 }
3336 } else {
3337 offset_to_read = act_offset + i;
3338 if (!(dev_spec->shadow_ram[offset + i].modified) ||
3339 !(dev_spec->shadow_ram[offset + i + 1].modified)) {
3340 ret_val =
3341 e1000_read_flash_dword_ich8lan(hw,
3342 offset_to_read,
3343 &dword);
3344 if (ret_val)
3345 break;
3346 }
3347 if (dev_spec->shadow_ram[offset + i].modified)
3348 data[i] =
3349 dev_spec->shadow_ram[offset + i].value;
3350 else
3351 data[i] = (u16)(dword & 0xFFFF);
3352 if (dev_spec->shadow_ram[offset + i].modified)
3353 data[i + 1] =
3354 dev_spec->shadow_ram[offset + i + 1].value;
3355 else
3356 data[i + 1] = (u16)(dword >> 16 & 0xFFFF);
3357 }
3358 }
3359
3360 nvm->ops.release(hw);
3361
3362 out:
3363 if (ret_val)
3364 e_dbg("NVM read error: %d\n", ret_val);
3365
3366 return ret_val;
3367 }
3368
3369 /**
3370 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
3371 * @hw: pointer to the HW structure
3372 * @offset: The offset (in bytes) of the word(s) to read.
3373 * @words: Size of data to read in words
3374 * @data: Pointer to the word(s) to read at offset.
3375 *
3376 * Reads a word(s) from the NVM using the flash access registers.
3377 **/
e1000_read_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3378 static s32 e1000_read_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3379 u16 *data)
3380 {
3381 struct e1000_nvm_info *nvm = &hw->nvm;
3382 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3383 u32 act_offset;
3384 s32 ret_val = 0;
3385 u32 bank = 0;
3386 u16 i, word;
3387
3388 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3389 (words == 0)) {
3390 e_dbg("nvm parameter(s) out of bounds\n");
3391 ret_val = -E1000_ERR_NVM;
3392 goto out;
3393 }
3394
3395 nvm->ops.acquire(hw);
3396
3397 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3398 if (ret_val) {
3399 e_dbg("Could not detect valid bank, assuming bank 0\n");
3400 bank = 0;
3401 }
3402
3403 act_offset = (bank) ? nvm->flash_bank_size : 0;
3404 act_offset += offset;
3405
3406 ret_val = 0;
3407 for (i = 0; i < words; i++) {
3408 if (dev_spec->shadow_ram[offset + i].modified) {
3409 data[i] = dev_spec->shadow_ram[offset + i].value;
3410 } else {
3411 ret_val = e1000_read_flash_word_ich8lan(hw,
3412 act_offset + i,
3413 &word);
3414 if (ret_val)
3415 break;
3416 data[i] = word;
3417 }
3418 }
3419
3420 nvm->ops.release(hw);
3421
3422 out:
3423 if (ret_val)
3424 e_dbg("NVM read error: %d\n", ret_val);
3425
3426 return ret_val;
3427 }
3428
3429 /**
3430 * e1000_flash_cycle_init_ich8lan - Initialize flash
3431 * @hw: pointer to the HW structure
3432 *
3433 * This function does initial flash setup so that a new read/write/erase cycle
3434 * can be started.
3435 **/
e1000_flash_cycle_init_ich8lan(struct e1000_hw * hw)3436 static s32 e1000_flash_cycle_init_ich8lan(struct e1000_hw *hw)
3437 {
3438 union ich8_hws_flash_status hsfsts;
3439 s32 ret_val = -E1000_ERR_NVM;
3440
3441 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3442
3443 /* Check if the flash descriptor is valid */
3444 if (!hsfsts.hsf_status.fldesvalid) {
3445 e_dbg("Flash descriptor invalid. SW Sequencing must be used.\n");
3446 return -E1000_ERR_NVM;
3447 }
3448
3449 /* Clear FCERR and DAEL in hw status by writing 1 */
3450 hsfsts.hsf_status.flcerr = 1;
3451 hsfsts.hsf_status.dael = 1;
3452 if (hw->mac.type >= e1000_pch_spt)
3453 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3454 else
3455 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3456
3457 /* Either we should have a hardware SPI cycle in progress
3458 * bit to check against, in order to start a new cycle or
3459 * FDONE bit should be changed in the hardware so that it
3460 * is 1 after hardware reset, which can then be used as an
3461 * indication whether a cycle is in progress or has been
3462 * completed.
3463 */
3464
3465 if (!hsfsts.hsf_status.flcinprog) {
3466 /* There is no cycle running at present,
3467 * so we can start a cycle.
3468 * Begin by setting Flash Cycle Done.
3469 */
3470 hsfsts.hsf_status.flcdone = 1;
3471 if (hw->mac.type >= e1000_pch_spt)
3472 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval & 0xFFFF);
3473 else
3474 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3475 ret_val = 0;
3476 } else {
3477 s32 i;
3478
3479 /* Otherwise poll for sometime so the current
3480 * cycle has a chance to end before giving up.
3481 */
3482 for (i = 0; i < ICH_FLASH_READ_COMMAND_TIMEOUT; i++) {
3483 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3484 if (!hsfsts.hsf_status.flcinprog) {
3485 ret_val = 0;
3486 break;
3487 }
3488 udelay(1);
3489 }
3490 if (!ret_val) {
3491 /* Successful in waiting for previous cycle to timeout,
3492 * now set the Flash Cycle Done.
3493 */
3494 hsfsts.hsf_status.flcdone = 1;
3495 if (hw->mac.type >= e1000_pch_spt)
3496 ew32flash(ICH_FLASH_HSFSTS,
3497 hsfsts.regval & 0xFFFF);
3498 else
3499 ew16flash(ICH_FLASH_HSFSTS, hsfsts.regval);
3500 } else {
3501 e_dbg("Flash controller busy, cannot get access\n");
3502 }
3503 }
3504
3505 return ret_val;
3506 }
3507
3508 /**
3509 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
3510 * @hw: pointer to the HW structure
3511 * @timeout: maximum time to wait for completion
3512 *
3513 * This function starts a flash cycle and waits for its completion.
3514 **/
e1000_flash_cycle_ich8lan(struct e1000_hw * hw,u32 timeout)3515 static s32 e1000_flash_cycle_ich8lan(struct e1000_hw *hw, u32 timeout)
3516 {
3517 union ich8_hws_flash_ctrl hsflctl;
3518 union ich8_hws_flash_status hsfsts;
3519 u32 i = 0;
3520
3521 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
3522 if (hw->mac.type >= e1000_pch_spt)
3523 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3524 else
3525 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3526 hsflctl.hsf_ctrl.flcgo = 1;
3527
3528 if (hw->mac.type >= e1000_pch_spt)
3529 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
3530 else
3531 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3532
3533 /* wait till FDONE bit is set to 1 */
3534 do {
3535 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3536 if (hsfsts.hsf_status.flcdone)
3537 break;
3538 udelay(1);
3539 } while (i++ < timeout);
3540
3541 if (hsfsts.hsf_status.flcdone && !hsfsts.hsf_status.flcerr)
3542 return 0;
3543
3544 return -E1000_ERR_NVM;
3545 }
3546
3547 /**
3548 * e1000_read_flash_dword_ich8lan - Read dword from flash
3549 * @hw: pointer to the HW structure
3550 * @offset: offset to data location
3551 * @data: pointer to the location for storing the data
3552 *
3553 * Reads the flash dword at offset into data. Offset is converted
3554 * to bytes before read.
3555 **/
e1000_read_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3556 static s32 e1000_read_flash_dword_ich8lan(struct e1000_hw *hw, u32 offset,
3557 u32 *data)
3558 {
3559 /* Must convert word offset into bytes. */
3560 offset <<= 1;
3561 return e1000_read_flash_data32_ich8lan(hw, offset, data);
3562 }
3563
3564 /**
3565 * e1000_read_flash_word_ich8lan - Read word from flash
3566 * @hw: pointer to the HW structure
3567 * @offset: offset to data location
3568 * @data: pointer to the location for storing the data
3569 *
3570 * Reads the flash word at offset into data. Offset is converted
3571 * to bytes before read.
3572 **/
e1000_read_flash_word_ich8lan(struct e1000_hw * hw,u32 offset,u16 * data)3573 static s32 e1000_read_flash_word_ich8lan(struct e1000_hw *hw, u32 offset,
3574 u16 *data)
3575 {
3576 /* Must convert offset into bytes. */
3577 offset <<= 1;
3578
3579 return e1000_read_flash_data_ich8lan(hw, offset, 2, data);
3580 }
3581
3582 /**
3583 * e1000_read_flash_byte_ich8lan - Read byte from flash
3584 * @hw: pointer to the HW structure
3585 * @offset: The offset of the byte to read.
3586 * @data: Pointer to a byte to store the value read.
3587 *
3588 * Reads a single byte from the NVM using the flash access registers.
3589 **/
e1000_read_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 * data)3590 static s32 e1000_read_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
3591 u8 *data)
3592 {
3593 s32 ret_val;
3594 u16 word = 0;
3595
3596 /* In SPT, only 32 bits access is supported,
3597 * so this function should not be called.
3598 */
3599 if (hw->mac.type >= e1000_pch_spt)
3600 return -E1000_ERR_NVM;
3601 else
3602 ret_val = e1000_read_flash_data_ich8lan(hw, offset, 1, &word);
3603
3604 if (ret_val)
3605 return ret_val;
3606
3607 *data = (u8)word;
3608
3609 return 0;
3610 }
3611
3612 /**
3613 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
3614 * @hw: pointer to the HW structure
3615 * @offset: The offset (in bytes) of the byte or word to read.
3616 * @size: Size of data to read, 1=byte 2=word
3617 * @data: Pointer to the word to store the value read.
3618 *
3619 * Reads a byte or word from the NVM using the flash access registers.
3620 **/
e1000_read_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 * data)3621 static s32 e1000_read_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
3622 u8 size, u16 *data)
3623 {
3624 union ich8_hws_flash_status hsfsts;
3625 union ich8_hws_flash_ctrl hsflctl;
3626 u32 flash_linear_addr;
3627 u32 flash_data = 0;
3628 s32 ret_val = -E1000_ERR_NVM;
3629 u8 count = 0;
3630
3631 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
3632 return -E1000_ERR_NVM;
3633
3634 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3635 hw->nvm.flash_base_addr);
3636
3637 do {
3638 udelay(1);
3639 /* Steps */
3640 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3641 if (ret_val)
3642 break;
3643
3644 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
3645 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3646 hsflctl.hsf_ctrl.fldbcount = size - 1;
3647 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3648 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
3649
3650 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3651
3652 ret_val =
3653 e1000_flash_cycle_ich8lan(hw,
3654 ICH_FLASH_READ_COMMAND_TIMEOUT);
3655
3656 /* Check if FCERR is set to 1, if set to 1, clear it
3657 * and try the whole sequence a few more times, else
3658 * read in (shift in) the Flash Data0, the order is
3659 * least significant byte first msb to lsb
3660 */
3661 if (!ret_val) {
3662 flash_data = er32flash(ICH_FLASH_FDATA0);
3663 if (size == 1)
3664 *data = (u8)(flash_data & 0x000000FF);
3665 else if (size == 2)
3666 *data = (u16)(flash_data & 0x0000FFFF);
3667 break;
3668 } else {
3669 /* If we've gotten here, then things are probably
3670 * completely hosed, but if the error condition is
3671 * detected, it won't hurt to give it another try...
3672 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3673 */
3674 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3675 if (hsfsts.hsf_status.flcerr) {
3676 /* Repeat for some time before giving up. */
3677 continue;
3678 } else if (!hsfsts.hsf_status.flcdone) {
3679 e_dbg("Timeout error - flash cycle did not complete.\n");
3680 break;
3681 }
3682 }
3683 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3684
3685 return ret_val;
3686 }
3687
3688 /**
3689 * e1000_read_flash_data32_ich8lan - Read dword from NVM
3690 * @hw: pointer to the HW structure
3691 * @offset: The offset (in bytes) of the dword to read.
3692 * @data: Pointer to the dword to store the value read.
3693 *
3694 * Reads a byte or word from the NVM using the flash access registers.
3695 **/
3696
e1000_read_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 * data)3697 static s32 e1000_read_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
3698 u32 *data)
3699 {
3700 union ich8_hws_flash_status hsfsts;
3701 union ich8_hws_flash_ctrl hsflctl;
3702 u32 flash_linear_addr;
3703 s32 ret_val = -E1000_ERR_NVM;
3704 u8 count = 0;
3705
3706 if (offset > ICH_FLASH_LINEAR_ADDR_MASK || hw->mac.type < e1000_pch_spt)
3707 return -E1000_ERR_NVM;
3708 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
3709 hw->nvm.flash_base_addr);
3710
3711 do {
3712 udelay(1);
3713 /* Steps */
3714 ret_val = e1000_flash_cycle_init_ich8lan(hw);
3715 if (ret_val)
3716 break;
3717 /* In SPT, This register is in Lan memory space, not flash.
3718 * Therefore, only 32 bit access is supported
3719 */
3720 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
3721
3722 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
3723 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
3724 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_READ;
3725 /* In SPT, This register is in Lan memory space, not flash.
3726 * Therefore, only 32 bit access is supported
3727 */
3728 ew32flash(ICH_FLASH_HSFSTS, (u32)hsflctl.regval << 16);
3729 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
3730
3731 ret_val =
3732 e1000_flash_cycle_ich8lan(hw,
3733 ICH_FLASH_READ_COMMAND_TIMEOUT);
3734
3735 /* Check if FCERR is set to 1, if set to 1, clear it
3736 * and try the whole sequence a few more times, else
3737 * read in (shift in) the Flash Data0, the order is
3738 * least significant byte first msb to lsb
3739 */
3740 if (!ret_val) {
3741 *data = er32flash(ICH_FLASH_FDATA0);
3742 break;
3743 } else {
3744 /* If we've gotten here, then things are probably
3745 * completely hosed, but if the error condition is
3746 * detected, it won't hurt to give it another try...
3747 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
3748 */
3749 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
3750 if (hsfsts.hsf_status.flcerr) {
3751 /* Repeat for some time before giving up. */
3752 continue;
3753 } else if (!hsfsts.hsf_status.flcdone) {
3754 e_dbg("Timeout error - flash cycle did not complete.\n");
3755 break;
3756 }
3757 }
3758 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
3759
3760 return ret_val;
3761 }
3762
3763 /**
3764 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
3765 * @hw: pointer to the HW structure
3766 * @offset: The offset (in bytes) of the word(s) to write.
3767 * @words: Size of data to write in words
3768 * @data: Pointer to the word(s) to write at offset.
3769 *
3770 * Writes a byte or word to the NVM using the flash access registers.
3771 **/
e1000_write_nvm_ich8lan(struct e1000_hw * hw,u16 offset,u16 words,u16 * data)3772 static s32 e1000_write_nvm_ich8lan(struct e1000_hw *hw, u16 offset, u16 words,
3773 u16 *data)
3774 {
3775 struct e1000_nvm_info *nvm = &hw->nvm;
3776 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3777 u16 i;
3778
3779 if ((offset >= nvm->word_size) || (words > nvm->word_size - offset) ||
3780 (words == 0)) {
3781 e_dbg("nvm parameter(s) out of bounds\n");
3782 return -E1000_ERR_NVM;
3783 }
3784
3785 nvm->ops.acquire(hw);
3786
3787 for (i = 0; i < words; i++) {
3788 dev_spec->shadow_ram[offset + i].modified = true;
3789 dev_spec->shadow_ram[offset + i].value = data[i];
3790 }
3791
3792 nvm->ops.release(hw);
3793
3794 return 0;
3795 }
3796
3797 /**
3798 * e1000_update_nvm_checksum_spt - Update the checksum for NVM
3799 * @hw: pointer to the HW structure
3800 *
3801 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3802 * which writes the checksum to the shadow ram. The changes in the shadow
3803 * ram are then committed to the EEPROM by processing each bank at a time
3804 * checking for the modified bit and writing only the pending changes.
3805 * After a successful commit, the shadow ram is cleared and is ready for
3806 * future writes.
3807 **/
e1000_update_nvm_checksum_spt(struct e1000_hw * hw)3808 static s32 e1000_update_nvm_checksum_spt(struct e1000_hw *hw)
3809 {
3810 struct e1000_nvm_info *nvm = &hw->nvm;
3811 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3812 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3813 s32 ret_val;
3814 u32 dword = 0;
3815
3816 ret_val = e1000e_update_nvm_checksum_generic(hw);
3817 if (ret_val)
3818 goto out;
3819
3820 if (nvm->type != e1000_nvm_flash_sw)
3821 goto out;
3822
3823 nvm->ops.acquire(hw);
3824
3825 /* We're writing to the opposite bank so if we're on bank 1,
3826 * write to bank 0 etc. We also need to erase the segment that
3827 * is going to be written
3828 */
3829 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3830 if (ret_val) {
3831 e_dbg("Could not detect valid bank, assuming bank 0\n");
3832 bank = 0;
3833 }
3834
3835 if (bank == 0) {
3836 new_bank_offset = nvm->flash_bank_size;
3837 old_bank_offset = 0;
3838 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
3839 if (ret_val)
3840 goto release;
3841 } else {
3842 old_bank_offset = nvm->flash_bank_size;
3843 new_bank_offset = 0;
3844 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
3845 if (ret_val)
3846 goto release;
3847 }
3848 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i += 2) {
3849 /* Determine whether to write the value stored
3850 * in the other NVM bank or a modified value stored
3851 * in the shadow RAM
3852 */
3853 ret_val = e1000_read_flash_dword_ich8lan(hw,
3854 i + old_bank_offset,
3855 &dword);
3856
3857 if (dev_spec->shadow_ram[i].modified) {
3858 dword &= 0xffff0000;
3859 dword |= (dev_spec->shadow_ram[i].value & 0xffff);
3860 }
3861 if (dev_spec->shadow_ram[i + 1].modified) {
3862 dword &= 0x0000ffff;
3863 dword |= ((dev_spec->shadow_ram[i + 1].value & 0xffff)
3864 << 16);
3865 }
3866 if (ret_val)
3867 break;
3868
3869 /* If the word is 0x13, then make sure the signature bits
3870 * (15:14) are 11b until the commit has completed.
3871 * This will allow us to write 10b which indicates the
3872 * signature is valid. We want to do this after the write
3873 * has completed so that we don't mark the segment valid
3874 * while the write is still in progress
3875 */
3876 if (i == E1000_ICH_NVM_SIG_WORD - 1)
3877 dword |= E1000_ICH_NVM_SIG_MASK << 16;
3878
3879 /* Convert offset to bytes. */
3880 act_offset = (i + new_bank_offset) << 1;
3881
3882 usleep_range(100, 200);
3883
3884 /* Write the data to the new bank. Offset in words */
3885 act_offset = i + new_bank_offset;
3886 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset,
3887 dword);
3888 if (ret_val)
3889 break;
3890 }
3891
3892 /* Don't bother writing the segment valid bits if sector
3893 * programming failed.
3894 */
3895 if (ret_val) {
3896 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
3897 e_dbg("Flash commit failed.\n");
3898 goto release;
3899 }
3900
3901 /* Finally validate the new segment by setting bit 15:14
3902 * to 10b in word 0x13 , this can be done without an
3903 * erase as well since these bits are 11 to start with
3904 * and we need to change bit 14 to 0b
3905 */
3906 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
3907
3908 /*offset in words but we read dword */
3909 --act_offset;
3910 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3911
3912 if (ret_val)
3913 goto release;
3914
3915 dword &= 0xBFFFFFFF;
3916 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3917
3918 if (ret_val)
3919 goto release;
3920
3921 /* offset in words but we read dword */
3922 act_offset = old_bank_offset + E1000_ICH_NVM_SIG_WORD - 1;
3923 ret_val = e1000_read_flash_dword_ich8lan(hw, act_offset, &dword);
3924
3925 if (ret_val)
3926 goto release;
3927
3928 dword &= 0x00FFFFFF;
3929 ret_val = e1000_retry_write_flash_dword_ich8lan(hw, act_offset, dword);
3930
3931 if (ret_val)
3932 goto release;
3933
3934 /* Great! Everything worked, we can now clear the cached entries. */
3935 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
3936 dev_spec->shadow_ram[i].modified = false;
3937 dev_spec->shadow_ram[i].value = 0xFFFF;
3938 }
3939
3940 release:
3941 nvm->ops.release(hw);
3942
3943 /* Reload the EEPROM, or else modifications will not appear
3944 * until after the next adapter reset.
3945 */
3946 if (!ret_val) {
3947 nvm->ops.reload(hw);
3948 usleep_range(10000, 11000);
3949 }
3950
3951 out:
3952 if (ret_val)
3953 e_dbg("NVM update error: %d\n", ret_val);
3954
3955 return ret_val;
3956 }
3957
3958 /**
3959 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
3960 * @hw: pointer to the HW structure
3961 *
3962 * The NVM checksum is updated by calling the generic update_nvm_checksum,
3963 * which writes the checksum to the shadow ram. The changes in the shadow
3964 * ram are then committed to the EEPROM by processing each bank at a time
3965 * checking for the modified bit and writing only the pending changes.
3966 * After a successful commit, the shadow ram is cleared and is ready for
3967 * future writes.
3968 **/
e1000_update_nvm_checksum_ich8lan(struct e1000_hw * hw)3969 static s32 e1000_update_nvm_checksum_ich8lan(struct e1000_hw *hw)
3970 {
3971 struct e1000_nvm_info *nvm = &hw->nvm;
3972 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
3973 u32 i, act_offset, new_bank_offset, old_bank_offset, bank;
3974 s32 ret_val;
3975 u16 data = 0;
3976
3977 ret_val = e1000e_update_nvm_checksum_generic(hw);
3978 if (ret_val)
3979 goto out;
3980
3981 if (nvm->type != e1000_nvm_flash_sw)
3982 goto out;
3983
3984 nvm->ops.acquire(hw);
3985
3986 /* We're writing to the opposite bank so if we're on bank 1,
3987 * write to bank 0 etc. We also need to erase the segment that
3988 * is going to be written
3989 */
3990 ret_val = e1000_valid_nvm_bank_detect_ich8lan(hw, &bank);
3991 if (ret_val) {
3992 e_dbg("Could not detect valid bank, assuming bank 0\n");
3993 bank = 0;
3994 }
3995
3996 if (bank == 0) {
3997 new_bank_offset = nvm->flash_bank_size;
3998 old_bank_offset = 0;
3999 ret_val = e1000_erase_flash_bank_ich8lan(hw, 1);
4000 if (ret_val)
4001 goto release;
4002 } else {
4003 old_bank_offset = nvm->flash_bank_size;
4004 new_bank_offset = 0;
4005 ret_val = e1000_erase_flash_bank_ich8lan(hw, 0);
4006 if (ret_val)
4007 goto release;
4008 }
4009 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4010 if (dev_spec->shadow_ram[i].modified) {
4011 data = dev_spec->shadow_ram[i].value;
4012 } else {
4013 ret_val = e1000_read_flash_word_ich8lan(hw, i +
4014 old_bank_offset,
4015 &data);
4016 if (ret_val)
4017 break;
4018 }
4019
4020 /* If the word is 0x13, then make sure the signature bits
4021 * (15:14) are 11b until the commit has completed.
4022 * This will allow us to write 10b which indicates the
4023 * signature is valid. We want to do this after the write
4024 * has completed so that we don't mark the segment valid
4025 * while the write is still in progress
4026 */
4027 if (i == E1000_ICH_NVM_SIG_WORD)
4028 data |= E1000_ICH_NVM_SIG_MASK;
4029
4030 /* Convert offset to bytes. */
4031 act_offset = (i + new_bank_offset) << 1;
4032
4033 usleep_range(100, 200);
4034 /* Write the bytes to the new bank. */
4035 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4036 act_offset,
4037 (u8)data);
4038 if (ret_val)
4039 break;
4040
4041 usleep_range(100, 200);
4042 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4043 act_offset + 1,
4044 (u8)(data >> 8));
4045 if (ret_val)
4046 break;
4047 }
4048
4049 /* Don't bother writing the segment valid bits if sector
4050 * programming failed.
4051 */
4052 if (ret_val) {
4053 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
4054 e_dbg("Flash commit failed.\n");
4055 goto release;
4056 }
4057
4058 /* Finally validate the new segment by setting bit 15:14
4059 * to 10b in word 0x13 , this can be done without an
4060 * erase as well since these bits are 11 to start with
4061 * and we need to change bit 14 to 0b
4062 */
4063 act_offset = new_bank_offset + E1000_ICH_NVM_SIG_WORD;
4064 ret_val = e1000_read_flash_word_ich8lan(hw, act_offset, &data);
4065 if (ret_val)
4066 goto release;
4067
4068 data &= 0xBFFF;
4069 ret_val = e1000_retry_write_flash_byte_ich8lan(hw,
4070 act_offset * 2 + 1,
4071 (u8)(data >> 8));
4072 if (ret_val)
4073 goto release;
4074
4075 /* And invalidate the previously valid segment by setting
4076 * its signature word (0x13) high_byte to 0b. This can be
4077 * done without an erase because flash erase sets all bits
4078 * to 1's. We can write 1's to 0's without an erase
4079 */
4080 act_offset = (old_bank_offset + E1000_ICH_NVM_SIG_WORD) * 2 + 1;
4081 ret_val = e1000_retry_write_flash_byte_ich8lan(hw, act_offset, 0);
4082 if (ret_val)
4083 goto release;
4084
4085 /* Great! Everything worked, we can now clear the cached entries. */
4086 for (i = 0; i < E1000_ICH8_SHADOW_RAM_WORDS; i++) {
4087 dev_spec->shadow_ram[i].modified = false;
4088 dev_spec->shadow_ram[i].value = 0xFFFF;
4089 }
4090
4091 release:
4092 nvm->ops.release(hw);
4093
4094 /* Reload the EEPROM, or else modifications will not appear
4095 * until after the next adapter reset.
4096 */
4097 if (!ret_val) {
4098 nvm->ops.reload(hw);
4099 usleep_range(10000, 11000);
4100 }
4101
4102 out:
4103 if (ret_val)
4104 e_dbg("NVM update error: %d\n", ret_val);
4105
4106 return ret_val;
4107 }
4108
4109 /**
4110 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
4111 * @hw: pointer to the HW structure
4112 *
4113 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
4114 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
4115 * calculated, in which case we need to calculate the checksum and set bit 6.
4116 **/
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw * hw)4117 static s32 e1000_validate_nvm_checksum_ich8lan(struct e1000_hw *hw)
4118 {
4119 s32 ret_val;
4120 u16 data;
4121 u16 word;
4122 u16 valid_csum_mask;
4123
4124 /* Read NVM and check Invalid Image CSUM bit. If this bit is 0,
4125 * the checksum needs to be fixed. This bit is an indication that
4126 * the NVM was prepared by OEM software and did not calculate
4127 * the checksum...a likely scenario.
4128 */
4129 switch (hw->mac.type) {
4130 case e1000_pch_lpt:
4131 case e1000_pch_spt:
4132 case e1000_pch_cnp:
4133 case e1000_pch_tgp:
4134 case e1000_pch_adp:
4135 case e1000_pch_mtp:
4136 case e1000_pch_lnp:
4137 case e1000_pch_ptp:
4138 case e1000_pch_nvp:
4139 word = NVM_COMPAT;
4140 valid_csum_mask = NVM_COMPAT_VALID_CSUM;
4141 break;
4142 default:
4143 word = NVM_FUTURE_INIT_WORD1;
4144 valid_csum_mask = NVM_FUTURE_INIT_WORD1_VALID_CSUM;
4145 break;
4146 }
4147
4148 ret_val = e1000_read_nvm(hw, word, 1, &data);
4149 if (ret_val)
4150 return ret_val;
4151
4152 if (!(data & valid_csum_mask)) {
4153 e_dbg("NVM Checksum valid bit not set\n");
4154
4155 if (hw->mac.type < e1000_pch_tgp) {
4156 data |= valid_csum_mask;
4157 ret_val = e1000_write_nvm(hw, word, 1, &data);
4158 if (ret_val)
4159 return ret_val;
4160 ret_val = e1000e_update_nvm_checksum(hw);
4161 if (ret_val)
4162 return ret_val;
4163 }
4164 }
4165
4166 return e1000e_validate_nvm_checksum_generic(hw);
4167 }
4168
4169 /**
4170 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
4171 * @hw: pointer to the HW structure
4172 *
4173 * To prevent malicious write/erase of the NVM, set it to be read-only
4174 * so that the hardware ignores all write/erase cycles of the NVM via
4175 * the flash control registers. The shadow-ram copy of the NVM will
4176 * still be updated, however any updates to this copy will not stick
4177 * across driver reloads.
4178 **/
e1000e_write_protect_nvm_ich8lan(struct e1000_hw * hw)4179 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw *hw)
4180 {
4181 struct e1000_nvm_info *nvm = &hw->nvm;
4182 union ich8_flash_protected_range pr0;
4183 union ich8_hws_flash_status hsfsts;
4184 u32 gfpreg;
4185
4186 nvm->ops.acquire(hw);
4187
4188 gfpreg = er32flash(ICH_FLASH_GFPREG);
4189
4190 /* Write-protect GbE Sector of NVM */
4191 pr0.regval = er32flash(ICH_FLASH_PR0);
4192 pr0.range.base = gfpreg & FLASH_GFPREG_BASE_MASK;
4193 pr0.range.limit = ((gfpreg >> 16) & FLASH_GFPREG_BASE_MASK);
4194 pr0.range.wpe = true;
4195 ew32flash(ICH_FLASH_PR0, pr0.regval);
4196
4197 /* Lock down a subset of GbE Flash Control Registers, e.g.
4198 * PR0 to prevent the write-protection from being lifted.
4199 * Once FLOCKDN is set, the registers protected by it cannot
4200 * be written until FLOCKDN is cleared by a hardware reset.
4201 */
4202 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4203 hsfsts.hsf_status.flockdn = true;
4204 ew32flash(ICH_FLASH_HSFSTS, hsfsts.regval);
4205
4206 nvm->ops.release(hw);
4207 }
4208
4209 /**
4210 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
4211 * @hw: pointer to the HW structure
4212 * @offset: The offset (in bytes) of the byte/word to read.
4213 * @size: Size of data to read, 1=byte 2=word
4214 * @data: The byte(s) to write to the NVM.
4215 *
4216 * Writes one/two bytes to the NVM using the flash access registers.
4217 **/
e1000_write_flash_data_ich8lan(struct e1000_hw * hw,u32 offset,u8 size,u16 data)4218 static s32 e1000_write_flash_data_ich8lan(struct e1000_hw *hw, u32 offset,
4219 u8 size, u16 data)
4220 {
4221 union ich8_hws_flash_status hsfsts;
4222 union ich8_hws_flash_ctrl hsflctl;
4223 u32 flash_linear_addr;
4224 u32 flash_data = 0;
4225 s32 ret_val;
4226 u8 count = 0;
4227
4228 if (hw->mac.type >= e1000_pch_spt) {
4229 if (size != 4 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4230 return -E1000_ERR_NVM;
4231 } else {
4232 if (size < 1 || size > 2 || offset > ICH_FLASH_LINEAR_ADDR_MASK)
4233 return -E1000_ERR_NVM;
4234 }
4235
4236 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4237 hw->nvm.flash_base_addr);
4238
4239 do {
4240 udelay(1);
4241 /* Steps */
4242 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4243 if (ret_val)
4244 break;
4245 /* In SPT, This register is in Lan memory space, not
4246 * flash. Therefore, only 32 bit access is supported
4247 */
4248 if (hw->mac.type >= e1000_pch_spt)
4249 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS) >> 16;
4250 else
4251 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4252
4253 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
4254 hsflctl.hsf_ctrl.fldbcount = size - 1;
4255 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4256 /* In SPT, This register is in Lan memory space,
4257 * not flash. Therefore, only 32 bit access is
4258 * supported
4259 */
4260 if (hw->mac.type >= e1000_pch_spt)
4261 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4262 else
4263 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4264
4265 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4266
4267 if (size == 1)
4268 flash_data = (u32)data & 0x00FF;
4269 else
4270 flash_data = (u32)data;
4271
4272 ew32flash(ICH_FLASH_FDATA0, flash_data);
4273
4274 /* check if FCERR is set to 1 , if set to 1, clear it
4275 * and try the whole sequence a few more times else done
4276 */
4277 ret_val =
4278 e1000_flash_cycle_ich8lan(hw,
4279 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4280 if (!ret_val)
4281 break;
4282
4283 /* If we're here, then things are most likely
4284 * completely hosed, but if the error condition
4285 * is detected, it won't hurt to give it another
4286 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4287 */
4288 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4289 if (hsfsts.hsf_status.flcerr)
4290 /* Repeat for some time before giving up. */
4291 continue;
4292 if (!hsfsts.hsf_status.flcdone) {
4293 e_dbg("Timeout error - flash cycle did not complete.\n");
4294 break;
4295 }
4296 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4297
4298 return ret_val;
4299 }
4300
4301 /**
4302 * e1000_write_flash_data32_ich8lan - Writes 4 bytes to the NVM
4303 * @hw: pointer to the HW structure
4304 * @offset: The offset (in bytes) of the dwords to read.
4305 * @data: The 4 bytes to write to the NVM.
4306 *
4307 * Writes one/two/four bytes to the NVM using the flash access registers.
4308 **/
e1000_write_flash_data32_ich8lan(struct e1000_hw * hw,u32 offset,u32 data)4309 static s32 e1000_write_flash_data32_ich8lan(struct e1000_hw *hw, u32 offset,
4310 u32 data)
4311 {
4312 union ich8_hws_flash_status hsfsts;
4313 union ich8_hws_flash_ctrl hsflctl;
4314 u32 flash_linear_addr;
4315 s32 ret_val;
4316 u8 count = 0;
4317
4318 if (hw->mac.type >= e1000_pch_spt) {
4319 if (offset > ICH_FLASH_LINEAR_ADDR_MASK)
4320 return -E1000_ERR_NVM;
4321 }
4322 flash_linear_addr = ((ICH_FLASH_LINEAR_ADDR_MASK & offset) +
4323 hw->nvm.flash_base_addr);
4324 do {
4325 udelay(1);
4326 /* Steps */
4327 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4328 if (ret_val)
4329 break;
4330
4331 /* In SPT, This register is in Lan memory space, not
4332 * flash. Therefore, only 32 bit access is supported
4333 */
4334 if (hw->mac.type >= e1000_pch_spt)
4335 hsflctl.regval = er32flash(ICH_FLASH_HSFSTS)
4336 >> 16;
4337 else
4338 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4339
4340 hsflctl.hsf_ctrl.fldbcount = sizeof(u32) - 1;
4341 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_WRITE;
4342
4343 /* In SPT, This register is in Lan memory space,
4344 * not flash. Therefore, only 32 bit access is
4345 * supported
4346 */
4347 if (hw->mac.type >= e1000_pch_spt)
4348 ew32flash(ICH_FLASH_HSFSTS, hsflctl.regval << 16);
4349 else
4350 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4351
4352 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4353
4354 ew32flash(ICH_FLASH_FDATA0, data);
4355
4356 /* check if FCERR is set to 1 , if set to 1, clear it
4357 * and try the whole sequence a few more times else done
4358 */
4359 ret_val =
4360 e1000_flash_cycle_ich8lan(hw,
4361 ICH_FLASH_WRITE_COMMAND_TIMEOUT);
4362
4363 if (!ret_val)
4364 break;
4365
4366 /* If we're here, then things are most likely
4367 * completely hosed, but if the error condition
4368 * is detected, it won't hurt to give it another
4369 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
4370 */
4371 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4372
4373 if (hsfsts.hsf_status.flcerr)
4374 /* Repeat for some time before giving up. */
4375 continue;
4376 if (!hsfsts.hsf_status.flcdone) {
4377 e_dbg("Timeout error - flash cycle did not complete.\n");
4378 break;
4379 }
4380 } while (count++ < ICH_FLASH_CYCLE_REPEAT_COUNT);
4381
4382 return ret_val;
4383 }
4384
4385 /**
4386 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
4387 * @hw: pointer to the HW structure
4388 * @offset: The index of the byte to read.
4389 * @data: The byte to write to the NVM.
4390 *
4391 * Writes a single byte to the NVM using the flash access registers.
4392 **/
e1000_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 data)4393 static s32 e1000_write_flash_byte_ich8lan(struct e1000_hw *hw, u32 offset,
4394 u8 data)
4395 {
4396 u16 word = (u16)data;
4397
4398 return e1000_write_flash_data_ich8lan(hw, offset, 1, word);
4399 }
4400
4401 /**
4402 * e1000_retry_write_flash_dword_ich8lan - Writes a dword to NVM
4403 * @hw: pointer to the HW structure
4404 * @offset: The offset of the word to write.
4405 * @dword: The dword to write to the NVM.
4406 *
4407 * Writes a single dword to the NVM using the flash access registers.
4408 * Goes through a retry algorithm before giving up.
4409 **/
e1000_retry_write_flash_dword_ich8lan(struct e1000_hw * hw,u32 offset,u32 dword)4410 static s32 e1000_retry_write_flash_dword_ich8lan(struct e1000_hw *hw,
4411 u32 offset, u32 dword)
4412 {
4413 s32 ret_val;
4414 u16 program_retries;
4415
4416 /* Must convert word offset into bytes. */
4417 offset <<= 1;
4418 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4419
4420 if (!ret_val)
4421 return ret_val;
4422 for (program_retries = 0; program_retries < 100; program_retries++) {
4423 e_dbg("Retrying Byte %8.8X at offset %u\n", dword, offset);
4424 usleep_range(100, 200);
4425 ret_val = e1000_write_flash_data32_ich8lan(hw, offset, dword);
4426 if (!ret_val)
4427 break;
4428 }
4429 if (program_retries == 100)
4430 return -E1000_ERR_NVM;
4431
4432 return 0;
4433 }
4434
4435 /**
4436 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
4437 * @hw: pointer to the HW structure
4438 * @offset: The offset of the byte to write.
4439 * @byte: The byte to write to the NVM.
4440 *
4441 * Writes a single byte to the NVM using the flash access registers.
4442 * Goes through a retry algorithm before giving up.
4443 **/
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw * hw,u32 offset,u8 byte)4444 static s32 e1000_retry_write_flash_byte_ich8lan(struct e1000_hw *hw,
4445 u32 offset, u8 byte)
4446 {
4447 s32 ret_val;
4448 u16 program_retries;
4449
4450 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4451 if (!ret_val)
4452 return ret_val;
4453
4454 for (program_retries = 0; program_retries < 100; program_retries++) {
4455 e_dbg("Retrying Byte %2.2X at offset %u\n", byte, offset);
4456 usleep_range(100, 200);
4457 ret_val = e1000_write_flash_byte_ich8lan(hw, offset, byte);
4458 if (!ret_val)
4459 break;
4460 }
4461 if (program_retries == 100)
4462 return -E1000_ERR_NVM;
4463
4464 return 0;
4465 }
4466
4467 /**
4468 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
4469 * @hw: pointer to the HW structure
4470 * @bank: 0 for first bank, 1 for second bank, etc.
4471 *
4472 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
4473 * bank N is 4096 * N + flash_reg_addr.
4474 **/
e1000_erase_flash_bank_ich8lan(struct e1000_hw * hw,u32 bank)4475 static s32 e1000_erase_flash_bank_ich8lan(struct e1000_hw *hw, u32 bank)
4476 {
4477 struct e1000_nvm_info *nvm = &hw->nvm;
4478 union ich8_hws_flash_status hsfsts;
4479 union ich8_hws_flash_ctrl hsflctl;
4480 u32 flash_linear_addr;
4481 /* bank size is in 16bit words - adjust to bytes */
4482 u32 flash_bank_size = nvm->flash_bank_size * 2;
4483 s32 ret_val;
4484 s32 count = 0;
4485 s32 j, iteration, sector_size;
4486
4487 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4488
4489 /* Determine HW Sector size: Read BERASE bits of hw flash status
4490 * register
4491 * 00: The Hw sector is 256 bytes, hence we need to erase 16
4492 * consecutive sectors. The start index for the nth Hw sector
4493 * can be calculated as = bank * 4096 + n * 256
4494 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
4495 * The start index for the nth Hw sector can be calculated
4496 * as = bank * 4096
4497 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
4498 * (ich9 only, otherwise error condition)
4499 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
4500 */
4501 switch (hsfsts.hsf_status.berasesz) {
4502 case 0:
4503 /* Hw sector size 256 */
4504 sector_size = ICH_FLASH_SEG_SIZE_256;
4505 iteration = flash_bank_size / ICH_FLASH_SEG_SIZE_256;
4506 break;
4507 case 1:
4508 sector_size = ICH_FLASH_SEG_SIZE_4K;
4509 iteration = 1;
4510 break;
4511 case 2:
4512 sector_size = ICH_FLASH_SEG_SIZE_8K;
4513 iteration = 1;
4514 break;
4515 case 3:
4516 sector_size = ICH_FLASH_SEG_SIZE_64K;
4517 iteration = 1;
4518 break;
4519 default:
4520 return -E1000_ERR_NVM;
4521 }
4522
4523 /* Start with the base address, then add the sector offset. */
4524 flash_linear_addr = hw->nvm.flash_base_addr;
4525 flash_linear_addr += (bank) ? flash_bank_size : 0;
4526
4527 for (j = 0; j < iteration; j++) {
4528 do {
4529 u32 timeout = ICH_FLASH_ERASE_COMMAND_TIMEOUT;
4530
4531 /* Steps */
4532 ret_val = e1000_flash_cycle_init_ich8lan(hw);
4533 if (ret_val)
4534 return ret_val;
4535
4536 /* Write a value 11 (block Erase) in Flash
4537 * Cycle field in hw flash control
4538 */
4539 if (hw->mac.type >= e1000_pch_spt)
4540 hsflctl.regval =
4541 er32flash(ICH_FLASH_HSFSTS) >> 16;
4542 else
4543 hsflctl.regval = er16flash(ICH_FLASH_HSFCTL);
4544
4545 hsflctl.hsf_ctrl.flcycle = ICH_CYCLE_ERASE;
4546 if (hw->mac.type >= e1000_pch_spt)
4547 ew32flash(ICH_FLASH_HSFSTS,
4548 hsflctl.regval << 16);
4549 else
4550 ew16flash(ICH_FLASH_HSFCTL, hsflctl.regval);
4551
4552 /* Write the last 24 bits of an index within the
4553 * block into Flash Linear address field in Flash
4554 * Address.
4555 */
4556 flash_linear_addr += (j * sector_size);
4557 ew32flash(ICH_FLASH_FADDR, flash_linear_addr);
4558
4559 ret_val = e1000_flash_cycle_ich8lan(hw, timeout);
4560 if (!ret_val)
4561 break;
4562
4563 /* Check if FCERR is set to 1. If 1,
4564 * clear it and try the whole sequence
4565 * a few more times else Done
4566 */
4567 hsfsts.regval = er16flash(ICH_FLASH_HSFSTS);
4568 if (hsfsts.hsf_status.flcerr)
4569 /* repeat for some time before giving up */
4570 continue;
4571 else if (!hsfsts.hsf_status.flcdone)
4572 return ret_val;
4573 } while (++count < ICH_FLASH_CYCLE_REPEAT_COUNT);
4574 }
4575
4576 return 0;
4577 }
4578
4579 /**
4580 * e1000_valid_led_default_ich8lan - Set the default LED settings
4581 * @hw: pointer to the HW structure
4582 * @data: Pointer to the LED settings
4583 *
4584 * Reads the LED default settings from the NVM to data. If the NVM LED
4585 * settings is all 0's or F's, set the LED default to a valid LED default
4586 * setting.
4587 **/
e1000_valid_led_default_ich8lan(struct e1000_hw * hw,u16 * data)4588 static s32 e1000_valid_led_default_ich8lan(struct e1000_hw *hw, u16 *data)
4589 {
4590 s32 ret_val;
4591
4592 ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
4593 if (ret_val) {
4594 e_dbg("NVM Read Error\n");
4595 return ret_val;
4596 }
4597
4598 if (*data == ID_LED_RESERVED_0000 || *data == ID_LED_RESERVED_FFFF)
4599 *data = ID_LED_DEFAULT_ICH8LAN;
4600
4601 return 0;
4602 }
4603
4604 /**
4605 * e1000_id_led_init_pchlan - store LED configurations
4606 * @hw: pointer to the HW structure
4607 *
4608 * PCH does not control LEDs via the LEDCTL register, rather it uses
4609 * the PHY LED configuration register.
4610 *
4611 * PCH also does not have an "always on" or "always off" mode which
4612 * complicates the ID feature. Instead of using the "on" mode to indicate
4613 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init_generic()),
4614 * use "link_up" mode. The LEDs will still ID on request if there is no
4615 * link based on logic in e1000_led_[on|off]_pchlan().
4616 **/
e1000_id_led_init_pchlan(struct e1000_hw * hw)4617 static s32 e1000_id_led_init_pchlan(struct e1000_hw *hw)
4618 {
4619 struct e1000_mac_info *mac = &hw->mac;
4620 s32 ret_val;
4621 const u32 ledctl_on = E1000_LEDCTL_MODE_LINK_UP;
4622 const u32 ledctl_off = E1000_LEDCTL_MODE_LINK_UP | E1000_PHY_LED0_IVRT;
4623 u16 data, i, temp, shift;
4624
4625 /* Get default ID LED modes */
4626 ret_val = hw->nvm.ops.valid_led_default(hw, &data);
4627 if (ret_val)
4628 return ret_val;
4629
4630 mac->ledctl_default = er32(LEDCTL);
4631 mac->ledctl_mode1 = mac->ledctl_default;
4632 mac->ledctl_mode2 = mac->ledctl_default;
4633
4634 for (i = 0; i < 4; i++) {
4635 temp = (data >> (i << 2)) & E1000_LEDCTL_LED0_MODE_MASK;
4636 shift = (i * 5);
4637 switch (temp) {
4638 case ID_LED_ON1_DEF2:
4639 case ID_LED_ON1_ON2:
4640 case ID_LED_ON1_OFF2:
4641 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4642 mac->ledctl_mode1 |= (ledctl_on << shift);
4643 break;
4644 case ID_LED_OFF1_DEF2:
4645 case ID_LED_OFF1_ON2:
4646 case ID_LED_OFF1_OFF2:
4647 mac->ledctl_mode1 &= ~(E1000_PHY_LED0_MASK << shift);
4648 mac->ledctl_mode1 |= (ledctl_off << shift);
4649 break;
4650 default:
4651 /* Do nothing */
4652 break;
4653 }
4654 switch (temp) {
4655 case ID_LED_DEF1_ON2:
4656 case ID_LED_ON1_ON2:
4657 case ID_LED_OFF1_ON2:
4658 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4659 mac->ledctl_mode2 |= (ledctl_on << shift);
4660 break;
4661 case ID_LED_DEF1_OFF2:
4662 case ID_LED_ON1_OFF2:
4663 case ID_LED_OFF1_OFF2:
4664 mac->ledctl_mode2 &= ~(E1000_PHY_LED0_MASK << shift);
4665 mac->ledctl_mode2 |= (ledctl_off << shift);
4666 break;
4667 default:
4668 /* Do nothing */
4669 break;
4670 }
4671 }
4672
4673 return 0;
4674 }
4675
4676 /**
4677 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
4678 * @hw: pointer to the HW structure
4679 *
4680 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
4681 * register, so the bus width is hard coded.
4682 **/
e1000_get_bus_info_ich8lan(struct e1000_hw * hw)4683 static s32 e1000_get_bus_info_ich8lan(struct e1000_hw *hw)
4684 {
4685 struct e1000_bus_info *bus = &hw->bus;
4686 s32 ret_val;
4687
4688 ret_val = e1000e_get_bus_info_pcie(hw);
4689
4690 /* ICH devices are "PCI Express"-ish. They have
4691 * a configuration space, but do not contain
4692 * PCI Express Capability registers, so bus width
4693 * must be hardcoded.
4694 */
4695 if (bus->width == e1000_bus_width_unknown)
4696 bus->width = e1000_bus_width_pcie_x1;
4697
4698 return ret_val;
4699 }
4700
4701 /**
4702 * e1000_reset_hw_ich8lan - Reset the hardware
4703 * @hw: pointer to the HW structure
4704 *
4705 * Does a full reset of the hardware which includes a reset of the PHY and
4706 * MAC.
4707 **/
e1000_reset_hw_ich8lan(struct e1000_hw * hw)4708 static s32 e1000_reset_hw_ich8lan(struct e1000_hw *hw)
4709 {
4710 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
4711 u16 kum_cfg;
4712 u32 ctrl, reg;
4713 s32 ret_val;
4714
4715 /* Prevent the PCI-E bus from sticking if there is no TLP connection
4716 * on the last TLP read/write transaction when MAC is reset.
4717 */
4718 ret_val = e1000e_disable_pcie_master(hw);
4719 if (ret_val)
4720 e_dbg("PCI-E Master disable polling has failed.\n");
4721
4722 e_dbg("Masking off all interrupts\n");
4723 ew32(IMC, 0xffffffff);
4724
4725 /* Disable the Transmit and Receive units. Then delay to allow
4726 * any pending transactions to complete before we hit the MAC
4727 * with the global reset.
4728 */
4729 ew32(RCTL, 0);
4730 ew32(TCTL, E1000_TCTL_PSP);
4731 e1e_flush();
4732
4733 usleep_range(10000, 11000);
4734
4735 /* Workaround for ICH8 bit corruption issue in FIFO memory */
4736 if (hw->mac.type == e1000_ich8lan) {
4737 /* Set Tx and Rx buffer allocation to 8k apiece. */
4738 ew32(PBA, E1000_PBA_8K);
4739 /* Set Packet Buffer Size to 16k. */
4740 ew32(PBS, E1000_PBS_16K);
4741 }
4742
4743 if (hw->mac.type == e1000_pchlan) {
4744 /* Save the NVM K1 bit setting */
4745 ret_val = e1000_read_nvm(hw, E1000_NVM_K1_CONFIG, 1, &kum_cfg);
4746 if (ret_val)
4747 return ret_val;
4748
4749 if (kum_cfg & E1000_NVM_K1_ENABLE)
4750 dev_spec->nvm_k1_enabled = true;
4751 else
4752 dev_spec->nvm_k1_enabled = false;
4753 }
4754
4755 ctrl = er32(CTRL);
4756
4757 if (!hw->phy.ops.check_reset_block(hw)) {
4758 /* Full-chip reset requires MAC and PHY reset at the same
4759 * time to make sure the interface between MAC and the
4760 * external PHY is reset.
4761 */
4762 ctrl |= E1000_CTRL_PHY_RST;
4763
4764 /* Gate automatic PHY configuration by hardware on
4765 * non-managed 82579
4766 */
4767 if ((hw->mac.type == e1000_pch2lan) &&
4768 !(er32(FWSM) & E1000_ICH_FWSM_FW_VALID))
4769 e1000_gate_hw_phy_config_ich8lan(hw, true);
4770 }
4771 ret_val = e1000_acquire_swflag_ich8lan(hw);
4772 e_dbg("Issuing a global reset to ich8lan\n");
4773 ew32(CTRL, (ctrl | E1000_CTRL_RST));
4774 /* cannot issue a flush here because it hangs the hardware */
4775 msleep(20);
4776
4777 /* Set Phy Config Counter to 50msec */
4778 if (hw->mac.type == e1000_pch2lan) {
4779 reg = er32(FEXTNVM3);
4780 reg &= ~E1000_FEXTNVM3_PHY_CFG_COUNTER_MASK;
4781 reg |= E1000_FEXTNVM3_PHY_CFG_COUNTER_50MSEC;
4782 ew32(FEXTNVM3, reg);
4783 }
4784
4785 if (!ret_val)
4786 clear_bit(__E1000_ACCESS_SHARED_RESOURCE, &hw->adapter->state);
4787
4788 if (ctrl & E1000_CTRL_PHY_RST) {
4789 ret_val = hw->phy.ops.get_cfg_done(hw);
4790 if (ret_val)
4791 return ret_val;
4792
4793 ret_val = e1000_post_phy_reset_ich8lan(hw);
4794 if (ret_val)
4795 return ret_val;
4796 }
4797
4798 /* For PCH, this write will make sure that any noise
4799 * will be detected as a CRC error and be dropped rather than show up
4800 * as a bad packet to the DMA engine.
4801 */
4802 if (hw->mac.type == e1000_pchlan)
4803 ew32(CRC_OFFSET, 0x65656565);
4804
4805 ew32(IMC, 0xffffffff);
4806 er32(ICR);
4807
4808 reg = er32(KABGTXD);
4809 reg |= E1000_KABGTXD_BGSQLBIAS;
4810 ew32(KABGTXD, reg);
4811
4812 return 0;
4813 }
4814
4815 /**
4816 * e1000_init_hw_ich8lan - Initialize the hardware
4817 * @hw: pointer to the HW structure
4818 *
4819 * Prepares the hardware for transmit and receive by doing the following:
4820 * - initialize hardware bits
4821 * - initialize LED identification
4822 * - setup receive address registers
4823 * - setup flow control
4824 * - setup transmit descriptors
4825 * - clear statistics
4826 **/
e1000_init_hw_ich8lan(struct e1000_hw * hw)4827 static s32 e1000_init_hw_ich8lan(struct e1000_hw *hw)
4828 {
4829 struct e1000_mac_info *mac = &hw->mac;
4830 u32 ctrl_ext, txdctl, snoop, fflt_dbg;
4831 s32 ret_val;
4832 u16 i;
4833
4834 e1000_initialize_hw_bits_ich8lan(hw);
4835
4836 /* Initialize identification LED */
4837 ret_val = mac->ops.id_led_init(hw);
4838 /* An error is not fatal and we should not stop init due to this */
4839 if (ret_val)
4840 e_dbg("Error initializing identification LED\n");
4841
4842 /* Setup the receive address. */
4843 e1000e_init_rx_addrs(hw, mac->rar_entry_count);
4844
4845 /* Zero out the Multicast HASH table */
4846 e_dbg("Zeroing the MTA\n");
4847 for (i = 0; i < mac->mta_reg_count; i++)
4848 E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
4849
4850 /* The 82578 Rx buffer will stall if wakeup is enabled in host and
4851 * the ME. Disable wakeup by clearing the host wakeup bit.
4852 * Reset the phy after disabling host wakeup to reset the Rx buffer.
4853 */
4854 if (hw->phy.type == e1000_phy_82578) {
4855 e1e_rphy(hw, BM_PORT_GEN_CFG, &i);
4856 i &= ~BM_WUC_HOST_WU_BIT;
4857 e1e_wphy(hw, BM_PORT_GEN_CFG, i);
4858 ret_val = e1000_phy_hw_reset_ich8lan(hw);
4859 if (ret_val)
4860 return ret_val;
4861 }
4862
4863 /* Setup link and flow control */
4864 ret_val = mac->ops.setup_link(hw);
4865
4866 /* Set the transmit descriptor write-back policy for both queues */
4867 txdctl = er32(TXDCTL(0));
4868 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4869 E1000_TXDCTL_FULL_TX_DESC_WB);
4870 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4871 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4872 ew32(TXDCTL(0), txdctl);
4873 txdctl = er32(TXDCTL(1));
4874 txdctl = ((txdctl & ~E1000_TXDCTL_WTHRESH) |
4875 E1000_TXDCTL_FULL_TX_DESC_WB);
4876 txdctl = ((txdctl & ~E1000_TXDCTL_PTHRESH) |
4877 E1000_TXDCTL_MAX_TX_DESC_PREFETCH);
4878 ew32(TXDCTL(1), txdctl);
4879
4880 /* ICH8 has opposite polarity of no_snoop bits.
4881 * By default, we should use snoop behavior.
4882 */
4883 if (mac->type == e1000_ich8lan)
4884 snoop = PCIE_ICH8_SNOOP_ALL;
4885 else
4886 snoop = (u32)~(PCIE_NO_SNOOP_ALL);
4887 e1000e_set_pcie_no_snoop(hw, snoop);
4888
4889 /* Enable workaround for packet loss issue on TGP PCH
4890 * Do not gate DMA clock from the modPHY block
4891 */
4892 if (mac->type >= e1000_pch_tgp) {
4893 fflt_dbg = er32(FFLT_DBG);
4894 fflt_dbg |= E1000_FFLT_DBG_DONT_GATE_WAKE_DMA_CLK;
4895 ew32(FFLT_DBG, fflt_dbg);
4896 }
4897
4898 ctrl_ext = er32(CTRL_EXT);
4899 ctrl_ext |= E1000_CTRL_EXT_RO_DIS;
4900 ew32(CTRL_EXT, ctrl_ext);
4901
4902 /* Clear all of the statistics registers (clear on read). It is
4903 * important that we do this after we have tried to establish link
4904 * because the symbol error count will increment wildly if there
4905 * is no link.
4906 */
4907 e1000_clear_hw_cntrs_ich8lan(hw);
4908
4909 return ret_val;
4910 }
4911
4912 /**
4913 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
4914 * @hw: pointer to the HW structure
4915 *
4916 * Sets/Clears required hardware bits necessary for correctly setting up the
4917 * hardware for transmit and receive.
4918 **/
e1000_initialize_hw_bits_ich8lan(struct e1000_hw * hw)4919 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw *hw)
4920 {
4921 u32 reg;
4922
4923 /* Extended Device Control */
4924 reg = er32(CTRL_EXT);
4925 reg |= BIT(22);
4926 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
4927 if (hw->mac.type >= e1000_pchlan)
4928 reg |= E1000_CTRL_EXT_PHYPDEN;
4929 ew32(CTRL_EXT, reg);
4930
4931 /* Transmit Descriptor Control 0 */
4932 reg = er32(TXDCTL(0));
4933 reg |= BIT(22);
4934 ew32(TXDCTL(0), reg);
4935
4936 /* Transmit Descriptor Control 1 */
4937 reg = er32(TXDCTL(1));
4938 reg |= BIT(22);
4939 ew32(TXDCTL(1), reg);
4940
4941 /* Transmit Arbitration Control 0 */
4942 reg = er32(TARC(0));
4943 if (hw->mac.type == e1000_ich8lan)
4944 reg |= BIT(28) | BIT(29);
4945 reg |= BIT(23) | BIT(24) | BIT(26) | BIT(27);
4946 ew32(TARC(0), reg);
4947
4948 /* Transmit Arbitration Control 1 */
4949 reg = er32(TARC(1));
4950 if (er32(TCTL) & E1000_TCTL_MULR)
4951 reg &= ~BIT(28);
4952 else
4953 reg |= BIT(28);
4954 reg |= BIT(24) | BIT(26) | BIT(30);
4955 ew32(TARC(1), reg);
4956
4957 /* Device Status */
4958 if (hw->mac.type == e1000_ich8lan) {
4959 reg = er32(STATUS);
4960 reg &= ~BIT(31);
4961 ew32(STATUS, reg);
4962 }
4963
4964 /* work-around descriptor data corruption issue during nfs v2 udp
4965 * traffic, just disable the nfs filtering capability
4966 */
4967 reg = er32(RFCTL);
4968 reg |= (E1000_RFCTL_NFSW_DIS | E1000_RFCTL_NFSR_DIS);
4969
4970 /* Disable IPv6 extension header parsing because some malformed
4971 * IPv6 headers can hang the Rx.
4972 */
4973 if (hw->mac.type == e1000_ich8lan)
4974 reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
4975 ew32(RFCTL, reg);
4976
4977 /* Enable ECC on Lynxpoint */
4978 if (hw->mac.type >= e1000_pch_lpt) {
4979 reg = er32(PBECCSTS);
4980 reg |= E1000_PBECCSTS_ECC_ENABLE;
4981 ew32(PBECCSTS, reg);
4982
4983 reg = er32(CTRL);
4984 reg |= E1000_CTRL_MEHE;
4985 ew32(CTRL, reg);
4986 }
4987 }
4988
4989 /**
4990 * e1000_setup_link_ich8lan - Setup flow control and link settings
4991 * @hw: pointer to the HW structure
4992 *
4993 * Determines which flow control settings to use, then configures flow
4994 * control. Calls the appropriate media-specific link configuration
4995 * function. Assuming the adapter has a valid link partner, a valid link
4996 * should be established. Assumes the hardware has previously been reset
4997 * and the transmitter and receiver are not enabled.
4998 **/
e1000_setup_link_ich8lan(struct e1000_hw * hw)4999 static s32 e1000_setup_link_ich8lan(struct e1000_hw *hw)
5000 {
5001 s32 ret_val;
5002
5003 if (hw->phy.ops.check_reset_block(hw))
5004 return 0;
5005
5006 /* ICH parts do not have a word in the NVM to determine
5007 * the default flow control setting, so we explicitly
5008 * set it to full.
5009 */
5010 if (hw->fc.requested_mode == e1000_fc_default) {
5011 /* Workaround h/w hang when Tx flow control enabled */
5012 if (hw->mac.type == e1000_pchlan)
5013 hw->fc.requested_mode = e1000_fc_rx_pause;
5014 else
5015 hw->fc.requested_mode = e1000_fc_full;
5016 }
5017
5018 /* Save off the requested flow control mode for use later. Depending
5019 * on the link partner's capabilities, we may or may not use this mode.
5020 */
5021 hw->fc.current_mode = hw->fc.requested_mode;
5022
5023 e_dbg("After fix-ups FlowControl is now = %x\n", hw->fc.current_mode);
5024
5025 /* Continue to configure the copper link. */
5026 ret_val = hw->mac.ops.setup_physical_interface(hw);
5027 if (ret_val)
5028 return ret_val;
5029
5030 ew32(FCTTV, hw->fc.pause_time);
5031 if ((hw->phy.type == e1000_phy_82578) ||
5032 (hw->phy.type == e1000_phy_82579) ||
5033 (hw->phy.type == e1000_phy_i217) ||
5034 (hw->phy.type == e1000_phy_82577)) {
5035 ew32(FCRTV_PCH, hw->fc.refresh_time);
5036
5037 ret_val = e1e_wphy(hw, PHY_REG(BM_PORT_CTRL_PAGE, 27),
5038 hw->fc.pause_time);
5039 if (ret_val)
5040 return ret_val;
5041 }
5042
5043 return e1000e_set_fc_watermarks(hw);
5044 }
5045
5046 /**
5047 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
5048 * @hw: pointer to the HW structure
5049 *
5050 * Configures the kumeran interface to the PHY to wait the appropriate time
5051 * when polling the PHY, then call the generic setup_copper_link to finish
5052 * configuring the copper link.
5053 **/
e1000_setup_copper_link_ich8lan(struct e1000_hw * hw)5054 static s32 e1000_setup_copper_link_ich8lan(struct e1000_hw *hw)
5055 {
5056 u32 ctrl;
5057 s32 ret_val;
5058 u16 reg_data;
5059
5060 ctrl = er32(CTRL);
5061 ctrl |= E1000_CTRL_SLU;
5062 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5063 ew32(CTRL, ctrl);
5064
5065 /* Set the mac to wait the maximum time between each iteration
5066 * and increase the max iterations when polling the phy;
5067 * this fixes erroneous timeouts at 10Mbps.
5068 */
5069 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_TIMEOUTS, 0xFFFF);
5070 if (ret_val)
5071 return ret_val;
5072 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5073 ®_data);
5074 if (ret_val)
5075 return ret_val;
5076 reg_data |= 0x3F;
5077 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_INBAND_PARAM,
5078 reg_data);
5079 if (ret_val)
5080 return ret_val;
5081
5082 switch (hw->phy.type) {
5083 case e1000_phy_igp_3:
5084 ret_val = e1000e_copper_link_setup_igp(hw);
5085 if (ret_val)
5086 return ret_val;
5087 break;
5088 case e1000_phy_bm:
5089 case e1000_phy_82578:
5090 ret_val = e1000e_copper_link_setup_m88(hw);
5091 if (ret_val)
5092 return ret_val;
5093 break;
5094 case e1000_phy_82577:
5095 case e1000_phy_82579:
5096 ret_val = e1000_copper_link_setup_82577(hw);
5097 if (ret_val)
5098 return ret_val;
5099 break;
5100 case e1000_phy_ife:
5101 ret_val = e1e_rphy(hw, IFE_PHY_MDIX_CONTROL, ®_data);
5102 if (ret_val)
5103 return ret_val;
5104
5105 reg_data &= ~IFE_PMC_AUTO_MDIX;
5106
5107 switch (hw->phy.mdix) {
5108 case 1:
5109 reg_data &= ~IFE_PMC_FORCE_MDIX;
5110 break;
5111 case 2:
5112 reg_data |= IFE_PMC_FORCE_MDIX;
5113 break;
5114 case 0:
5115 default:
5116 reg_data |= IFE_PMC_AUTO_MDIX;
5117 break;
5118 }
5119 ret_val = e1e_wphy(hw, IFE_PHY_MDIX_CONTROL, reg_data);
5120 if (ret_val)
5121 return ret_val;
5122 break;
5123 default:
5124 break;
5125 }
5126
5127 return e1000e_setup_copper_link(hw);
5128 }
5129
5130 /**
5131 * e1000_setup_copper_link_pch_lpt - Configure MAC/PHY interface
5132 * @hw: pointer to the HW structure
5133 *
5134 * Calls the PHY specific link setup function and then calls the
5135 * generic setup_copper_link to finish configuring the link for
5136 * Lynxpoint PCH devices
5137 **/
e1000_setup_copper_link_pch_lpt(struct e1000_hw * hw)5138 static s32 e1000_setup_copper_link_pch_lpt(struct e1000_hw *hw)
5139 {
5140 u32 ctrl;
5141 s32 ret_val;
5142
5143 ctrl = er32(CTRL);
5144 ctrl |= E1000_CTRL_SLU;
5145 ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
5146 ew32(CTRL, ctrl);
5147
5148 ret_val = e1000_copper_link_setup_82577(hw);
5149 if (ret_val)
5150 return ret_val;
5151
5152 return e1000e_setup_copper_link(hw);
5153 }
5154
5155 /**
5156 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
5157 * @hw: pointer to the HW structure
5158 * @speed: pointer to store current link speed
5159 * @duplex: pointer to store the current link duplex
5160 *
5161 * Calls the generic get_speed_and_duplex to retrieve the current link
5162 * information and then calls the Kumeran lock loss workaround for links at
5163 * gigabit speeds.
5164 **/
e1000_get_link_up_info_ich8lan(struct e1000_hw * hw,u16 * speed,u16 * duplex)5165 static s32 e1000_get_link_up_info_ich8lan(struct e1000_hw *hw, u16 *speed,
5166 u16 *duplex)
5167 {
5168 s32 ret_val;
5169
5170 ret_val = e1000e_get_speed_and_duplex_copper(hw, speed, duplex);
5171 if (ret_val)
5172 return ret_val;
5173
5174 if ((hw->mac.type == e1000_ich8lan) &&
5175 (hw->phy.type == e1000_phy_igp_3) && (*speed == SPEED_1000)) {
5176 ret_val = e1000_kmrn_lock_loss_workaround_ich8lan(hw);
5177 }
5178
5179 return ret_val;
5180 }
5181
5182 /**
5183 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
5184 * @hw: pointer to the HW structure
5185 *
5186 * Work-around for 82566 Kumeran PCS lock loss:
5187 * On link status change (i.e. PCI reset, speed change) and link is up and
5188 * speed is gigabit-
5189 * 0) if workaround is optionally disabled do nothing
5190 * 1) wait 1ms for Kumeran link to come up
5191 * 2) check Kumeran Diagnostic register PCS lock loss bit
5192 * 3) if not set the link is locked (all is good), otherwise...
5193 * 4) reset the PHY
5194 * 5) repeat up to 10 times
5195 * Note: this is only called for IGP3 copper when speed is 1gb.
5196 **/
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw)5197 static s32 e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw)
5198 {
5199 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5200 u32 phy_ctrl;
5201 s32 ret_val;
5202 u16 i, data;
5203 bool link;
5204
5205 if (!dev_spec->kmrn_lock_loss_workaround_enabled)
5206 return 0;
5207
5208 /* Make sure link is up before proceeding. If not just return.
5209 * Attempting this while link is negotiating fouled up link
5210 * stability
5211 */
5212 ret_val = e1000e_phy_has_link_generic(hw, 1, 0, &link);
5213 if (!link)
5214 return 0;
5215
5216 for (i = 0; i < 10; i++) {
5217 /* read once to clear */
5218 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5219 if (ret_val)
5220 return ret_val;
5221 /* and again to get new status */
5222 ret_val = e1e_rphy(hw, IGP3_KMRN_DIAG, &data);
5223 if (ret_val)
5224 return ret_val;
5225
5226 /* check for PCS lock */
5227 if (!(data & IGP3_KMRN_DIAG_PCS_LOCK_LOSS))
5228 return 0;
5229
5230 /* Issue PHY reset */
5231 e1000_phy_hw_reset(hw);
5232 mdelay(5);
5233 }
5234 /* Disable GigE link negotiation */
5235 phy_ctrl = er32(PHY_CTRL);
5236 phy_ctrl |= (E1000_PHY_CTRL_GBE_DISABLE |
5237 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5238 ew32(PHY_CTRL, phy_ctrl);
5239
5240 /* Call gig speed drop workaround on Gig disable before accessing
5241 * any PHY registers
5242 */
5243 e1000e_gig_downshift_workaround_ich8lan(hw);
5244
5245 /* unable to acquire PCS lock */
5246 return -E1000_ERR_PHY;
5247 }
5248
5249 /**
5250 * e1000e_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
5251 * @hw: pointer to the HW structure
5252 * @state: boolean value used to set the current Kumeran workaround state
5253 *
5254 * If ICH8, set the current Kumeran workaround state (enabled - true
5255 * /disabled - false).
5256 **/
e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw * hw,bool state)5257 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw *hw,
5258 bool state)
5259 {
5260 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5261
5262 if (hw->mac.type != e1000_ich8lan) {
5263 e_dbg("Workaround applies to ICH8 only.\n");
5264 return;
5265 }
5266
5267 dev_spec->kmrn_lock_loss_workaround_enabled = state;
5268 }
5269
5270 /**
5271 * e1000e_igp3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
5272 * @hw: pointer to the HW structure
5273 *
5274 * Workaround for 82566 power-down on D3 entry:
5275 * 1) disable gigabit link
5276 * 2) write VR power-down enable
5277 * 3) read it back
5278 * Continue if successful, else issue LCD reset and repeat
5279 **/
e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw * hw)5280 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw *hw)
5281 {
5282 u32 reg;
5283 u16 data;
5284 u8 retry = 0;
5285
5286 if (hw->phy.type != e1000_phy_igp_3)
5287 return;
5288
5289 /* Try the workaround twice (if needed) */
5290 do {
5291 /* Disable link */
5292 reg = er32(PHY_CTRL);
5293 reg |= (E1000_PHY_CTRL_GBE_DISABLE |
5294 E1000_PHY_CTRL_NOND0A_GBE_DISABLE);
5295 ew32(PHY_CTRL, reg);
5296
5297 /* Call gig speed drop workaround on Gig disable before
5298 * accessing any PHY registers
5299 */
5300 if (hw->mac.type == e1000_ich8lan)
5301 e1000e_gig_downshift_workaround_ich8lan(hw);
5302
5303 /* Write VR power-down enable */
5304 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5305 data &= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5306 e1e_wphy(hw, IGP3_VR_CTRL, data | IGP3_VR_CTRL_MODE_SHUTDOWN);
5307
5308 /* Read it back and test */
5309 e1e_rphy(hw, IGP3_VR_CTRL, &data);
5310 data &= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK;
5311 if ((data == IGP3_VR_CTRL_MODE_SHUTDOWN) || retry)
5312 break;
5313
5314 /* Issue PHY reset and repeat at most one more time */
5315 reg = er32(CTRL);
5316 ew32(CTRL, reg | E1000_CTRL_PHY_RST);
5317 retry++;
5318 } while (retry);
5319 }
5320
5321 /**
5322 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
5323 * @hw: pointer to the HW structure
5324 *
5325 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
5326 * LPLU, Gig disable, MDIC PHY reset):
5327 * 1) Set Kumeran Near-end loopback
5328 * 2) Clear Kumeran Near-end loopback
5329 * Should only be called for ICH8[m] devices with any 1G Phy.
5330 **/
e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw * hw)5331 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw *hw)
5332 {
5333 s32 ret_val;
5334 u16 reg_data;
5335
5336 if ((hw->mac.type != e1000_ich8lan) || (hw->phy.type == e1000_phy_ife))
5337 return;
5338
5339 ret_val = e1000e_read_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5340 ®_data);
5341 if (ret_val)
5342 return;
5343 reg_data |= E1000_KMRNCTRLSTA_DIAG_NELPBK;
5344 ret_val = e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET,
5345 reg_data);
5346 if (ret_val)
5347 return;
5348 reg_data &= ~E1000_KMRNCTRLSTA_DIAG_NELPBK;
5349 e1000e_write_kmrn_reg(hw, E1000_KMRNCTRLSTA_DIAG_OFFSET, reg_data);
5350 }
5351
5352 /**
5353 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
5354 * @hw: pointer to the HW structure
5355 *
5356 * During S0 to Sx transition, it is possible the link remains at gig
5357 * instead of negotiating to a lower speed. Before going to Sx, set
5358 * 'Gig Disable' to force link speed negotiation to a lower speed based on
5359 * the LPLU setting in the NVM or custom setting. For PCH and newer parts,
5360 * the OEM bits PHY register (LED, GbE disable and LPLU configurations) also
5361 * needs to be written.
5362 * Parts that support (and are linked to a partner which support) EEE in
5363 * 100Mbps should disable LPLU since 100Mbps w/ EEE requires less power
5364 * than 10Mbps w/o EEE.
5365 **/
e1000_suspend_workarounds_ich8lan(struct e1000_hw * hw)5366 void e1000_suspend_workarounds_ich8lan(struct e1000_hw *hw)
5367 {
5368 struct e1000_dev_spec_ich8lan *dev_spec = &hw->dev_spec.ich8lan;
5369 u32 phy_ctrl;
5370 s32 ret_val;
5371
5372 phy_ctrl = er32(PHY_CTRL);
5373 phy_ctrl |= E1000_PHY_CTRL_GBE_DISABLE;
5374
5375 if (hw->phy.type == e1000_phy_i217) {
5376 u16 phy_reg, device_id = hw->adapter->pdev->device;
5377
5378 if ((device_id == E1000_DEV_ID_PCH_LPTLP_I218_LM) ||
5379 (device_id == E1000_DEV_ID_PCH_LPTLP_I218_V) ||
5380 (device_id == E1000_DEV_ID_PCH_I218_LM3) ||
5381 (device_id == E1000_DEV_ID_PCH_I218_V3) ||
5382 (hw->mac.type >= e1000_pch_spt)) {
5383 u32 fextnvm6 = er32(FEXTNVM6);
5384
5385 ew32(FEXTNVM6, fextnvm6 & ~E1000_FEXTNVM6_REQ_PLL_CLK);
5386 }
5387
5388 ret_val = hw->phy.ops.acquire(hw);
5389 if (ret_val)
5390 goto out;
5391
5392 if (!dev_spec->eee_disable) {
5393 u16 eee_advert;
5394
5395 ret_val =
5396 e1000_read_emi_reg_locked(hw,
5397 I217_EEE_ADVERTISEMENT,
5398 &eee_advert);
5399 if (ret_val)
5400 goto release;
5401
5402 /* Disable LPLU if both link partners support 100BaseT
5403 * EEE and 100Full is advertised on both ends of the
5404 * link, and enable Auto Enable LPI since there will
5405 * be no driver to enable LPI while in Sx.
5406 */
5407 if ((eee_advert & I82579_EEE_100_SUPPORTED) &&
5408 (dev_spec->eee_lp_ability &
5409 I82579_EEE_100_SUPPORTED) &&
5410 (hw->phy.autoneg_advertised & ADVERTISE_100_FULL)) {
5411 phy_ctrl &= ~(E1000_PHY_CTRL_D0A_LPLU |
5412 E1000_PHY_CTRL_NOND0A_LPLU);
5413
5414 /* Set Auto Enable LPI after link up */
5415 e1e_rphy_locked(hw,
5416 I217_LPI_GPIO_CTRL, &phy_reg);
5417 phy_reg |= I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5418 e1e_wphy_locked(hw,
5419 I217_LPI_GPIO_CTRL, phy_reg);
5420 }
5421 }
5422
5423 /* For i217 Intel Rapid Start Technology support,
5424 * when the system is going into Sx and no manageability engine
5425 * is present, the driver must configure proxy to reset only on
5426 * power good. LPI (Low Power Idle) state must also reset only
5427 * on power good, as well as the MTA (Multicast table array).
5428 * The SMBus release must also be disabled on LCD reset.
5429 */
5430 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5431 /* Enable proxy to reset only on power good. */
5432 e1e_rphy_locked(hw, I217_PROXY_CTRL, &phy_reg);
5433 phy_reg |= I217_PROXY_CTRL_AUTO_DISABLE;
5434 e1e_wphy_locked(hw, I217_PROXY_CTRL, phy_reg);
5435
5436 /* Set bit enable LPI (EEE) to reset only on
5437 * power good.
5438 */
5439 e1e_rphy_locked(hw, I217_SxCTRL, &phy_reg);
5440 phy_reg |= I217_SxCTRL_ENABLE_LPI_RESET;
5441 e1e_wphy_locked(hw, I217_SxCTRL, phy_reg);
5442
5443 /* Disable the SMB release on LCD reset. */
5444 e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5445 phy_reg &= ~I217_MEMPWR_DISABLE_SMB_RELEASE;
5446 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5447 }
5448
5449 /* Enable MTA to reset for Intel Rapid Start Technology
5450 * Support
5451 */
5452 e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5453 phy_reg |= I217_CGFREG_ENABLE_MTA_RESET;
5454 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5455
5456 release:
5457 hw->phy.ops.release(hw);
5458 }
5459 out:
5460 ew32(PHY_CTRL, phy_ctrl);
5461
5462 if (hw->mac.type == e1000_ich8lan)
5463 e1000e_gig_downshift_workaround_ich8lan(hw);
5464
5465 if (hw->mac.type >= e1000_pchlan) {
5466 e1000_oem_bits_config_ich8lan(hw, false);
5467
5468 /* Reset PHY to activate OEM bits on 82577/8 */
5469 if (hw->mac.type == e1000_pchlan)
5470 e1000e_phy_hw_reset_generic(hw);
5471
5472 ret_val = hw->phy.ops.acquire(hw);
5473 if (ret_val)
5474 return;
5475 e1000_write_smbus_addr(hw);
5476 hw->phy.ops.release(hw);
5477 }
5478 }
5479
5480 /**
5481 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
5482 * @hw: pointer to the HW structure
5483 *
5484 * During Sx to S0 transitions on non-managed devices or managed devices
5485 * on which PHY resets are not blocked, if the PHY registers cannot be
5486 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
5487 * the PHY.
5488 * On i217, setup Intel Rapid Start Technology.
5489 **/
e1000_resume_workarounds_pchlan(struct e1000_hw * hw)5490 void e1000_resume_workarounds_pchlan(struct e1000_hw *hw)
5491 {
5492 s32 ret_val;
5493
5494 if (hw->mac.type < e1000_pch2lan)
5495 return;
5496
5497 ret_val = e1000_init_phy_workarounds_pchlan(hw);
5498 if (ret_val) {
5499 e_dbg("Failed to init PHY flow ret_val=%d\n", ret_val);
5500 return;
5501 }
5502
5503 /* For i217 Intel Rapid Start Technology support when the system
5504 * is transitioning from Sx and no manageability engine is present
5505 * configure SMBus to restore on reset, disable proxy, and enable
5506 * the reset on MTA (Multicast table array).
5507 */
5508 if (hw->phy.type == e1000_phy_i217) {
5509 u16 phy_reg;
5510
5511 ret_val = hw->phy.ops.acquire(hw);
5512 if (ret_val) {
5513 e_dbg("Failed to setup iRST\n");
5514 return;
5515 }
5516
5517 /* Clear Auto Enable LPI after link up */
5518 e1e_rphy_locked(hw, I217_LPI_GPIO_CTRL, &phy_reg);
5519 phy_reg &= ~I217_LPI_GPIO_CTRL_AUTO_EN_LPI;
5520 e1e_wphy_locked(hw, I217_LPI_GPIO_CTRL, phy_reg);
5521
5522 if (!(er32(FWSM) & E1000_ICH_FWSM_FW_VALID)) {
5523 /* Restore clear on SMB if no manageability engine
5524 * is present
5525 */
5526 ret_val = e1e_rphy_locked(hw, I217_MEMPWR, &phy_reg);
5527 if (ret_val)
5528 goto release;
5529 phy_reg |= I217_MEMPWR_DISABLE_SMB_RELEASE;
5530 e1e_wphy_locked(hw, I217_MEMPWR, phy_reg);
5531
5532 /* Disable Proxy */
5533 e1e_wphy_locked(hw, I217_PROXY_CTRL, 0);
5534 }
5535 /* Enable reset on MTA */
5536 ret_val = e1e_rphy_locked(hw, I217_CGFREG, &phy_reg);
5537 if (ret_val)
5538 goto release;
5539 phy_reg &= ~I217_CGFREG_ENABLE_MTA_RESET;
5540 e1e_wphy_locked(hw, I217_CGFREG, phy_reg);
5541 release:
5542 if (ret_val)
5543 e_dbg("Error %d in resume workarounds\n", ret_val);
5544 hw->phy.ops.release(hw);
5545 }
5546 }
5547
5548 /**
5549 * e1000_cleanup_led_ich8lan - Restore the default LED operation
5550 * @hw: pointer to the HW structure
5551 *
5552 * Return the LED back to the default configuration.
5553 **/
e1000_cleanup_led_ich8lan(struct e1000_hw * hw)5554 static s32 e1000_cleanup_led_ich8lan(struct e1000_hw *hw)
5555 {
5556 if (hw->phy.type == e1000_phy_ife)
5557 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED, 0);
5558
5559 ew32(LEDCTL, hw->mac.ledctl_default);
5560 return 0;
5561 }
5562
5563 /**
5564 * e1000_led_on_ich8lan - Turn LEDs on
5565 * @hw: pointer to the HW structure
5566 *
5567 * Turn on the LEDs.
5568 **/
e1000_led_on_ich8lan(struct e1000_hw * hw)5569 static s32 e1000_led_on_ich8lan(struct e1000_hw *hw)
5570 {
5571 if (hw->phy.type == e1000_phy_ife)
5572 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5573 (IFE_PSCL_PROBE_MODE | IFE_PSCL_PROBE_LEDS_ON));
5574
5575 ew32(LEDCTL, hw->mac.ledctl_mode2);
5576 return 0;
5577 }
5578
5579 /**
5580 * e1000_led_off_ich8lan - Turn LEDs off
5581 * @hw: pointer to the HW structure
5582 *
5583 * Turn off the LEDs.
5584 **/
e1000_led_off_ich8lan(struct e1000_hw * hw)5585 static s32 e1000_led_off_ich8lan(struct e1000_hw *hw)
5586 {
5587 if (hw->phy.type == e1000_phy_ife)
5588 return e1e_wphy(hw, IFE_PHY_SPECIAL_CONTROL_LED,
5589 (IFE_PSCL_PROBE_MODE |
5590 IFE_PSCL_PROBE_LEDS_OFF));
5591
5592 ew32(LEDCTL, hw->mac.ledctl_mode1);
5593 return 0;
5594 }
5595
5596 /**
5597 * e1000_setup_led_pchlan - Configures SW controllable LED
5598 * @hw: pointer to the HW structure
5599 *
5600 * This prepares the SW controllable LED for use.
5601 **/
e1000_setup_led_pchlan(struct e1000_hw * hw)5602 static s32 e1000_setup_led_pchlan(struct e1000_hw *hw)
5603 {
5604 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_mode1);
5605 }
5606
5607 /**
5608 * e1000_cleanup_led_pchlan - Restore the default LED operation
5609 * @hw: pointer to the HW structure
5610 *
5611 * Return the LED back to the default configuration.
5612 **/
e1000_cleanup_led_pchlan(struct e1000_hw * hw)5613 static s32 e1000_cleanup_led_pchlan(struct e1000_hw *hw)
5614 {
5615 return e1e_wphy(hw, HV_LED_CONFIG, (u16)hw->mac.ledctl_default);
5616 }
5617
5618 /**
5619 * e1000_led_on_pchlan - Turn LEDs on
5620 * @hw: pointer to the HW structure
5621 *
5622 * Turn on the LEDs.
5623 **/
e1000_led_on_pchlan(struct e1000_hw * hw)5624 static s32 e1000_led_on_pchlan(struct e1000_hw *hw)
5625 {
5626 u16 data = (u16)hw->mac.ledctl_mode2;
5627 u32 i, led;
5628
5629 /* If no link, then turn LED on by setting the invert bit
5630 * for each LED that's mode is "link_up" in ledctl_mode2.
5631 */
5632 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5633 for (i = 0; i < 3; i++) {
5634 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5635 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5636 E1000_LEDCTL_MODE_LINK_UP)
5637 continue;
5638 if (led & E1000_PHY_LED0_IVRT)
5639 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5640 else
5641 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5642 }
5643 }
5644
5645 return e1e_wphy(hw, HV_LED_CONFIG, data);
5646 }
5647
5648 /**
5649 * e1000_led_off_pchlan - Turn LEDs off
5650 * @hw: pointer to the HW structure
5651 *
5652 * Turn off the LEDs.
5653 **/
e1000_led_off_pchlan(struct e1000_hw * hw)5654 static s32 e1000_led_off_pchlan(struct e1000_hw *hw)
5655 {
5656 u16 data = (u16)hw->mac.ledctl_mode1;
5657 u32 i, led;
5658
5659 /* If no link, then turn LED off by clearing the invert bit
5660 * for each LED that's mode is "link_up" in ledctl_mode1.
5661 */
5662 if (!(er32(STATUS) & E1000_STATUS_LU)) {
5663 for (i = 0; i < 3; i++) {
5664 led = (data >> (i * 5)) & E1000_PHY_LED0_MASK;
5665 if ((led & E1000_PHY_LED0_MODE_MASK) !=
5666 E1000_LEDCTL_MODE_LINK_UP)
5667 continue;
5668 if (led & E1000_PHY_LED0_IVRT)
5669 data &= ~(E1000_PHY_LED0_IVRT << (i * 5));
5670 else
5671 data |= (E1000_PHY_LED0_IVRT << (i * 5));
5672 }
5673 }
5674
5675 return e1e_wphy(hw, HV_LED_CONFIG, data);
5676 }
5677
5678 /**
5679 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
5680 * @hw: pointer to the HW structure
5681 *
5682 * Read appropriate register for the config done bit for completion status
5683 * and configure the PHY through s/w for EEPROM-less parts.
5684 *
5685 * NOTE: some silicon which is EEPROM-less will fail trying to read the
5686 * config done bit, so only an error is logged and continues. If we were
5687 * to return with error, EEPROM-less silicon would not be able to be reset
5688 * or change link.
5689 **/
e1000_get_cfg_done_ich8lan(struct e1000_hw * hw)5690 static s32 e1000_get_cfg_done_ich8lan(struct e1000_hw *hw)
5691 {
5692 s32 ret_val = 0;
5693 u32 bank = 0;
5694 u32 status;
5695
5696 e1000e_get_cfg_done_generic(hw);
5697
5698 /* Wait for indication from h/w that it has completed basic config */
5699 if (hw->mac.type >= e1000_ich10lan) {
5700 e1000_lan_init_done_ich8lan(hw);
5701 } else {
5702 ret_val = e1000e_get_auto_rd_done(hw);
5703 if (ret_val) {
5704 /* When auto config read does not complete, do not
5705 * return with an error. This can happen in situations
5706 * where there is no eeprom and prevents getting link.
5707 */
5708 e_dbg("Auto Read Done did not complete\n");
5709 ret_val = 0;
5710 }
5711 }
5712
5713 /* Clear PHY Reset Asserted bit */
5714 status = er32(STATUS);
5715 if (status & E1000_STATUS_PHYRA)
5716 ew32(STATUS, status & ~E1000_STATUS_PHYRA);
5717 else
5718 e_dbg("PHY Reset Asserted not set - needs delay\n");
5719
5720 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
5721 if (hw->mac.type <= e1000_ich9lan) {
5722 if (!(er32(EECD) & E1000_EECD_PRES) &&
5723 (hw->phy.type == e1000_phy_igp_3)) {
5724 e1000e_phy_init_script_igp3(hw);
5725 }
5726 } else {
5727 if (e1000_valid_nvm_bank_detect_ich8lan(hw, &bank)) {
5728 /* Maybe we should do a basic PHY config */
5729 e_dbg("EEPROM not present\n");
5730 ret_val = -E1000_ERR_CONFIG;
5731 }
5732 }
5733
5734 return ret_val;
5735 }
5736
5737 /**
5738 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
5739 * @hw: pointer to the HW structure
5740 *
5741 * In the case of a PHY power down to save power, or to turn off link during a
5742 * driver unload, or wake on lan is not enabled, remove the link.
5743 **/
e1000_power_down_phy_copper_ich8lan(struct e1000_hw * hw)5744 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw *hw)
5745 {
5746 /* If the management interface is not enabled, then power down */
5747 if (!(hw->mac.ops.check_mng_mode(hw) ||
5748 hw->phy.ops.check_reset_block(hw)))
5749 e1000_power_down_phy_copper(hw);
5750 }
5751
5752 /**
5753 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
5754 * @hw: pointer to the HW structure
5755 *
5756 * Clears hardware counters specific to the silicon family and calls
5757 * clear_hw_cntrs_generic to clear all general purpose counters.
5758 **/
e1000_clear_hw_cntrs_ich8lan(struct e1000_hw * hw)5759 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw *hw)
5760 {
5761 u16 phy_data;
5762 s32 ret_val;
5763
5764 e1000e_clear_hw_cntrs_base(hw);
5765
5766 er32(ALGNERRC);
5767 er32(RXERRC);
5768 er32(TNCRS);
5769 er32(CEXTERR);
5770 er32(TSCTC);
5771 er32(TSCTFC);
5772
5773 er32(MGTPRC);
5774 er32(MGTPDC);
5775 er32(MGTPTC);
5776
5777 er32(IAC);
5778 er32(ICRXOC);
5779
5780 /* Clear PHY statistics registers */
5781 if ((hw->phy.type == e1000_phy_82578) ||
5782 (hw->phy.type == e1000_phy_82579) ||
5783 (hw->phy.type == e1000_phy_i217) ||
5784 (hw->phy.type == e1000_phy_82577)) {
5785 ret_val = hw->phy.ops.acquire(hw);
5786 if (ret_val)
5787 return;
5788 ret_val = hw->phy.ops.set_page(hw,
5789 HV_STATS_PAGE << IGP_PAGE_SHIFT);
5790 if (ret_val)
5791 goto release;
5792 hw->phy.ops.read_reg_page(hw, HV_SCC_UPPER, &phy_data);
5793 hw->phy.ops.read_reg_page(hw, HV_SCC_LOWER, &phy_data);
5794 hw->phy.ops.read_reg_page(hw, HV_ECOL_UPPER, &phy_data);
5795 hw->phy.ops.read_reg_page(hw, HV_ECOL_LOWER, &phy_data);
5796 hw->phy.ops.read_reg_page(hw, HV_MCC_UPPER, &phy_data);
5797 hw->phy.ops.read_reg_page(hw, HV_MCC_LOWER, &phy_data);
5798 hw->phy.ops.read_reg_page(hw, HV_LATECOL_UPPER, &phy_data);
5799 hw->phy.ops.read_reg_page(hw, HV_LATECOL_LOWER, &phy_data);
5800 hw->phy.ops.read_reg_page(hw, HV_COLC_UPPER, &phy_data);
5801 hw->phy.ops.read_reg_page(hw, HV_COLC_LOWER, &phy_data);
5802 hw->phy.ops.read_reg_page(hw, HV_DC_UPPER, &phy_data);
5803 hw->phy.ops.read_reg_page(hw, HV_DC_LOWER, &phy_data);
5804 hw->phy.ops.read_reg_page(hw, HV_TNCRS_UPPER, &phy_data);
5805 hw->phy.ops.read_reg_page(hw, HV_TNCRS_LOWER, &phy_data);
5806 release:
5807 hw->phy.ops.release(hw);
5808 }
5809 }
5810
5811 static const struct e1000_mac_operations ich8_mac_ops = {
5812 /* check_mng_mode dependent on mac type */
5813 .check_for_link = e1000_check_for_copper_link_ich8lan,
5814 /* cleanup_led dependent on mac type */
5815 .clear_hw_cntrs = e1000_clear_hw_cntrs_ich8lan,
5816 .get_bus_info = e1000_get_bus_info_ich8lan,
5817 .set_lan_id = e1000_set_lan_id_single_port,
5818 .get_link_up_info = e1000_get_link_up_info_ich8lan,
5819 /* led_on dependent on mac type */
5820 /* led_off dependent on mac type */
5821 .update_mc_addr_list = e1000e_update_mc_addr_list_generic,
5822 .reset_hw = e1000_reset_hw_ich8lan,
5823 .init_hw = e1000_init_hw_ich8lan,
5824 .setup_link = e1000_setup_link_ich8lan,
5825 .setup_physical_interface = e1000_setup_copper_link_ich8lan,
5826 /* id_led_init dependent on mac type */
5827 .config_collision_dist = e1000e_config_collision_dist_generic,
5828 .rar_set = e1000e_rar_set_generic,
5829 .rar_get_count = e1000e_rar_get_count_generic,
5830 };
5831
5832 static const struct e1000_phy_operations ich8_phy_ops = {
5833 .acquire = e1000_acquire_swflag_ich8lan,
5834 .check_reset_block = e1000_check_reset_block_ich8lan,
5835 .commit = NULL,
5836 .get_cfg_done = e1000_get_cfg_done_ich8lan,
5837 .get_cable_length = e1000e_get_cable_length_igp_2,
5838 .read_reg = e1000e_read_phy_reg_igp,
5839 .release = e1000_release_swflag_ich8lan,
5840 .reset = e1000_phy_hw_reset_ich8lan,
5841 .set_d0_lplu_state = e1000_set_d0_lplu_state_ich8lan,
5842 .set_d3_lplu_state = e1000_set_d3_lplu_state_ich8lan,
5843 .write_reg = e1000e_write_phy_reg_igp,
5844 };
5845
5846 static const struct e1000_nvm_operations ich8_nvm_ops = {
5847 .acquire = e1000_acquire_nvm_ich8lan,
5848 .read = e1000_read_nvm_ich8lan,
5849 .release = e1000_release_nvm_ich8lan,
5850 .reload = e1000e_reload_nvm_generic,
5851 .update = e1000_update_nvm_checksum_ich8lan,
5852 .valid_led_default = e1000_valid_led_default_ich8lan,
5853 .validate = e1000_validate_nvm_checksum_ich8lan,
5854 .write = e1000_write_nvm_ich8lan,
5855 };
5856
5857 static const struct e1000_nvm_operations spt_nvm_ops = {
5858 .acquire = e1000_acquire_nvm_ich8lan,
5859 .release = e1000_release_nvm_ich8lan,
5860 .read = e1000_read_nvm_spt,
5861 .update = e1000_update_nvm_checksum_spt,
5862 .reload = e1000e_reload_nvm_generic,
5863 .valid_led_default = e1000_valid_led_default_ich8lan,
5864 .validate = e1000_validate_nvm_checksum_ich8lan,
5865 .write = e1000_write_nvm_ich8lan,
5866 };
5867
5868 const struct e1000_info e1000_ich8_info = {
5869 .mac = e1000_ich8lan,
5870 .flags = FLAG_HAS_WOL
5871 | FLAG_IS_ICH
5872 | FLAG_HAS_CTRLEXT_ON_LOAD
5873 | FLAG_HAS_AMT
5874 | FLAG_HAS_FLASH
5875 | FLAG_APME_IN_WUC,
5876 .pba = 8,
5877 .max_hw_frame_size = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN,
5878 .get_variants = e1000_get_variants_ich8lan,
5879 .mac_ops = &ich8_mac_ops,
5880 .phy_ops = &ich8_phy_ops,
5881 .nvm_ops = &ich8_nvm_ops,
5882 };
5883
5884 const struct e1000_info e1000_ich9_info = {
5885 .mac = e1000_ich9lan,
5886 .flags = FLAG_HAS_JUMBO_FRAMES
5887 | FLAG_IS_ICH
5888 | FLAG_HAS_WOL
5889 | FLAG_HAS_CTRLEXT_ON_LOAD
5890 | FLAG_HAS_AMT
5891 | FLAG_HAS_FLASH
5892 | FLAG_APME_IN_WUC,
5893 .pba = 18,
5894 .max_hw_frame_size = DEFAULT_JUMBO,
5895 .get_variants = e1000_get_variants_ich8lan,
5896 .mac_ops = &ich8_mac_ops,
5897 .phy_ops = &ich8_phy_ops,
5898 .nvm_ops = &ich8_nvm_ops,
5899 };
5900
5901 const struct e1000_info e1000_ich10_info = {
5902 .mac = e1000_ich10lan,
5903 .flags = FLAG_HAS_JUMBO_FRAMES
5904 | FLAG_IS_ICH
5905 | FLAG_HAS_WOL
5906 | FLAG_HAS_CTRLEXT_ON_LOAD
5907 | FLAG_HAS_AMT
5908 | FLAG_HAS_FLASH
5909 | FLAG_APME_IN_WUC,
5910 .pba = 18,
5911 .max_hw_frame_size = DEFAULT_JUMBO,
5912 .get_variants = e1000_get_variants_ich8lan,
5913 .mac_ops = &ich8_mac_ops,
5914 .phy_ops = &ich8_phy_ops,
5915 .nvm_ops = &ich8_nvm_ops,
5916 };
5917
5918 const struct e1000_info e1000_pch_info = {
5919 .mac = e1000_pchlan,
5920 .flags = FLAG_IS_ICH
5921 | FLAG_HAS_WOL
5922 | FLAG_HAS_CTRLEXT_ON_LOAD
5923 | FLAG_HAS_AMT
5924 | FLAG_HAS_FLASH
5925 | FLAG_HAS_JUMBO_FRAMES
5926 | FLAG_DISABLE_FC_PAUSE_TIME /* errata */
5927 | FLAG_APME_IN_WUC,
5928 .flags2 = FLAG2_HAS_PHY_STATS,
5929 .pba = 26,
5930 .max_hw_frame_size = 4096,
5931 .get_variants = e1000_get_variants_ich8lan,
5932 .mac_ops = &ich8_mac_ops,
5933 .phy_ops = &ich8_phy_ops,
5934 .nvm_ops = &ich8_nvm_ops,
5935 };
5936
5937 const struct e1000_info e1000_pch2_info = {
5938 .mac = e1000_pch2lan,
5939 .flags = FLAG_IS_ICH
5940 | FLAG_HAS_WOL
5941 | FLAG_HAS_HW_TIMESTAMP
5942 | FLAG_HAS_CTRLEXT_ON_LOAD
5943 | FLAG_HAS_AMT
5944 | FLAG_HAS_FLASH
5945 | FLAG_HAS_JUMBO_FRAMES
5946 | FLAG_APME_IN_WUC,
5947 .flags2 = FLAG2_HAS_PHY_STATS
5948 | FLAG2_HAS_EEE
5949 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5950 .pba = 26,
5951 .max_hw_frame_size = 9022,
5952 .get_variants = e1000_get_variants_ich8lan,
5953 .mac_ops = &ich8_mac_ops,
5954 .phy_ops = &ich8_phy_ops,
5955 .nvm_ops = &ich8_nvm_ops,
5956 };
5957
5958 const struct e1000_info e1000_pch_lpt_info = {
5959 .mac = e1000_pch_lpt,
5960 .flags = FLAG_IS_ICH
5961 | FLAG_HAS_WOL
5962 | FLAG_HAS_HW_TIMESTAMP
5963 | FLAG_HAS_CTRLEXT_ON_LOAD
5964 | FLAG_HAS_AMT
5965 | FLAG_HAS_FLASH
5966 | FLAG_HAS_JUMBO_FRAMES
5967 | FLAG_APME_IN_WUC,
5968 .flags2 = FLAG2_HAS_PHY_STATS
5969 | FLAG2_HAS_EEE
5970 | FLAG2_CHECK_SYSTIM_OVERFLOW,
5971 .pba = 26,
5972 .max_hw_frame_size = 9022,
5973 .get_variants = e1000_get_variants_ich8lan,
5974 .mac_ops = &ich8_mac_ops,
5975 .phy_ops = &ich8_phy_ops,
5976 .nvm_ops = &ich8_nvm_ops,
5977 };
5978
5979 const struct e1000_info e1000_pch_spt_info = {
5980 .mac = e1000_pch_spt,
5981 .flags = FLAG_IS_ICH
5982 | FLAG_HAS_WOL
5983 | FLAG_HAS_HW_TIMESTAMP
5984 | FLAG_HAS_CTRLEXT_ON_LOAD
5985 | FLAG_HAS_AMT
5986 | FLAG_HAS_FLASH
5987 | FLAG_HAS_JUMBO_FRAMES
5988 | FLAG_APME_IN_WUC,
5989 .flags2 = FLAG2_HAS_PHY_STATS
5990 | FLAG2_HAS_EEE,
5991 .pba = 26,
5992 .max_hw_frame_size = 9022,
5993 .get_variants = e1000_get_variants_ich8lan,
5994 .mac_ops = &ich8_mac_ops,
5995 .phy_ops = &ich8_phy_ops,
5996 .nvm_ops = &spt_nvm_ops,
5997 };
5998
5999 const struct e1000_info e1000_pch_cnp_info = {
6000 .mac = e1000_pch_cnp,
6001 .flags = FLAG_IS_ICH
6002 | FLAG_HAS_WOL
6003 | FLAG_HAS_HW_TIMESTAMP
6004 | FLAG_HAS_CTRLEXT_ON_LOAD
6005 | FLAG_HAS_AMT
6006 | FLAG_HAS_FLASH
6007 | FLAG_HAS_JUMBO_FRAMES
6008 | FLAG_APME_IN_WUC,
6009 .flags2 = FLAG2_HAS_PHY_STATS
6010 | FLAG2_HAS_EEE,
6011 .pba = 26,
6012 .max_hw_frame_size = 9022,
6013 .get_variants = e1000_get_variants_ich8lan,
6014 .mac_ops = &ich8_mac_ops,
6015 .phy_ops = &ich8_phy_ops,
6016 .nvm_ops = &spt_nvm_ops,
6017 };
6018
6019 const struct e1000_info e1000_pch_tgp_info = {
6020 .mac = e1000_pch_tgp,
6021 .flags = FLAG_IS_ICH
6022 | FLAG_HAS_WOL
6023 | FLAG_HAS_HW_TIMESTAMP
6024 | FLAG_HAS_CTRLEXT_ON_LOAD
6025 | FLAG_HAS_AMT
6026 | FLAG_HAS_FLASH
6027 | FLAG_HAS_JUMBO_FRAMES
6028 | FLAG_APME_IN_WUC,
6029 .flags2 = FLAG2_HAS_PHY_STATS
6030 | FLAG2_HAS_EEE,
6031 .pba = 26,
6032 .max_hw_frame_size = 9022,
6033 .get_variants = e1000_get_variants_ich8lan,
6034 .mac_ops = &ich8_mac_ops,
6035 .phy_ops = &ich8_phy_ops,
6036 .nvm_ops = &spt_nvm_ops,
6037 };
6038
6039 const struct e1000_info e1000_pch_adp_info = {
6040 .mac = e1000_pch_adp,
6041 .flags = FLAG_IS_ICH
6042 | FLAG_HAS_WOL
6043 | FLAG_HAS_HW_TIMESTAMP
6044 | FLAG_HAS_CTRLEXT_ON_LOAD
6045 | FLAG_HAS_AMT
6046 | FLAG_HAS_FLASH
6047 | FLAG_HAS_JUMBO_FRAMES
6048 | FLAG_APME_IN_WUC,
6049 .flags2 = FLAG2_HAS_PHY_STATS
6050 | FLAG2_HAS_EEE,
6051 .pba = 26,
6052 .max_hw_frame_size = 9022,
6053 .get_variants = e1000_get_variants_ich8lan,
6054 .mac_ops = &ich8_mac_ops,
6055 .phy_ops = &ich8_phy_ops,
6056 .nvm_ops = &spt_nvm_ops,
6057 };
6058
6059 const struct e1000_info e1000_pch_mtp_info = {
6060 .mac = e1000_pch_mtp,
6061 .flags = FLAG_IS_ICH
6062 | FLAG_HAS_WOL
6063 | FLAG_HAS_HW_TIMESTAMP
6064 | FLAG_HAS_CTRLEXT_ON_LOAD
6065 | FLAG_HAS_AMT
6066 | FLAG_HAS_FLASH
6067 | FLAG_HAS_JUMBO_FRAMES
6068 | FLAG_APME_IN_WUC,
6069 .flags2 = FLAG2_HAS_PHY_STATS
6070 | FLAG2_HAS_EEE,
6071 .pba = 26,
6072 .max_hw_frame_size = 9022,
6073 .get_variants = e1000_get_variants_ich8lan,
6074 .mac_ops = &ich8_mac_ops,
6075 .phy_ops = &ich8_phy_ops,
6076 .nvm_ops = &spt_nvm_ops,
6077 };
6078