1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * The industrial I/O core
4 *
5 * Copyright (c) 2008 Jonathan Cameron
6 *
7 * Based on elements of hwmon and input subsystems.
8 */
9
10 #define pr_fmt(fmt) "iio-core: " fmt
11
12 #include <linux/anon_inodes.h>
13 #include <linux/cdev.h>
14 #include <linux/debugfs.h>
15 #include <linux/device.h>
16 #include <linux/err.h>
17 #include <linux/fs.h>
18 #include <linux/idr.h>
19 #include <linux/kdev_t.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/mutex.h>
23 #include <linux/poll.h>
24 #include <linux/property.h>
25 #include <linux/sched.h>
26 #include <linux/slab.h>
27 #include <linux/wait.h>
28
29 #include <linux/iio/buffer.h>
30 #include <linux/iio/buffer_impl.h>
31 #include <linux/iio/events.h>
32 #include <linux/iio/iio-opaque.h>
33 #include <linux/iio/iio.h>
34 #include <linux/iio/sysfs.h>
35
36 #include "iio_core.h"
37 #include "iio_core_trigger.h"
38
39 /* IDA to assign each registered device a unique id */
40 static DEFINE_IDA(iio_ida);
41
42 static dev_t iio_devt;
43
44 #define IIO_DEV_MAX 256
45 struct bus_type iio_bus_type = {
46 .name = "iio",
47 };
48 EXPORT_SYMBOL(iio_bus_type);
49
50 static struct dentry *iio_debugfs_dentry;
51
52 static const char * const iio_direction[] = {
53 [0] = "in",
54 [1] = "out",
55 };
56
57 static const char * const iio_chan_type_name_spec[] = {
58 [IIO_VOLTAGE] = "voltage",
59 [IIO_CURRENT] = "current",
60 [IIO_POWER] = "power",
61 [IIO_ACCEL] = "accel",
62 [IIO_ANGL_VEL] = "anglvel",
63 [IIO_MAGN] = "magn",
64 [IIO_LIGHT] = "illuminance",
65 [IIO_INTENSITY] = "intensity",
66 [IIO_PROXIMITY] = "proximity",
67 [IIO_TEMP] = "temp",
68 [IIO_INCLI] = "incli",
69 [IIO_ROT] = "rot",
70 [IIO_ANGL] = "angl",
71 [IIO_TIMESTAMP] = "timestamp",
72 [IIO_CAPACITANCE] = "capacitance",
73 [IIO_ALTVOLTAGE] = "altvoltage",
74 [IIO_CCT] = "cct",
75 [IIO_PRESSURE] = "pressure",
76 [IIO_HUMIDITYRELATIVE] = "humidityrelative",
77 [IIO_ACTIVITY] = "activity",
78 [IIO_STEPS] = "steps",
79 [IIO_ENERGY] = "energy",
80 [IIO_DISTANCE] = "distance",
81 [IIO_VELOCITY] = "velocity",
82 [IIO_CONCENTRATION] = "concentration",
83 [IIO_RESISTANCE] = "resistance",
84 [IIO_PH] = "ph",
85 [IIO_UVINDEX] = "uvindex",
86 [IIO_ELECTRICALCONDUCTIVITY] = "electricalconductivity",
87 [IIO_COUNT] = "count",
88 [IIO_INDEX] = "index",
89 [IIO_GRAVITY] = "gravity",
90 [IIO_POSITIONRELATIVE] = "positionrelative",
91 [IIO_PHASE] = "phase",
92 [IIO_MASSCONCENTRATION] = "massconcentration",
93 };
94
95 static const char * const iio_modifier_names[] = {
96 [IIO_MOD_X] = "x",
97 [IIO_MOD_Y] = "y",
98 [IIO_MOD_Z] = "z",
99 [IIO_MOD_X_AND_Y] = "x&y",
100 [IIO_MOD_X_AND_Z] = "x&z",
101 [IIO_MOD_Y_AND_Z] = "y&z",
102 [IIO_MOD_X_AND_Y_AND_Z] = "x&y&z",
103 [IIO_MOD_X_OR_Y] = "x|y",
104 [IIO_MOD_X_OR_Z] = "x|z",
105 [IIO_MOD_Y_OR_Z] = "y|z",
106 [IIO_MOD_X_OR_Y_OR_Z] = "x|y|z",
107 [IIO_MOD_ROOT_SUM_SQUARED_X_Y] = "sqrt(x^2+y^2)",
108 [IIO_MOD_SUM_SQUARED_X_Y_Z] = "x^2+y^2+z^2",
109 [IIO_MOD_LIGHT_BOTH] = "both",
110 [IIO_MOD_LIGHT_IR] = "ir",
111 [IIO_MOD_LIGHT_CLEAR] = "clear",
112 [IIO_MOD_LIGHT_RED] = "red",
113 [IIO_MOD_LIGHT_GREEN] = "green",
114 [IIO_MOD_LIGHT_BLUE] = "blue",
115 [IIO_MOD_LIGHT_UV] = "uv",
116 [IIO_MOD_LIGHT_DUV] = "duv",
117 [IIO_MOD_QUATERNION] = "quaternion",
118 [IIO_MOD_TEMP_AMBIENT] = "ambient",
119 [IIO_MOD_TEMP_OBJECT] = "object",
120 [IIO_MOD_NORTH_MAGN] = "from_north_magnetic",
121 [IIO_MOD_NORTH_TRUE] = "from_north_true",
122 [IIO_MOD_NORTH_MAGN_TILT_COMP] = "from_north_magnetic_tilt_comp",
123 [IIO_MOD_NORTH_TRUE_TILT_COMP] = "from_north_true_tilt_comp",
124 [IIO_MOD_RUNNING] = "running",
125 [IIO_MOD_JOGGING] = "jogging",
126 [IIO_MOD_WALKING] = "walking",
127 [IIO_MOD_STILL] = "still",
128 [IIO_MOD_ROOT_SUM_SQUARED_X_Y_Z] = "sqrt(x^2+y^2+z^2)",
129 [IIO_MOD_I] = "i",
130 [IIO_MOD_Q] = "q",
131 [IIO_MOD_CO2] = "co2",
132 [IIO_MOD_VOC] = "voc",
133 [IIO_MOD_PM1] = "pm1",
134 [IIO_MOD_PM2P5] = "pm2p5",
135 [IIO_MOD_PM4] = "pm4",
136 [IIO_MOD_PM10] = "pm10",
137 [IIO_MOD_ETHANOL] = "ethanol",
138 [IIO_MOD_H2] = "h2",
139 [IIO_MOD_O2] = "o2",
140 [IIO_MOD_LINEAR_X] = "linear_x",
141 [IIO_MOD_LINEAR_Y] = "linear_y",
142 [IIO_MOD_LINEAR_Z] = "linear_z",
143 [IIO_MOD_PITCH] = "pitch",
144 [IIO_MOD_YAW] = "yaw",
145 [IIO_MOD_ROLL] = "roll",
146 };
147
148 /* relies on pairs of these shared then separate */
149 static const char * const iio_chan_info_postfix[] = {
150 [IIO_CHAN_INFO_RAW] = "raw",
151 [IIO_CHAN_INFO_PROCESSED] = "input",
152 [IIO_CHAN_INFO_SCALE] = "scale",
153 [IIO_CHAN_INFO_OFFSET] = "offset",
154 [IIO_CHAN_INFO_CALIBSCALE] = "calibscale",
155 [IIO_CHAN_INFO_CALIBBIAS] = "calibbias",
156 [IIO_CHAN_INFO_PEAK] = "peak_raw",
157 [IIO_CHAN_INFO_PEAK_SCALE] = "peak_scale",
158 [IIO_CHAN_INFO_QUADRATURE_CORRECTION_RAW] = "quadrature_correction_raw",
159 [IIO_CHAN_INFO_AVERAGE_RAW] = "mean_raw",
160 [IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY]
161 = "filter_low_pass_3db_frequency",
162 [IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY]
163 = "filter_high_pass_3db_frequency",
164 [IIO_CHAN_INFO_SAMP_FREQ] = "sampling_frequency",
165 [IIO_CHAN_INFO_FREQUENCY] = "frequency",
166 [IIO_CHAN_INFO_PHASE] = "phase",
167 [IIO_CHAN_INFO_HARDWAREGAIN] = "hardwaregain",
168 [IIO_CHAN_INFO_HYSTERESIS] = "hysteresis",
169 [IIO_CHAN_INFO_HYSTERESIS_RELATIVE] = "hysteresis_relative",
170 [IIO_CHAN_INFO_INT_TIME] = "integration_time",
171 [IIO_CHAN_INFO_ENABLE] = "en",
172 [IIO_CHAN_INFO_CALIBHEIGHT] = "calibheight",
173 [IIO_CHAN_INFO_CALIBWEIGHT] = "calibweight",
174 [IIO_CHAN_INFO_DEBOUNCE_COUNT] = "debounce_count",
175 [IIO_CHAN_INFO_DEBOUNCE_TIME] = "debounce_time",
176 [IIO_CHAN_INFO_CALIBEMISSIVITY] = "calibemissivity",
177 [IIO_CHAN_INFO_OVERSAMPLING_RATIO] = "oversampling_ratio",
178 [IIO_CHAN_INFO_THERMOCOUPLE_TYPE] = "thermocouple_type",
179 [IIO_CHAN_INFO_CALIBAMBIENT] = "calibambient",
180 [IIO_CHAN_INFO_ZEROPOINT] = "zeropoint",
181 };
182 /**
183 * iio_device_id() - query the unique ID for the device
184 * @indio_dev: Device structure whose ID is being queried
185 *
186 * The IIO device ID is a unique index used for example for the naming
187 * of the character device /dev/iio\:device[ID].
188 *
189 * Returns: Unique ID for the device.
190 */
iio_device_id(struct iio_dev * indio_dev)191 int iio_device_id(struct iio_dev *indio_dev)
192 {
193 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
194
195 return iio_dev_opaque->id;
196 }
197 EXPORT_SYMBOL_GPL(iio_device_id);
198
199 /**
200 * iio_buffer_enabled() - helper function to test if the buffer is enabled
201 * @indio_dev: IIO device structure for device
202 *
203 * Returns: True, if the buffer is enabled.
204 */
iio_buffer_enabled(struct iio_dev * indio_dev)205 bool iio_buffer_enabled(struct iio_dev *indio_dev)
206 {
207 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
208
209 return iio_dev_opaque->currentmode &
210 (INDIO_BUFFER_HARDWARE | INDIO_BUFFER_SOFTWARE |
211 INDIO_BUFFER_TRIGGERED);
212 }
213 EXPORT_SYMBOL_GPL(iio_buffer_enabled);
214
215 #if defined(CONFIG_DEBUG_FS)
216 /*
217 * There's also a CONFIG_DEBUG_FS guard in include/linux/iio/iio.h for
218 * iio_get_debugfs_dentry() to make it inline if CONFIG_DEBUG_FS is undefined
219 */
iio_get_debugfs_dentry(struct iio_dev * indio_dev)220 struct dentry *iio_get_debugfs_dentry(struct iio_dev *indio_dev)
221 {
222 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
223
224 return iio_dev_opaque->debugfs_dentry;
225 }
226 EXPORT_SYMBOL_GPL(iio_get_debugfs_dentry);
227 #endif
228
229 /**
230 * iio_find_channel_from_si() - get channel from its scan index
231 * @indio_dev: device
232 * @si: scan index to match
233 *
234 * Returns:
235 * Constant pointer to iio_chan_spec, if scan index matches, NULL on failure.
236 */
237 const struct iio_chan_spec
iio_find_channel_from_si(struct iio_dev * indio_dev,int si)238 *iio_find_channel_from_si(struct iio_dev *indio_dev, int si)
239 {
240 int i;
241
242 for (i = 0; i < indio_dev->num_channels; i++)
243 if (indio_dev->channels[i].scan_index == si)
244 return &indio_dev->channels[i];
245 return NULL;
246 }
247
248 /* This turns up an awful lot */
iio_read_const_attr(struct device * dev,struct device_attribute * attr,char * buf)249 ssize_t iio_read_const_attr(struct device *dev,
250 struct device_attribute *attr,
251 char *buf)
252 {
253 return sysfs_emit(buf, "%s\n", to_iio_const_attr(attr)->string);
254 }
255 EXPORT_SYMBOL(iio_read_const_attr);
256
257 /**
258 * iio_device_set_clock() - Set current timestamping clock for the device
259 * @indio_dev: IIO device structure containing the device
260 * @clock_id: timestamping clock POSIX identifier to set.
261 *
262 * Returns: 0 on success, or a negative error code.
263 */
iio_device_set_clock(struct iio_dev * indio_dev,clockid_t clock_id)264 int iio_device_set_clock(struct iio_dev *indio_dev, clockid_t clock_id)
265 {
266 int ret;
267 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
268 const struct iio_event_interface *ev_int = iio_dev_opaque->event_interface;
269
270 ret = mutex_lock_interruptible(&iio_dev_opaque->mlock);
271 if (ret)
272 return ret;
273 if ((ev_int && iio_event_enabled(ev_int)) ||
274 iio_buffer_enabled(indio_dev)) {
275 mutex_unlock(&iio_dev_opaque->mlock);
276 return -EBUSY;
277 }
278 iio_dev_opaque->clock_id = clock_id;
279 mutex_unlock(&iio_dev_opaque->mlock);
280
281 return 0;
282 }
283 EXPORT_SYMBOL(iio_device_set_clock);
284
285 /**
286 * iio_device_get_clock() - Retrieve current timestamping clock for the device
287 * @indio_dev: IIO device structure containing the device
288 *
289 * Returns: Clock ID of the current timestamping clock for the device.
290 */
iio_device_get_clock(const struct iio_dev * indio_dev)291 clockid_t iio_device_get_clock(const struct iio_dev *indio_dev)
292 {
293 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
294
295 return iio_dev_opaque->clock_id;
296 }
297 EXPORT_SYMBOL(iio_device_get_clock);
298
299 /**
300 * iio_get_time_ns() - utility function to get a time stamp for events etc
301 * @indio_dev: device
302 *
303 * Returns: Timestamp of the event in nanoseconds.
304 */
iio_get_time_ns(const struct iio_dev * indio_dev)305 s64 iio_get_time_ns(const struct iio_dev *indio_dev)
306 {
307 struct timespec64 tp;
308
309 switch (iio_device_get_clock(indio_dev)) {
310 case CLOCK_REALTIME:
311 return ktime_get_real_ns();
312 case CLOCK_MONOTONIC:
313 return ktime_get_ns();
314 case CLOCK_MONOTONIC_RAW:
315 return ktime_get_raw_ns();
316 case CLOCK_REALTIME_COARSE:
317 return ktime_to_ns(ktime_get_coarse_real());
318 case CLOCK_MONOTONIC_COARSE:
319 ktime_get_coarse_ts64(&tp);
320 return timespec64_to_ns(&tp);
321 case CLOCK_BOOTTIME:
322 return ktime_get_boottime_ns();
323 case CLOCK_TAI:
324 return ktime_get_clocktai_ns();
325 default:
326 BUG();
327 }
328 }
329 EXPORT_SYMBOL(iio_get_time_ns);
330
iio_init(void)331 static int __init iio_init(void)
332 {
333 int ret;
334
335 /* Register sysfs bus */
336 ret = bus_register(&iio_bus_type);
337 if (ret < 0) {
338 pr_err("could not register bus type\n");
339 goto error_nothing;
340 }
341
342 ret = alloc_chrdev_region(&iio_devt, 0, IIO_DEV_MAX, "iio");
343 if (ret < 0) {
344 pr_err("failed to allocate char dev region\n");
345 goto error_unregister_bus_type;
346 }
347
348 iio_debugfs_dentry = debugfs_create_dir("iio", NULL);
349
350 return 0;
351
352 error_unregister_bus_type:
353 bus_unregister(&iio_bus_type);
354 error_nothing:
355 return ret;
356 }
357
iio_exit(void)358 static void __exit iio_exit(void)
359 {
360 if (iio_devt)
361 unregister_chrdev_region(iio_devt, IIO_DEV_MAX);
362 bus_unregister(&iio_bus_type);
363 debugfs_remove(iio_debugfs_dentry);
364 }
365
366 #if defined(CONFIG_DEBUG_FS)
iio_debugfs_read_reg(struct file * file,char __user * userbuf,size_t count,loff_t * ppos)367 static ssize_t iio_debugfs_read_reg(struct file *file, char __user *userbuf,
368 size_t count, loff_t *ppos)
369 {
370 struct iio_dev *indio_dev = file->private_data;
371 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
372 unsigned int val = 0;
373 int ret;
374
375 if (*ppos > 0)
376 return simple_read_from_buffer(userbuf, count, ppos,
377 iio_dev_opaque->read_buf,
378 iio_dev_opaque->read_buf_len);
379
380 ret = indio_dev->info->debugfs_reg_access(indio_dev,
381 iio_dev_opaque->cached_reg_addr,
382 0, &val);
383 if (ret) {
384 dev_err(indio_dev->dev.parent, "%s: read failed\n", __func__);
385 return ret;
386 }
387
388 iio_dev_opaque->read_buf_len = snprintf(iio_dev_opaque->read_buf,
389 sizeof(iio_dev_opaque->read_buf),
390 "0x%X\n", val);
391
392 return simple_read_from_buffer(userbuf, count, ppos,
393 iio_dev_opaque->read_buf,
394 iio_dev_opaque->read_buf_len);
395 }
396
iio_debugfs_write_reg(struct file * file,const char __user * userbuf,size_t count,loff_t * ppos)397 static ssize_t iio_debugfs_write_reg(struct file *file,
398 const char __user *userbuf, size_t count, loff_t *ppos)
399 {
400 struct iio_dev *indio_dev = file->private_data;
401 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
402 unsigned int reg, val;
403 char buf[80];
404 int ret;
405
406 count = min(count, sizeof(buf) - 1);
407 if (copy_from_user(buf, userbuf, count))
408 return -EFAULT;
409
410 buf[count] = 0;
411
412 ret = sscanf(buf, "%i %i", ®, &val);
413
414 switch (ret) {
415 case 1:
416 iio_dev_opaque->cached_reg_addr = reg;
417 break;
418 case 2:
419 iio_dev_opaque->cached_reg_addr = reg;
420 ret = indio_dev->info->debugfs_reg_access(indio_dev, reg,
421 val, NULL);
422 if (ret) {
423 dev_err(indio_dev->dev.parent, "%s: write failed\n",
424 __func__);
425 return ret;
426 }
427 break;
428 default:
429 return -EINVAL;
430 }
431
432 return count;
433 }
434
435 static const struct file_operations iio_debugfs_reg_fops = {
436 .open = simple_open,
437 .read = iio_debugfs_read_reg,
438 .write = iio_debugfs_write_reg,
439 };
440
iio_device_unregister_debugfs(struct iio_dev * indio_dev)441 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
442 {
443 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
444
445 debugfs_remove_recursive(iio_dev_opaque->debugfs_dentry);
446 }
447
iio_device_register_debugfs(struct iio_dev * indio_dev)448 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
449 {
450 struct iio_dev_opaque *iio_dev_opaque;
451
452 if (indio_dev->info->debugfs_reg_access == NULL)
453 return;
454
455 if (!iio_debugfs_dentry)
456 return;
457
458 iio_dev_opaque = to_iio_dev_opaque(indio_dev);
459
460 iio_dev_opaque->debugfs_dentry =
461 debugfs_create_dir(dev_name(&indio_dev->dev),
462 iio_debugfs_dentry);
463
464 debugfs_create_file("direct_reg_access", 0644,
465 iio_dev_opaque->debugfs_dentry, indio_dev,
466 &iio_debugfs_reg_fops);
467 }
468 #else
iio_device_register_debugfs(struct iio_dev * indio_dev)469 static void iio_device_register_debugfs(struct iio_dev *indio_dev)
470 {
471 }
472
iio_device_unregister_debugfs(struct iio_dev * indio_dev)473 static void iio_device_unregister_debugfs(struct iio_dev *indio_dev)
474 {
475 }
476 #endif /* CONFIG_DEBUG_FS */
477
iio_read_channel_ext_info(struct device * dev,struct device_attribute * attr,char * buf)478 static ssize_t iio_read_channel_ext_info(struct device *dev,
479 struct device_attribute *attr,
480 char *buf)
481 {
482 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
483 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
484 const struct iio_chan_spec_ext_info *ext_info;
485
486 ext_info = &this_attr->c->ext_info[this_attr->address];
487
488 return ext_info->read(indio_dev, ext_info->private, this_attr->c, buf);
489 }
490
iio_write_channel_ext_info(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)491 static ssize_t iio_write_channel_ext_info(struct device *dev,
492 struct device_attribute *attr,
493 const char *buf, size_t len)
494 {
495 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
496 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
497 const struct iio_chan_spec_ext_info *ext_info;
498
499 ext_info = &this_attr->c->ext_info[this_attr->address];
500
501 return ext_info->write(indio_dev, ext_info->private,
502 this_attr->c, buf, len);
503 }
504
iio_enum_available_read(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)505 ssize_t iio_enum_available_read(struct iio_dev *indio_dev,
506 uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
507 {
508 const struct iio_enum *e = (const struct iio_enum *)priv;
509 unsigned int i;
510 size_t len = 0;
511
512 if (!e->num_items)
513 return 0;
514
515 for (i = 0; i < e->num_items; ++i) {
516 if (!e->items[i])
517 continue;
518 len += sysfs_emit_at(buf, len, "%s ", e->items[i]);
519 }
520
521 /* replace last space with a newline */
522 buf[len - 1] = '\n';
523
524 return len;
525 }
526 EXPORT_SYMBOL_GPL(iio_enum_available_read);
527
iio_enum_read(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)528 ssize_t iio_enum_read(struct iio_dev *indio_dev,
529 uintptr_t priv, const struct iio_chan_spec *chan, char *buf)
530 {
531 const struct iio_enum *e = (const struct iio_enum *)priv;
532 int i;
533
534 if (!e->get)
535 return -EINVAL;
536
537 i = e->get(indio_dev, chan);
538 if (i < 0)
539 return i;
540 if (i >= e->num_items || !e->items[i])
541 return -EINVAL;
542
543 return sysfs_emit(buf, "%s\n", e->items[i]);
544 }
545 EXPORT_SYMBOL_GPL(iio_enum_read);
546
iio_enum_write(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,const char * buf,size_t len)547 ssize_t iio_enum_write(struct iio_dev *indio_dev,
548 uintptr_t priv, const struct iio_chan_spec *chan, const char *buf,
549 size_t len)
550 {
551 const struct iio_enum *e = (const struct iio_enum *)priv;
552 int ret;
553
554 if (!e->set)
555 return -EINVAL;
556
557 ret = __sysfs_match_string(e->items, e->num_items, buf);
558 if (ret < 0)
559 return ret;
560
561 ret = e->set(indio_dev, chan, ret);
562 return ret ? ret : len;
563 }
564 EXPORT_SYMBOL_GPL(iio_enum_write);
565
566 static const struct iio_mount_matrix iio_mount_idmatrix = {
567 .rotation = {
568 "1", "0", "0",
569 "0", "1", "0",
570 "0", "0", "1"
571 }
572 };
573
iio_setup_mount_idmatrix(const struct device * dev,struct iio_mount_matrix * matrix)574 static int iio_setup_mount_idmatrix(const struct device *dev,
575 struct iio_mount_matrix *matrix)
576 {
577 *matrix = iio_mount_idmatrix;
578 dev_info(dev, "mounting matrix not found: using identity...\n");
579 return 0;
580 }
581
iio_show_mount_matrix(struct iio_dev * indio_dev,uintptr_t priv,const struct iio_chan_spec * chan,char * buf)582 ssize_t iio_show_mount_matrix(struct iio_dev *indio_dev, uintptr_t priv,
583 const struct iio_chan_spec *chan, char *buf)
584 {
585 const struct iio_mount_matrix *mtx;
586
587 mtx = ((iio_get_mount_matrix_t *)priv)(indio_dev, chan);
588 if (IS_ERR(mtx))
589 return PTR_ERR(mtx);
590
591 if (!mtx)
592 mtx = &iio_mount_idmatrix;
593
594 return sysfs_emit(buf, "%s, %s, %s; %s, %s, %s; %s, %s, %s\n",
595 mtx->rotation[0], mtx->rotation[1], mtx->rotation[2],
596 mtx->rotation[3], mtx->rotation[4], mtx->rotation[5],
597 mtx->rotation[6], mtx->rotation[7], mtx->rotation[8]);
598 }
599 EXPORT_SYMBOL_GPL(iio_show_mount_matrix);
600
601 /**
602 * iio_read_mount_matrix() - retrieve iio device mounting matrix from
603 * device "mount-matrix" property
604 * @dev: device the mounting matrix property is assigned to
605 * @matrix: where to store retrieved matrix
606 *
607 * If device is assigned no mounting matrix property, a default 3x3 identity
608 * matrix will be filled in.
609 *
610 * Returns: 0 if success, or a negative error code on failure.
611 */
iio_read_mount_matrix(struct device * dev,struct iio_mount_matrix * matrix)612 int iio_read_mount_matrix(struct device *dev, struct iio_mount_matrix *matrix)
613 {
614 size_t len = ARRAY_SIZE(iio_mount_idmatrix.rotation);
615 int err;
616
617 err = device_property_read_string_array(dev, "mount-matrix", matrix->rotation, len);
618 if (err == len)
619 return 0;
620
621 if (err >= 0)
622 /* Invalid number of matrix entries. */
623 return -EINVAL;
624
625 if (err != -EINVAL)
626 /* Invalid matrix declaration format. */
627 return err;
628
629 /* Matrix was not declared at all: fallback to identity. */
630 return iio_setup_mount_idmatrix(dev, matrix);
631 }
632 EXPORT_SYMBOL(iio_read_mount_matrix);
633
__iio_format_value(char * buf,size_t offset,unsigned int type,int size,const int * vals)634 static ssize_t __iio_format_value(char *buf, size_t offset, unsigned int type,
635 int size, const int *vals)
636 {
637 int tmp0, tmp1;
638 s64 tmp2;
639 bool scale_db = false;
640
641 switch (type) {
642 case IIO_VAL_INT:
643 return sysfs_emit_at(buf, offset, "%d", vals[0]);
644 case IIO_VAL_INT_PLUS_MICRO_DB:
645 scale_db = true;
646 fallthrough;
647 case IIO_VAL_INT_PLUS_MICRO:
648 if (vals[1] < 0)
649 return sysfs_emit_at(buf, offset, "-%d.%06u%s",
650 abs(vals[0]), -vals[1],
651 scale_db ? " dB" : "");
652 else
653 return sysfs_emit_at(buf, offset, "%d.%06u%s", vals[0],
654 vals[1], scale_db ? " dB" : "");
655 case IIO_VAL_INT_PLUS_NANO:
656 if (vals[1] < 0)
657 return sysfs_emit_at(buf, offset, "-%d.%09u",
658 abs(vals[0]), -vals[1]);
659 else
660 return sysfs_emit_at(buf, offset, "%d.%09u", vals[0],
661 vals[1]);
662 case IIO_VAL_FRACTIONAL:
663 tmp2 = div_s64((s64)vals[0] * 1000000000LL, vals[1]);
664 tmp1 = vals[1];
665 tmp0 = (int)div_s64_rem(tmp2, 1000000000, &tmp1);
666 if ((tmp2 < 0) && (tmp0 == 0))
667 return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
668 else
669 return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
670 abs(tmp1));
671 case IIO_VAL_FRACTIONAL_LOG2:
672 tmp2 = shift_right((s64)vals[0] * 1000000000LL, vals[1]);
673 tmp0 = (int)div_s64_rem(tmp2, 1000000000LL, &tmp1);
674 if (tmp0 == 0 && tmp2 < 0)
675 return sysfs_emit_at(buf, offset, "-0.%09u", abs(tmp1));
676 else
677 return sysfs_emit_at(buf, offset, "%d.%09u", tmp0,
678 abs(tmp1));
679 case IIO_VAL_INT_MULTIPLE:
680 {
681 int i;
682 int l = 0;
683
684 for (i = 0; i < size; ++i)
685 l += sysfs_emit_at(buf, offset + l, "%d ", vals[i]);
686 return l;
687 }
688 case IIO_VAL_CHAR:
689 return sysfs_emit_at(buf, offset, "%c", (char)vals[0]);
690 case IIO_VAL_INT_64:
691 tmp2 = (s64)((((u64)vals[1]) << 32) | (u32)vals[0]);
692 return sysfs_emit_at(buf, offset, "%lld", tmp2);
693 default:
694 return 0;
695 }
696 }
697
698 /**
699 * iio_format_value() - Formats a IIO value into its string representation
700 * @buf: The buffer to which the formatted value gets written
701 * which is assumed to be big enough (i.e. PAGE_SIZE).
702 * @type: One of the IIO_VAL_* constants. This decides how the val
703 * and val2 parameters are formatted.
704 * @size: Number of IIO value entries contained in vals
705 * @vals: Pointer to the values, exact meaning depends on the
706 * type parameter.
707 *
708 * Returns:
709 * 0 by default, a negative number on failure or the total number of characters
710 * written for a type that belongs to the IIO_VAL_* constant.
711 */
iio_format_value(char * buf,unsigned int type,int size,int * vals)712 ssize_t iio_format_value(char *buf, unsigned int type, int size, int *vals)
713 {
714 ssize_t len;
715
716 len = __iio_format_value(buf, 0, type, size, vals);
717 if (len >= PAGE_SIZE - 1)
718 return -EFBIG;
719
720 return len + sysfs_emit_at(buf, len, "\n");
721 }
722 EXPORT_SYMBOL_GPL(iio_format_value);
723
iio_read_channel_label(struct device * dev,struct device_attribute * attr,char * buf)724 static ssize_t iio_read_channel_label(struct device *dev,
725 struct device_attribute *attr,
726 char *buf)
727 {
728 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
729 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
730
731 if (indio_dev->info->read_label)
732 return indio_dev->info->read_label(indio_dev, this_attr->c, buf);
733
734 if (this_attr->c->extend_name)
735 return sysfs_emit(buf, "%s\n", this_attr->c->extend_name);
736
737 return -EINVAL;
738 }
739
iio_read_channel_info(struct device * dev,struct device_attribute * attr,char * buf)740 static ssize_t iio_read_channel_info(struct device *dev,
741 struct device_attribute *attr,
742 char *buf)
743 {
744 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
745 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
746 int vals[INDIO_MAX_RAW_ELEMENTS];
747 int ret;
748 int val_len = 2;
749
750 if (indio_dev->info->read_raw_multi)
751 ret = indio_dev->info->read_raw_multi(indio_dev, this_attr->c,
752 INDIO_MAX_RAW_ELEMENTS,
753 vals, &val_len,
754 this_attr->address);
755 else
756 ret = indio_dev->info->read_raw(indio_dev, this_attr->c,
757 &vals[0], &vals[1], this_attr->address);
758
759 if (ret < 0)
760 return ret;
761
762 return iio_format_value(buf, ret, val_len, vals);
763 }
764
iio_format_list(char * buf,const int * vals,int type,int length,const char * prefix,const char * suffix)765 static ssize_t iio_format_list(char *buf, const int *vals, int type, int length,
766 const char *prefix, const char *suffix)
767 {
768 ssize_t len;
769 int stride;
770 int i;
771
772 switch (type) {
773 case IIO_VAL_INT:
774 stride = 1;
775 break;
776 default:
777 stride = 2;
778 break;
779 }
780
781 len = sysfs_emit(buf, prefix);
782
783 for (i = 0; i <= length - stride; i += stride) {
784 if (i != 0) {
785 len += sysfs_emit_at(buf, len, " ");
786 if (len >= PAGE_SIZE)
787 return -EFBIG;
788 }
789
790 len += __iio_format_value(buf, len, type, stride, &vals[i]);
791 if (len >= PAGE_SIZE)
792 return -EFBIG;
793 }
794
795 len += sysfs_emit_at(buf, len, "%s\n", suffix);
796
797 return len;
798 }
799
iio_format_avail_list(char * buf,const int * vals,int type,int length)800 static ssize_t iio_format_avail_list(char *buf, const int *vals,
801 int type, int length)
802 {
803
804 return iio_format_list(buf, vals, type, length, "", "");
805 }
806
iio_format_avail_range(char * buf,const int * vals,int type)807 static ssize_t iio_format_avail_range(char *buf, const int *vals, int type)
808 {
809 int length;
810
811 /*
812 * length refers to the array size , not the number of elements.
813 * The purpose is to print the range [min , step ,max] so length should
814 * be 3 in case of int, and 6 for other types.
815 */
816 switch (type) {
817 case IIO_VAL_INT:
818 length = 3;
819 break;
820 default:
821 length = 6;
822 break;
823 }
824
825 return iio_format_list(buf, vals, type, length, "[", "]");
826 }
827
iio_read_channel_info_avail(struct device * dev,struct device_attribute * attr,char * buf)828 static ssize_t iio_read_channel_info_avail(struct device *dev,
829 struct device_attribute *attr,
830 char *buf)
831 {
832 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
833 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
834 const int *vals;
835 int ret;
836 int length;
837 int type;
838
839 ret = indio_dev->info->read_avail(indio_dev, this_attr->c,
840 &vals, &type, &length,
841 this_attr->address);
842
843 if (ret < 0)
844 return ret;
845 switch (ret) {
846 case IIO_AVAIL_LIST:
847 return iio_format_avail_list(buf, vals, type, length);
848 case IIO_AVAIL_RANGE:
849 return iio_format_avail_range(buf, vals, type);
850 default:
851 return -EINVAL;
852 }
853 }
854
855 /**
856 * __iio_str_to_fixpoint() - Parse a fixed-point number from a string
857 * @str: The string to parse
858 * @fract_mult: Multiplier for the first decimal place, should be a power of 10
859 * @integer: The integer part of the number
860 * @fract: The fractional part of the number
861 * @scale_db: True if this should parse as dB
862 *
863 * Returns:
864 * 0 on success, or a negative error code if the string could not be parsed.
865 */
__iio_str_to_fixpoint(const char * str,int fract_mult,int * integer,int * fract,bool scale_db)866 static int __iio_str_to_fixpoint(const char *str, int fract_mult,
867 int *integer, int *fract, bool scale_db)
868 {
869 int i = 0, f = 0;
870 bool integer_part = true, negative = false;
871
872 if (fract_mult == 0) {
873 *fract = 0;
874
875 return kstrtoint(str, 0, integer);
876 }
877
878 if (str[0] == '-') {
879 negative = true;
880 str++;
881 } else if (str[0] == '+') {
882 str++;
883 }
884
885 while (*str) {
886 if ('0' <= *str && *str <= '9') {
887 if (integer_part) {
888 i = i * 10 + *str - '0';
889 } else {
890 f += fract_mult * (*str - '0');
891 fract_mult /= 10;
892 }
893 } else if (*str == '\n') {
894 if (*(str + 1) == '\0')
895 break;
896 return -EINVAL;
897 } else if (!strncmp(str, " dB", sizeof(" dB") - 1) && scale_db) {
898 /* Ignore the dB suffix */
899 str += sizeof(" dB") - 1;
900 continue;
901 } else if (!strncmp(str, "dB", sizeof("dB") - 1) && scale_db) {
902 /* Ignore the dB suffix */
903 str += sizeof("dB") - 1;
904 continue;
905 } else if (*str == '.' && integer_part) {
906 integer_part = false;
907 } else {
908 return -EINVAL;
909 }
910 str++;
911 }
912
913 if (negative) {
914 if (i)
915 i = -i;
916 else
917 f = -f;
918 }
919
920 *integer = i;
921 *fract = f;
922
923 return 0;
924 }
925
926 /**
927 * iio_str_to_fixpoint() - Parse a fixed-point number from a string
928 * @str: The string to parse
929 * @fract_mult: Multiplier for the first decimal place, should be a power of 10
930 * @integer: The integer part of the number
931 * @fract: The fractional part of the number
932 *
933 * Returns:
934 * 0 on success, or a negative error code if the string could not be parsed.
935 */
iio_str_to_fixpoint(const char * str,int fract_mult,int * integer,int * fract)936 int iio_str_to_fixpoint(const char *str, int fract_mult,
937 int *integer, int *fract)
938 {
939 return __iio_str_to_fixpoint(str, fract_mult, integer, fract, false);
940 }
941 EXPORT_SYMBOL_GPL(iio_str_to_fixpoint);
942
iio_write_channel_info(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)943 static ssize_t iio_write_channel_info(struct device *dev,
944 struct device_attribute *attr,
945 const char *buf,
946 size_t len)
947 {
948 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
949 struct iio_dev_attr *this_attr = to_iio_dev_attr(attr);
950 int ret, fract_mult = 100000;
951 int integer, fract = 0;
952 bool is_char = false;
953 bool scale_db = false;
954
955 /* Assumes decimal - precision based on number of digits */
956 if (!indio_dev->info->write_raw)
957 return -EINVAL;
958
959 if (indio_dev->info->write_raw_get_fmt)
960 switch (indio_dev->info->write_raw_get_fmt(indio_dev,
961 this_attr->c, this_attr->address)) {
962 case IIO_VAL_INT:
963 fract_mult = 0;
964 break;
965 case IIO_VAL_INT_PLUS_MICRO_DB:
966 scale_db = true;
967 fallthrough;
968 case IIO_VAL_INT_PLUS_MICRO:
969 fract_mult = 100000;
970 break;
971 case IIO_VAL_INT_PLUS_NANO:
972 fract_mult = 100000000;
973 break;
974 case IIO_VAL_CHAR:
975 is_char = true;
976 break;
977 default:
978 return -EINVAL;
979 }
980
981 if (is_char) {
982 char ch;
983
984 if (sscanf(buf, "%c", &ch) != 1)
985 return -EINVAL;
986 integer = ch;
987 } else {
988 ret = __iio_str_to_fixpoint(buf, fract_mult, &integer, &fract,
989 scale_db);
990 if (ret)
991 return ret;
992 }
993
994 ret = indio_dev->info->write_raw(indio_dev, this_attr->c,
995 integer, fract, this_attr->address);
996 if (ret)
997 return ret;
998
999 return len;
1000 }
1001
1002 static
__iio_device_attr_init(struct device_attribute * dev_attr,const char * postfix,struct iio_chan_spec const * chan,ssize_t (* readfunc)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* writefunc)(struct device * dev,struct device_attribute * attr,const char * buf,size_t len),enum iio_shared_by shared_by)1003 int __iio_device_attr_init(struct device_attribute *dev_attr,
1004 const char *postfix,
1005 struct iio_chan_spec const *chan,
1006 ssize_t (*readfunc)(struct device *dev,
1007 struct device_attribute *attr,
1008 char *buf),
1009 ssize_t (*writefunc)(struct device *dev,
1010 struct device_attribute *attr,
1011 const char *buf,
1012 size_t len),
1013 enum iio_shared_by shared_by)
1014 {
1015 int ret = 0;
1016 char *name = NULL;
1017 char *full_postfix;
1018
1019 sysfs_attr_init(&dev_attr->attr);
1020
1021 /* Build up postfix of <extend_name>_<modifier>_postfix */
1022 if (chan->modified && (shared_by == IIO_SEPARATE)) {
1023 if (chan->extend_name)
1024 full_postfix = kasprintf(GFP_KERNEL, "%s_%s_%s",
1025 iio_modifier_names[chan->channel2],
1026 chan->extend_name,
1027 postfix);
1028 else
1029 full_postfix = kasprintf(GFP_KERNEL, "%s_%s",
1030 iio_modifier_names[chan->channel2],
1031 postfix);
1032 } else {
1033 if (chan->extend_name == NULL || shared_by != IIO_SEPARATE)
1034 full_postfix = kstrdup(postfix, GFP_KERNEL);
1035 else
1036 full_postfix = kasprintf(GFP_KERNEL,
1037 "%s_%s",
1038 chan->extend_name,
1039 postfix);
1040 }
1041 if (full_postfix == NULL)
1042 return -ENOMEM;
1043
1044 if (chan->differential) { /* Differential can not have modifier */
1045 switch (shared_by) {
1046 case IIO_SHARED_BY_ALL:
1047 name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1048 break;
1049 case IIO_SHARED_BY_DIR:
1050 name = kasprintf(GFP_KERNEL, "%s_%s",
1051 iio_direction[chan->output],
1052 full_postfix);
1053 break;
1054 case IIO_SHARED_BY_TYPE:
1055 name = kasprintf(GFP_KERNEL, "%s_%s-%s_%s",
1056 iio_direction[chan->output],
1057 iio_chan_type_name_spec[chan->type],
1058 iio_chan_type_name_spec[chan->type],
1059 full_postfix);
1060 break;
1061 case IIO_SEPARATE:
1062 if (!chan->indexed) {
1063 WARN(1, "Differential channels must be indexed\n");
1064 ret = -EINVAL;
1065 goto error_free_full_postfix;
1066 }
1067 name = kasprintf(GFP_KERNEL,
1068 "%s_%s%d-%s%d_%s",
1069 iio_direction[chan->output],
1070 iio_chan_type_name_spec[chan->type],
1071 chan->channel,
1072 iio_chan_type_name_spec[chan->type],
1073 chan->channel2,
1074 full_postfix);
1075 break;
1076 }
1077 } else { /* Single ended */
1078 switch (shared_by) {
1079 case IIO_SHARED_BY_ALL:
1080 name = kasprintf(GFP_KERNEL, "%s", full_postfix);
1081 break;
1082 case IIO_SHARED_BY_DIR:
1083 name = kasprintf(GFP_KERNEL, "%s_%s",
1084 iio_direction[chan->output],
1085 full_postfix);
1086 break;
1087 case IIO_SHARED_BY_TYPE:
1088 name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1089 iio_direction[chan->output],
1090 iio_chan_type_name_spec[chan->type],
1091 full_postfix);
1092 break;
1093
1094 case IIO_SEPARATE:
1095 if (chan->indexed)
1096 name = kasprintf(GFP_KERNEL, "%s_%s%d_%s",
1097 iio_direction[chan->output],
1098 iio_chan_type_name_spec[chan->type],
1099 chan->channel,
1100 full_postfix);
1101 else
1102 name = kasprintf(GFP_KERNEL, "%s_%s_%s",
1103 iio_direction[chan->output],
1104 iio_chan_type_name_spec[chan->type],
1105 full_postfix);
1106 break;
1107 }
1108 }
1109 if (name == NULL) {
1110 ret = -ENOMEM;
1111 goto error_free_full_postfix;
1112 }
1113 dev_attr->attr.name = name;
1114
1115 if (readfunc) {
1116 dev_attr->attr.mode |= 0444;
1117 dev_attr->show = readfunc;
1118 }
1119
1120 if (writefunc) {
1121 dev_attr->attr.mode |= 0200;
1122 dev_attr->store = writefunc;
1123 }
1124
1125 error_free_full_postfix:
1126 kfree(full_postfix);
1127
1128 return ret;
1129 }
1130
__iio_device_attr_deinit(struct device_attribute * dev_attr)1131 static void __iio_device_attr_deinit(struct device_attribute *dev_attr)
1132 {
1133 kfree(dev_attr->attr.name);
1134 }
1135
__iio_add_chan_devattr(const char * postfix,struct iio_chan_spec const * chan,ssize_t (* readfunc)(struct device * dev,struct device_attribute * attr,char * buf),ssize_t (* writefunc)(struct device * dev,struct device_attribute * attr,const char * buf,size_t len),u64 mask,enum iio_shared_by shared_by,struct device * dev,struct iio_buffer * buffer,struct list_head * attr_list)1136 int __iio_add_chan_devattr(const char *postfix,
1137 struct iio_chan_spec const *chan,
1138 ssize_t (*readfunc)(struct device *dev,
1139 struct device_attribute *attr,
1140 char *buf),
1141 ssize_t (*writefunc)(struct device *dev,
1142 struct device_attribute *attr,
1143 const char *buf,
1144 size_t len),
1145 u64 mask,
1146 enum iio_shared_by shared_by,
1147 struct device *dev,
1148 struct iio_buffer *buffer,
1149 struct list_head *attr_list)
1150 {
1151 int ret;
1152 struct iio_dev_attr *iio_attr, *t;
1153
1154 iio_attr = kzalloc(sizeof(*iio_attr), GFP_KERNEL);
1155 if (iio_attr == NULL)
1156 return -ENOMEM;
1157 ret = __iio_device_attr_init(&iio_attr->dev_attr,
1158 postfix, chan,
1159 readfunc, writefunc, shared_by);
1160 if (ret)
1161 goto error_iio_dev_attr_free;
1162 iio_attr->c = chan;
1163 iio_attr->address = mask;
1164 iio_attr->buffer = buffer;
1165 list_for_each_entry(t, attr_list, l)
1166 if (strcmp(t->dev_attr.attr.name,
1167 iio_attr->dev_attr.attr.name) == 0) {
1168 if (shared_by == IIO_SEPARATE)
1169 dev_err(dev, "tried to double register : %s\n",
1170 t->dev_attr.attr.name);
1171 ret = -EBUSY;
1172 goto error_device_attr_deinit;
1173 }
1174 list_add(&iio_attr->l, attr_list);
1175
1176 return 0;
1177
1178 error_device_attr_deinit:
1179 __iio_device_attr_deinit(&iio_attr->dev_attr);
1180 error_iio_dev_attr_free:
1181 kfree(iio_attr);
1182 return ret;
1183 }
1184
iio_device_add_channel_label(struct iio_dev * indio_dev,struct iio_chan_spec const * chan)1185 static int iio_device_add_channel_label(struct iio_dev *indio_dev,
1186 struct iio_chan_spec const *chan)
1187 {
1188 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1189 int ret;
1190
1191 if (!indio_dev->info->read_label && !chan->extend_name)
1192 return 0;
1193
1194 ret = __iio_add_chan_devattr("label",
1195 chan,
1196 &iio_read_channel_label,
1197 NULL,
1198 0,
1199 IIO_SEPARATE,
1200 &indio_dev->dev,
1201 NULL,
1202 &iio_dev_opaque->channel_attr_list);
1203 if (ret < 0)
1204 return ret;
1205
1206 return 1;
1207 }
1208
iio_device_add_info_mask_type(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,enum iio_shared_by shared_by,const long * infomask)1209 static int iio_device_add_info_mask_type(struct iio_dev *indio_dev,
1210 struct iio_chan_spec const *chan,
1211 enum iio_shared_by shared_by,
1212 const long *infomask)
1213 {
1214 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1215 int i, ret, attrcount = 0;
1216
1217 for_each_set_bit(i, infomask, sizeof(*infomask)*8) {
1218 if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1219 return -EINVAL;
1220 ret = __iio_add_chan_devattr(iio_chan_info_postfix[i],
1221 chan,
1222 &iio_read_channel_info,
1223 &iio_write_channel_info,
1224 i,
1225 shared_by,
1226 &indio_dev->dev,
1227 NULL,
1228 &iio_dev_opaque->channel_attr_list);
1229 if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1230 continue;
1231 if (ret < 0)
1232 return ret;
1233 attrcount++;
1234 }
1235
1236 return attrcount;
1237 }
1238
iio_device_add_info_mask_type_avail(struct iio_dev * indio_dev,struct iio_chan_spec const * chan,enum iio_shared_by shared_by,const long * infomask)1239 static int iio_device_add_info_mask_type_avail(struct iio_dev *indio_dev,
1240 struct iio_chan_spec const *chan,
1241 enum iio_shared_by shared_by,
1242 const long *infomask)
1243 {
1244 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1245 int i, ret, attrcount = 0;
1246 char *avail_postfix;
1247
1248 for_each_set_bit(i, infomask, sizeof(*infomask) * 8) {
1249 if (i >= ARRAY_SIZE(iio_chan_info_postfix))
1250 return -EINVAL;
1251 avail_postfix = kasprintf(GFP_KERNEL,
1252 "%s_available",
1253 iio_chan_info_postfix[i]);
1254 if (!avail_postfix)
1255 return -ENOMEM;
1256
1257 ret = __iio_add_chan_devattr(avail_postfix,
1258 chan,
1259 &iio_read_channel_info_avail,
1260 NULL,
1261 i,
1262 shared_by,
1263 &indio_dev->dev,
1264 NULL,
1265 &iio_dev_opaque->channel_attr_list);
1266 kfree(avail_postfix);
1267 if ((ret == -EBUSY) && (shared_by != IIO_SEPARATE))
1268 continue;
1269 if (ret < 0)
1270 return ret;
1271 attrcount++;
1272 }
1273
1274 return attrcount;
1275 }
1276
iio_device_add_channel_sysfs(struct iio_dev * indio_dev,struct iio_chan_spec const * chan)1277 static int iio_device_add_channel_sysfs(struct iio_dev *indio_dev,
1278 struct iio_chan_spec const *chan)
1279 {
1280 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1281 int ret, attrcount = 0;
1282 const struct iio_chan_spec_ext_info *ext_info;
1283
1284 if (chan->channel < 0)
1285 return 0;
1286 ret = iio_device_add_info_mask_type(indio_dev, chan,
1287 IIO_SEPARATE,
1288 &chan->info_mask_separate);
1289 if (ret < 0)
1290 return ret;
1291 attrcount += ret;
1292
1293 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1294 IIO_SEPARATE,
1295 &chan->info_mask_separate_available);
1296 if (ret < 0)
1297 return ret;
1298 attrcount += ret;
1299
1300 ret = iio_device_add_info_mask_type(indio_dev, chan,
1301 IIO_SHARED_BY_TYPE,
1302 &chan->info_mask_shared_by_type);
1303 if (ret < 0)
1304 return ret;
1305 attrcount += ret;
1306
1307 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1308 IIO_SHARED_BY_TYPE,
1309 &chan->info_mask_shared_by_type_available);
1310 if (ret < 0)
1311 return ret;
1312 attrcount += ret;
1313
1314 ret = iio_device_add_info_mask_type(indio_dev, chan,
1315 IIO_SHARED_BY_DIR,
1316 &chan->info_mask_shared_by_dir);
1317 if (ret < 0)
1318 return ret;
1319 attrcount += ret;
1320
1321 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1322 IIO_SHARED_BY_DIR,
1323 &chan->info_mask_shared_by_dir_available);
1324 if (ret < 0)
1325 return ret;
1326 attrcount += ret;
1327
1328 ret = iio_device_add_info_mask_type(indio_dev, chan,
1329 IIO_SHARED_BY_ALL,
1330 &chan->info_mask_shared_by_all);
1331 if (ret < 0)
1332 return ret;
1333 attrcount += ret;
1334
1335 ret = iio_device_add_info_mask_type_avail(indio_dev, chan,
1336 IIO_SHARED_BY_ALL,
1337 &chan->info_mask_shared_by_all_available);
1338 if (ret < 0)
1339 return ret;
1340 attrcount += ret;
1341
1342 ret = iio_device_add_channel_label(indio_dev, chan);
1343 if (ret < 0)
1344 return ret;
1345 attrcount += ret;
1346
1347 if (chan->ext_info) {
1348 unsigned int i = 0;
1349
1350 for (ext_info = chan->ext_info; ext_info->name; ext_info++) {
1351 ret = __iio_add_chan_devattr(ext_info->name,
1352 chan,
1353 ext_info->read ?
1354 &iio_read_channel_ext_info : NULL,
1355 ext_info->write ?
1356 &iio_write_channel_ext_info : NULL,
1357 i,
1358 ext_info->shared,
1359 &indio_dev->dev,
1360 NULL,
1361 &iio_dev_opaque->channel_attr_list);
1362 i++;
1363 if (ret == -EBUSY && ext_info->shared)
1364 continue;
1365
1366 if (ret)
1367 return ret;
1368
1369 attrcount++;
1370 }
1371 }
1372
1373 return attrcount;
1374 }
1375
1376 /**
1377 * iio_free_chan_devattr_list() - Free a list of IIO device attributes
1378 * @attr_list: List of IIO device attributes
1379 *
1380 * This function frees the memory allocated for each of the IIO device
1381 * attributes in the list.
1382 */
iio_free_chan_devattr_list(struct list_head * attr_list)1383 void iio_free_chan_devattr_list(struct list_head *attr_list)
1384 {
1385 struct iio_dev_attr *p, *n;
1386
1387 list_for_each_entry_safe(p, n, attr_list, l) {
1388 kfree_const(p->dev_attr.attr.name);
1389 list_del(&p->l);
1390 kfree(p);
1391 }
1392 }
1393
name_show(struct device * dev,struct device_attribute * attr,char * buf)1394 static ssize_t name_show(struct device *dev, struct device_attribute *attr,
1395 char *buf)
1396 {
1397 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1398
1399 return sysfs_emit(buf, "%s\n", indio_dev->name);
1400 }
1401
1402 static DEVICE_ATTR_RO(name);
1403
label_show(struct device * dev,struct device_attribute * attr,char * buf)1404 static ssize_t label_show(struct device *dev, struct device_attribute *attr,
1405 char *buf)
1406 {
1407 struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1408
1409 return sysfs_emit(buf, "%s\n", indio_dev->label);
1410 }
1411
1412 static DEVICE_ATTR_RO(label);
1413
1414 static const char * const clock_names[] = {
1415 [CLOCK_REALTIME] = "realtime",
1416 [CLOCK_MONOTONIC] = "monotonic",
1417 [CLOCK_PROCESS_CPUTIME_ID] = "process_cputime_id",
1418 [CLOCK_THREAD_CPUTIME_ID] = "thread_cputime_id",
1419 [CLOCK_MONOTONIC_RAW] = "monotonic_raw",
1420 [CLOCK_REALTIME_COARSE] = "realtime_coarse",
1421 [CLOCK_MONOTONIC_COARSE] = "monotonic_coarse",
1422 [CLOCK_BOOTTIME] = "boottime",
1423 [CLOCK_REALTIME_ALARM] = "realtime_alarm",
1424 [CLOCK_BOOTTIME_ALARM] = "boottime_alarm",
1425 [CLOCK_SGI_CYCLE] = "sgi_cycle",
1426 [CLOCK_TAI] = "tai",
1427 };
1428
current_timestamp_clock_show(struct device * dev,struct device_attribute * attr,char * buf)1429 static ssize_t current_timestamp_clock_show(struct device *dev,
1430 struct device_attribute *attr,
1431 char *buf)
1432 {
1433 const struct iio_dev *indio_dev = dev_to_iio_dev(dev);
1434 const clockid_t clk = iio_device_get_clock(indio_dev);
1435
1436 switch (clk) {
1437 case CLOCK_REALTIME:
1438 case CLOCK_MONOTONIC:
1439 case CLOCK_MONOTONIC_RAW:
1440 case CLOCK_REALTIME_COARSE:
1441 case CLOCK_MONOTONIC_COARSE:
1442 case CLOCK_BOOTTIME:
1443 case CLOCK_TAI:
1444 break;
1445 default:
1446 BUG();
1447 }
1448
1449 return sysfs_emit(buf, "%s\n", clock_names[clk]);
1450 }
1451
current_timestamp_clock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)1452 static ssize_t current_timestamp_clock_store(struct device *dev,
1453 struct device_attribute *attr,
1454 const char *buf, size_t len)
1455 {
1456 clockid_t clk;
1457 int ret;
1458
1459 ret = sysfs_match_string(clock_names, buf);
1460 if (ret < 0)
1461 return ret;
1462 clk = ret;
1463
1464 switch (clk) {
1465 case CLOCK_REALTIME:
1466 case CLOCK_MONOTONIC:
1467 case CLOCK_MONOTONIC_RAW:
1468 case CLOCK_REALTIME_COARSE:
1469 case CLOCK_MONOTONIC_COARSE:
1470 case CLOCK_BOOTTIME:
1471 case CLOCK_TAI:
1472 break;
1473 default:
1474 return -EINVAL;
1475 }
1476
1477 ret = iio_device_set_clock(dev_to_iio_dev(dev), clk);
1478 if (ret)
1479 return ret;
1480
1481 return len;
1482 }
1483
iio_device_register_sysfs_group(struct iio_dev * indio_dev,const struct attribute_group * group)1484 int iio_device_register_sysfs_group(struct iio_dev *indio_dev,
1485 const struct attribute_group *group)
1486 {
1487 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1488 const struct attribute_group **new, **old = iio_dev_opaque->groups;
1489 unsigned int cnt = iio_dev_opaque->groupcounter;
1490
1491 new = krealloc_array(old, cnt + 2, sizeof(*new), GFP_KERNEL);
1492 if (!new)
1493 return -ENOMEM;
1494
1495 new[iio_dev_opaque->groupcounter++] = group;
1496 new[iio_dev_opaque->groupcounter] = NULL;
1497
1498 iio_dev_opaque->groups = new;
1499
1500 return 0;
1501 }
1502
1503 static DEVICE_ATTR_RW(current_timestamp_clock);
1504
iio_device_register_sysfs(struct iio_dev * indio_dev)1505 static int iio_device_register_sysfs(struct iio_dev *indio_dev)
1506 {
1507 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1508 int i, ret = 0, attrcount, attrn, attrcount_orig = 0;
1509 struct iio_dev_attr *p;
1510 struct attribute **attr, *clk = NULL;
1511
1512 /* First count elements in any existing group */
1513 if (indio_dev->info->attrs) {
1514 attr = indio_dev->info->attrs->attrs;
1515 while (*attr++ != NULL)
1516 attrcount_orig++;
1517 }
1518 attrcount = attrcount_orig;
1519 /*
1520 * New channel registration method - relies on the fact a group does
1521 * not need to be initialized if its name is NULL.
1522 */
1523 if (indio_dev->channels)
1524 for (i = 0; i < indio_dev->num_channels; i++) {
1525 const struct iio_chan_spec *chan =
1526 &indio_dev->channels[i];
1527
1528 if (chan->type == IIO_TIMESTAMP)
1529 clk = &dev_attr_current_timestamp_clock.attr;
1530
1531 ret = iio_device_add_channel_sysfs(indio_dev, chan);
1532 if (ret < 0)
1533 goto error_clear_attrs;
1534 attrcount += ret;
1535 }
1536
1537 if (iio_dev_opaque->event_interface)
1538 clk = &dev_attr_current_timestamp_clock.attr;
1539
1540 if (indio_dev->name)
1541 attrcount++;
1542 if (indio_dev->label)
1543 attrcount++;
1544 if (clk)
1545 attrcount++;
1546
1547 iio_dev_opaque->chan_attr_group.attrs =
1548 kcalloc(attrcount + 1,
1549 sizeof(iio_dev_opaque->chan_attr_group.attrs[0]),
1550 GFP_KERNEL);
1551 if (iio_dev_opaque->chan_attr_group.attrs == NULL) {
1552 ret = -ENOMEM;
1553 goto error_clear_attrs;
1554 }
1555 /* Copy across original attributes, and point to original binary attributes */
1556 if (indio_dev->info->attrs) {
1557 memcpy(iio_dev_opaque->chan_attr_group.attrs,
1558 indio_dev->info->attrs->attrs,
1559 sizeof(iio_dev_opaque->chan_attr_group.attrs[0])
1560 *attrcount_orig);
1561 iio_dev_opaque->chan_attr_group.is_visible =
1562 indio_dev->info->attrs->is_visible;
1563 iio_dev_opaque->chan_attr_group.bin_attrs =
1564 indio_dev->info->attrs->bin_attrs;
1565 }
1566 attrn = attrcount_orig;
1567 /* Add all elements from the list. */
1568 list_for_each_entry(p, &iio_dev_opaque->channel_attr_list, l)
1569 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &p->dev_attr.attr;
1570 if (indio_dev->name)
1571 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_name.attr;
1572 if (indio_dev->label)
1573 iio_dev_opaque->chan_attr_group.attrs[attrn++] = &dev_attr_label.attr;
1574 if (clk)
1575 iio_dev_opaque->chan_attr_group.attrs[attrn++] = clk;
1576
1577 ret = iio_device_register_sysfs_group(indio_dev,
1578 &iio_dev_opaque->chan_attr_group);
1579 if (ret)
1580 goto error_free_chan_attrs;
1581
1582 return 0;
1583
1584 error_free_chan_attrs:
1585 kfree(iio_dev_opaque->chan_attr_group.attrs);
1586 iio_dev_opaque->chan_attr_group.attrs = NULL;
1587 error_clear_attrs:
1588 iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1589
1590 return ret;
1591 }
1592
iio_device_unregister_sysfs(struct iio_dev * indio_dev)1593 static void iio_device_unregister_sysfs(struct iio_dev *indio_dev)
1594 {
1595 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1596
1597 iio_free_chan_devattr_list(&iio_dev_opaque->channel_attr_list);
1598 kfree(iio_dev_opaque->chan_attr_group.attrs);
1599 iio_dev_opaque->chan_attr_group.attrs = NULL;
1600 kfree(iio_dev_opaque->groups);
1601 iio_dev_opaque->groups = NULL;
1602 }
1603
iio_dev_release(struct device * device)1604 static void iio_dev_release(struct device *device)
1605 {
1606 struct iio_dev *indio_dev = dev_to_iio_dev(device);
1607 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1608
1609 if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1610 iio_device_unregister_trigger_consumer(indio_dev);
1611 iio_device_unregister_eventset(indio_dev);
1612 iio_device_unregister_sysfs(indio_dev);
1613
1614 iio_device_detach_buffers(indio_dev);
1615
1616 lockdep_unregister_key(&iio_dev_opaque->mlock_key);
1617
1618 ida_free(&iio_ida, iio_dev_opaque->id);
1619 kfree(iio_dev_opaque);
1620 }
1621
1622 const struct device_type iio_device_type = {
1623 .name = "iio_device",
1624 .release = iio_dev_release,
1625 };
1626
1627 /**
1628 * iio_device_alloc() - allocate an iio_dev from a driver
1629 * @parent: Parent device.
1630 * @sizeof_priv: Space to allocate for private structure.
1631 *
1632 * Returns:
1633 * Pointer to allocated iio_dev on success, NULL on failure.
1634 */
iio_device_alloc(struct device * parent,int sizeof_priv)1635 struct iio_dev *iio_device_alloc(struct device *parent, int sizeof_priv)
1636 {
1637 struct iio_dev_opaque *iio_dev_opaque;
1638 struct iio_dev *indio_dev;
1639 size_t alloc_size;
1640
1641 alloc_size = sizeof(struct iio_dev_opaque);
1642 if (sizeof_priv) {
1643 alloc_size = ALIGN(alloc_size, IIO_DMA_MINALIGN);
1644 alloc_size += sizeof_priv;
1645 }
1646
1647 iio_dev_opaque = kzalloc(alloc_size, GFP_KERNEL);
1648 if (!iio_dev_opaque)
1649 return NULL;
1650
1651 indio_dev = &iio_dev_opaque->indio_dev;
1652 indio_dev->priv = (char *)iio_dev_opaque +
1653 ALIGN(sizeof(struct iio_dev_opaque), IIO_DMA_MINALIGN);
1654
1655 indio_dev->dev.parent = parent;
1656 indio_dev->dev.type = &iio_device_type;
1657 indio_dev->dev.bus = &iio_bus_type;
1658 device_initialize(&indio_dev->dev);
1659 mutex_init(&iio_dev_opaque->mlock);
1660 mutex_init(&iio_dev_opaque->info_exist_lock);
1661 INIT_LIST_HEAD(&iio_dev_opaque->channel_attr_list);
1662
1663 iio_dev_opaque->id = ida_alloc(&iio_ida, GFP_KERNEL);
1664 if (iio_dev_opaque->id < 0) {
1665 /* cannot use a dev_err as the name isn't available */
1666 pr_err("failed to get device id\n");
1667 kfree(iio_dev_opaque);
1668 return NULL;
1669 }
1670
1671 if (dev_set_name(&indio_dev->dev, "iio:device%d", iio_dev_opaque->id)) {
1672 ida_free(&iio_ida, iio_dev_opaque->id);
1673 kfree(iio_dev_opaque);
1674 return NULL;
1675 }
1676
1677 INIT_LIST_HEAD(&iio_dev_opaque->buffer_list);
1678 INIT_LIST_HEAD(&iio_dev_opaque->ioctl_handlers);
1679
1680 lockdep_register_key(&iio_dev_opaque->mlock_key);
1681 lockdep_set_class(&iio_dev_opaque->mlock, &iio_dev_opaque->mlock_key);
1682
1683 return indio_dev;
1684 }
1685 EXPORT_SYMBOL(iio_device_alloc);
1686
1687 /**
1688 * iio_device_free() - free an iio_dev from a driver
1689 * @dev: the iio_dev associated with the device
1690 */
iio_device_free(struct iio_dev * dev)1691 void iio_device_free(struct iio_dev *dev)
1692 {
1693 if (dev)
1694 put_device(&dev->dev);
1695 }
1696 EXPORT_SYMBOL(iio_device_free);
1697
devm_iio_device_release(void * iio_dev)1698 static void devm_iio_device_release(void *iio_dev)
1699 {
1700 iio_device_free(iio_dev);
1701 }
1702
1703 /**
1704 * devm_iio_device_alloc - Resource-managed iio_device_alloc()
1705 * @parent: Device to allocate iio_dev for, and parent for this IIO device
1706 * @sizeof_priv: Space to allocate for private structure.
1707 *
1708 * Managed iio_device_alloc. iio_dev allocated with this function is
1709 * automatically freed on driver detach.
1710 *
1711 * Returns:
1712 * Pointer to allocated iio_dev on success, NULL on failure.
1713 */
devm_iio_device_alloc(struct device * parent,int sizeof_priv)1714 struct iio_dev *devm_iio_device_alloc(struct device *parent, int sizeof_priv)
1715 {
1716 struct iio_dev *iio_dev;
1717 int ret;
1718
1719 iio_dev = iio_device_alloc(parent, sizeof_priv);
1720 if (!iio_dev)
1721 return NULL;
1722
1723 ret = devm_add_action_or_reset(parent, devm_iio_device_release,
1724 iio_dev);
1725 if (ret)
1726 return NULL;
1727
1728 return iio_dev;
1729 }
1730 EXPORT_SYMBOL_GPL(devm_iio_device_alloc);
1731
1732 /**
1733 * iio_chrdev_open() - chrdev file open for buffer access and ioctls
1734 * @inode: Inode structure for identifying the device in the file system
1735 * @filp: File structure for iio device used to keep and later access
1736 * private data
1737 *
1738 * Returns: 0 on success or -EBUSY if the device is already opened
1739 */
iio_chrdev_open(struct inode * inode,struct file * filp)1740 static int iio_chrdev_open(struct inode *inode, struct file *filp)
1741 {
1742 struct iio_dev_opaque *iio_dev_opaque =
1743 container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1744 struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1745 struct iio_dev_buffer_pair *ib;
1746
1747 if (test_and_set_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags))
1748 return -EBUSY;
1749
1750 iio_device_get(indio_dev);
1751
1752 ib = kmalloc(sizeof(*ib), GFP_KERNEL);
1753 if (!ib) {
1754 iio_device_put(indio_dev);
1755 clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1756 return -ENOMEM;
1757 }
1758
1759 ib->indio_dev = indio_dev;
1760 ib->buffer = indio_dev->buffer;
1761
1762 filp->private_data = ib;
1763
1764 return 0;
1765 }
1766
1767 /**
1768 * iio_chrdev_release() - chrdev file close buffer access and ioctls
1769 * @inode: Inode structure pointer for the char device
1770 * @filp: File structure pointer for the char device
1771 *
1772 * Returns: 0 for successful release.
1773 */
iio_chrdev_release(struct inode * inode,struct file * filp)1774 static int iio_chrdev_release(struct inode *inode, struct file *filp)
1775 {
1776 struct iio_dev_buffer_pair *ib = filp->private_data;
1777 struct iio_dev_opaque *iio_dev_opaque =
1778 container_of(inode->i_cdev, struct iio_dev_opaque, chrdev);
1779 struct iio_dev *indio_dev = &iio_dev_opaque->indio_dev;
1780
1781 kfree(ib);
1782 clear_bit(IIO_BUSY_BIT_POS, &iio_dev_opaque->flags);
1783 iio_device_put(indio_dev);
1784
1785 return 0;
1786 }
1787
iio_device_ioctl_handler_register(struct iio_dev * indio_dev,struct iio_ioctl_handler * h)1788 void iio_device_ioctl_handler_register(struct iio_dev *indio_dev,
1789 struct iio_ioctl_handler *h)
1790 {
1791 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1792
1793 list_add_tail(&h->entry, &iio_dev_opaque->ioctl_handlers);
1794 }
1795
iio_device_ioctl_handler_unregister(struct iio_ioctl_handler * h)1796 void iio_device_ioctl_handler_unregister(struct iio_ioctl_handler *h)
1797 {
1798 list_del(&h->entry);
1799 }
1800
iio_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)1801 static long iio_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
1802 {
1803 struct iio_dev_buffer_pair *ib = filp->private_data;
1804 struct iio_dev *indio_dev = ib->indio_dev;
1805 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1806 struct iio_ioctl_handler *h;
1807 int ret = -ENODEV;
1808
1809 mutex_lock(&iio_dev_opaque->info_exist_lock);
1810
1811 /*
1812 * The NULL check here is required to prevent crashing when a device
1813 * is being removed while userspace would still have open file handles
1814 * to try to access this device.
1815 */
1816 if (!indio_dev->info)
1817 goto out_unlock;
1818
1819 list_for_each_entry(h, &iio_dev_opaque->ioctl_handlers, entry) {
1820 ret = h->ioctl(indio_dev, filp, cmd, arg);
1821 if (ret != IIO_IOCTL_UNHANDLED)
1822 break;
1823 }
1824
1825 if (ret == IIO_IOCTL_UNHANDLED)
1826 ret = -ENODEV;
1827
1828 out_unlock:
1829 mutex_unlock(&iio_dev_opaque->info_exist_lock);
1830
1831 return ret;
1832 }
1833
1834 static const struct file_operations iio_buffer_fileops = {
1835 .owner = THIS_MODULE,
1836 .llseek = noop_llseek,
1837 .read = iio_buffer_read_outer_addr,
1838 .write = iio_buffer_write_outer_addr,
1839 .poll = iio_buffer_poll_addr,
1840 .unlocked_ioctl = iio_ioctl,
1841 .compat_ioctl = compat_ptr_ioctl,
1842 .open = iio_chrdev_open,
1843 .release = iio_chrdev_release,
1844 };
1845
1846 static const struct file_operations iio_event_fileops = {
1847 .owner = THIS_MODULE,
1848 .llseek = noop_llseek,
1849 .unlocked_ioctl = iio_ioctl,
1850 .compat_ioctl = compat_ptr_ioctl,
1851 .open = iio_chrdev_open,
1852 .release = iio_chrdev_release,
1853 };
1854
iio_check_unique_scan_index(struct iio_dev * indio_dev)1855 static int iio_check_unique_scan_index(struct iio_dev *indio_dev)
1856 {
1857 int i, j;
1858 const struct iio_chan_spec *channels = indio_dev->channels;
1859
1860 if (!(indio_dev->modes & INDIO_ALL_BUFFER_MODES))
1861 return 0;
1862
1863 for (i = 0; i < indio_dev->num_channels - 1; i++) {
1864 if (channels[i].scan_index < 0)
1865 continue;
1866 for (j = i + 1; j < indio_dev->num_channels; j++)
1867 if (channels[i].scan_index == channels[j].scan_index) {
1868 dev_err(&indio_dev->dev,
1869 "Duplicate scan index %d\n",
1870 channels[i].scan_index);
1871 return -EINVAL;
1872 }
1873 }
1874
1875 return 0;
1876 }
1877
iio_check_extended_name(const struct iio_dev * indio_dev)1878 static int iio_check_extended_name(const struct iio_dev *indio_dev)
1879 {
1880 unsigned int i;
1881
1882 if (!indio_dev->info->read_label)
1883 return 0;
1884
1885 for (i = 0; i < indio_dev->num_channels; i++) {
1886 if (indio_dev->channels[i].extend_name) {
1887 dev_err(&indio_dev->dev,
1888 "Cannot use labels and extend_name at the same time\n");
1889 return -EINVAL;
1890 }
1891 }
1892
1893 return 0;
1894 }
1895
1896 static const struct iio_buffer_setup_ops noop_ring_setup_ops;
1897
__iio_device_register(struct iio_dev * indio_dev,struct module * this_mod)1898 int __iio_device_register(struct iio_dev *indio_dev, struct module *this_mod)
1899 {
1900 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1901 struct fwnode_handle *fwnode = NULL;
1902 int ret;
1903
1904 if (!indio_dev->info)
1905 return -EINVAL;
1906
1907 iio_dev_opaque->driver_module = this_mod;
1908
1909 /* If the calling driver did not initialize firmware node, do it here */
1910 if (dev_fwnode(&indio_dev->dev))
1911 fwnode = dev_fwnode(&indio_dev->dev);
1912 /* The default dummy IIO device has no parent */
1913 else if (indio_dev->dev.parent)
1914 fwnode = dev_fwnode(indio_dev->dev.parent);
1915 device_set_node(&indio_dev->dev, fwnode);
1916
1917 fwnode_property_read_string(fwnode, "label", &indio_dev->label);
1918
1919 ret = iio_check_unique_scan_index(indio_dev);
1920 if (ret < 0)
1921 return ret;
1922
1923 ret = iio_check_extended_name(indio_dev);
1924 if (ret < 0)
1925 return ret;
1926
1927 iio_device_register_debugfs(indio_dev);
1928
1929 ret = iio_buffers_alloc_sysfs_and_mask(indio_dev);
1930 if (ret) {
1931 dev_err(indio_dev->dev.parent,
1932 "Failed to create buffer sysfs interfaces\n");
1933 goto error_unreg_debugfs;
1934 }
1935
1936 ret = iio_device_register_sysfs(indio_dev);
1937 if (ret) {
1938 dev_err(indio_dev->dev.parent,
1939 "Failed to register sysfs interfaces\n");
1940 goto error_buffer_free_sysfs;
1941 }
1942 ret = iio_device_register_eventset(indio_dev);
1943 if (ret) {
1944 dev_err(indio_dev->dev.parent,
1945 "Failed to register event set\n");
1946 goto error_free_sysfs;
1947 }
1948 if (indio_dev->modes & INDIO_ALL_TRIGGERED_MODES)
1949 iio_device_register_trigger_consumer(indio_dev);
1950
1951 if ((indio_dev->modes & INDIO_ALL_BUFFER_MODES) &&
1952 indio_dev->setup_ops == NULL)
1953 indio_dev->setup_ops = &noop_ring_setup_ops;
1954
1955 if (iio_dev_opaque->attached_buffers_cnt)
1956 cdev_init(&iio_dev_opaque->chrdev, &iio_buffer_fileops);
1957 else if (iio_dev_opaque->event_interface)
1958 cdev_init(&iio_dev_opaque->chrdev, &iio_event_fileops);
1959
1960 if (iio_dev_opaque->attached_buffers_cnt || iio_dev_opaque->event_interface) {
1961 indio_dev->dev.devt = MKDEV(MAJOR(iio_devt), iio_dev_opaque->id);
1962 iio_dev_opaque->chrdev.owner = this_mod;
1963 }
1964
1965 /* assign device groups now; they should be all registered now */
1966 indio_dev->dev.groups = iio_dev_opaque->groups;
1967
1968 ret = cdev_device_add(&iio_dev_opaque->chrdev, &indio_dev->dev);
1969 if (ret < 0)
1970 goto error_unreg_eventset;
1971
1972 return 0;
1973
1974 error_unreg_eventset:
1975 iio_device_unregister_eventset(indio_dev);
1976 error_free_sysfs:
1977 iio_device_unregister_sysfs(indio_dev);
1978 error_buffer_free_sysfs:
1979 iio_buffers_free_sysfs_and_mask(indio_dev);
1980 error_unreg_debugfs:
1981 iio_device_unregister_debugfs(indio_dev);
1982 return ret;
1983 }
1984 EXPORT_SYMBOL(__iio_device_register);
1985
1986 /**
1987 * iio_device_unregister() - unregister a device from the IIO subsystem
1988 * @indio_dev: Device structure representing the device.
1989 */
iio_device_unregister(struct iio_dev * indio_dev)1990 void iio_device_unregister(struct iio_dev *indio_dev)
1991 {
1992 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
1993
1994 cdev_device_del(&iio_dev_opaque->chrdev, &indio_dev->dev);
1995
1996 mutex_lock(&iio_dev_opaque->info_exist_lock);
1997
1998 iio_device_unregister_debugfs(indio_dev);
1999
2000 iio_disable_all_buffers(indio_dev);
2001
2002 indio_dev->info = NULL;
2003
2004 iio_device_wakeup_eventset(indio_dev);
2005 iio_buffer_wakeup_poll(indio_dev);
2006
2007 mutex_unlock(&iio_dev_opaque->info_exist_lock);
2008
2009 iio_buffers_free_sysfs_and_mask(indio_dev);
2010 }
2011 EXPORT_SYMBOL(iio_device_unregister);
2012
devm_iio_device_unreg(void * indio_dev)2013 static void devm_iio_device_unreg(void *indio_dev)
2014 {
2015 iio_device_unregister(indio_dev);
2016 }
2017
__devm_iio_device_register(struct device * dev,struct iio_dev * indio_dev,struct module * this_mod)2018 int __devm_iio_device_register(struct device *dev, struct iio_dev *indio_dev,
2019 struct module *this_mod)
2020 {
2021 int ret;
2022
2023 ret = __iio_device_register(indio_dev, this_mod);
2024 if (ret)
2025 return ret;
2026
2027 return devm_add_action_or_reset(dev, devm_iio_device_unreg, indio_dev);
2028 }
2029 EXPORT_SYMBOL_GPL(__devm_iio_device_register);
2030
2031 /**
2032 * iio_device_claim_direct_mode - Keep device in direct mode
2033 * @indio_dev: the iio_dev associated with the device
2034 *
2035 * If the device is in direct mode it is guaranteed to stay
2036 * that way until iio_device_release_direct_mode() is called.
2037 *
2038 * Use with iio_device_release_direct_mode()
2039 *
2040 * Returns: 0 on success, -EBUSY on failure.
2041 */
iio_device_claim_direct_mode(struct iio_dev * indio_dev)2042 int iio_device_claim_direct_mode(struct iio_dev *indio_dev)
2043 {
2044 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2045
2046 mutex_lock(&iio_dev_opaque->mlock);
2047
2048 if (iio_buffer_enabled(indio_dev)) {
2049 mutex_unlock(&iio_dev_opaque->mlock);
2050 return -EBUSY;
2051 }
2052 return 0;
2053 }
2054 EXPORT_SYMBOL_GPL(iio_device_claim_direct_mode);
2055
2056 /**
2057 * iio_device_release_direct_mode - releases claim on direct mode
2058 * @indio_dev: the iio_dev associated with the device
2059 *
2060 * Release the claim. Device is no longer guaranteed to stay
2061 * in direct mode.
2062 *
2063 * Use with iio_device_claim_direct_mode()
2064 */
iio_device_release_direct_mode(struct iio_dev * indio_dev)2065 void iio_device_release_direct_mode(struct iio_dev *indio_dev)
2066 {
2067 mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
2068 }
2069 EXPORT_SYMBOL_GPL(iio_device_release_direct_mode);
2070
2071 /**
2072 * iio_device_claim_buffer_mode - Keep device in buffer mode
2073 * @indio_dev: the iio_dev associated with the device
2074 *
2075 * If the device is in buffer mode it is guaranteed to stay
2076 * that way until iio_device_release_buffer_mode() is called.
2077 *
2078 * Use with iio_device_release_buffer_mode().
2079 *
2080 * Returns: 0 on success, -EBUSY on failure.
2081 */
iio_device_claim_buffer_mode(struct iio_dev * indio_dev)2082 int iio_device_claim_buffer_mode(struct iio_dev *indio_dev)
2083 {
2084 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2085
2086 mutex_lock(&iio_dev_opaque->mlock);
2087
2088 if (iio_buffer_enabled(indio_dev))
2089 return 0;
2090
2091 mutex_unlock(&iio_dev_opaque->mlock);
2092 return -EBUSY;
2093 }
2094 EXPORT_SYMBOL_GPL(iio_device_claim_buffer_mode);
2095
2096 /**
2097 * iio_device_release_buffer_mode - releases claim on buffer mode
2098 * @indio_dev: the iio_dev associated with the device
2099 *
2100 * Release the claim. Device is no longer guaranteed to stay
2101 * in buffer mode.
2102 *
2103 * Use with iio_device_claim_buffer_mode().
2104 */
iio_device_release_buffer_mode(struct iio_dev * indio_dev)2105 void iio_device_release_buffer_mode(struct iio_dev *indio_dev)
2106 {
2107 mutex_unlock(&to_iio_dev_opaque(indio_dev)->mlock);
2108 }
2109 EXPORT_SYMBOL_GPL(iio_device_release_buffer_mode);
2110
2111 /**
2112 * iio_device_get_current_mode() - helper function providing read-only access to
2113 * the opaque @currentmode variable
2114 * @indio_dev: IIO device structure for device
2115 */
iio_device_get_current_mode(struct iio_dev * indio_dev)2116 int iio_device_get_current_mode(struct iio_dev *indio_dev)
2117 {
2118 struct iio_dev_opaque *iio_dev_opaque = to_iio_dev_opaque(indio_dev);
2119
2120 return iio_dev_opaque->currentmode;
2121 }
2122 EXPORT_SYMBOL_GPL(iio_device_get_current_mode);
2123
2124 subsys_initcall(iio_init);
2125 module_exit(iio_exit);
2126
2127 MODULE_AUTHOR("Jonathan Cameron <jic23@kernel.org>");
2128 MODULE_DESCRIPTION("Industrial I/O core");
2129 MODULE_LICENSE("GPL");
2130