Home
last modified time | relevance | path

Searched refs:V (Results 1 – 25 of 1014) sorted by relevance

12345678910>>...41

/linux-6.6.21/drivers/pinctrl/mvebu/
Dpinctrl-kirkwood.c19 #define V(f6180, f6190, f6192, f6281, f6282, dx4122, dx1135) \ macro
25 VARIANT_MV88F6180 = V(1, 0, 0, 0, 0, 0, 0),
26 VARIANT_MV88F6190 = V(0, 1, 0, 0, 0, 0, 0),
27 VARIANT_MV88F6192 = V(0, 0, 1, 0, 0, 0, 0),
28 VARIANT_MV88F6281 = V(0, 0, 0, 1, 0, 0, 0),
29 VARIANT_MV88F6282 = V(0, 0, 0, 0, 1, 0, 0),
30 VARIANT_MV98DX4122 = V(0, 0, 0, 0, 0, 1, 0),
31 VARIANT_MV98DX1135 = V(0, 0, 0, 0, 0, 0, 1),
36 MPP_VAR_FUNCTION(0x0, "gpio", NULL, V(1, 1, 1, 1, 1, 1, 1)),
37 MPP_VAR_FUNCTION(0x1, "nand", "io2", V(1, 1, 1, 1, 1, 1, 1)),
[all …]
/linux-6.6.21/tools/memory-model/
Dlinux-kernel.def10 WRITE_ONCE(X,V) { __store{once}(X,V); }
13 smp_store_release(X,V) { __store{release}(*X,V); }
15 rcu_assign_pointer(X,V) { __store{release}(X,V); }
17 smp_store_mb(X,V) { __store{once}(X,V); __fence{mb}; }
31 xchg(X,V) __xchg{mb}(X,V)
32 xchg_relaxed(X,V) __xchg{once}(X,V)
33 xchg_release(X,V) __xchg{release}(X,V)
34 xchg_acquire(X,V) __xchg{acquire}(X,V)
35 cmpxchg(X,V,W) __cmpxchg{mb}(X,V,W)
36 cmpxchg_relaxed(X,V,W) __cmpxchg{once}(X,V,W)
[all …]
/linux-6.6.21/Documentation/hwmon/
Dmc13783-adc.rst47 0 Battery Voltage (BATT) 2.50 - 4.65V -2.40V
49 2 Application Supply (BP) 2.50 - 4.65V -2.40V
50 3 Charger Voltage (CHRGRAW) 0 - 10V / /5
51 0 - 20V /10
52 4 Charger Current (CHRGISNSP-CHRGISNSN) -0.25 - 0.25V x4
53 5 General Purpose ADIN5 / Battery Pack Thermistor 0 - 2.30V No
54 6 General Purpose ADIN6 / Backup Voltage (LICELL) 0 - 2.30V / No /
55 1.50 - 3.50V -1.20V
56 7 General Purpose ADIN7 / UID / Die Temperature 0 - 2.30V / No /
57 0 - 2.55V / x0.9 / No
[all …]
Ddme1737.rst94 in0: +5VTR (+5V standby) 0V - 6.64V
95 in1: Vccp (processor core) 0V - 3V
96 in2: VCC (internal +3.3V) 0V - 4.38V
97 in3: +5V 0V - 6.64V
98 in4: +12V 0V - 16V
99 in5: VTR (+3.3V standby) 0V - 4.38V
100 in6: Vbat (+3.0V) 0V - 4.38V
104 in0: +2.5V 0V - 3.32V
105 in1: Vccp (processor core) 0V - 2V
106 in2: VCC (internal +3.3V) 0V - 4.38V
[all …]
Dmax197.rst25 The A/D converters MAX197, and MAX199 are both 8-Channel, Multi-Range, 5V,
28 The available ranges for the MAX197 are {0,-5V} to 5V, and {0,-10V} to 10V,
29 while they are {0,-2V} to 2V, and {0,-4V} to 4V on the MAX199.
/linux-6.6.21/arch/powerpc/lib/
Dxor_vmx.c24 #define DEFINE(V) \ argument
25 unative_t *V = (unative_t *)V##_in; \
26 unative_t V##_0, V##_1, V##_2, V##_3
28 #define LOAD(V) \ argument
30 V##_0 = V[0]; \
31 V##_1 = V[1]; \
32 V##_2 = V[2]; \
33 V##_3 = V[3]; \
36 #define STORE(V) \ argument
38 V[0] = V##_0; \
[all …]
/linux-6.6.21/arch/m68k/fpsp040/
Dslogn.S384 fmulx %fp2,%fp2 | ...FP2 IS V=U*U
388 |--U + V*(A1+U*(A2+U*(A3+U*(A4+U*(A5+U*A6))))) WHICH IS
389 |--[U + V*(A1+V*(A3+V*A5))] + [U*V*(A2+V*(A4+V*A6))]
394 fmuld LOGA6,%fp1 | ...V*A6
395 fmuld LOGA5,%fp2 | ...V*A5
397 faddd LOGA4,%fp1 | ...A4+V*A6
398 faddd LOGA3,%fp2 | ...A3+V*A5
400 fmulx %fp3,%fp1 | ...V*(A4+V*A6)
401 fmulx %fp3,%fp2 | ...V*(A3+V*A5)
403 faddd LOGA2,%fp1 | ...A2+V*(A4+V*A6)
[all …]
/linux-6.6.21/drivers/media/dvb-frontends/
Dmb86a16.c758 static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V, int vmax, int vm… in swp_freq_calcuation() argument
766 (*(V + 30 + v) >= 0) && in swp_freq_calcuation()
767 (*(V + 30 + v - 1) >= 0) && in swp_freq_calcuation()
768 (*(V + 30 + v - 1) > *(V + 30 + v)) && in swp_freq_calcuation()
769 (*(V + 30 + v - 1) > SIGMIN)) { in swp_freq_calcuation()
772 *SIG1 = *(V + 30 + v - 1); in swp_freq_calcuation()
774 (*(V + 30 + v) >= 0) && in swp_freq_calcuation()
775 (*(V + 30 + v - 1) >= 0) && in swp_freq_calcuation()
776 (*(V + 30 + v) > *(V + 30 + v - 1)) && in swp_freq_calcuation()
777 (*(V + 30 + v) > SIGMIN)) { in swp_freq_calcuation()
[all …]
/linux-6.6.21/Documentation/virt/hyperv/
Doverview.rst6 enlightened guest on Microsoft's Hyper-V hypervisor. Hyper-V
10 partitions. In this documentation, references to Hyper-V usually
15 Hyper-V runs on x86/x64 and arm64 architectures, and Linux guests
16 are supported on both. The functionality and behavior of Hyper-V is
19 Linux Guest Communication with Hyper-V
21 Linux guests communicate with Hyper-V in four different ways:
24 some guest actions trap to Hyper-V. Hyper-V emulates the action and
29 Hyper-V, passing parameters. Hyper-V performs the requested action
32 Hyper-V. On x86/x64, hypercalls use a Hyper-V specific calling
36 * Synthetic register access: Hyper-V implements a variety of
[all …]
Dclocks.rst8 On arm64, Hyper-V virtualizes the ARMv8 architectural system counter
12 architectural system counter is functional in guest VMs on Hyper-V.
13 While Hyper-V also provides a synthetic system clock and four synthetic
15 Linux kernel in a Hyper-V guest on arm64. However, older versions
16 of Hyper-V for arm64 only partially virtualize the ARMv8
19 Linux kernel versions on these older Hyper-V versions requires an
20 out-of-tree patch to use the Hyper-V synthetic clocks/timers instead.
24 On x86/x64, Hyper-V provides guest VMs with a synthetic system clock
25 and four synthetic per-CPU timers as described in the TLFS. Hyper-V
29 Hyper-V performs TSC calibration, and provides the TSC frequency
[all …]
/linux-6.6.21/tools/build/tests/
Drun.sh5 make -C ex V=1 clean > ex.out 2>&1
6 make -C ex V=1 >> ex.out 2>&1
13 make -C ex V=1 clean > /dev/null 2>&1
18 make -C ex V=1 clean > ex.out 2>&1
21 make -rR -C ex V=1 ex.o >> ex.out 2>&1
22 make -rR -C ex V=1 ex.i >> ex.out 2>&1
23 make -rR -C ex V=1 ex.s >> ex.out 2>&1
35 make -C ex V=1 clean > /dev/null 2>&1
40 make -C ex V=1 clean > ex.out 2>&1
44 make -C ex V=1 CFLAGS=-DINCLUDE >> ex.out 2>&1
[all …]
/linux-6.6.21/Documentation/devicetree/bindings/media/i2c/
Dsamsung,s5k5baf.yaml39 description: Analog power supply 2.8V (2.6V to 3.0V)
42 description: I/O power supply 1.8V (1.65V to 1.95V) or 2.8V (2.5V to 3.1V)
46 Regulator input power supply 1.8V (1.7V to 1.9V) or 2.8V (2.6V to 3.0)
/linux-6.6.21/Documentation/translations/zh_CN/riscv/
Dpatch-acceptance.rst18 RISC-V指令集体系结构是公开开发的:
20 生更改---有时以不兼容的方式对以前的草案进行更改。这种灵活性可能会给RISC-V Linux
22 们希望推广同样的规则到即将被内核合并的RISC-V相关代码。
26 我们仅接受相关标准已经被RISC-V基金会标准为“已批准”或“已冻结”的扩展或模块的补丁。
29 此外,RISC-V规范允许爱好者创建自己的自定义扩展。这些自定义拓展不需要通过RISC-V
30 基金会的任何审核或批准。为了避免将爱好者一些特别的RISC-V拓展添加进内核代码带来
31 的维护复杂性和对性能的潜在影响,我们将只接受RISC-V基金会正式冻结或批准的的扩展
Dvm-layout.rst12 RISC-V Linux上的虚拟内存布局
18 这份文件描述了RISC-V Linux内核使用的虚拟内存布局。
20 32位 RISC-V Linux 内核
23 RISC-V Linux Kernel SV32
28 64位 RISC-V Linux 内核
31 RISC-V特权架构文档指出,64位地址 "必须使第63-48位值都等于第47位,否则将发生缺页异常。":这将虚
32 拟地址空间分成两半,中间有一个非常大的洞,下半部分是用户空间所在的地方,上半部分是RISC-V Linux
35 RISC-V Linux Kernel SV39
71 RISC-V Linux Kernel SV48
/linux-6.6.21/arch/alpha/kernel/
Dentry.S691 #define V(n) stt $f##n, FR(n) macro
692 V( 0); V( 1); V( 2); V( 3)
693 V( 4); V( 5); V( 6); V( 7)
694 V( 8); V( 9); V(10); V(11)
695 V(12); V(13); V(14); V(15)
696 V(16); V(17); V(18); V(19)
697 V(20); V(21); V(22); V(23)
698 V(24); V(25); V(26); V(27)
700 V(28); V(29); V(30)
/linux-6.6.21/arch/arm/boot/dts/samsung/
Dexynos3250-artik5.dtsi102 regulator-name = "VLDO1_1.0V";
110 regulator-name = "VLDO2_1.2V";
121 regulator-name = "VLDO3_1.8V";
129 regulator-name = "VLDO4_1.8V";
137 regulator-name = "VLDO5_1.0V";
145 regulator-name = "VLDO6_1.0V";
156 regulator-name = "VLDO7_1.8V";
164 regulator-name = "VLDO8_3.0V";
172 regulator-name = "VLDO9_1.2V";
179 regulator-name = "VLDO10_1.0V";
[all …]
Ds5pv210-aquila.dts44 regulator-name = "V_TF_2.8V";
89 regulator-name = "VALIVE_1.1V";
96 regulator-name = "VUSB+MIPI_1.1V";
103 regulator-name = "VADC_3.3V";
109 regulator-name = "VTF_2.8V";
116 regulator-name = "VCC_3.3V";
123 regulator-name = "VCC_3.0V";
131 regulator-name = "VUSB+VDAC_3.3V";
138 regulator-name = "VCC+VCAM_2.8V";
145 regulator-name = "VPLL_1.1V";
[all …]
Dexynos4210-origen.dts45 regulator-name = "VMEM_VDD_2.8V";
195 regulator-name = "VDD_ABB_3.3V";
201 regulator-name = "VDD_ALIVE_1.1V";
208 regulator-name = "VMIPI_1.1V";
214 regulator-name = "VDD_RTC_1.8V";
221 regulator-name = "VMIPI_1.8V";
228 regulator-name = "VDD_AUD_1.8V";
234 regulator-name = "VADC_3.3V";
240 regulator-name = "DVDD_SWB_2.8V";
247 regulator-name = "VDD_PLL_1.1V";
[all …]
Ds5pv210-goni.dts47 regulator-name = "V_TF_2.8V";
101 regulator-name = "VALIVE_1.1V";
108 regulator-name = "VUSB+MIPI_1.1V";
115 regulator-name = "VADC_3.3V";
121 regulator-name = "VTF_2.8V";
127 regulator-name = "VCC_3.3V";
133 regulator-name = "VLCD_1.8V";
140 regulator-name = "VUSB+VDAC_3.3V";
146 regulator-name = "VCC+VCAM_2.8V";
152 regulator-name = "VPLL_1.1V";
[all …]
/linux-6.6.21/Documentation/fb/
Dviafb.modes29 # D: 25.175 MHz, H: 31.469 kHz, V: 59.94 Hz
32 # D: 24.823 MHz, H: 39.780 kHz, V: 60.00 Hz
53 # D: 31.50 MHz, H: 37.500 kHz, V: 75.00 Hz
74 # D: 36.000 MHz, H: 43.269 kHz, V: 85.00 Hz
95 # D: 43.163 MHz, H: 50.900 kHz, V: 100.00 Hz
116 # D: 52.406 MHz, H: 61.800 kHz, V: 120.00 Hz
137 # D: 26.880 MHz, H: 30.000 kHz, V: 60.24 Hz
158 # D: 29.500 MHz, H: 29.738 kHz, V: 60.00 Hz
179 # D: 32.668 MHz, H: 35.820 kHz, V: 60.00 Hz
200 # D: 40.00 MHz, H: 37.879 kHz, V: 60.32 Hz
[all …]
/linux-6.6.21/Documentation/devicetree/bindings/sound/
Dcs35l32.txt25 3 = Boost voltage fixed at 5 V.
40 0 = 3.1V
41 1 = 3.2V
42 2 = 3.3V (Default)
43 3 = 3.4V
46 0 = 3.1V
47 1 = 3.2V
48 2 = 3.3V
49 3 = 3.4V (Default)
50 4 = 3.5V
[all …]
Dti,ts3a227e.yaml34 - 0 # 2.1 V
35 - 1 # 2.2 V
36 - 2 # 2.3 V
37 - 3 # 2.4 V
38 - 4 # 2.5 V
39 - 5 # 2.6 V
40 - 6 # 2.7 V
41 - 7 # 2.8 V
/linux-6.6.21/drivers/comedi/drivers/tests/
Dni_routes_test.c29 #define V(x) ((x) | 0x80) macro
118 [x1] = V(x1), [x2] = V(x2), [x3] = V(x3), [x4] = V(x4), \
119 [x5] = V(x5), [x6] = V(x6), [x7] = V(x7), [x8] = V(x8), \
120 [x9] = V(x9),
135 [B(NI_RGOUT0)] = {[B(rgout0_src0)] = V(0),
136 [B(rgout0_src1)] = V(1)},
137 [B(NI_RTSI_BRD(0))] = {[B(brd0_src0)] = V(0),
138 [B(brd0_src1)] = V(1)},
139 [B(NI_RTSI_BRD(1))] = {[B(brd1_src0)] = V(0),
140 [B(brd1_src1)] = V(1)},
[all …]
/linux-6.6.21/Documentation/devicetree/bindings/regulator/
Dltc3589.txt21 0.3625 V to 0.75 V in 12.5 mV steps. The output voltage thus ranges between
22 0.3625 * (1 + R1/R2) V and 0.75 * (1 + R1/R2) V. Regulators bb-out and ldo1
23 have a fixed 0.8 V reference and thus output 0.8 * (1 + R1/R2) V. The ldo3
24 regulator is fixed to 1.8 V on LTC3589 and to 2.8 V on LTC3589-1,2. The ldo4
25 regulator can output between 1.8 V and 3.3 V on LTC3589 and between 1.2 V
26 and 3.2 V on LTC3589-1,2 in four steps. The ldo1 standby regulator can not
/linux-6.6.21/Documentation/riscv/
Dpatch-acceptance.rst8 The RISC-V instruction set architecture is developed in the open:
13 challenge for RISC-V Linux maintenance. Linux maintainers disapprove
16 principles to the RISC-V-related code that will be accepted for
22 RISC-V has a patchwork instance, where the status of patches can be checked:
26 If your patch does not appear in the default view, the RISC-V maintainers have
31 RISC-V `for-next` and `fixes` branches, depending on whether the patch has been
32 detected as a fix. Failing those, it will use the RISC-V `master` branch.
42 specifications from the RISC-V foundation this means "Frozen" or
47 Additionally, the RISC-V specification allows implementers to create
49 to go through any review or ratification process by the RISC-V
[all …]

12345678910>>...41