1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core IEEE1394 transaction logic
4 *
5 * Copyright (C) 2004-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 */
7
8 #include <linux/bug.h>
9 #include <linux/completion.h>
10 #include <linux/device.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/fs.h>
15 #include <linux/init.h>
16 #include <linux/idr.h>
17 #include <linux/jiffies.h>
18 #include <linux/kernel.h>
19 #include <linux/list.h>
20 #include <linux/module.h>
21 #include <linux/rculist.h>
22 #include <linux/slab.h>
23 #include <linux/spinlock.h>
24 #include <linux/string.h>
25 #include <linux/timer.h>
26 #include <linux/types.h>
27 #include <linux/workqueue.h>
28
29 #include <asm/byteorder.h>
30
31 #include "core.h"
32
33 #define HEADER_PRI(pri) ((pri) << 0)
34 #define HEADER_TCODE(tcode) ((tcode) << 4)
35 #define HEADER_RETRY(retry) ((retry) << 8)
36 #define HEADER_TLABEL(tlabel) ((tlabel) << 10)
37 #define HEADER_DESTINATION(destination) ((destination) << 16)
38 #define HEADER_SOURCE(source) ((source) << 16)
39 #define HEADER_RCODE(rcode) ((rcode) << 12)
40 #define HEADER_OFFSET_HIGH(offset_high) ((offset_high) << 0)
41 #define HEADER_DATA_LENGTH(length) ((length) << 16)
42 #define HEADER_EXTENDED_TCODE(tcode) ((tcode) << 0)
43
44 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
45 #define HEADER_GET_TLABEL(q) (((q) >> 10) & 0x3f)
46 #define HEADER_GET_RCODE(q) (((q) >> 12) & 0x0f)
47 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
48 #define HEADER_GET_SOURCE(q) (((q) >> 16) & 0xffff)
49 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
50 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
51 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
52
53 #define HEADER_DESTINATION_IS_BROADCAST(q) \
54 (((q) & HEADER_DESTINATION(0x3f)) == HEADER_DESTINATION(0x3f))
55
56 #define PHY_PACKET_CONFIG 0x0
57 #define PHY_PACKET_LINK_ON 0x1
58 #define PHY_PACKET_SELF_ID 0x2
59
60 #define PHY_CONFIG_GAP_COUNT(gap_count) (((gap_count) << 16) | (1 << 22))
61 #define PHY_CONFIG_ROOT_ID(node_id) ((((node_id) & 0x3f) << 24) | (1 << 23))
62 #define PHY_IDENTIFIER(id) ((id) << 30)
63
64 /* returns 0 if the split timeout handler is already running */
try_cancel_split_timeout(struct fw_transaction * t)65 static int try_cancel_split_timeout(struct fw_transaction *t)
66 {
67 if (t->is_split_transaction)
68 return del_timer(&t->split_timeout_timer);
69 else
70 return 1;
71 }
72
close_transaction(struct fw_transaction * transaction,struct fw_card * card,int rcode,u32 response_tstamp)73 static int close_transaction(struct fw_transaction *transaction, struct fw_card *card, int rcode,
74 u32 response_tstamp)
75 {
76 struct fw_transaction *t = NULL, *iter;
77 unsigned long flags;
78
79 spin_lock_irqsave(&card->lock, flags);
80 list_for_each_entry(iter, &card->transaction_list, link) {
81 if (iter == transaction) {
82 if (!try_cancel_split_timeout(iter)) {
83 spin_unlock_irqrestore(&card->lock, flags);
84 goto timed_out;
85 }
86 list_del_init(&iter->link);
87 card->tlabel_mask &= ~(1ULL << iter->tlabel);
88 t = iter;
89 break;
90 }
91 }
92 spin_unlock_irqrestore(&card->lock, flags);
93
94 if (t) {
95 if (!t->with_tstamp) {
96 t->callback.without_tstamp(card, rcode, NULL, 0, t->callback_data);
97 } else {
98 t->callback.with_tstamp(card, rcode, t->packet.timestamp, response_tstamp,
99 NULL, 0, t->callback_data);
100 }
101 return 0;
102 }
103
104 timed_out:
105 return -ENOENT;
106 }
107
108 /*
109 * Only valid for transactions that are potentially pending (ie have
110 * been sent).
111 */
fw_cancel_transaction(struct fw_card * card,struct fw_transaction * transaction)112 int fw_cancel_transaction(struct fw_card *card,
113 struct fw_transaction *transaction)
114 {
115 u32 tstamp;
116
117 /*
118 * Cancel the packet transmission if it's still queued. That
119 * will call the packet transmission callback which cancels
120 * the transaction.
121 */
122
123 if (card->driver->cancel_packet(card, &transaction->packet) == 0)
124 return 0;
125
126 /*
127 * If the request packet has already been sent, we need to see
128 * if the transaction is still pending and remove it in that case.
129 */
130
131 if (transaction->packet.ack == 0) {
132 // The timestamp is reused since it was just read now.
133 tstamp = transaction->packet.timestamp;
134 } else {
135 u32 curr_cycle_time = 0;
136
137 (void)fw_card_read_cycle_time(card, &curr_cycle_time);
138 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
139 }
140
141 return close_transaction(transaction, card, RCODE_CANCELLED, tstamp);
142 }
143 EXPORT_SYMBOL(fw_cancel_transaction);
144
split_transaction_timeout_callback(struct timer_list * timer)145 static void split_transaction_timeout_callback(struct timer_list *timer)
146 {
147 struct fw_transaction *t = from_timer(t, timer, split_timeout_timer);
148 struct fw_card *card = t->card;
149 unsigned long flags;
150
151 spin_lock_irqsave(&card->lock, flags);
152 if (list_empty(&t->link)) {
153 spin_unlock_irqrestore(&card->lock, flags);
154 return;
155 }
156 list_del(&t->link);
157 card->tlabel_mask &= ~(1ULL << t->tlabel);
158 spin_unlock_irqrestore(&card->lock, flags);
159
160 if (!t->with_tstamp) {
161 t->callback.without_tstamp(card, RCODE_CANCELLED, NULL, 0, t->callback_data);
162 } else {
163 t->callback.with_tstamp(card, RCODE_CANCELLED, t->packet.timestamp,
164 t->split_timeout_cycle, NULL, 0, t->callback_data);
165 }
166 }
167
start_split_transaction_timeout(struct fw_transaction * t,struct fw_card * card)168 static void start_split_transaction_timeout(struct fw_transaction *t,
169 struct fw_card *card)
170 {
171 unsigned long flags;
172
173 spin_lock_irqsave(&card->lock, flags);
174
175 if (list_empty(&t->link) || WARN_ON(t->is_split_transaction)) {
176 spin_unlock_irqrestore(&card->lock, flags);
177 return;
178 }
179
180 t->is_split_transaction = true;
181 mod_timer(&t->split_timeout_timer,
182 jiffies + card->split_timeout_jiffies);
183
184 spin_unlock_irqrestore(&card->lock, flags);
185 }
186
187 static u32 compute_split_timeout_timestamp(struct fw_card *card, u32 request_timestamp);
188
transmit_complete_callback(struct fw_packet * packet,struct fw_card * card,int status)189 static void transmit_complete_callback(struct fw_packet *packet,
190 struct fw_card *card, int status)
191 {
192 struct fw_transaction *t =
193 container_of(packet, struct fw_transaction, packet);
194
195 switch (status) {
196 case ACK_COMPLETE:
197 close_transaction(t, card, RCODE_COMPLETE, packet->timestamp);
198 break;
199 case ACK_PENDING:
200 {
201 t->split_timeout_cycle =
202 compute_split_timeout_timestamp(card, packet->timestamp) & 0xffff;
203 start_split_transaction_timeout(t, card);
204 break;
205 }
206 case ACK_BUSY_X:
207 case ACK_BUSY_A:
208 case ACK_BUSY_B:
209 close_transaction(t, card, RCODE_BUSY, packet->timestamp);
210 break;
211 case ACK_DATA_ERROR:
212 close_transaction(t, card, RCODE_DATA_ERROR, packet->timestamp);
213 break;
214 case ACK_TYPE_ERROR:
215 close_transaction(t, card, RCODE_TYPE_ERROR, packet->timestamp);
216 break;
217 default:
218 /*
219 * In this case the ack is really a juju specific
220 * rcode, so just forward that to the callback.
221 */
222 close_transaction(t, card, status, packet->timestamp);
223 break;
224 }
225 }
226
fw_fill_request(struct fw_packet * packet,int tcode,int tlabel,int destination_id,int source_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)227 static void fw_fill_request(struct fw_packet *packet, int tcode, int tlabel,
228 int destination_id, int source_id, int generation, int speed,
229 unsigned long long offset, void *payload, size_t length)
230 {
231 int ext_tcode;
232
233 if (tcode == TCODE_STREAM_DATA) {
234 packet->header[0] =
235 HEADER_DATA_LENGTH(length) |
236 destination_id |
237 HEADER_TCODE(TCODE_STREAM_DATA);
238 packet->header_length = 4;
239 packet->payload = payload;
240 packet->payload_length = length;
241
242 goto common;
243 }
244
245 if (tcode > 0x10) {
246 ext_tcode = tcode & ~0x10;
247 tcode = TCODE_LOCK_REQUEST;
248 } else
249 ext_tcode = 0;
250
251 packet->header[0] =
252 HEADER_RETRY(RETRY_X) |
253 HEADER_TLABEL(tlabel) |
254 HEADER_TCODE(tcode) |
255 HEADER_DESTINATION(destination_id);
256 packet->header[1] =
257 HEADER_OFFSET_HIGH(offset >> 32) | HEADER_SOURCE(source_id);
258 packet->header[2] =
259 offset;
260
261 switch (tcode) {
262 case TCODE_WRITE_QUADLET_REQUEST:
263 packet->header[3] = *(u32 *)payload;
264 packet->header_length = 16;
265 packet->payload_length = 0;
266 break;
267
268 case TCODE_LOCK_REQUEST:
269 case TCODE_WRITE_BLOCK_REQUEST:
270 packet->header[3] =
271 HEADER_DATA_LENGTH(length) |
272 HEADER_EXTENDED_TCODE(ext_tcode);
273 packet->header_length = 16;
274 packet->payload = payload;
275 packet->payload_length = length;
276 break;
277
278 case TCODE_READ_QUADLET_REQUEST:
279 packet->header_length = 12;
280 packet->payload_length = 0;
281 break;
282
283 case TCODE_READ_BLOCK_REQUEST:
284 packet->header[3] =
285 HEADER_DATA_LENGTH(length) |
286 HEADER_EXTENDED_TCODE(ext_tcode);
287 packet->header_length = 16;
288 packet->payload_length = 0;
289 break;
290
291 default:
292 WARN(1, "wrong tcode %d\n", tcode);
293 }
294 common:
295 packet->speed = speed;
296 packet->generation = generation;
297 packet->ack = 0;
298 packet->payload_mapped = false;
299 }
300
allocate_tlabel(struct fw_card * card)301 static int allocate_tlabel(struct fw_card *card)
302 {
303 int tlabel;
304
305 tlabel = card->current_tlabel;
306 while (card->tlabel_mask & (1ULL << tlabel)) {
307 tlabel = (tlabel + 1) & 0x3f;
308 if (tlabel == card->current_tlabel)
309 return -EBUSY;
310 }
311
312 card->current_tlabel = (tlabel + 1) & 0x3f;
313 card->tlabel_mask |= 1ULL << tlabel;
314
315 return tlabel;
316 }
317
318 /**
319 * __fw_send_request() - submit a request packet for transmission to generate callback for response
320 * subaction with or without time stamp.
321 * @card: interface to send the request at
322 * @t: transaction instance to which the request belongs
323 * @tcode: transaction code
324 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
325 * @generation: bus generation in which request and response are valid
326 * @speed: transmission speed
327 * @offset: 48bit wide offset into destination's address space
328 * @payload: data payload for the request subaction
329 * @length: length of the payload, in bytes
330 * @callback: union of two functions whether to receive time stamp or not for response
331 * subaction.
332 * @with_tstamp: Whether to receive time stamp or not for response subaction.
333 * @callback_data: data to be passed to the transaction completion callback
334 *
335 * Submit a request packet into the asynchronous request transmission queue.
336 * Can be called from atomic context. If you prefer a blocking API, use
337 * fw_run_transaction() in a context that can sleep.
338 *
339 * In case of lock requests, specify one of the firewire-core specific %TCODE_
340 * constants instead of %TCODE_LOCK_REQUEST in @tcode.
341 *
342 * Make sure that the value in @destination_id is not older than the one in
343 * @generation. Otherwise the request is in danger to be sent to a wrong node.
344 *
345 * In case of asynchronous stream packets i.e. %TCODE_STREAM_DATA, the caller
346 * needs to synthesize @destination_id with fw_stream_packet_destination_id().
347 * It will contain tag, channel, and sy data instead of a node ID then.
348 *
349 * The payload buffer at @data is going to be DMA-mapped except in case of
350 * @length <= 8 or of local (loopback) requests. Hence make sure that the
351 * buffer complies with the restrictions of the streaming DMA mapping API.
352 * @payload must not be freed before the @callback is called.
353 *
354 * In case of request types without payload, @data is NULL and @length is 0.
355 *
356 * After the transaction is completed successfully or unsuccessfully, the
357 * @callback will be called. Among its parameters is the response code which
358 * is either one of the rcodes per IEEE 1394 or, in case of internal errors,
359 * the firewire-core specific %RCODE_SEND_ERROR. The other firewire-core
360 * specific rcodes (%RCODE_CANCELLED, %RCODE_BUSY, %RCODE_GENERATION,
361 * %RCODE_NO_ACK) denote transaction timeout, busy responder, stale request
362 * generation, or missing ACK respectively.
363 *
364 * Note some timing corner cases: fw_send_request() may complete much earlier
365 * than when the request packet actually hits the wire. On the other hand,
366 * transaction completion and hence execution of @callback may happen even
367 * before fw_send_request() returns.
368 */
__fw_send_request(struct fw_card * card,struct fw_transaction * t,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length,union fw_transaction_callback callback,bool with_tstamp,void * callback_data)369 void __fw_send_request(struct fw_card *card, struct fw_transaction *t, int tcode,
370 int destination_id, int generation, int speed, unsigned long long offset,
371 void *payload, size_t length, union fw_transaction_callback callback,
372 bool with_tstamp, void *callback_data)
373 {
374 unsigned long flags;
375 int tlabel;
376
377 /*
378 * Allocate tlabel from the bitmap and put the transaction on
379 * the list while holding the card spinlock.
380 */
381
382 spin_lock_irqsave(&card->lock, flags);
383
384 tlabel = allocate_tlabel(card);
385 if (tlabel < 0) {
386 spin_unlock_irqrestore(&card->lock, flags);
387 if (!with_tstamp) {
388 callback.without_tstamp(card, RCODE_SEND_ERROR, NULL, 0, callback_data);
389 } else {
390 // Timestamping on behalf of hardware.
391 u32 curr_cycle_time = 0;
392 u32 tstamp;
393
394 (void)fw_card_read_cycle_time(card, &curr_cycle_time);
395 tstamp = cycle_time_to_ohci_tstamp(curr_cycle_time);
396
397 callback.with_tstamp(card, RCODE_SEND_ERROR, tstamp, tstamp, NULL, 0,
398 callback_data);
399 }
400 return;
401 }
402
403 t->node_id = destination_id;
404 t->tlabel = tlabel;
405 t->card = card;
406 t->is_split_transaction = false;
407 timer_setup(&t->split_timeout_timer, split_transaction_timeout_callback, 0);
408 t->callback = callback;
409 t->with_tstamp = with_tstamp;
410 t->callback_data = callback_data;
411
412 fw_fill_request(&t->packet, tcode, t->tlabel, destination_id, card->node_id, generation,
413 speed, offset, payload, length);
414 t->packet.callback = transmit_complete_callback;
415
416 list_add_tail(&t->link, &card->transaction_list);
417
418 spin_unlock_irqrestore(&card->lock, flags);
419
420 card->driver->send_request(card, &t->packet);
421 }
422 EXPORT_SYMBOL_GPL(__fw_send_request);
423
424 struct transaction_callback_data {
425 struct completion done;
426 void *payload;
427 int rcode;
428 };
429
transaction_callback(struct fw_card * card,int rcode,void * payload,size_t length,void * data)430 static void transaction_callback(struct fw_card *card, int rcode,
431 void *payload, size_t length, void *data)
432 {
433 struct transaction_callback_data *d = data;
434
435 if (rcode == RCODE_COMPLETE)
436 memcpy(d->payload, payload, length);
437 d->rcode = rcode;
438 complete(&d->done);
439 }
440
441 /**
442 * fw_run_transaction() - send request and sleep until transaction is completed
443 * @card: card interface for this request
444 * @tcode: transaction code
445 * @destination_id: destination node ID, consisting of bus_ID and phy_ID
446 * @generation: bus generation in which request and response are valid
447 * @speed: transmission speed
448 * @offset: 48bit wide offset into destination's address space
449 * @payload: data payload for the request subaction
450 * @length: length of the payload, in bytes
451 *
452 * Returns the RCODE. See fw_send_request() for parameter documentation.
453 * Unlike fw_send_request(), @data points to the payload of the request or/and
454 * to the payload of the response. DMA mapping restrictions apply to outbound
455 * request payloads of >= 8 bytes but not to inbound response payloads.
456 */
fw_run_transaction(struct fw_card * card,int tcode,int destination_id,int generation,int speed,unsigned long long offset,void * payload,size_t length)457 int fw_run_transaction(struct fw_card *card, int tcode, int destination_id,
458 int generation, int speed, unsigned long long offset,
459 void *payload, size_t length)
460 {
461 struct transaction_callback_data d;
462 struct fw_transaction t;
463
464 timer_setup_on_stack(&t.split_timeout_timer, NULL, 0);
465 init_completion(&d.done);
466 d.payload = payload;
467 fw_send_request(card, &t, tcode, destination_id, generation, speed,
468 offset, payload, length, transaction_callback, &d);
469 wait_for_completion(&d.done);
470 destroy_timer_on_stack(&t.split_timeout_timer);
471
472 return d.rcode;
473 }
474 EXPORT_SYMBOL(fw_run_transaction);
475
476 static DEFINE_MUTEX(phy_config_mutex);
477 static DECLARE_COMPLETION(phy_config_done);
478
transmit_phy_packet_callback(struct fw_packet * packet,struct fw_card * card,int status)479 static void transmit_phy_packet_callback(struct fw_packet *packet,
480 struct fw_card *card, int status)
481 {
482 complete(&phy_config_done);
483 }
484
485 static struct fw_packet phy_config_packet = {
486 .header_length = 12,
487 .header[0] = TCODE_LINK_INTERNAL << 4,
488 .payload_length = 0,
489 .speed = SCODE_100,
490 .callback = transmit_phy_packet_callback,
491 };
492
fw_send_phy_config(struct fw_card * card,int node_id,int generation,int gap_count)493 void fw_send_phy_config(struct fw_card *card,
494 int node_id, int generation, int gap_count)
495 {
496 long timeout = DIV_ROUND_UP(HZ, 10);
497 u32 data = PHY_IDENTIFIER(PHY_PACKET_CONFIG);
498
499 if (node_id != FW_PHY_CONFIG_NO_NODE_ID)
500 data |= PHY_CONFIG_ROOT_ID(node_id);
501
502 if (gap_count == FW_PHY_CONFIG_CURRENT_GAP_COUNT) {
503 gap_count = card->driver->read_phy_reg(card, 1);
504 if (gap_count < 0)
505 return;
506
507 gap_count &= 63;
508 if (gap_count == 63)
509 return;
510 }
511 data |= PHY_CONFIG_GAP_COUNT(gap_count);
512
513 mutex_lock(&phy_config_mutex);
514
515 phy_config_packet.header[1] = data;
516 phy_config_packet.header[2] = ~data;
517 phy_config_packet.generation = generation;
518 reinit_completion(&phy_config_done);
519
520 card->driver->send_request(card, &phy_config_packet);
521 wait_for_completion_timeout(&phy_config_done, timeout);
522
523 mutex_unlock(&phy_config_mutex);
524 }
525
lookup_overlapping_address_handler(struct list_head * list,unsigned long long offset,size_t length)526 static struct fw_address_handler *lookup_overlapping_address_handler(
527 struct list_head *list, unsigned long long offset, size_t length)
528 {
529 struct fw_address_handler *handler;
530
531 list_for_each_entry_rcu(handler, list, link) {
532 if (handler->offset < offset + length &&
533 offset < handler->offset + handler->length)
534 return handler;
535 }
536
537 return NULL;
538 }
539
is_enclosing_handler(struct fw_address_handler * handler,unsigned long long offset,size_t length)540 static bool is_enclosing_handler(struct fw_address_handler *handler,
541 unsigned long long offset, size_t length)
542 {
543 return handler->offset <= offset &&
544 offset + length <= handler->offset + handler->length;
545 }
546
lookup_enclosing_address_handler(struct list_head * list,unsigned long long offset,size_t length)547 static struct fw_address_handler *lookup_enclosing_address_handler(
548 struct list_head *list, unsigned long long offset, size_t length)
549 {
550 struct fw_address_handler *handler;
551
552 list_for_each_entry_rcu(handler, list, link) {
553 if (is_enclosing_handler(handler, offset, length))
554 return handler;
555 }
556
557 return NULL;
558 }
559
560 static DEFINE_SPINLOCK(address_handler_list_lock);
561 static LIST_HEAD(address_handler_list);
562
563 const struct fw_address_region fw_high_memory_region =
564 { .start = FW_MAX_PHYSICAL_RANGE, .end = 0xffffe0000000ULL, };
565 EXPORT_SYMBOL(fw_high_memory_region);
566
567 static const struct fw_address_region low_memory_region =
568 { .start = 0x000000000000ULL, .end = FW_MAX_PHYSICAL_RANGE, };
569
570 #if 0
571 const struct fw_address_region fw_private_region =
572 { .start = 0xffffe0000000ULL, .end = 0xfffff0000000ULL, };
573 const struct fw_address_region fw_csr_region =
574 { .start = CSR_REGISTER_BASE,
575 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM_END, };
576 const struct fw_address_region fw_unit_space_region =
577 { .start = 0xfffff0000900ULL, .end = 0x1000000000000ULL, };
578 #endif /* 0 */
579
580 /**
581 * fw_core_add_address_handler() - register for incoming requests
582 * @handler: callback
583 * @region: region in the IEEE 1212 node space address range
584 *
585 * region->start, ->end, and handler->length have to be quadlet-aligned.
586 *
587 * When a request is received that falls within the specified address range,
588 * the specified callback is invoked. The parameters passed to the callback
589 * give the details of the particular request.
590 *
591 * To be called in process context.
592 * Return value: 0 on success, non-zero otherwise.
593 *
594 * The start offset of the handler's address region is determined by
595 * fw_core_add_address_handler() and is returned in handler->offset.
596 *
597 * Address allocations are exclusive, except for the FCP registers.
598 */
fw_core_add_address_handler(struct fw_address_handler * handler,const struct fw_address_region * region)599 int fw_core_add_address_handler(struct fw_address_handler *handler,
600 const struct fw_address_region *region)
601 {
602 struct fw_address_handler *other;
603 int ret = -EBUSY;
604
605 if (region->start & 0xffff000000000003ULL ||
606 region->start >= region->end ||
607 region->end > 0x0001000000000000ULL ||
608 handler->length & 3 ||
609 handler->length == 0)
610 return -EINVAL;
611
612 spin_lock(&address_handler_list_lock);
613
614 handler->offset = region->start;
615 while (handler->offset + handler->length <= region->end) {
616 if (is_in_fcp_region(handler->offset, handler->length))
617 other = NULL;
618 else
619 other = lookup_overlapping_address_handler
620 (&address_handler_list,
621 handler->offset, handler->length);
622 if (other != NULL) {
623 handler->offset += other->length;
624 } else {
625 list_add_tail_rcu(&handler->link, &address_handler_list);
626 ret = 0;
627 break;
628 }
629 }
630
631 spin_unlock(&address_handler_list_lock);
632
633 return ret;
634 }
635 EXPORT_SYMBOL(fw_core_add_address_handler);
636
637 /**
638 * fw_core_remove_address_handler() - unregister an address handler
639 * @handler: callback
640 *
641 * To be called in process context.
642 *
643 * When fw_core_remove_address_handler() returns, @handler->callback() is
644 * guaranteed to not run on any CPU anymore.
645 */
fw_core_remove_address_handler(struct fw_address_handler * handler)646 void fw_core_remove_address_handler(struct fw_address_handler *handler)
647 {
648 spin_lock(&address_handler_list_lock);
649 list_del_rcu(&handler->link);
650 spin_unlock(&address_handler_list_lock);
651 synchronize_rcu();
652 }
653 EXPORT_SYMBOL(fw_core_remove_address_handler);
654
655 struct fw_request {
656 struct kref kref;
657 struct fw_packet response;
658 u32 request_header[4];
659 int ack;
660 u32 timestamp;
661 u32 length;
662 u32 data[];
663 };
664
fw_request_get(struct fw_request * request)665 void fw_request_get(struct fw_request *request)
666 {
667 kref_get(&request->kref);
668 }
669
release_request(struct kref * kref)670 static void release_request(struct kref *kref)
671 {
672 struct fw_request *request = container_of(kref, struct fw_request, kref);
673
674 kfree(request);
675 }
676
fw_request_put(struct fw_request * request)677 void fw_request_put(struct fw_request *request)
678 {
679 kref_put(&request->kref, release_request);
680 }
681
free_response_callback(struct fw_packet * packet,struct fw_card * card,int status)682 static void free_response_callback(struct fw_packet *packet,
683 struct fw_card *card, int status)
684 {
685 struct fw_request *request = container_of(packet, struct fw_request, response);
686
687 // Decrease the reference count since not at in-flight.
688 fw_request_put(request);
689
690 // Decrease the reference count to release the object.
691 fw_request_put(request);
692 }
693
fw_get_response_length(struct fw_request * r)694 int fw_get_response_length(struct fw_request *r)
695 {
696 int tcode, ext_tcode, data_length;
697
698 tcode = HEADER_GET_TCODE(r->request_header[0]);
699
700 switch (tcode) {
701 case TCODE_WRITE_QUADLET_REQUEST:
702 case TCODE_WRITE_BLOCK_REQUEST:
703 return 0;
704
705 case TCODE_READ_QUADLET_REQUEST:
706 return 4;
707
708 case TCODE_READ_BLOCK_REQUEST:
709 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
710 return data_length;
711
712 case TCODE_LOCK_REQUEST:
713 ext_tcode = HEADER_GET_EXTENDED_TCODE(r->request_header[3]);
714 data_length = HEADER_GET_DATA_LENGTH(r->request_header[3]);
715 switch (ext_tcode) {
716 case EXTCODE_FETCH_ADD:
717 case EXTCODE_LITTLE_ADD:
718 return data_length;
719 default:
720 return data_length / 2;
721 }
722
723 default:
724 WARN(1, "wrong tcode %d\n", tcode);
725 return 0;
726 }
727 }
728
fw_fill_response(struct fw_packet * response,u32 * request_header,int rcode,void * payload,size_t length)729 void fw_fill_response(struct fw_packet *response, u32 *request_header,
730 int rcode, void *payload, size_t length)
731 {
732 int tcode, tlabel, extended_tcode, source, destination;
733
734 tcode = HEADER_GET_TCODE(request_header[0]);
735 tlabel = HEADER_GET_TLABEL(request_header[0]);
736 source = HEADER_GET_DESTINATION(request_header[0]);
737 destination = HEADER_GET_SOURCE(request_header[1]);
738 extended_tcode = HEADER_GET_EXTENDED_TCODE(request_header[3]);
739
740 response->header[0] =
741 HEADER_RETRY(RETRY_1) |
742 HEADER_TLABEL(tlabel) |
743 HEADER_DESTINATION(destination);
744 response->header[1] =
745 HEADER_SOURCE(source) |
746 HEADER_RCODE(rcode);
747 response->header[2] = 0;
748
749 switch (tcode) {
750 case TCODE_WRITE_QUADLET_REQUEST:
751 case TCODE_WRITE_BLOCK_REQUEST:
752 response->header[0] |= HEADER_TCODE(TCODE_WRITE_RESPONSE);
753 response->header_length = 12;
754 response->payload_length = 0;
755 break;
756
757 case TCODE_READ_QUADLET_REQUEST:
758 response->header[0] |=
759 HEADER_TCODE(TCODE_READ_QUADLET_RESPONSE);
760 if (payload != NULL)
761 response->header[3] = *(u32 *)payload;
762 else
763 response->header[3] = 0;
764 response->header_length = 16;
765 response->payload_length = 0;
766 break;
767
768 case TCODE_READ_BLOCK_REQUEST:
769 case TCODE_LOCK_REQUEST:
770 response->header[0] |= HEADER_TCODE(tcode + 2);
771 response->header[3] =
772 HEADER_DATA_LENGTH(length) |
773 HEADER_EXTENDED_TCODE(extended_tcode);
774 response->header_length = 16;
775 response->payload = payload;
776 response->payload_length = length;
777 break;
778
779 default:
780 WARN(1, "wrong tcode %d\n", tcode);
781 }
782
783 response->payload_mapped = false;
784 }
785 EXPORT_SYMBOL(fw_fill_response);
786
compute_split_timeout_timestamp(struct fw_card * card,u32 request_timestamp)787 static u32 compute_split_timeout_timestamp(struct fw_card *card,
788 u32 request_timestamp)
789 {
790 unsigned int cycles;
791 u32 timestamp;
792
793 cycles = card->split_timeout_cycles;
794 cycles += request_timestamp & 0x1fff;
795
796 timestamp = request_timestamp & ~0x1fff;
797 timestamp += (cycles / 8000) << 13;
798 timestamp |= cycles % 8000;
799
800 return timestamp;
801 }
802
allocate_request(struct fw_card * card,struct fw_packet * p)803 static struct fw_request *allocate_request(struct fw_card *card,
804 struct fw_packet *p)
805 {
806 struct fw_request *request;
807 u32 *data, length;
808 int request_tcode;
809
810 request_tcode = HEADER_GET_TCODE(p->header[0]);
811 switch (request_tcode) {
812 case TCODE_WRITE_QUADLET_REQUEST:
813 data = &p->header[3];
814 length = 4;
815 break;
816
817 case TCODE_WRITE_BLOCK_REQUEST:
818 case TCODE_LOCK_REQUEST:
819 data = p->payload;
820 length = HEADER_GET_DATA_LENGTH(p->header[3]);
821 break;
822
823 case TCODE_READ_QUADLET_REQUEST:
824 data = NULL;
825 length = 4;
826 break;
827
828 case TCODE_READ_BLOCK_REQUEST:
829 data = NULL;
830 length = HEADER_GET_DATA_LENGTH(p->header[3]);
831 break;
832
833 default:
834 fw_notice(card, "ERROR - corrupt request received - %08x %08x %08x\n",
835 p->header[0], p->header[1], p->header[2]);
836 return NULL;
837 }
838
839 request = kmalloc(sizeof(*request) + length, GFP_ATOMIC);
840 if (request == NULL)
841 return NULL;
842 kref_init(&request->kref);
843
844 request->response.speed = p->speed;
845 request->response.timestamp =
846 compute_split_timeout_timestamp(card, p->timestamp);
847 request->response.generation = p->generation;
848 request->response.ack = 0;
849 request->response.callback = free_response_callback;
850 request->ack = p->ack;
851 request->timestamp = p->timestamp;
852 request->length = length;
853 if (data)
854 memcpy(request->data, data, length);
855
856 memcpy(request->request_header, p->header, sizeof(p->header));
857
858 return request;
859 }
860
861 /**
862 * fw_send_response: - send response packet for asynchronous transaction.
863 * @card: interface to send the response at.
864 * @request: firewire request data for the transaction.
865 * @rcode: response code to send.
866 *
867 * Submit a response packet into the asynchronous response transmission queue. The @request
868 * is going to be released when the transmission successfully finishes later.
869 */
fw_send_response(struct fw_card * card,struct fw_request * request,int rcode)870 void fw_send_response(struct fw_card *card,
871 struct fw_request *request, int rcode)
872 {
873 /* unified transaction or broadcast transaction: don't respond */
874 if (request->ack != ACK_PENDING ||
875 HEADER_DESTINATION_IS_BROADCAST(request->request_header[0])) {
876 fw_request_put(request);
877 return;
878 }
879
880 if (rcode == RCODE_COMPLETE)
881 fw_fill_response(&request->response, request->request_header,
882 rcode, request->data,
883 fw_get_response_length(request));
884 else
885 fw_fill_response(&request->response, request->request_header,
886 rcode, NULL, 0);
887
888 // Increase the reference count so that the object is kept during in-flight.
889 fw_request_get(request);
890
891 card->driver->send_response(card, &request->response);
892 }
893 EXPORT_SYMBOL(fw_send_response);
894
895 /**
896 * fw_get_request_speed() - returns speed at which the @request was received
897 * @request: firewire request data
898 */
fw_get_request_speed(struct fw_request * request)899 int fw_get_request_speed(struct fw_request *request)
900 {
901 return request->response.speed;
902 }
903 EXPORT_SYMBOL(fw_get_request_speed);
904
905 /**
906 * fw_request_get_timestamp: Get timestamp of the request.
907 * @request: The opaque pointer to request structure.
908 *
909 * Get timestamp when 1394 OHCI controller receives the asynchronous request subaction. The
910 * timestamp consists of the low order 3 bits of second field and the full 13 bits of count
911 * field of isochronous cycle time register.
912 *
913 * Returns: timestamp of the request.
914 */
fw_request_get_timestamp(const struct fw_request * request)915 u32 fw_request_get_timestamp(const struct fw_request *request)
916 {
917 return request->timestamp;
918 }
919 EXPORT_SYMBOL_GPL(fw_request_get_timestamp);
920
handle_exclusive_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)921 static void handle_exclusive_region_request(struct fw_card *card,
922 struct fw_packet *p,
923 struct fw_request *request,
924 unsigned long long offset)
925 {
926 struct fw_address_handler *handler;
927 int tcode, destination, source;
928
929 destination = HEADER_GET_DESTINATION(p->header[0]);
930 source = HEADER_GET_SOURCE(p->header[1]);
931 tcode = HEADER_GET_TCODE(p->header[0]);
932 if (tcode == TCODE_LOCK_REQUEST)
933 tcode = 0x10 + HEADER_GET_EXTENDED_TCODE(p->header[3]);
934
935 rcu_read_lock();
936 handler = lookup_enclosing_address_handler(&address_handler_list,
937 offset, request->length);
938 if (handler)
939 handler->address_callback(card, request,
940 tcode, destination, source,
941 p->generation, offset,
942 request->data, request->length,
943 handler->callback_data);
944 rcu_read_unlock();
945
946 if (!handler)
947 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
948 }
949
handle_fcp_region_request(struct fw_card * card,struct fw_packet * p,struct fw_request * request,unsigned long long offset)950 static void handle_fcp_region_request(struct fw_card *card,
951 struct fw_packet *p,
952 struct fw_request *request,
953 unsigned long long offset)
954 {
955 struct fw_address_handler *handler;
956 int tcode, destination, source;
957
958 if ((offset != (CSR_REGISTER_BASE | CSR_FCP_COMMAND) &&
959 offset != (CSR_REGISTER_BASE | CSR_FCP_RESPONSE)) ||
960 request->length > 0x200) {
961 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
962
963 return;
964 }
965
966 tcode = HEADER_GET_TCODE(p->header[0]);
967 destination = HEADER_GET_DESTINATION(p->header[0]);
968 source = HEADER_GET_SOURCE(p->header[1]);
969
970 if (tcode != TCODE_WRITE_QUADLET_REQUEST &&
971 tcode != TCODE_WRITE_BLOCK_REQUEST) {
972 fw_send_response(card, request, RCODE_TYPE_ERROR);
973
974 return;
975 }
976
977 rcu_read_lock();
978 list_for_each_entry_rcu(handler, &address_handler_list, link) {
979 if (is_enclosing_handler(handler, offset, request->length))
980 handler->address_callback(card, request, tcode,
981 destination, source,
982 p->generation, offset,
983 request->data,
984 request->length,
985 handler->callback_data);
986 }
987 rcu_read_unlock();
988
989 fw_send_response(card, request, RCODE_COMPLETE);
990 }
991
fw_core_handle_request(struct fw_card * card,struct fw_packet * p)992 void fw_core_handle_request(struct fw_card *card, struct fw_packet *p)
993 {
994 struct fw_request *request;
995 unsigned long long offset;
996
997 if (p->ack != ACK_PENDING && p->ack != ACK_COMPLETE)
998 return;
999
1000 if (TCODE_IS_LINK_INTERNAL(HEADER_GET_TCODE(p->header[0]))) {
1001 fw_cdev_handle_phy_packet(card, p);
1002 return;
1003 }
1004
1005 request = allocate_request(card, p);
1006 if (request == NULL) {
1007 /* FIXME: send statically allocated busy packet. */
1008 return;
1009 }
1010
1011 offset = ((u64)HEADER_GET_OFFSET_HIGH(p->header[1]) << 32) |
1012 p->header[2];
1013
1014 if (!is_in_fcp_region(offset, request->length))
1015 handle_exclusive_region_request(card, p, request, offset);
1016 else
1017 handle_fcp_region_request(card, p, request, offset);
1018
1019 }
1020 EXPORT_SYMBOL(fw_core_handle_request);
1021
fw_core_handle_response(struct fw_card * card,struct fw_packet * p)1022 void fw_core_handle_response(struct fw_card *card, struct fw_packet *p)
1023 {
1024 struct fw_transaction *t = NULL, *iter;
1025 unsigned long flags;
1026 u32 *data;
1027 size_t data_length;
1028 int tcode, tlabel, source, rcode;
1029
1030 tcode = HEADER_GET_TCODE(p->header[0]);
1031 tlabel = HEADER_GET_TLABEL(p->header[0]);
1032 source = HEADER_GET_SOURCE(p->header[1]);
1033 rcode = HEADER_GET_RCODE(p->header[1]);
1034
1035 spin_lock_irqsave(&card->lock, flags);
1036 list_for_each_entry(iter, &card->transaction_list, link) {
1037 if (iter->node_id == source && iter->tlabel == tlabel) {
1038 if (!try_cancel_split_timeout(iter)) {
1039 spin_unlock_irqrestore(&card->lock, flags);
1040 goto timed_out;
1041 }
1042 list_del_init(&iter->link);
1043 card->tlabel_mask &= ~(1ULL << iter->tlabel);
1044 t = iter;
1045 break;
1046 }
1047 }
1048 spin_unlock_irqrestore(&card->lock, flags);
1049
1050 if (!t) {
1051 timed_out:
1052 fw_notice(card, "unsolicited response (source %x, tlabel %x)\n",
1053 source, tlabel);
1054 return;
1055 }
1056
1057 /*
1058 * FIXME: sanity check packet, is length correct, does tcodes
1059 * and addresses match.
1060 */
1061
1062 switch (tcode) {
1063 case TCODE_READ_QUADLET_RESPONSE:
1064 data = (u32 *) &p->header[3];
1065 data_length = 4;
1066 break;
1067
1068 case TCODE_WRITE_RESPONSE:
1069 data = NULL;
1070 data_length = 0;
1071 break;
1072
1073 case TCODE_READ_BLOCK_RESPONSE:
1074 case TCODE_LOCK_RESPONSE:
1075 data = p->payload;
1076 data_length = HEADER_GET_DATA_LENGTH(p->header[3]);
1077 break;
1078
1079 default:
1080 /* Should never happen, this is just to shut up gcc. */
1081 data = NULL;
1082 data_length = 0;
1083 break;
1084 }
1085
1086 /*
1087 * The response handler may be executed while the request handler
1088 * is still pending. Cancel the request handler.
1089 */
1090 card->driver->cancel_packet(card, &t->packet);
1091
1092 if (!t->with_tstamp) {
1093 t->callback.without_tstamp(card, rcode, data, data_length, t->callback_data);
1094 } else {
1095 t->callback.with_tstamp(card, rcode, t->packet.timestamp, p->timestamp, data,
1096 data_length, t->callback_data);
1097 }
1098 }
1099 EXPORT_SYMBOL(fw_core_handle_response);
1100
1101 /**
1102 * fw_rcode_string - convert a firewire result code to an error description
1103 * @rcode: the result code
1104 */
fw_rcode_string(int rcode)1105 const char *fw_rcode_string(int rcode)
1106 {
1107 static const char *const names[] = {
1108 [RCODE_COMPLETE] = "no error",
1109 [RCODE_CONFLICT_ERROR] = "conflict error",
1110 [RCODE_DATA_ERROR] = "data error",
1111 [RCODE_TYPE_ERROR] = "type error",
1112 [RCODE_ADDRESS_ERROR] = "address error",
1113 [RCODE_SEND_ERROR] = "send error",
1114 [RCODE_CANCELLED] = "timeout",
1115 [RCODE_BUSY] = "busy",
1116 [RCODE_GENERATION] = "bus reset",
1117 [RCODE_NO_ACK] = "no ack",
1118 };
1119
1120 if ((unsigned int)rcode < ARRAY_SIZE(names) && names[rcode])
1121 return names[rcode];
1122 else
1123 return "unknown";
1124 }
1125 EXPORT_SYMBOL(fw_rcode_string);
1126
1127 static const struct fw_address_region topology_map_region =
1128 { .start = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP,
1129 .end = CSR_REGISTER_BASE | CSR_TOPOLOGY_MAP_END, };
1130
handle_topology_map(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1131 static void handle_topology_map(struct fw_card *card, struct fw_request *request,
1132 int tcode, int destination, int source, int generation,
1133 unsigned long long offset, void *payload, size_t length,
1134 void *callback_data)
1135 {
1136 int start;
1137
1138 if (!TCODE_IS_READ_REQUEST(tcode)) {
1139 fw_send_response(card, request, RCODE_TYPE_ERROR);
1140 return;
1141 }
1142
1143 if ((offset & 3) > 0 || (length & 3) > 0) {
1144 fw_send_response(card, request, RCODE_ADDRESS_ERROR);
1145 return;
1146 }
1147
1148 start = (offset - topology_map_region.start) / 4;
1149 memcpy(payload, &card->topology_map[start], length);
1150
1151 fw_send_response(card, request, RCODE_COMPLETE);
1152 }
1153
1154 static struct fw_address_handler topology_map = {
1155 .length = 0x400,
1156 .address_callback = handle_topology_map,
1157 };
1158
1159 static const struct fw_address_region registers_region =
1160 { .start = CSR_REGISTER_BASE,
1161 .end = CSR_REGISTER_BASE | CSR_CONFIG_ROM, };
1162
update_split_timeout(struct fw_card * card)1163 static void update_split_timeout(struct fw_card *card)
1164 {
1165 unsigned int cycles;
1166
1167 cycles = card->split_timeout_hi * 8000 + (card->split_timeout_lo >> 19);
1168
1169 /* minimum per IEEE 1394, maximum which doesn't overflow OHCI */
1170 cycles = clamp(cycles, 800u, 3u * 8000u);
1171
1172 card->split_timeout_cycles = cycles;
1173 card->split_timeout_jiffies = DIV_ROUND_UP(cycles * HZ, 8000);
1174 }
1175
handle_registers(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1176 static void handle_registers(struct fw_card *card, struct fw_request *request,
1177 int tcode, int destination, int source, int generation,
1178 unsigned long long offset, void *payload, size_t length,
1179 void *callback_data)
1180 {
1181 int reg = offset & ~CSR_REGISTER_BASE;
1182 __be32 *data = payload;
1183 int rcode = RCODE_COMPLETE;
1184 unsigned long flags;
1185
1186 switch (reg) {
1187 case CSR_PRIORITY_BUDGET:
1188 if (!card->priority_budget_implemented) {
1189 rcode = RCODE_ADDRESS_ERROR;
1190 break;
1191 }
1192 fallthrough;
1193
1194 case CSR_NODE_IDS:
1195 /*
1196 * per IEEE 1394-2008 8.3.22.3, not IEEE 1394.1-2004 3.2.8
1197 * and 9.6, but interoperable with IEEE 1394.1-2004 bridges
1198 */
1199 fallthrough;
1200
1201 case CSR_STATE_CLEAR:
1202 case CSR_STATE_SET:
1203 case CSR_CYCLE_TIME:
1204 case CSR_BUS_TIME:
1205 case CSR_BUSY_TIMEOUT:
1206 if (tcode == TCODE_READ_QUADLET_REQUEST)
1207 *data = cpu_to_be32(card->driver->read_csr(card, reg));
1208 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1209 card->driver->write_csr(card, reg, be32_to_cpu(*data));
1210 else
1211 rcode = RCODE_TYPE_ERROR;
1212 break;
1213
1214 case CSR_RESET_START:
1215 if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1216 card->driver->write_csr(card, CSR_STATE_CLEAR,
1217 CSR_STATE_BIT_ABDICATE);
1218 else
1219 rcode = RCODE_TYPE_ERROR;
1220 break;
1221
1222 case CSR_SPLIT_TIMEOUT_HI:
1223 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1224 *data = cpu_to_be32(card->split_timeout_hi);
1225 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1226 spin_lock_irqsave(&card->lock, flags);
1227 card->split_timeout_hi = be32_to_cpu(*data) & 7;
1228 update_split_timeout(card);
1229 spin_unlock_irqrestore(&card->lock, flags);
1230 } else {
1231 rcode = RCODE_TYPE_ERROR;
1232 }
1233 break;
1234
1235 case CSR_SPLIT_TIMEOUT_LO:
1236 if (tcode == TCODE_READ_QUADLET_REQUEST) {
1237 *data = cpu_to_be32(card->split_timeout_lo);
1238 } else if (tcode == TCODE_WRITE_QUADLET_REQUEST) {
1239 spin_lock_irqsave(&card->lock, flags);
1240 card->split_timeout_lo =
1241 be32_to_cpu(*data) & 0xfff80000;
1242 update_split_timeout(card);
1243 spin_unlock_irqrestore(&card->lock, flags);
1244 } else {
1245 rcode = RCODE_TYPE_ERROR;
1246 }
1247 break;
1248
1249 case CSR_MAINT_UTILITY:
1250 if (tcode == TCODE_READ_QUADLET_REQUEST)
1251 *data = card->maint_utility_register;
1252 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1253 card->maint_utility_register = *data;
1254 else
1255 rcode = RCODE_TYPE_ERROR;
1256 break;
1257
1258 case CSR_BROADCAST_CHANNEL:
1259 if (tcode == TCODE_READ_QUADLET_REQUEST)
1260 *data = cpu_to_be32(card->broadcast_channel);
1261 else if (tcode == TCODE_WRITE_QUADLET_REQUEST)
1262 card->broadcast_channel =
1263 (be32_to_cpu(*data) & BROADCAST_CHANNEL_VALID) |
1264 BROADCAST_CHANNEL_INITIAL;
1265 else
1266 rcode = RCODE_TYPE_ERROR;
1267 break;
1268
1269 case CSR_BUS_MANAGER_ID:
1270 case CSR_BANDWIDTH_AVAILABLE:
1271 case CSR_CHANNELS_AVAILABLE_HI:
1272 case CSR_CHANNELS_AVAILABLE_LO:
1273 /*
1274 * FIXME: these are handled by the OHCI hardware and
1275 * the stack never sees these request. If we add
1276 * support for a new type of controller that doesn't
1277 * handle this in hardware we need to deal with these
1278 * transactions.
1279 */
1280 BUG();
1281 break;
1282
1283 default:
1284 rcode = RCODE_ADDRESS_ERROR;
1285 break;
1286 }
1287
1288 fw_send_response(card, request, rcode);
1289 }
1290
1291 static struct fw_address_handler registers = {
1292 .length = 0x400,
1293 .address_callback = handle_registers,
1294 };
1295
handle_low_memory(struct fw_card * card,struct fw_request * request,int tcode,int destination,int source,int generation,unsigned long long offset,void * payload,size_t length,void * callback_data)1296 static void handle_low_memory(struct fw_card *card, struct fw_request *request,
1297 int tcode, int destination, int source, int generation,
1298 unsigned long long offset, void *payload, size_t length,
1299 void *callback_data)
1300 {
1301 /*
1302 * This catches requests not handled by the physical DMA unit,
1303 * i.e., wrong transaction types or unauthorized source nodes.
1304 */
1305 fw_send_response(card, request, RCODE_TYPE_ERROR);
1306 }
1307
1308 static struct fw_address_handler low_memory = {
1309 .length = FW_MAX_PHYSICAL_RANGE,
1310 .address_callback = handle_low_memory,
1311 };
1312
1313 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1314 MODULE_DESCRIPTION("Core IEEE1394 transaction logic");
1315 MODULE_LICENSE("GPL");
1316
1317 static const u32 vendor_textual_descriptor[] = {
1318 /* textual descriptor leaf () */
1319 0x00060000,
1320 0x00000000,
1321 0x00000000,
1322 0x4c696e75, /* L i n u */
1323 0x78204669, /* x F i */
1324 0x72657769, /* r e w i */
1325 0x72650000, /* r e */
1326 };
1327
1328 static const u32 model_textual_descriptor[] = {
1329 /* model descriptor leaf () */
1330 0x00030000,
1331 0x00000000,
1332 0x00000000,
1333 0x4a756a75, /* J u j u */
1334 };
1335
1336 static struct fw_descriptor vendor_id_descriptor = {
1337 .length = ARRAY_SIZE(vendor_textual_descriptor),
1338 .immediate = 0x03001f11,
1339 .key = 0x81000000,
1340 .data = vendor_textual_descriptor,
1341 };
1342
1343 static struct fw_descriptor model_id_descriptor = {
1344 .length = ARRAY_SIZE(model_textual_descriptor),
1345 .immediate = 0x17023901,
1346 .key = 0x81000000,
1347 .data = model_textual_descriptor,
1348 };
1349
fw_core_init(void)1350 static int __init fw_core_init(void)
1351 {
1352 int ret;
1353
1354 fw_workqueue = alloc_workqueue("firewire", WQ_MEM_RECLAIM, 0);
1355 if (!fw_workqueue)
1356 return -ENOMEM;
1357
1358 ret = bus_register(&fw_bus_type);
1359 if (ret < 0) {
1360 destroy_workqueue(fw_workqueue);
1361 return ret;
1362 }
1363
1364 fw_cdev_major = register_chrdev(0, "firewire", &fw_device_ops);
1365 if (fw_cdev_major < 0) {
1366 bus_unregister(&fw_bus_type);
1367 destroy_workqueue(fw_workqueue);
1368 return fw_cdev_major;
1369 }
1370
1371 fw_core_add_address_handler(&topology_map, &topology_map_region);
1372 fw_core_add_address_handler(®isters, ®isters_region);
1373 fw_core_add_address_handler(&low_memory, &low_memory_region);
1374 fw_core_add_descriptor(&vendor_id_descriptor);
1375 fw_core_add_descriptor(&model_id_descriptor);
1376
1377 return 0;
1378 }
1379
fw_core_cleanup(void)1380 static void __exit fw_core_cleanup(void)
1381 {
1382 unregister_chrdev(fw_cdev_major, "firewire");
1383 bus_unregister(&fw_bus_type);
1384 destroy_workqueue(fw_workqueue);
1385 idr_destroy(&fw_device_idr);
1386 }
1387
1388 module_init(fw_core_init);
1389 module_exit(fw_core_cleanup);
1390