1 // SPDX-License-Identifier: Apache-2.0 OR MIT 2 3 #[cfg(not(no_global_oom_handling))] 4 use super::AsVecIntoIter; 5 use crate::alloc::{Allocator, Global}; 6 #[cfg(not(no_global_oom_handling))] 7 use crate::collections::VecDeque; 8 use crate::raw_vec::RawVec; 9 use core::array; 10 use core::fmt; 11 use core::iter::{ 12 FusedIterator, InPlaceIterable, SourceIter, TrustedLen, TrustedRandomAccessNoCoerce, 13 }; 14 use core::marker::PhantomData; 15 use core::mem::{self, ManuallyDrop, MaybeUninit, SizedTypeProperties}; 16 use core::num::NonZeroUsize; 17 #[cfg(not(no_global_oom_handling))] 18 use core::ops::Deref; 19 use core::ptr::{self, NonNull}; 20 use core::slice::{self}; 21 22 /// An iterator that moves out of a vector. 23 /// 24 /// This `struct` is created by the `into_iter` method on [`Vec`](super::Vec) 25 /// (provided by the [`IntoIterator`] trait). 26 /// 27 /// # Example 28 /// 29 /// ``` 30 /// let v = vec![0, 1, 2]; 31 /// let iter: std::vec::IntoIter<_> = v.into_iter(); 32 /// ``` 33 #[stable(feature = "rust1", since = "1.0.0")] 34 #[rustc_insignificant_dtor] 35 pub struct IntoIter< 36 T, 37 #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, 38 > { 39 pub(super) buf: NonNull<T>, 40 pub(super) phantom: PhantomData<T>, 41 pub(super) cap: usize, 42 // the drop impl reconstructs a RawVec from buf, cap and alloc 43 // to avoid dropping the allocator twice we need to wrap it into ManuallyDrop 44 pub(super) alloc: ManuallyDrop<A>, 45 pub(super) ptr: *const T, 46 pub(super) end: *const T, // If T is a ZST, this is actually ptr+len. This encoding is picked so that 47 // ptr == end is a quick test for the Iterator being empty, that works 48 // for both ZST and non-ZST. 49 } 50 51 #[stable(feature = "vec_intoiter_debug", since = "1.13.0")] 52 impl<T: fmt::Debug, A: Allocator> fmt::Debug for IntoIter<T, A> { fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result53 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { 54 f.debug_tuple("IntoIter").field(&self.as_slice()).finish() 55 } 56 } 57 58 impl<T, A: Allocator> IntoIter<T, A> { 59 /// Returns the remaining items of this iterator as a slice. 60 /// 61 /// # Examples 62 /// 63 /// ``` 64 /// let vec = vec!['a', 'b', 'c']; 65 /// let mut into_iter = vec.into_iter(); 66 /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); 67 /// let _ = into_iter.next().unwrap(); 68 /// assert_eq!(into_iter.as_slice(), &['b', 'c']); 69 /// ``` 70 #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")] as_slice(&self) -> &[T]71 pub fn as_slice(&self) -> &[T] { 72 unsafe { slice::from_raw_parts(self.ptr, self.len()) } 73 } 74 75 /// Returns the remaining items of this iterator as a mutable slice. 76 /// 77 /// # Examples 78 /// 79 /// ``` 80 /// let vec = vec!['a', 'b', 'c']; 81 /// let mut into_iter = vec.into_iter(); 82 /// assert_eq!(into_iter.as_slice(), &['a', 'b', 'c']); 83 /// into_iter.as_mut_slice()[2] = 'z'; 84 /// assert_eq!(into_iter.next().unwrap(), 'a'); 85 /// assert_eq!(into_iter.next().unwrap(), 'b'); 86 /// assert_eq!(into_iter.next().unwrap(), 'z'); 87 /// ``` 88 #[stable(feature = "vec_into_iter_as_slice", since = "1.15.0")] as_mut_slice(&mut self) -> &mut [T]89 pub fn as_mut_slice(&mut self) -> &mut [T] { 90 unsafe { &mut *self.as_raw_mut_slice() } 91 } 92 93 /// Returns a reference to the underlying allocator. 94 #[unstable(feature = "allocator_api", issue = "32838")] 95 #[inline] allocator(&self) -> &A96 pub fn allocator(&self) -> &A { 97 &self.alloc 98 } 99 as_raw_mut_slice(&mut self) -> *mut [T]100 fn as_raw_mut_slice(&mut self) -> *mut [T] { 101 ptr::slice_from_raw_parts_mut(self.ptr as *mut T, self.len()) 102 } 103 104 /// Drops remaining elements and relinquishes the backing allocation. 105 /// This method guarantees it won't panic before relinquishing 106 /// the backing allocation. 107 /// 108 /// This is roughly equivalent to the following, but more efficient 109 /// 110 /// ``` 111 /// # let mut into_iter = Vec::<u8>::with_capacity(10).into_iter(); 112 /// let mut into_iter = std::mem::replace(&mut into_iter, Vec::new().into_iter()); 113 /// (&mut into_iter).for_each(drop); 114 /// std::mem::forget(into_iter); 115 /// ``` 116 /// 117 /// This method is used by in-place iteration, refer to the vec::in_place_collect 118 /// documentation for an overview. 119 #[cfg(not(no_global_oom_handling))] forget_allocation_drop_remaining(&mut self)120 pub(super) fn forget_allocation_drop_remaining(&mut self) { 121 let remaining = self.as_raw_mut_slice(); 122 123 // overwrite the individual fields instead of creating a new 124 // struct and then overwriting &mut self. 125 // this creates less assembly 126 self.cap = 0; 127 self.buf = unsafe { NonNull::new_unchecked(RawVec::NEW.ptr()) }; 128 self.ptr = self.buf.as_ptr(); 129 self.end = self.buf.as_ptr(); 130 131 // Dropping the remaining elements can panic, so this needs to be 132 // done only after updating the other fields. 133 unsafe { 134 ptr::drop_in_place(remaining); 135 } 136 } 137 138 /// Forgets to Drop the remaining elements while still allowing the backing allocation to be freed. forget_remaining_elements(&mut self)139 pub(crate) fn forget_remaining_elements(&mut self) { 140 // For th ZST case, it is crucial that we mutate `end` here, not `ptr`. 141 // `ptr` must stay aligned, while `end` may be unaligned. 142 self.end = self.ptr; 143 } 144 145 #[cfg(not(no_global_oom_handling))] 146 #[inline] into_vecdeque(self) -> VecDeque<T, A>147 pub(crate) fn into_vecdeque(self) -> VecDeque<T, A> { 148 // Keep our `Drop` impl from dropping the elements and the allocator 149 let mut this = ManuallyDrop::new(self); 150 151 // SAFETY: This allocation originally came from a `Vec`, so it passes 152 // all those checks. We have `this.buf` ≤ `this.ptr` ≤ `this.end`, 153 // so the `sub_ptr`s below cannot wrap, and will produce a well-formed 154 // range. `end` ≤ `buf + cap`, so the range will be in-bounds. 155 // Taking `alloc` is ok because nothing else is going to look at it, 156 // since our `Drop` impl isn't going to run so there's no more code. 157 unsafe { 158 let buf = this.buf.as_ptr(); 159 let initialized = if T::IS_ZST { 160 // All the pointers are the same for ZSTs, so it's fine to 161 // say that they're all at the beginning of the "allocation". 162 0..this.len() 163 } else { 164 this.ptr.sub_ptr(buf)..this.end.sub_ptr(buf) 165 }; 166 let cap = this.cap; 167 let alloc = ManuallyDrop::take(&mut this.alloc); 168 VecDeque::from_contiguous_raw_parts_in(buf, initialized, cap, alloc) 169 } 170 } 171 } 172 173 #[stable(feature = "vec_intoiter_as_ref", since = "1.46.0")] 174 impl<T, A: Allocator> AsRef<[T]> for IntoIter<T, A> { as_ref(&self) -> &[T]175 fn as_ref(&self) -> &[T] { 176 self.as_slice() 177 } 178 } 179 180 #[stable(feature = "rust1", since = "1.0.0")] 181 unsafe impl<T: Send, A: Allocator + Send> Send for IntoIter<T, A> {} 182 #[stable(feature = "rust1", since = "1.0.0")] 183 unsafe impl<T: Sync, A: Allocator + Sync> Sync for IntoIter<T, A> {} 184 185 #[stable(feature = "rust1", since = "1.0.0")] 186 impl<T, A: Allocator> Iterator for IntoIter<T, A> { 187 type Item = T; 188 189 #[inline] next(&mut self) -> Option<T>190 fn next(&mut self) -> Option<T> { 191 if self.ptr == self.end { 192 None 193 } else if T::IS_ZST { 194 // `ptr` has to stay where it is to remain aligned, so we reduce the length by 1 by 195 // reducing the `end`. 196 self.end = self.end.wrapping_byte_sub(1); 197 198 // Make up a value of this ZST. 199 Some(unsafe { mem::zeroed() }) 200 } else { 201 let old = self.ptr; 202 self.ptr = unsafe { self.ptr.add(1) }; 203 204 Some(unsafe { ptr::read(old) }) 205 } 206 } 207 208 #[inline] size_hint(&self) -> (usize, Option<usize>)209 fn size_hint(&self) -> (usize, Option<usize>) { 210 let exact = if T::IS_ZST { 211 self.end.addr().wrapping_sub(self.ptr.addr()) 212 } else { 213 unsafe { self.end.sub_ptr(self.ptr) } 214 }; 215 (exact, Some(exact)) 216 } 217 218 #[inline] advance_by(&mut self, n: usize) -> Result<(), NonZeroUsize>219 fn advance_by(&mut self, n: usize) -> Result<(), NonZeroUsize> { 220 let step_size = self.len().min(n); 221 let to_drop = ptr::slice_from_raw_parts_mut(self.ptr as *mut T, step_size); 222 if T::IS_ZST { 223 // See `next` for why we sub `end` here. 224 self.end = self.end.wrapping_byte_sub(step_size); 225 } else { 226 // SAFETY: the min() above ensures that step_size is in bounds 227 self.ptr = unsafe { self.ptr.add(step_size) }; 228 } 229 // SAFETY: the min() above ensures that step_size is in bounds 230 unsafe { 231 ptr::drop_in_place(to_drop); 232 } 233 NonZeroUsize::new(n - step_size).map_or(Ok(()), Err) 234 } 235 236 #[inline] count(self) -> usize237 fn count(self) -> usize { 238 self.len() 239 } 240 241 #[inline] next_chunk<const N: usize>(&mut self) -> Result<[T; N], core::array::IntoIter<T, N>>242 fn next_chunk<const N: usize>(&mut self) -> Result<[T; N], core::array::IntoIter<T, N>> { 243 let mut raw_ary = MaybeUninit::uninit_array(); 244 245 let len = self.len(); 246 247 if T::IS_ZST { 248 if len < N { 249 self.forget_remaining_elements(); 250 // Safety: ZSTs can be conjured ex nihilo, only the amount has to be correct 251 return Err(unsafe { array::IntoIter::new_unchecked(raw_ary, 0..len) }); 252 } 253 254 self.end = self.end.wrapping_byte_sub(N); 255 // Safety: ditto 256 return Ok(unsafe { raw_ary.transpose().assume_init() }); 257 } 258 259 if len < N { 260 // Safety: `len` indicates that this many elements are available and we just checked that 261 // it fits into the array. 262 unsafe { 263 ptr::copy_nonoverlapping(self.ptr, raw_ary.as_mut_ptr() as *mut T, len); 264 self.forget_remaining_elements(); 265 return Err(array::IntoIter::new_unchecked(raw_ary, 0..len)); 266 } 267 } 268 269 // Safety: `len` is larger than the array size. Copy a fixed amount here to fully initialize 270 // the array. 271 return unsafe { 272 ptr::copy_nonoverlapping(self.ptr, raw_ary.as_mut_ptr() as *mut T, N); 273 self.ptr = self.ptr.add(N); 274 Ok(raw_ary.transpose().assume_init()) 275 }; 276 } 277 __iterator_get_unchecked(&mut self, i: usize) -> Self::Item where Self: TrustedRandomAccessNoCoerce,278 unsafe fn __iterator_get_unchecked(&mut self, i: usize) -> Self::Item 279 where 280 Self: TrustedRandomAccessNoCoerce, 281 { 282 // SAFETY: the caller must guarantee that `i` is in bounds of the 283 // `Vec<T>`, so `i` cannot overflow an `isize`, and the `self.ptr.add(i)` 284 // is guaranteed to pointer to an element of the `Vec<T>` and 285 // thus guaranteed to be valid to dereference. 286 // 287 // Also note the implementation of `Self: TrustedRandomAccess` requires 288 // that `T: Copy` so reading elements from the buffer doesn't invalidate 289 // them for `Drop`. 290 unsafe { 291 if T::IS_ZST { mem::zeroed() } else { ptr::read(self.ptr.add(i)) } 292 } 293 } 294 } 295 296 #[stable(feature = "rust1", since = "1.0.0")] 297 impl<T, A: Allocator> DoubleEndedIterator for IntoIter<T, A> { 298 #[inline] next_back(&mut self) -> Option<T>299 fn next_back(&mut self) -> Option<T> { 300 if self.end == self.ptr { 301 None 302 } else if T::IS_ZST { 303 // See above for why 'ptr.offset' isn't used 304 self.end = self.end.wrapping_byte_sub(1); 305 306 // Make up a value of this ZST. 307 Some(unsafe { mem::zeroed() }) 308 } else { 309 self.end = unsafe { self.end.sub(1) }; 310 311 Some(unsafe { ptr::read(self.end) }) 312 } 313 } 314 315 #[inline] advance_back_by(&mut self, n: usize) -> Result<(), NonZeroUsize>316 fn advance_back_by(&mut self, n: usize) -> Result<(), NonZeroUsize> { 317 let step_size = self.len().min(n); 318 if T::IS_ZST { 319 // SAFETY: same as for advance_by() 320 self.end = self.end.wrapping_byte_sub(step_size); 321 } else { 322 // SAFETY: same as for advance_by() 323 self.end = unsafe { self.end.sub(step_size) }; 324 } 325 let to_drop = ptr::slice_from_raw_parts_mut(self.end as *mut T, step_size); 326 // SAFETY: same as for advance_by() 327 unsafe { 328 ptr::drop_in_place(to_drop); 329 } 330 NonZeroUsize::new(n - step_size).map_or(Ok(()), Err) 331 } 332 } 333 334 #[stable(feature = "rust1", since = "1.0.0")] 335 impl<T, A: Allocator> ExactSizeIterator for IntoIter<T, A> { is_empty(&self) -> bool336 fn is_empty(&self) -> bool { 337 self.ptr == self.end 338 } 339 } 340 341 #[stable(feature = "fused", since = "1.26.0")] 342 impl<T, A: Allocator> FusedIterator for IntoIter<T, A> {} 343 344 #[unstable(feature = "trusted_len", issue = "37572")] 345 unsafe impl<T, A: Allocator> TrustedLen for IntoIter<T, A> {} 346 347 #[stable(feature = "default_iters", since = "1.70.0")] 348 impl<T, A> Default for IntoIter<T, A> 349 where 350 A: Allocator + Default, 351 { 352 /// Creates an empty `vec::IntoIter`. 353 /// 354 /// ``` 355 /// # use std::vec; 356 /// let iter: vec::IntoIter<u8> = Default::default(); 357 /// assert_eq!(iter.len(), 0); 358 /// assert_eq!(iter.as_slice(), &[]); 359 /// ``` default() -> Self360 fn default() -> Self { 361 super::Vec::new_in(Default::default()).into_iter() 362 } 363 } 364 365 #[doc(hidden)] 366 #[unstable(issue = "none", feature = "std_internals")] 367 #[rustc_unsafe_specialization_marker] 368 pub trait NonDrop {} 369 370 // T: Copy as approximation for !Drop since get_unchecked does not advance self.ptr 371 // and thus we can't implement drop-handling 372 #[unstable(issue = "none", feature = "std_internals")] 373 impl<T: Copy> NonDrop for T {} 374 375 #[doc(hidden)] 376 #[unstable(issue = "none", feature = "std_internals")] 377 // TrustedRandomAccess (without NoCoerce) must not be implemented because 378 // subtypes/supertypes of `T` might not be `NonDrop` 379 unsafe impl<T, A: Allocator> TrustedRandomAccessNoCoerce for IntoIter<T, A> 380 where 381 T: NonDrop, 382 { 383 const MAY_HAVE_SIDE_EFFECT: bool = false; 384 } 385 386 #[cfg(not(no_global_oom_handling))] 387 #[stable(feature = "vec_into_iter_clone", since = "1.8.0")] 388 impl<T: Clone, A: Allocator + Clone> Clone for IntoIter<T, A> { 389 #[cfg(not(test))] clone(&self) -> Self390 fn clone(&self) -> Self { 391 self.as_slice().to_vec_in(self.alloc.deref().clone()).into_iter() 392 } 393 #[cfg(test)] clone(&self) -> Self394 fn clone(&self) -> Self { 395 crate::slice::to_vec(self.as_slice(), self.alloc.deref().clone()).into_iter() 396 } 397 } 398 399 #[stable(feature = "rust1", since = "1.0.0")] 400 unsafe impl<#[may_dangle] T, A: Allocator> Drop for IntoIter<T, A> { drop(&mut self)401 fn drop(&mut self) { 402 struct DropGuard<'a, T, A: Allocator>(&'a mut IntoIter<T, A>); 403 404 impl<T, A: Allocator> Drop for DropGuard<'_, T, A> { 405 fn drop(&mut self) { 406 unsafe { 407 // `IntoIter::alloc` is not used anymore after this and will be dropped by RawVec 408 let alloc = ManuallyDrop::take(&mut self.0.alloc); 409 // RawVec handles deallocation 410 let _ = RawVec::from_raw_parts_in(self.0.buf.as_ptr(), self.0.cap, alloc); 411 } 412 } 413 } 414 415 let guard = DropGuard(self); 416 // destroy the remaining elements 417 unsafe { 418 ptr::drop_in_place(guard.0.as_raw_mut_slice()); 419 } 420 // now `guard` will be dropped and do the rest 421 } 422 } 423 424 // In addition to the SAFETY invariants of the following three unsafe traits 425 // also refer to the vec::in_place_collect module documentation to get an overview 426 #[unstable(issue = "none", feature = "inplace_iteration")] 427 #[doc(hidden)] 428 unsafe impl<T, A: Allocator> InPlaceIterable for IntoIter<T, A> {} 429 430 #[unstable(issue = "none", feature = "inplace_iteration")] 431 #[doc(hidden)] 432 unsafe impl<T, A: Allocator> SourceIter for IntoIter<T, A> { 433 type Source = Self; 434 435 #[inline] as_inner(&mut self) -> &mut Self::Source436 unsafe fn as_inner(&mut self) -> &mut Self::Source { 437 self 438 } 439 } 440 441 #[cfg(not(no_global_oom_handling))] 442 unsafe impl<T> AsVecIntoIter for IntoIter<T> { 443 type Item = T; 444 as_into_iter(&mut self) -> &mut IntoIter<Self::Item>445 fn as_into_iter(&mut self) -> &mut IntoIter<Self::Item> { 446 self 447 } 448 } 449