1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Copyright IBM Corp. 2006, 2021
4 * Author(s): Cornelia Huck <cornelia.huck@de.ibm.com>
5 * Martin Schwidefsky <schwidefsky@de.ibm.com>
6 * Ralph Wuerthner <rwuerthn@de.ibm.com>
7 * Felix Beck <felix.beck@de.ibm.com>
8 * Holger Dengler <hd@linux.vnet.ibm.com>
9 * Harald Freudenberger <freude@linux.ibm.com>
10 *
11 * Adjunct processor bus.
12 */
13
14 #define KMSG_COMPONENT "ap"
15 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
16
17 #include <linux/kernel_stat.h>
18 #include <linux/moduleparam.h>
19 #include <linux/init.h>
20 #include <linux/delay.h>
21 #include <linux/err.h>
22 #include <linux/freezer.h>
23 #include <linux/interrupt.h>
24 #include <linux/workqueue.h>
25 #include <linux/slab.h>
26 #include <linux/notifier.h>
27 #include <linux/kthread.h>
28 #include <linux/mutex.h>
29 #include <asm/airq.h>
30 #include <asm/tpi.h>
31 #include <linux/atomic.h>
32 #include <asm/isc.h>
33 #include <linux/hrtimer.h>
34 #include <linux/ktime.h>
35 #include <asm/facility.h>
36 #include <linux/crypto.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/debugfs.h>
39 #include <linux/ctype.h>
40 #include <linux/module.h>
41
42 #include "ap_bus.h"
43 #include "ap_debug.h"
44
45 /*
46 * Module parameters; note though this file itself isn't modular.
47 */
48 int ap_domain_index = -1; /* Adjunct Processor Domain Index */
49 static DEFINE_SPINLOCK(ap_domain_lock);
50 module_param_named(domain, ap_domain_index, int, 0440);
51 MODULE_PARM_DESC(domain, "domain index for ap devices");
52 EXPORT_SYMBOL(ap_domain_index);
53
54 static int ap_thread_flag;
55 module_param_named(poll_thread, ap_thread_flag, int, 0440);
56 MODULE_PARM_DESC(poll_thread, "Turn on/off poll thread, default is 0 (off).");
57
58 static char *apm_str;
59 module_param_named(apmask, apm_str, charp, 0440);
60 MODULE_PARM_DESC(apmask, "AP bus adapter mask.");
61
62 static char *aqm_str;
63 module_param_named(aqmask, aqm_str, charp, 0440);
64 MODULE_PARM_DESC(aqmask, "AP bus domain mask.");
65
66 static int ap_useirq = 1;
67 module_param_named(useirq, ap_useirq, int, 0440);
68 MODULE_PARM_DESC(useirq, "Use interrupt if available, default is 1 (on).");
69
70 atomic_t ap_max_msg_size = ATOMIC_INIT(AP_DEFAULT_MAX_MSG_SIZE);
71 EXPORT_SYMBOL(ap_max_msg_size);
72
73 static struct device *ap_root_device;
74
75 /* Hashtable of all queue devices on the AP bus */
76 DEFINE_HASHTABLE(ap_queues, 8);
77 /* lock used for the ap_queues hashtable */
78 DEFINE_SPINLOCK(ap_queues_lock);
79
80 /* Default permissions (ioctl, card and domain masking) */
81 struct ap_perms ap_perms;
82 EXPORT_SYMBOL(ap_perms);
83 DEFINE_MUTEX(ap_perms_mutex);
84 EXPORT_SYMBOL(ap_perms_mutex);
85
86 /* # of bus scans since init */
87 static atomic64_t ap_scan_bus_count;
88
89 /* # of bindings complete since init */
90 static atomic64_t ap_bindings_complete_count = ATOMIC64_INIT(0);
91
92 /* completion for initial APQN bindings complete */
93 static DECLARE_COMPLETION(ap_init_apqn_bindings_complete);
94
95 static struct ap_config_info *ap_qci_info;
96 static struct ap_config_info *ap_qci_info_old;
97
98 /*
99 * AP bus related debug feature things.
100 */
101 debug_info_t *ap_dbf_info;
102
103 /*
104 * Workqueue timer for bus rescan.
105 */
106 static struct timer_list ap_config_timer;
107 static int ap_config_time = AP_CONFIG_TIME;
108 static void ap_scan_bus(struct work_struct *);
109 static DECLARE_WORK(ap_scan_work, ap_scan_bus);
110
111 /*
112 * Tasklet & timer for AP request polling and interrupts
113 */
114 static void ap_tasklet_fn(unsigned long);
115 static DECLARE_TASKLET_OLD(ap_tasklet, ap_tasklet_fn);
116 static DECLARE_WAIT_QUEUE_HEAD(ap_poll_wait);
117 static struct task_struct *ap_poll_kthread;
118 static DEFINE_MUTEX(ap_poll_thread_mutex);
119 static DEFINE_SPINLOCK(ap_poll_timer_lock);
120 static struct hrtimer ap_poll_timer;
121 /*
122 * In LPAR poll with 4kHz frequency. Poll every 250000 nanoseconds.
123 * If z/VM change to 1500000 nanoseconds to adjust to z/VM polling.
124 */
125 static unsigned long long poll_timeout = 250000;
126
127 /* Maximum domain id, if not given via qci */
128 static int ap_max_domain_id = 15;
129 /* Maximum adapter id, if not given via qci */
130 static int ap_max_adapter_id = 63;
131
132 static struct bus_type ap_bus_type;
133
134 /* Adapter interrupt definitions */
135 static void ap_interrupt_handler(struct airq_struct *airq,
136 struct tpi_info *tpi_info);
137
138 static bool ap_irq_flag;
139
140 static struct airq_struct ap_airq = {
141 .handler = ap_interrupt_handler,
142 .isc = AP_ISC,
143 };
144
145 /**
146 * ap_airq_ptr() - Get the address of the adapter interrupt indicator
147 *
148 * Returns the address of the local-summary-indicator of the adapter
149 * interrupt handler for AP, or NULL if adapter interrupts are not
150 * available.
151 */
ap_airq_ptr(void)152 void *ap_airq_ptr(void)
153 {
154 if (ap_irq_flag)
155 return ap_airq.lsi_ptr;
156 return NULL;
157 }
158
159 /**
160 * ap_interrupts_available(): Test if AP interrupts are available.
161 *
162 * Returns 1 if AP interrupts are available.
163 */
ap_interrupts_available(void)164 static int ap_interrupts_available(void)
165 {
166 return test_facility(65);
167 }
168
169 /**
170 * ap_qci_available(): Test if AP configuration
171 * information can be queried via QCI subfunction.
172 *
173 * Returns 1 if subfunction PQAP(QCI) is available.
174 */
ap_qci_available(void)175 static int ap_qci_available(void)
176 {
177 return test_facility(12);
178 }
179
180 /**
181 * ap_apft_available(): Test if AP facilities test (APFT)
182 * facility is available.
183 *
184 * Returns 1 if APFT is available.
185 */
ap_apft_available(void)186 static int ap_apft_available(void)
187 {
188 return test_facility(15);
189 }
190
191 /*
192 * ap_qact_available(): Test if the PQAP(QACT) subfunction is available.
193 *
194 * Returns 1 if the QACT subfunction is available.
195 */
ap_qact_available(void)196 static inline int ap_qact_available(void)
197 {
198 if (ap_qci_info)
199 return ap_qci_info->qact;
200 return 0;
201 }
202
203 /*
204 * ap_fetch_qci_info(): Fetch cryptographic config info
205 *
206 * Returns the ap configuration info fetched via PQAP(QCI).
207 * On success 0 is returned, on failure a negative errno
208 * is returned, e.g. if the PQAP(QCI) instruction is not
209 * available, the return value will be -EOPNOTSUPP.
210 */
ap_fetch_qci_info(struct ap_config_info * info)211 static inline int ap_fetch_qci_info(struct ap_config_info *info)
212 {
213 if (!ap_qci_available())
214 return -EOPNOTSUPP;
215 if (!info)
216 return -EINVAL;
217 return ap_qci(info);
218 }
219
220 /**
221 * ap_init_qci_info(): Allocate and query qci config info.
222 * Does also update the static variables ap_max_domain_id
223 * and ap_max_adapter_id if this info is available.
224 */
ap_init_qci_info(void)225 static void __init ap_init_qci_info(void)
226 {
227 if (!ap_qci_available()) {
228 AP_DBF_INFO("%s QCI not supported\n", __func__);
229 return;
230 }
231
232 ap_qci_info = kzalloc(sizeof(*ap_qci_info), GFP_KERNEL);
233 if (!ap_qci_info)
234 return;
235 ap_qci_info_old = kzalloc(sizeof(*ap_qci_info_old), GFP_KERNEL);
236 if (!ap_qci_info_old) {
237 kfree(ap_qci_info);
238 ap_qci_info = NULL;
239 return;
240 }
241 if (ap_fetch_qci_info(ap_qci_info) != 0) {
242 kfree(ap_qci_info);
243 kfree(ap_qci_info_old);
244 ap_qci_info = NULL;
245 ap_qci_info_old = NULL;
246 return;
247 }
248 AP_DBF_INFO("%s successful fetched initial qci info\n", __func__);
249
250 if (ap_qci_info->apxa) {
251 if (ap_qci_info->Na) {
252 ap_max_adapter_id = ap_qci_info->Na;
253 AP_DBF_INFO("%s new ap_max_adapter_id is %d\n",
254 __func__, ap_max_adapter_id);
255 }
256 if (ap_qci_info->Nd) {
257 ap_max_domain_id = ap_qci_info->Nd;
258 AP_DBF_INFO("%s new ap_max_domain_id is %d\n",
259 __func__, ap_max_domain_id);
260 }
261 }
262
263 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
264 }
265
266 /*
267 * ap_test_config(): helper function to extract the nrth bit
268 * within the unsigned int array field.
269 */
ap_test_config(unsigned int * field,unsigned int nr)270 static inline int ap_test_config(unsigned int *field, unsigned int nr)
271 {
272 return ap_test_bit((field + (nr >> 5)), (nr & 0x1f));
273 }
274
275 /*
276 * ap_test_config_card_id(): Test, whether an AP card ID is configured.
277 *
278 * Returns 0 if the card is not configured
279 * 1 if the card is configured or
280 * if the configuration information is not available
281 */
ap_test_config_card_id(unsigned int id)282 static inline int ap_test_config_card_id(unsigned int id)
283 {
284 if (id > ap_max_adapter_id)
285 return 0;
286 if (ap_qci_info)
287 return ap_test_config(ap_qci_info->apm, id);
288 return 1;
289 }
290
291 /*
292 * ap_test_config_usage_domain(): Test, whether an AP usage domain
293 * is configured.
294 *
295 * Returns 0 if the usage domain is not configured
296 * 1 if the usage domain is configured or
297 * if the configuration information is not available
298 */
ap_test_config_usage_domain(unsigned int domain)299 int ap_test_config_usage_domain(unsigned int domain)
300 {
301 if (domain > ap_max_domain_id)
302 return 0;
303 if (ap_qci_info)
304 return ap_test_config(ap_qci_info->aqm, domain);
305 return 1;
306 }
307 EXPORT_SYMBOL(ap_test_config_usage_domain);
308
309 /*
310 * ap_test_config_ctrl_domain(): Test, whether an AP control domain
311 * is configured.
312 * @domain AP control domain ID
313 *
314 * Returns 1 if the control domain is configured
315 * 0 in all other cases
316 */
ap_test_config_ctrl_domain(unsigned int domain)317 int ap_test_config_ctrl_domain(unsigned int domain)
318 {
319 if (!ap_qci_info || domain > ap_max_domain_id)
320 return 0;
321 return ap_test_config(ap_qci_info->adm, domain);
322 }
323 EXPORT_SYMBOL(ap_test_config_ctrl_domain);
324
325 /*
326 * ap_queue_info(): Check and get AP queue info.
327 * Returns true if TAPQ succeeded and the info is filled or
328 * false otherwise.
329 */
ap_queue_info(ap_qid_t qid,int * q_type,unsigned int * q_fac,int * q_depth,int * q_ml,bool * q_decfg,bool * q_cstop)330 static bool ap_queue_info(ap_qid_t qid, int *q_type, unsigned int *q_fac,
331 int *q_depth, int *q_ml, bool *q_decfg, bool *q_cstop)
332 {
333 struct ap_queue_status status;
334 union {
335 unsigned long value;
336 struct {
337 unsigned int fac : 32; /* facility bits */
338 unsigned int at : 8; /* ap type */
339 unsigned int _res1 : 8;
340 unsigned int _res2 : 4;
341 unsigned int ml : 4; /* apxl ml */
342 unsigned int _res3 : 4;
343 unsigned int qd : 4; /* queue depth */
344 } tapq_gr2;
345 } tapq_info;
346
347 tapq_info.value = 0;
348
349 /* make sure we don't run into a specifiation exception */
350 if (AP_QID_CARD(qid) > ap_max_adapter_id ||
351 AP_QID_QUEUE(qid) > ap_max_domain_id)
352 return false;
353
354 /* call TAPQ on this APQN */
355 status = ap_test_queue(qid, ap_apft_available(), &tapq_info.value);
356 switch (status.response_code) {
357 case AP_RESPONSE_NORMAL:
358 case AP_RESPONSE_RESET_IN_PROGRESS:
359 case AP_RESPONSE_DECONFIGURED:
360 case AP_RESPONSE_CHECKSTOPPED:
361 case AP_RESPONSE_BUSY:
362 /*
363 * According to the architecture in all these cases the
364 * info should be filled. All bits 0 is not possible as
365 * there is at least one of the mode bits set.
366 */
367 if (WARN_ON_ONCE(!tapq_info.value))
368 return false;
369 *q_type = tapq_info.tapq_gr2.at;
370 *q_fac = tapq_info.tapq_gr2.fac;
371 *q_depth = tapq_info.tapq_gr2.qd;
372 *q_ml = tapq_info.tapq_gr2.ml;
373 *q_decfg = status.response_code == AP_RESPONSE_DECONFIGURED;
374 *q_cstop = status.response_code == AP_RESPONSE_CHECKSTOPPED;
375 switch (*q_type) {
376 /* For CEX2 and CEX3 the available functions
377 * are not reflected by the facilities bits.
378 * Instead it is coded into the type. So here
379 * modify the function bits based on the type.
380 */
381 case AP_DEVICE_TYPE_CEX2A:
382 case AP_DEVICE_TYPE_CEX3A:
383 *q_fac |= 0x08000000;
384 break;
385 case AP_DEVICE_TYPE_CEX2C:
386 case AP_DEVICE_TYPE_CEX3C:
387 *q_fac |= 0x10000000;
388 break;
389 default:
390 break;
391 }
392 return true;
393 default:
394 /*
395 * A response code which indicates, there is no info available.
396 */
397 return false;
398 }
399 }
400
ap_wait(enum ap_sm_wait wait)401 void ap_wait(enum ap_sm_wait wait)
402 {
403 ktime_t hr_time;
404
405 switch (wait) {
406 case AP_SM_WAIT_AGAIN:
407 case AP_SM_WAIT_INTERRUPT:
408 if (ap_irq_flag)
409 break;
410 if (ap_poll_kthread) {
411 wake_up(&ap_poll_wait);
412 break;
413 }
414 fallthrough;
415 case AP_SM_WAIT_TIMEOUT:
416 spin_lock_bh(&ap_poll_timer_lock);
417 if (!hrtimer_is_queued(&ap_poll_timer)) {
418 hr_time = poll_timeout;
419 hrtimer_forward_now(&ap_poll_timer, hr_time);
420 hrtimer_restart(&ap_poll_timer);
421 }
422 spin_unlock_bh(&ap_poll_timer_lock);
423 break;
424 case AP_SM_WAIT_NONE:
425 default:
426 break;
427 }
428 }
429
430 /**
431 * ap_request_timeout(): Handling of request timeouts
432 * @t: timer making this callback
433 *
434 * Handles request timeouts.
435 */
ap_request_timeout(struct timer_list * t)436 void ap_request_timeout(struct timer_list *t)
437 {
438 struct ap_queue *aq = from_timer(aq, t, timeout);
439
440 spin_lock_bh(&aq->lock);
441 ap_wait(ap_sm_event(aq, AP_SM_EVENT_TIMEOUT));
442 spin_unlock_bh(&aq->lock);
443 }
444
445 /**
446 * ap_poll_timeout(): AP receive polling for finished AP requests.
447 * @unused: Unused pointer.
448 *
449 * Schedules the AP tasklet using a high resolution timer.
450 */
ap_poll_timeout(struct hrtimer * unused)451 static enum hrtimer_restart ap_poll_timeout(struct hrtimer *unused)
452 {
453 tasklet_schedule(&ap_tasklet);
454 return HRTIMER_NORESTART;
455 }
456
457 /**
458 * ap_interrupt_handler() - Schedule ap_tasklet on interrupt
459 * @airq: pointer to adapter interrupt descriptor
460 * @tpi_info: ignored
461 */
ap_interrupt_handler(struct airq_struct * airq,struct tpi_info * tpi_info)462 static void ap_interrupt_handler(struct airq_struct *airq,
463 struct tpi_info *tpi_info)
464 {
465 inc_irq_stat(IRQIO_APB);
466 tasklet_schedule(&ap_tasklet);
467 }
468
469 /**
470 * ap_tasklet_fn(): Tasklet to poll all AP devices.
471 * @dummy: Unused variable
472 *
473 * Poll all AP devices on the bus.
474 */
ap_tasklet_fn(unsigned long dummy)475 static void ap_tasklet_fn(unsigned long dummy)
476 {
477 int bkt;
478 struct ap_queue *aq;
479 enum ap_sm_wait wait = AP_SM_WAIT_NONE;
480
481 /* Reset the indicator if interrupts are used. Thus new interrupts can
482 * be received. Doing it in the beginning of the tasklet is therefor
483 * important that no requests on any AP get lost.
484 */
485 if (ap_irq_flag)
486 xchg(ap_airq.lsi_ptr, 0);
487
488 spin_lock_bh(&ap_queues_lock);
489 hash_for_each(ap_queues, bkt, aq, hnode) {
490 spin_lock_bh(&aq->lock);
491 wait = min(wait, ap_sm_event_loop(aq, AP_SM_EVENT_POLL));
492 spin_unlock_bh(&aq->lock);
493 }
494 spin_unlock_bh(&ap_queues_lock);
495
496 ap_wait(wait);
497 }
498
ap_pending_requests(void)499 static int ap_pending_requests(void)
500 {
501 int bkt;
502 struct ap_queue *aq;
503
504 spin_lock_bh(&ap_queues_lock);
505 hash_for_each(ap_queues, bkt, aq, hnode) {
506 if (aq->queue_count == 0)
507 continue;
508 spin_unlock_bh(&ap_queues_lock);
509 return 1;
510 }
511 spin_unlock_bh(&ap_queues_lock);
512 return 0;
513 }
514
515 /**
516 * ap_poll_thread(): Thread that polls for finished requests.
517 * @data: Unused pointer
518 *
519 * AP bus poll thread. The purpose of this thread is to poll for
520 * finished requests in a loop if there is a "free" cpu - that is
521 * a cpu that doesn't have anything better to do. The polling stops
522 * as soon as there is another task or if all messages have been
523 * delivered.
524 */
ap_poll_thread(void * data)525 static int ap_poll_thread(void *data)
526 {
527 DECLARE_WAITQUEUE(wait, current);
528
529 set_user_nice(current, MAX_NICE);
530 set_freezable();
531 while (!kthread_should_stop()) {
532 add_wait_queue(&ap_poll_wait, &wait);
533 set_current_state(TASK_INTERRUPTIBLE);
534 if (!ap_pending_requests()) {
535 schedule();
536 try_to_freeze();
537 }
538 set_current_state(TASK_RUNNING);
539 remove_wait_queue(&ap_poll_wait, &wait);
540 if (need_resched()) {
541 schedule();
542 try_to_freeze();
543 continue;
544 }
545 ap_tasklet_fn(0);
546 }
547
548 return 0;
549 }
550
ap_poll_thread_start(void)551 static int ap_poll_thread_start(void)
552 {
553 int rc;
554
555 if (ap_irq_flag || ap_poll_kthread)
556 return 0;
557 mutex_lock(&ap_poll_thread_mutex);
558 ap_poll_kthread = kthread_run(ap_poll_thread, NULL, "appoll");
559 rc = PTR_ERR_OR_ZERO(ap_poll_kthread);
560 if (rc)
561 ap_poll_kthread = NULL;
562 mutex_unlock(&ap_poll_thread_mutex);
563 return rc;
564 }
565
ap_poll_thread_stop(void)566 static void ap_poll_thread_stop(void)
567 {
568 if (!ap_poll_kthread)
569 return;
570 mutex_lock(&ap_poll_thread_mutex);
571 kthread_stop(ap_poll_kthread);
572 ap_poll_kthread = NULL;
573 mutex_unlock(&ap_poll_thread_mutex);
574 }
575
576 #define is_card_dev(x) ((x)->parent == ap_root_device)
577 #define is_queue_dev(x) ((x)->parent != ap_root_device)
578
579 /**
580 * ap_bus_match()
581 * @dev: Pointer to device
582 * @drv: Pointer to device_driver
583 *
584 * AP bus driver registration/unregistration.
585 */
ap_bus_match(struct device * dev,struct device_driver * drv)586 static int ap_bus_match(struct device *dev, struct device_driver *drv)
587 {
588 struct ap_driver *ap_drv = to_ap_drv(drv);
589 struct ap_device_id *id;
590
591 /*
592 * Compare device type of the device with the list of
593 * supported types of the device_driver.
594 */
595 for (id = ap_drv->ids; id->match_flags; id++) {
596 if (is_card_dev(dev) &&
597 id->match_flags & AP_DEVICE_ID_MATCH_CARD_TYPE &&
598 id->dev_type == to_ap_dev(dev)->device_type)
599 return 1;
600 if (is_queue_dev(dev) &&
601 id->match_flags & AP_DEVICE_ID_MATCH_QUEUE_TYPE &&
602 id->dev_type == to_ap_dev(dev)->device_type)
603 return 1;
604 }
605 return 0;
606 }
607
608 /**
609 * ap_uevent(): Uevent function for AP devices.
610 * @dev: Pointer to device
611 * @env: Pointer to kobj_uevent_env
612 *
613 * It sets up a single environment variable DEV_TYPE which contains the
614 * hardware device type.
615 */
ap_uevent(struct device * dev,struct kobj_uevent_env * env)616 static int ap_uevent(struct device *dev, struct kobj_uevent_env *env)
617 {
618 int rc = 0;
619 struct ap_device *ap_dev = to_ap_dev(dev);
620
621 /* Uevents from ap bus core don't need extensions to the env */
622 if (dev == ap_root_device)
623 return 0;
624
625 if (is_card_dev(dev)) {
626 struct ap_card *ac = to_ap_card(&ap_dev->device);
627
628 /* Set up DEV_TYPE environment variable. */
629 rc = add_uevent_var(env, "DEV_TYPE=%04X", ap_dev->device_type);
630 if (rc)
631 return rc;
632 /* Add MODALIAS= */
633 rc = add_uevent_var(env, "MODALIAS=ap:t%02X", ap_dev->device_type);
634 if (rc)
635 return rc;
636
637 /* Add MODE=<accel|cca|ep11> */
638 if (ap_test_bit(&ac->functions, AP_FUNC_ACCEL))
639 rc = add_uevent_var(env, "MODE=accel");
640 else if (ap_test_bit(&ac->functions, AP_FUNC_COPRO))
641 rc = add_uevent_var(env, "MODE=cca");
642 else if (ap_test_bit(&ac->functions, AP_FUNC_EP11))
643 rc = add_uevent_var(env, "MODE=ep11");
644 if (rc)
645 return rc;
646 } else {
647 struct ap_queue *aq = to_ap_queue(&ap_dev->device);
648
649 /* Add MODE=<accel|cca|ep11> */
650 if (ap_test_bit(&aq->card->functions, AP_FUNC_ACCEL))
651 rc = add_uevent_var(env, "MODE=accel");
652 else if (ap_test_bit(&aq->card->functions, AP_FUNC_COPRO))
653 rc = add_uevent_var(env, "MODE=cca");
654 else if (ap_test_bit(&aq->card->functions, AP_FUNC_EP11))
655 rc = add_uevent_var(env, "MODE=ep11");
656 if (rc)
657 return rc;
658 }
659
660 return 0;
661 }
662
ap_send_init_scan_done_uevent(void)663 static void ap_send_init_scan_done_uevent(void)
664 {
665 char *envp[] = { "INITSCAN=done", NULL };
666
667 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
668 }
669
ap_send_bindings_complete_uevent(void)670 static void ap_send_bindings_complete_uevent(void)
671 {
672 char buf[32];
673 char *envp[] = { "BINDINGS=complete", buf, NULL };
674
675 snprintf(buf, sizeof(buf), "COMPLETECOUNT=%llu",
676 atomic64_inc_return(&ap_bindings_complete_count));
677 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
678 }
679
ap_send_config_uevent(struct ap_device * ap_dev,bool cfg)680 void ap_send_config_uevent(struct ap_device *ap_dev, bool cfg)
681 {
682 char buf[16];
683 char *envp[] = { buf, NULL };
684
685 snprintf(buf, sizeof(buf), "CONFIG=%d", cfg ? 1 : 0);
686
687 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
688 }
689 EXPORT_SYMBOL(ap_send_config_uevent);
690
ap_send_online_uevent(struct ap_device * ap_dev,int online)691 void ap_send_online_uevent(struct ap_device *ap_dev, int online)
692 {
693 char buf[16];
694 char *envp[] = { buf, NULL };
695
696 snprintf(buf, sizeof(buf), "ONLINE=%d", online ? 1 : 0);
697
698 kobject_uevent_env(&ap_dev->device.kobj, KOBJ_CHANGE, envp);
699 }
700 EXPORT_SYMBOL(ap_send_online_uevent);
701
ap_send_mask_changed_uevent(unsigned long * newapm,unsigned long * newaqm)702 static void ap_send_mask_changed_uevent(unsigned long *newapm,
703 unsigned long *newaqm)
704 {
705 char buf[100];
706 char *envp[] = { buf, NULL };
707
708 if (newapm)
709 snprintf(buf, sizeof(buf),
710 "APMASK=0x%016lx%016lx%016lx%016lx\n",
711 newapm[0], newapm[1], newapm[2], newapm[3]);
712 else
713 snprintf(buf, sizeof(buf),
714 "AQMASK=0x%016lx%016lx%016lx%016lx\n",
715 newaqm[0], newaqm[1], newaqm[2], newaqm[3]);
716
717 kobject_uevent_env(&ap_root_device->kobj, KOBJ_CHANGE, envp);
718 }
719
720 /*
721 * calc # of bound APQNs
722 */
723
724 struct __ap_calc_ctrs {
725 unsigned int apqns;
726 unsigned int bound;
727 };
728
__ap_calc_helper(struct device * dev,void * arg)729 static int __ap_calc_helper(struct device *dev, void *arg)
730 {
731 struct __ap_calc_ctrs *pctrs = (struct __ap_calc_ctrs *)arg;
732
733 if (is_queue_dev(dev)) {
734 pctrs->apqns++;
735 if (dev->driver)
736 pctrs->bound++;
737 }
738
739 return 0;
740 }
741
ap_calc_bound_apqns(unsigned int * apqns,unsigned int * bound)742 static void ap_calc_bound_apqns(unsigned int *apqns, unsigned int *bound)
743 {
744 struct __ap_calc_ctrs ctrs;
745
746 memset(&ctrs, 0, sizeof(ctrs));
747 bus_for_each_dev(&ap_bus_type, NULL, (void *)&ctrs, __ap_calc_helper);
748
749 *apqns = ctrs.apqns;
750 *bound = ctrs.bound;
751 }
752
753 /*
754 * After initial ap bus scan do check if all existing APQNs are
755 * bound to device drivers.
756 */
ap_check_bindings_complete(void)757 static void ap_check_bindings_complete(void)
758 {
759 unsigned int apqns, bound;
760
761 if (atomic64_read(&ap_scan_bus_count) >= 1) {
762 ap_calc_bound_apqns(&apqns, &bound);
763 if (bound == apqns) {
764 if (!completion_done(&ap_init_apqn_bindings_complete)) {
765 complete_all(&ap_init_apqn_bindings_complete);
766 AP_DBF_INFO("%s complete\n", __func__);
767 }
768 ap_send_bindings_complete_uevent();
769 }
770 }
771 }
772
773 /*
774 * Interface to wait for the AP bus to have done one initial ap bus
775 * scan and all detected APQNs have been bound to device drivers.
776 * If these both conditions are not fulfilled, this function blocks
777 * on a condition with wait_for_completion_interruptible_timeout().
778 * If these both conditions are fulfilled (before the timeout hits)
779 * the return value is 0. If the timeout (in jiffies) hits instead
780 * -ETIME is returned. On failures negative return values are
781 * returned to the caller.
782 */
ap_wait_init_apqn_bindings_complete(unsigned long timeout)783 int ap_wait_init_apqn_bindings_complete(unsigned long timeout)
784 {
785 long l;
786
787 if (completion_done(&ap_init_apqn_bindings_complete))
788 return 0;
789
790 if (timeout)
791 l = wait_for_completion_interruptible_timeout(
792 &ap_init_apqn_bindings_complete, timeout);
793 else
794 l = wait_for_completion_interruptible(
795 &ap_init_apqn_bindings_complete);
796 if (l < 0)
797 return l == -ERESTARTSYS ? -EINTR : l;
798 else if (l == 0 && timeout)
799 return -ETIME;
800
801 return 0;
802 }
803 EXPORT_SYMBOL(ap_wait_init_apqn_bindings_complete);
804
__ap_queue_devices_with_id_unregister(struct device * dev,void * data)805 static int __ap_queue_devices_with_id_unregister(struct device *dev, void *data)
806 {
807 if (is_queue_dev(dev) &&
808 AP_QID_CARD(to_ap_queue(dev)->qid) == (int)(long)data)
809 device_unregister(dev);
810 return 0;
811 }
812
__ap_revise_reserved(struct device * dev,void * dummy)813 static int __ap_revise_reserved(struct device *dev, void *dummy)
814 {
815 int rc, card, queue, devres, drvres;
816
817 if (is_queue_dev(dev)) {
818 card = AP_QID_CARD(to_ap_queue(dev)->qid);
819 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
820 mutex_lock(&ap_perms_mutex);
821 devres = test_bit_inv(card, ap_perms.apm) &&
822 test_bit_inv(queue, ap_perms.aqm);
823 mutex_unlock(&ap_perms_mutex);
824 drvres = to_ap_drv(dev->driver)->flags
825 & AP_DRIVER_FLAG_DEFAULT;
826 if (!!devres != !!drvres) {
827 AP_DBF_DBG("%s reprobing queue=%02x.%04x\n",
828 __func__, card, queue);
829 rc = device_reprobe(dev);
830 if (rc)
831 AP_DBF_WARN("%s reprobing queue=%02x.%04x failed\n",
832 __func__, card, queue);
833 }
834 }
835
836 return 0;
837 }
838
ap_bus_revise_bindings(void)839 static void ap_bus_revise_bindings(void)
840 {
841 bus_for_each_dev(&ap_bus_type, NULL, NULL, __ap_revise_reserved);
842 }
843
844 /**
845 * ap_owned_by_def_drv: indicates whether an AP adapter is reserved for the
846 * default host driver or not.
847 * @card: the APID of the adapter card to check
848 * @queue: the APQI of the queue to check
849 *
850 * Note: the ap_perms_mutex must be locked by the caller of this function.
851 *
852 * Return: an int specifying whether the AP adapter is reserved for the host (1)
853 * or not (0).
854 */
ap_owned_by_def_drv(int card,int queue)855 int ap_owned_by_def_drv(int card, int queue)
856 {
857 int rc = 0;
858
859 if (card < 0 || card >= AP_DEVICES || queue < 0 || queue >= AP_DOMAINS)
860 return -EINVAL;
861
862 if (test_bit_inv(card, ap_perms.apm) &&
863 test_bit_inv(queue, ap_perms.aqm))
864 rc = 1;
865
866 return rc;
867 }
868 EXPORT_SYMBOL(ap_owned_by_def_drv);
869
870 /**
871 * ap_apqn_in_matrix_owned_by_def_drv: indicates whether every APQN contained in
872 * a set is reserved for the host drivers
873 * or not.
874 * @apm: a bitmap specifying a set of APIDs comprising the APQNs to check
875 * @aqm: a bitmap specifying a set of APQIs comprising the APQNs to check
876 *
877 * Note: the ap_perms_mutex must be locked by the caller of this function.
878 *
879 * Return: an int specifying whether each APQN is reserved for the host (1) or
880 * not (0)
881 */
ap_apqn_in_matrix_owned_by_def_drv(unsigned long * apm,unsigned long * aqm)882 int ap_apqn_in_matrix_owned_by_def_drv(unsigned long *apm,
883 unsigned long *aqm)
884 {
885 int card, queue, rc = 0;
886
887 for (card = 0; !rc && card < AP_DEVICES; card++)
888 if (test_bit_inv(card, apm) &&
889 test_bit_inv(card, ap_perms.apm))
890 for (queue = 0; !rc && queue < AP_DOMAINS; queue++)
891 if (test_bit_inv(queue, aqm) &&
892 test_bit_inv(queue, ap_perms.aqm))
893 rc = 1;
894
895 return rc;
896 }
897 EXPORT_SYMBOL(ap_apqn_in_matrix_owned_by_def_drv);
898
ap_device_probe(struct device * dev)899 static int ap_device_probe(struct device *dev)
900 {
901 struct ap_device *ap_dev = to_ap_dev(dev);
902 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
903 int card, queue, devres, drvres, rc = -ENODEV;
904
905 if (!get_device(dev))
906 return rc;
907
908 if (is_queue_dev(dev)) {
909 /*
910 * If the apqn is marked as reserved/used by ap bus and
911 * default drivers, only probe with drivers with the default
912 * flag set. If it is not marked, only probe with drivers
913 * with the default flag not set.
914 */
915 card = AP_QID_CARD(to_ap_queue(dev)->qid);
916 queue = AP_QID_QUEUE(to_ap_queue(dev)->qid);
917 mutex_lock(&ap_perms_mutex);
918 devres = test_bit_inv(card, ap_perms.apm) &&
919 test_bit_inv(queue, ap_perms.aqm);
920 mutex_unlock(&ap_perms_mutex);
921 drvres = ap_drv->flags & AP_DRIVER_FLAG_DEFAULT;
922 if (!!devres != !!drvres)
923 goto out;
924 }
925
926 /* Add queue/card to list of active queues/cards */
927 spin_lock_bh(&ap_queues_lock);
928 if (is_queue_dev(dev))
929 hash_add(ap_queues, &to_ap_queue(dev)->hnode,
930 to_ap_queue(dev)->qid);
931 spin_unlock_bh(&ap_queues_lock);
932
933 rc = ap_drv->probe ? ap_drv->probe(ap_dev) : -ENODEV;
934
935 if (rc) {
936 spin_lock_bh(&ap_queues_lock);
937 if (is_queue_dev(dev))
938 hash_del(&to_ap_queue(dev)->hnode);
939 spin_unlock_bh(&ap_queues_lock);
940 } else {
941 ap_check_bindings_complete();
942 }
943
944 out:
945 if (rc)
946 put_device(dev);
947 return rc;
948 }
949
ap_device_remove(struct device * dev)950 static void ap_device_remove(struct device *dev)
951 {
952 struct ap_device *ap_dev = to_ap_dev(dev);
953 struct ap_driver *ap_drv = to_ap_drv(dev->driver);
954
955 /* prepare ap queue device removal */
956 if (is_queue_dev(dev))
957 ap_queue_prepare_remove(to_ap_queue(dev));
958
959 /* driver's chance to clean up gracefully */
960 if (ap_drv->remove)
961 ap_drv->remove(ap_dev);
962
963 /* now do the ap queue device remove */
964 if (is_queue_dev(dev))
965 ap_queue_remove(to_ap_queue(dev));
966
967 /* Remove queue/card from list of active queues/cards */
968 spin_lock_bh(&ap_queues_lock);
969 if (is_queue_dev(dev))
970 hash_del(&to_ap_queue(dev)->hnode);
971 spin_unlock_bh(&ap_queues_lock);
972
973 put_device(dev);
974 }
975
ap_get_qdev(ap_qid_t qid)976 struct ap_queue *ap_get_qdev(ap_qid_t qid)
977 {
978 int bkt;
979 struct ap_queue *aq;
980
981 spin_lock_bh(&ap_queues_lock);
982 hash_for_each(ap_queues, bkt, aq, hnode) {
983 if (aq->qid == qid) {
984 get_device(&aq->ap_dev.device);
985 spin_unlock_bh(&ap_queues_lock);
986 return aq;
987 }
988 }
989 spin_unlock_bh(&ap_queues_lock);
990
991 return NULL;
992 }
993 EXPORT_SYMBOL(ap_get_qdev);
994
ap_driver_register(struct ap_driver * ap_drv,struct module * owner,char * name)995 int ap_driver_register(struct ap_driver *ap_drv, struct module *owner,
996 char *name)
997 {
998 struct device_driver *drv = &ap_drv->driver;
999
1000 drv->bus = &ap_bus_type;
1001 drv->owner = owner;
1002 drv->name = name;
1003 return driver_register(drv);
1004 }
1005 EXPORT_SYMBOL(ap_driver_register);
1006
ap_driver_unregister(struct ap_driver * ap_drv)1007 void ap_driver_unregister(struct ap_driver *ap_drv)
1008 {
1009 driver_unregister(&ap_drv->driver);
1010 }
1011 EXPORT_SYMBOL(ap_driver_unregister);
1012
ap_bus_force_rescan(void)1013 void ap_bus_force_rescan(void)
1014 {
1015 /* processing a asynchronous bus rescan */
1016 del_timer(&ap_config_timer);
1017 queue_work(system_long_wq, &ap_scan_work);
1018 flush_work(&ap_scan_work);
1019 }
1020 EXPORT_SYMBOL(ap_bus_force_rescan);
1021
1022 /*
1023 * A config change has happened, force an ap bus rescan.
1024 */
ap_bus_cfg_chg(void)1025 void ap_bus_cfg_chg(void)
1026 {
1027 AP_DBF_DBG("%s config change, forcing bus rescan\n", __func__);
1028
1029 ap_bus_force_rescan();
1030 }
1031
1032 /*
1033 * hex2bitmap() - parse hex mask string and set bitmap.
1034 * Valid strings are "0x012345678" with at least one valid hex number.
1035 * Rest of the bitmap to the right is padded with 0. No spaces allowed
1036 * within the string, the leading 0x may be omitted.
1037 * Returns the bitmask with exactly the bits set as given by the hex
1038 * string (both in big endian order).
1039 */
hex2bitmap(const char * str,unsigned long * bitmap,int bits)1040 static int hex2bitmap(const char *str, unsigned long *bitmap, int bits)
1041 {
1042 int i, n, b;
1043
1044 /* bits needs to be a multiple of 8 */
1045 if (bits & 0x07)
1046 return -EINVAL;
1047
1048 if (str[0] == '0' && str[1] == 'x')
1049 str++;
1050 if (*str == 'x')
1051 str++;
1052
1053 for (i = 0; isxdigit(*str) && i < bits; str++) {
1054 b = hex_to_bin(*str);
1055 for (n = 0; n < 4; n++)
1056 if (b & (0x08 >> n))
1057 set_bit_inv(i + n, bitmap);
1058 i += 4;
1059 }
1060
1061 if (*str == '\n')
1062 str++;
1063 if (*str)
1064 return -EINVAL;
1065 return 0;
1066 }
1067
1068 /*
1069 * modify_bitmap() - parse bitmask argument and modify an existing
1070 * bit mask accordingly. A concatenation (done with ',') of these
1071 * terms is recognized:
1072 * +<bitnr>[-<bitnr>] or -<bitnr>[-<bitnr>]
1073 * <bitnr> may be any valid number (hex, decimal or octal) in the range
1074 * 0...bits-1; the leading + or - is required. Here are some examples:
1075 * +0-15,+32,-128,-0xFF
1076 * -0-255,+1-16,+0x128
1077 * +1,+2,+3,+4,-5,-7-10
1078 * Returns the new bitmap after all changes have been applied. Every
1079 * positive value in the string will set a bit and every negative value
1080 * in the string will clear a bit. As a bit may be touched more than once,
1081 * the last 'operation' wins:
1082 * +0-255,-128 = first bits 0-255 will be set, then bit 128 will be
1083 * cleared again. All other bits are unmodified.
1084 */
modify_bitmap(const char * str,unsigned long * bitmap,int bits)1085 static int modify_bitmap(const char *str, unsigned long *bitmap, int bits)
1086 {
1087 int a, i, z;
1088 char *np, sign;
1089
1090 /* bits needs to be a multiple of 8 */
1091 if (bits & 0x07)
1092 return -EINVAL;
1093
1094 while (*str) {
1095 sign = *str++;
1096 if (sign != '+' && sign != '-')
1097 return -EINVAL;
1098 a = z = simple_strtoul(str, &np, 0);
1099 if (str == np || a >= bits)
1100 return -EINVAL;
1101 str = np;
1102 if (*str == '-') {
1103 z = simple_strtoul(++str, &np, 0);
1104 if (str == np || a > z || z >= bits)
1105 return -EINVAL;
1106 str = np;
1107 }
1108 for (i = a; i <= z; i++)
1109 if (sign == '+')
1110 set_bit_inv(i, bitmap);
1111 else
1112 clear_bit_inv(i, bitmap);
1113 while (*str == ',' || *str == '\n')
1114 str++;
1115 }
1116
1117 return 0;
1118 }
1119
ap_parse_bitmap_str(const char * str,unsigned long * bitmap,int bits,unsigned long * newmap)1120 static int ap_parse_bitmap_str(const char *str, unsigned long *bitmap, int bits,
1121 unsigned long *newmap)
1122 {
1123 unsigned long size;
1124 int rc;
1125
1126 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1127 if (*str == '+' || *str == '-') {
1128 memcpy(newmap, bitmap, size);
1129 rc = modify_bitmap(str, newmap, bits);
1130 } else {
1131 memset(newmap, 0, size);
1132 rc = hex2bitmap(str, newmap, bits);
1133 }
1134 return rc;
1135 }
1136
ap_parse_mask_str(const char * str,unsigned long * bitmap,int bits,struct mutex * lock)1137 int ap_parse_mask_str(const char *str,
1138 unsigned long *bitmap, int bits,
1139 struct mutex *lock)
1140 {
1141 unsigned long *newmap, size;
1142 int rc;
1143
1144 /* bits needs to be a multiple of 8 */
1145 if (bits & 0x07)
1146 return -EINVAL;
1147
1148 size = BITS_TO_LONGS(bits) * sizeof(unsigned long);
1149 newmap = kmalloc(size, GFP_KERNEL);
1150 if (!newmap)
1151 return -ENOMEM;
1152 if (mutex_lock_interruptible(lock)) {
1153 kfree(newmap);
1154 return -ERESTARTSYS;
1155 }
1156 rc = ap_parse_bitmap_str(str, bitmap, bits, newmap);
1157 if (rc == 0)
1158 memcpy(bitmap, newmap, size);
1159 mutex_unlock(lock);
1160 kfree(newmap);
1161 return rc;
1162 }
1163 EXPORT_SYMBOL(ap_parse_mask_str);
1164
1165 /*
1166 * AP bus attributes.
1167 */
1168
ap_domain_show(struct bus_type * bus,char * buf)1169 static ssize_t ap_domain_show(struct bus_type *bus, char *buf)
1170 {
1171 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_domain_index);
1172 }
1173
ap_domain_store(struct bus_type * bus,const char * buf,size_t count)1174 static ssize_t ap_domain_store(struct bus_type *bus,
1175 const char *buf, size_t count)
1176 {
1177 int domain;
1178
1179 if (sscanf(buf, "%i\n", &domain) != 1 ||
1180 domain < 0 || domain > ap_max_domain_id ||
1181 !test_bit_inv(domain, ap_perms.aqm))
1182 return -EINVAL;
1183
1184 spin_lock_bh(&ap_domain_lock);
1185 ap_domain_index = domain;
1186 spin_unlock_bh(&ap_domain_lock);
1187
1188 AP_DBF_INFO("%s stored new default domain=%d\n",
1189 __func__, domain);
1190
1191 return count;
1192 }
1193
1194 static BUS_ATTR_RW(ap_domain);
1195
ap_control_domain_mask_show(struct bus_type * bus,char * buf)1196 static ssize_t ap_control_domain_mask_show(struct bus_type *bus, char *buf)
1197 {
1198 if (!ap_qci_info) /* QCI not supported */
1199 return scnprintf(buf, PAGE_SIZE, "not supported\n");
1200
1201 return scnprintf(buf, PAGE_SIZE,
1202 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1203 ap_qci_info->adm[0], ap_qci_info->adm[1],
1204 ap_qci_info->adm[2], ap_qci_info->adm[3],
1205 ap_qci_info->adm[4], ap_qci_info->adm[5],
1206 ap_qci_info->adm[6], ap_qci_info->adm[7]);
1207 }
1208
1209 static BUS_ATTR_RO(ap_control_domain_mask);
1210
ap_usage_domain_mask_show(struct bus_type * bus,char * buf)1211 static ssize_t ap_usage_domain_mask_show(struct bus_type *bus, char *buf)
1212 {
1213 if (!ap_qci_info) /* QCI not supported */
1214 return scnprintf(buf, PAGE_SIZE, "not supported\n");
1215
1216 return scnprintf(buf, PAGE_SIZE,
1217 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1218 ap_qci_info->aqm[0], ap_qci_info->aqm[1],
1219 ap_qci_info->aqm[2], ap_qci_info->aqm[3],
1220 ap_qci_info->aqm[4], ap_qci_info->aqm[5],
1221 ap_qci_info->aqm[6], ap_qci_info->aqm[7]);
1222 }
1223
1224 static BUS_ATTR_RO(ap_usage_domain_mask);
1225
ap_adapter_mask_show(struct bus_type * bus,char * buf)1226 static ssize_t ap_adapter_mask_show(struct bus_type *bus, char *buf)
1227 {
1228 if (!ap_qci_info) /* QCI not supported */
1229 return scnprintf(buf, PAGE_SIZE, "not supported\n");
1230
1231 return scnprintf(buf, PAGE_SIZE,
1232 "0x%08x%08x%08x%08x%08x%08x%08x%08x\n",
1233 ap_qci_info->apm[0], ap_qci_info->apm[1],
1234 ap_qci_info->apm[2], ap_qci_info->apm[3],
1235 ap_qci_info->apm[4], ap_qci_info->apm[5],
1236 ap_qci_info->apm[6], ap_qci_info->apm[7]);
1237 }
1238
1239 static BUS_ATTR_RO(ap_adapter_mask);
1240
ap_interrupts_show(struct bus_type * bus,char * buf)1241 static ssize_t ap_interrupts_show(struct bus_type *bus, char *buf)
1242 {
1243 return scnprintf(buf, PAGE_SIZE, "%d\n",
1244 ap_irq_flag ? 1 : 0);
1245 }
1246
1247 static BUS_ATTR_RO(ap_interrupts);
1248
config_time_show(struct bus_type * bus,char * buf)1249 static ssize_t config_time_show(struct bus_type *bus, char *buf)
1250 {
1251 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_config_time);
1252 }
1253
config_time_store(struct bus_type * bus,const char * buf,size_t count)1254 static ssize_t config_time_store(struct bus_type *bus,
1255 const char *buf, size_t count)
1256 {
1257 int time;
1258
1259 if (sscanf(buf, "%d\n", &time) != 1 || time < 5 || time > 120)
1260 return -EINVAL;
1261 ap_config_time = time;
1262 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
1263 return count;
1264 }
1265
1266 static BUS_ATTR_RW(config_time);
1267
poll_thread_show(struct bus_type * bus,char * buf)1268 static ssize_t poll_thread_show(struct bus_type *bus, char *buf)
1269 {
1270 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_poll_kthread ? 1 : 0);
1271 }
1272
poll_thread_store(struct bus_type * bus,const char * buf,size_t count)1273 static ssize_t poll_thread_store(struct bus_type *bus,
1274 const char *buf, size_t count)
1275 {
1276 int flag, rc;
1277
1278 if (sscanf(buf, "%d\n", &flag) != 1)
1279 return -EINVAL;
1280 if (flag) {
1281 rc = ap_poll_thread_start();
1282 if (rc)
1283 count = rc;
1284 } else {
1285 ap_poll_thread_stop();
1286 }
1287 return count;
1288 }
1289
1290 static BUS_ATTR_RW(poll_thread);
1291
poll_timeout_show(struct bus_type * bus,char * buf)1292 static ssize_t poll_timeout_show(struct bus_type *bus, char *buf)
1293 {
1294 return scnprintf(buf, PAGE_SIZE, "%llu\n", poll_timeout);
1295 }
1296
poll_timeout_store(struct bus_type * bus,const char * buf,size_t count)1297 static ssize_t poll_timeout_store(struct bus_type *bus, const char *buf,
1298 size_t count)
1299 {
1300 unsigned long long time;
1301 ktime_t hr_time;
1302
1303 /* 120 seconds = maximum poll interval */
1304 if (sscanf(buf, "%llu\n", &time) != 1 || time < 1 ||
1305 time > 120000000000ULL)
1306 return -EINVAL;
1307 poll_timeout = time;
1308 hr_time = poll_timeout;
1309
1310 spin_lock_bh(&ap_poll_timer_lock);
1311 hrtimer_cancel(&ap_poll_timer);
1312 hrtimer_set_expires(&ap_poll_timer, hr_time);
1313 hrtimer_start_expires(&ap_poll_timer, HRTIMER_MODE_ABS);
1314 spin_unlock_bh(&ap_poll_timer_lock);
1315
1316 return count;
1317 }
1318
1319 static BUS_ATTR_RW(poll_timeout);
1320
ap_max_domain_id_show(struct bus_type * bus,char * buf)1321 static ssize_t ap_max_domain_id_show(struct bus_type *bus, char *buf)
1322 {
1323 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_domain_id);
1324 }
1325
1326 static BUS_ATTR_RO(ap_max_domain_id);
1327
ap_max_adapter_id_show(struct bus_type * bus,char * buf)1328 static ssize_t ap_max_adapter_id_show(struct bus_type *bus, char *buf)
1329 {
1330 return scnprintf(buf, PAGE_SIZE, "%d\n", ap_max_adapter_id);
1331 }
1332
1333 static BUS_ATTR_RO(ap_max_adapter_id);
1334
apmask_show(struct bus_type * bus,char * buf)1335 static ssize_t apmask_show(struct bus_type *bus, char *buf)
1336 {
1337 int rc;
1338
1339 if (mutex_lock_interruptible(&ap_perms_mutex))
1340 return -ERESTARTSYS;
1341 rc = scnprintf(buf, PAGE_SIZE,
1342 "0x%016lx%016lx%016lx%016lx\n",
1343 ap_perms.apm[0], ap_perms.apm[1],
1344 ap_perms.apm[2], ap_perms.apm[3]);
1345 mutex_unlock(&ap_perms_mutex);
1346
1347 return rc;
1348 }
1349
__verify_card_reservations(struct device_driver * drv,void * data)1350 static int __verify_card_reservations(struct device_driver *drv, void *data)
1351 {
1352 int rc = 0;
1353 struct ap_driver *ap_drv = to_ap_drv(drv);
1354 unsigned long *newapm = (unsigned long *)data;
1355
1356 /*
1357 * increase the driver's module refcounter to be sure it is not
1358 * going away when we invoke the callback function.
1359 */
1360 if (!try_module_get(drv->owner))
1361 return 0;
1362
1363 if (ap_drv->in_use) {
1364 rc = ap_drv->in_use(newapm, ap_perms.aqm);
1365 if (rc)
1366 rc = -EBUSY;
1367 }
1368
1369 /* release the driver's module */
1370 module_put(drv->owner);
1371
1372 return rc;
1373 }
1374
apmask_commit(unsigned long * newapm)1375 static int apmask_commit(unsigned long *newapm)
1376 {
1377 int rc;
1378 unsigned long reserved[BITS_TO_LONGS(AP_DEVICES)];
1379
1380 /*
1381 * Check if any bits in the apmask have been set which will
1382 * result in queues being removed from non-default drivers
1383 */
1384 if (bitmap_andnot(reserved, newapm, ap_perms.apm, AP_DEVICES)) {
1385 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1386 __verify_card_reservations);
1387 if (rc)
1388 return rc;
1389 }
1390
1391 memcpy(ap_perms.apm, newapm, APMASKSIZE);
1392
1393 return 0;
1394 }
1395
apmask_store(struct bus_type * bus,const char * buf,size_t count)1396 static ssize_t apmask_store(struct bus_type *bus, const char *buf,
1397 size_t count)
1398 {
1399 int rc, changes = 0;
1400 DECLARE_BITMAP(newapm, AP_DEVICES);
1401
1402 if (mutex_lock_interruptible(&ap_perms_mutex))
1403 return -ERESTARTSYS;
1404
1405 rc = ap_parse_bitmap_str(buf, ap_perms.apm, AP_DEVICES, newapm);
1406 if (rc)
1407 goto done;
1408
1409 changes = memcmp(ap_perms.apm, newapm, APMASKSIZE);
1410 if (changes)
1411 rc = apmask_commit(newapm);
1412
1413 done:
1414 mutex_unlock(&ap_perms_mutex);
1415 if (rc)
1416 return rc;
1417
1418 if (changes) {
1419 ap_bus_revise_bindings();
1420 ap_send_mask_changed_uevent(newapm, NULL);
1421 }
1422
1423 return count;
1424 }
1425
1426 static BUS_ATTR_RW(apmask);
1427
aqmask_show(struct bus_type * bus,char * buf)1428 static ssize_t aqmask_show(struct bus_type *bus, char *buf)
1429 {
1430 int rc;
1431
1432 if (mutex_lock_interruptible(&ap_perms_mutex))
1433 return -ERESTARTSYS;
1434 rc = scnprintf(buf, PAGE_SIZE,
1435 "0x%016lx%016lx%016lx%016lx\n",
1436 ap_perms.aqm[0], ap_perms.aqm[1],
1437 ap_perms.aqm[2], ap_perms.aqm[3]);
1438 mutex_unlock(&ap_perms_mutex);
1439
1440 return rc;
1441 }
1442
__verify_queue_reservations(struct device_driver * drv,void * data)1443 static int __verify_queue_reservations(struct device_driver *drv, void *data)
1444 {
1445 int rc = 0;
1446 struct ap_driver *ap_drv = to_ap_drv(drv);
1447 unsigned long *newaqm = (unsigned long *)data;
1448
1449 /*
1450 * increase the driver's module refcounter to be sure it is not
1451 * going away when we invoke the callback function.
1452 */
1453 if (!try_module_get(drv->owner))
1454 return 0;
1455
1456 if (ap_drv->in_use) {
1457 rc = ap_drv->in_use(ap_perms.apm, newaqm);
1458 if (rc)
1459 rc = -EBUSY;
1460 }
1461
1462 /* release the driver's module */
1463 module_put(drv->owner);
1464
1465 return rc;
1466 }
1467
aqmask_commit(unsigned long * newaqm)1468 static int aqmask_commit(unsigned long *newaqm)
1469 {
1470 int rc;
1471 unsigned long reserved[BITS_TO_LONGS(AP_DOMAINS)];
1472
1473 /*
1474 * Check if any bits in the aqmask have been set which will
1475 * result in queues being removed from non-default drivers
1476 */
1477 if (bitmap_andnot(reserved, newaqm, ap_perms.aqm, AP_DOMAINS)) {
1478 rc = bus_for_each_drv(&ap_bus_type, NULL, reserved,
1479 __verify_queue_reservations);
1480 if (rc)
1481 return rc;
1482 }
1483
1484 memcpy(ap_perms.aqm, newaqm, AQMASKSIZE);
1485
1486 return 0;
1487 }
1488
aqmask_store(struct bus_type * bus,const char * buf,size_t count)1489 static ssize_t aqmask_store(struct bus_type *bus, const char *buf,
1490 size_t count)
1491 {
1492 int rc, changes = 0;
1493 DECLARE_BITMAP(newaqm, AP_DOMAINS);
1494
1495 if (mutex_lock_interruptible(&ap_perms_mutex))
1496 return -ERESTARTSYS;
1497
1498 rc = ap_parse_bitmap_str(buf, ap_perms.aqm, AP_DOMAINS, newaqm);
1499 if (rc)
1500 goto done;
1501
1502 changes = memcmp(ap_perms.aqm, newaqm, APMASKSIZE);
1503 if (changes)
1504 rc = aqmask_commit(newaqm);
1505
1506 done:
1507 mutex_unlock(&ap_perms_mutex);
1508 if (rc)
1509 return rc;
1510
1511 if (changes) {
1512 ap_bus_revise_bindings();
1513 ap_send_mask_changed_uevent(NULL, newaqm);
1514 }
1515
1516 return count;
1517 }
1518
1519 static BUS_ATTR_RW(aqmask);
1520
scans_show(struct bus_type * bus,char * buf)1521 static ssize_t scans_show(struct bus_type *bus, char *buf)
1522 {
1523 return scnprintf(buf, PAGE_SIZE, "%llu\n",
1524 atomic64_read(&ap_scan_bus_count));
1525 }
1526
scans_store(struct bus_type * bus,const char * buf,size_t count)1527 static ssize_t scans_store(struct bus_type *bus, const char *buf,
1528 size_t count)
1529 {
1530 AP_DBF_INFO("%s force AP bus rescan\n", __func__);
1531
1532 ap_bus_force_rescan();
1533
1534 return count;
1535 }
1536
1537 static BUS_ATTR_RW(scans);
1538
bindings_show(struct bus_type * bus,char * buf)1539 static ssize_t bindings_show(struct bus_type *bus, char *buf)
1540 {
1541 int rc;
1542 unsigned int apqns, n;
1543
1544 ap_calc_bound_apqns(&apqns, &n);
1545 if (atomic64_read(&ap_scan_bus_count) >= 1 && n == apqns)
1546 rc = scnprintf(buf, PAGE_SIZE, "%u/%u (complete)\n", n, apqns);
1547 else
1548 rc = scnprintf(buf, PAGE_SIZE, "%u/%u\n", n, apqns);
1549
1550 return rc;
1551 }
1552
1553 static BUS_ATTR_RO(bindings);
1554
1555 static struct attribute *ap_bus_attrs[] = {
1556 &bus_attr_ap_domain.attr,
1557 &bus_attr_ap_control_domain_mask.attr,
1558 &bus_attr_ap_usage_domain_mask.attr,
1559 &bus_attr_ap_adapter_mask.attr,
1560 &bus_attr_config_time.attr,
1561 &bus_attr_poll_thread.attr,
1562 &bus_attr_ap_interrupts.attr,
1563 &bus_attr_poll_timeout.attr,
1564 &bus_attr_ap_max_domain_id.attr,
1565 &bus_attr_ap_max_adapter_id.attr,
1566 &bus_attr_apmask.attr,
1567 &bus_attr_aqmask.attr,
1568 &bus_attr_scans.attr,
1569 &bus_attr_bindings.attr,
1570 NULL,
1571 };
1572 ATTRIBUTE_GROUPS(ap_bus);
1573
1574 static struct bus_type ap_bus_type = {
1575 .name = "ap",
1576 .bus_groups = ap_bus_groups,
1577 .match = &ap_bus_match,
1578 .uevent = &ap_uevent,
1579 .probe = ap_device_probe,
1580 .remove = ap_device_remove,
1581 };
1582
1583 /**
1584 * ap_select_domain(): Select an AP domain if possible and we haven't
1585 * already done so before.
1586 */
ap_select_domain(void)1587 static void ap_select_domain(void)
1588 {
1589 struct ap_queue_status status;
1590 int card, dom;
1591
1592 /*
1593 * Choose the default domain. Either the one specified with
1594 * the "domain=" parameter or the first domain with at least
1595 * one valid APQN.
1596 */
1597 spin_lock_bh(&ap_domain_lock);
1598 if (ap_domain_index >= 0) {
1599 /* Domain has already been selected. */
1600 goto out;
1601 }
1602 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1603 if (!ap_test_config_usage_domain(dom) ||
1604 !test_bit_inv(dom, ap_perms.aqm))
1605 continue;
1606 for (card = 0; card <= ap_max_adapter_id; card++) {
1607 if (!ap_test_config_card_id(card) ||
1608 !test_bit_inv(card, ap_perms.apm))
1609 continue;
1610 status = ap_test_queue(AP_MKQID(card, dom),
1611 ap_apft_available(),
1612 NULL);
1613 if (status.response_code == AP_RESPONSE_NORMAL)
1614 break;
1615 }
1616 if (card <= ap_max_adapter_id)
1617 break;
1618 }
1619 if (dom <= ap_max_domain_id) {
1620 ap_domain_index = dom;
1621 AP_DBF_INFO("%s new default domain is %d\n",
1622 __func__, ap_domain_index);
1623 }
1624 out:
1625 spin_unlock_bh(&ap_domain_lock);
1626 }
1627
1628 /*
1629 * This function checks the type and returns either 0 for not
1630 * supported or the highest compatible type value (which may
1631 * include the input type value).
1632 */
ap_get_compatible_type(ap_qid_t qid,int rawtype,unsigned int func)1633 static int ap_get_compatible_type(ap_qid_t qid, int rawtype, unsigned int func)
1634 {
1635 int comp_type = 0;
1636
1637 /* < CEX2A is not supported */
1638 if (rawtype < AP_DEVICE_TYPE_CEX2A) {
1639 AP_DBF_WARN("%s queue=%02x.%04x unsupported type %d\n",
1640 __func__, AP_QID_CARD(qid),
1641 AP_QID_QUEUE(qid), rawtype);
1642 return 0;
1643 }
1644 /* up to CEX8 known and fully supported */
1645 if (rawtype <= AP_DEVICE_TYPE_CEX8)
1646 return rawtype;
1647 /*
1648 * unknown new type > CEX8, check for compatibility
1649 * to the highest known and supported type which is
1650 * currently CEX8 with the help of the QACT function.
1651 */
1652 if (ap_qact_available()) {
1653 struct ap_queue_status status;
1654 union ap_qact_ap_info apinfo = {0};
1655
1656 apinfo.mode = (func >> 26) & 0x07;
1657 apinfo.cat = AP_DEVICE_TYPE_CEX8;
1658 status = ap_qact(qid, 0, &apinfo);
1659 if (status.response_code == AP_RESPONSE_NORMAL &&
1660 apinfo.cat >= AP_DEVICE_TYPE_CEX2A &&
1661 apinfo.cat <= AP_DEVICE_TYPE_CEX8)
1662 comp_type = apinfo.cat;
1663 }
1664 if (!comp_type)
1665 AP_DBF_WARN("%s queue=%02x.%04x unable to map type %d\n",
1666 __func__, AP_QID_CARD(qid),
1667 AP_QID_QUEUE(qid), rawtype);
1668 else if (comp_type != rawtype)
1669 AP_DBF_INFO("%s queue=%02x.%04x map type %d to %d\n",
1670 __func__, AP_QID_CARD(qid), AP_QID_QUEUE(qid),
1671 rawtype, comp_type);
1672 return comp_type;
1673 }
1674
1675 /*
1676 * Helper function to be used with bus_find_dev
1677 * matches for the card device with the given id
1678 */
__match_card_device_with_id(struct device * dev,const void * data)1679 static int __match_card_device_with_id(struct device *dev, const void *data)
1680 {
1681 return is_card_dev(dev) && to_ap_card(dev)->id == (int)(long)(void *)data;
1682 }
1683
1684 /*
1685 * Helper function to be used with bus_find_dev
1686 * matches for the queue device with a given qid
1687 */
__match_queue_device_with_qid(struct device * dev,const void * data)1688 static int __match_queue_device_with_qid(struct device *dev, const void *data)
1689 {
1690 return is_queue_dev(dev) && to_ap_queue(dev)->qid == (int)(long)data;
1691 }
1692
1693 /*
1694 * Helper function to be used with bus_find_dev
1695 * matches any queue device with given queue id
1696 */
__match_queue_device_with_queue_id(struct device * dev,const void * data)1697 static int __match_queue_device_with_queue_id(struct device *dev, const void *data)
1698 {
1699 return is_queue_dev(dev) &&
1700 AP_QID_QUEUE(to_ap_queue(dev)->qid) == (int)(long)data;
1701 }
1702
1703 /* Helper function for notify_config_changed */
__drv_notify_config_changed(struct device_driver * drv,void * data)1704 static int __drv_notify_config_changed(struct device_driver *drv, void *data)
1705 {
1706 struct ap_driver *ap_drv = to_ap_drv(drv);
1707
1708 if (try_module_get(drv->owner)) {
1709 if (ap_drv->on_config_changed)
1710 ap_drv->on_config_changed(ap_qci_info, ap_qci_info_old);
1711 module_put(drv->owner);
1712 }
1713
1714 return 0;
1715 }
1716
1717 /* Notify all drivers about an qci config change */
notify_config_changed(void)1718 static inline void notify_config_changed(void)
1719 {
1720 bus_for_each_drv(&ap_bus_type, NULL, NULL,
1721 __drv_notify_config_changed);
1722 }
1723
1724 /* Helper function for notify_scan_complete */
__drv_notify_scan_complete(struct device_driver * drv,void * data)1725 static int __drv_notify_scan_complete(struct device_driver *drv, void *data)
1726 {
1727 struct ap_driver *ap_drv = to_ap_drv(drv);
1728
1729 if (try_module_get(drv->owner)) {
1730 if (ap_drv->on_scan_complete)
1731 ap_drv->on_scan_complete(ap_qci_info,
1732 ap_qci_info_old);
1733 module_put(drv->owner);
1734 }
1735
1736 return 0;
1737 }
1738
1739 /* Notify all drivers about bus scan complete */
notify_scan_complete(void)1740 static inline void notify_scan_complete(void)
1741 {
1742 bus_for_each_drv(&ap_bus_type, NULL, NULL,
1743 __drv_notify_scan_complete);
1744 }
1745
1746 /*
1747 * Helper function for ap_scan_bus().
1748 * Remove card device and associated queue devices.
1749 */
ap_scan_rm_card_dev_and_queue_devs(struct ap_card * ac)1750 static inline void ap_scan_rm_card_dev_and_queue_devs(struct ap_card *ac)
1751 {
1752 bus_for_each_dev(&ap_bus_type, NULL,
1753 (void *)(long)ac->id,
1754 __ap_queue_devices_with_id_unregister);
1755 device_unregister(&ac->ap_dev.device);
1756 }
1757
1758 /*
1759 * Helper function for ap_scan_bus().
1760 * Does the scan bus job for all the domains within
1761 * a valid adapter given by an ap_card ptr.
1762 */
ap_scan_domains(struct ap_card * ac)1763 static inline void ap_scan_domains(struct ap_card *ac)
1764 {
1765 bool decfg, chkstop;
1766 ap_qid_t qid;
1767 unsigned int func;
1768 struct device *dev;
1769 struct ap_queue *aq;
1770 int rc, dom, depth, type, ml;
1771
1772 /*
1773 * Go through the configuration for the domains and compare them
1774 * to the existing queue devices. Also take care of the config
1775 * and error state for the queue devices.
1776 */
1777
1778 for (dom = 0; dom <= ap_max_domain_id; dom++) {
1779 qid = AP_MKQID(ac->id, dom);
1780 dev = bus_find_device(&ap_bus_type, NULL,
1781 (void *)(long)qid,
1782 __match_queue_device_with_qid);
1783 aq = dev ? to_ap_queue(dev) : NULL;
1784 if (!ap_test_config_usage_domain(dom)) {
1785 if (dev) {
1786 AP_DBF_INFO("%s(%d,%d) not in config anymore, rm queue dev\n",
1787 __func__, ac->id, dom);
1788 device_unregister(dev);
1789 put_device(dev);
1790 }
1791 continue;
1792 }
1793 /* domain is valid, get info from this APQN */
1794 if (!ap_queue_info(qid, &type, &func, &depth,
1795 &ml, &decfg, &chkstop)) {
1796 if (aq) {
1797 AP_DBF_INFO("%s(%d,%d) queue_info() failed, rm queue dev\n",
1798 __func__, ac->id, dom);
1799 device_unregister(dev);
1800 put_device(dev);
1801 }
1802 continue;
1803 }
1804 /* if no queue device exists, create a new one */
1805 if (!aq) {
1806 aq = ap_queue_create(qid, ac->ap_dev.device_type);
1807 if (!aq) {
1808 AP_DBF_WARN("%s(%d,%d) ap_queue_create() failed\n",
1809 __func__, ac->id, dom);
1810 continue;
1811 }
1812 aq->card = ac;
1813 aq->config = !decfg;
1814 aq->chkstop = chkstop;
1815 dev = &aq->ap_dev.device;
1816 dev->bus = &ap_bus_type;
1817 dev->parent = &ac->ap_dev.device;
1818 dev_set_name(dev, "%02x.%04x", ac->id, dom);
1819 /* register queue device */
1820 rc = device_register(dev);
1821 if (rc) {
1822 AP_DBF_WARN("%s(%d,%d) device_register() failed\n",
1823 __func__, ac->id, dom);
1824 goto put_dev_and_continue;
1825 }
1826 /* get it and thus adjust reference counter */
1827 get_device(dev);
1828 if (decfg)
1829 AP_DBF_INFO("%s(%d,%d) new (decfg) queue dev created\n",
1830 __func__, ac->id, dom);
1831 else if (chkstop)
1832 AP_DBF_INFO("%s(%d,%d) new (chkstop) queue dev created\n",
1833 __func__, ac->id, dom);
1834 else
1835 AP_DBF_INFO("%s(%d,%d) new queue dev created\n",
1836 __func__, ac->id, dom);
1837 goto put_dev_and_continue;
1838 }
1839 /* handle state changes on already existing queue device */
1840 spin_lock_bh(&aq->lock);
1841 /* checkstop state */
1842 if (chkstop && !aq->chkstop) {
1843 /* checkstop on */
1844 aq->chkstop = true;
1845 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1846 aq->dev_state = AP_DEV_STATE_ERROR;
1847 aq->last_err_rc = AP_RESPONSE_CHECKSTOPPED;
1848 }
1849 spin_unlock_bh(&aq->lock);
1850 AP_DBF_DBG("%s(%d,%d) queue dev checkstop on\n",
1851 __func__, ac->id, dom);
1852 /* 'receive' pending messages with -EAGAIN */
1853 ap_flush_queue(aq);
1854 goto put_dev_and_continue;
1855 } else if (!chkstop && aq->chkstop) {
1856 /* checkstop off */
1857 aq->chkstop = false;
1858 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1859 aq->dev_state = AP_DEV_STATE_OPERATING;
1860 aq->sm_state = AP_SM_STATE_RESET_START;
1861 }
1862 spin_unlock_bh(&aq->lock);
1863 AP_DBF_DBG("%s(%d,%d) queue dev checkstop off\n",
1864 __func__, ac->id, dom);
1865 goto put_dev_and_continue;
1866 }
1867 /* config state change */
1868 if (decfg && aq->config) {
1869 /* config off this queue device */
1870 aq->config = false;
1871 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1872 aq->dev_state = AP_DEV_STATE_ERROR;
1873 aq->last_err_rc = AP_RESPONSE_DECONFIGURED;
1874 }
1875 spin_unlock_bh(&aq->lock);
1876 AP_DBF_DBG("%s(%d,%d) queue dev config off\n",
1877 __func__, ac->id, dom);
1878 ap_send_config_uevent(&aq->ap_dev, aq->config);
1879 /* 'receive' pending messages with -EAGAIN */
1880 ap_flush_queue(aq);
1881 goto put_dev_and_continue;
1882 } else if (!decfg && !aq->config) {
1883 /* config on this queue device */
1884 aq->config = true;
1885 if (aq->dev_state > AP_DEV_STATE_UNINITIATED) {
1886 aq->dev_state = AP_DEV_STATE_OPERATING;
1887 aq->sm_state = AP_SM_STATE_RESET_START;
1888 }
1889 spin_unlock_bh(&aq->lock);
1890 AP_DBF_DBG("%s(%d,%d) queue dev config on\n",
1891 __func__, ac->id, dom);
1892 ap_send_config_uevent(&aq->ap_dev, aq->config);
1893 goto put_dev_and_continue;
1894 }
1895 /* handle other error states */
1896 if (!decfg && aq->dev_state == AP_DEV_STATE_ERROR) {
1897 spin_unlock_bh(&aq->lock);
1898 /* 'receive' pending messages with -EAGAIN */
1899 ap_flush_queue(aq);
1900 /* re-init (with reset) the queue device */
1901 ap_queue_init_state(aq);
1902 AP_DBF_INFO("%s(%d,%d) queue dev reinit enforced\n",
1903 __func__, ac->id, dom);
1904 goto put_dev_and_continue;
1905 }
1906 spin_unlock_bh(&aq->lock);
1907 put_dev_and_continue:
1908 put_device(dev);
1909 }
1910 }
1911
1912 /*
1913 * Helper function for ap_scan_bus().
1914 * Does the scan bus job for the given adapter id.
1915 */
ap_scan_adapter(int ap)1916 static inline void ap_scan_adapter(int ap)
1917 {
1918 bool decfg, chkstop;
1919 ap_qid_t qid;
1920 unsigned int func;
1921 struct device *dev;
1922 struct ap_card *ac;
1923 int rc, dom, depth, type, comp_type, ml;
1924
1925 /* Is there currently a card device for this adapter ? */
1926 dev = bus_find_device(&ap_bus_type, NULL,
1927 (void *)(long)ap,
1928 __match_card_device_with_id);
1929 ac = dev ? to_ap_card(dev) : NULL;
1930
1931 /* Adapter not in configuration ? */
1932 if (!ap_test_config_card_id(ap)) {
1933 if (ac) {
1934 AP_DBF_INFO("%s(%d) ap not in config any more, rm card and queue devs\n",
1935 __func__, ap);
1936 ap_scan_rm_card_dev_and_queue_devs(ac);
1937 put_device(dev);
1938 }
1939 return;
1940 }
1941
1942 /*
1943 * Adapter ap is valid in the current configuration. So do some checks:
1944 * If no card device exists, build one. If a card device exists, check
1945 * for type and functions changed. For all this we need to find a valid
1946 * APQN first.
1947 */
1948
1949 for (dom = 0; dom <= ap_max_domain_id; dom++)
1950 if (ap_test_config_usage_domain(dom)) {
1951 qid = AP_MKQID(ap, dom);
1952 if (ap_queue_info(qid, &type, &func, &depth,
1953 &ml, &decfg, &chkstop))
1954 break;
1955 }
1956 if (dom > ap_max_domain_id) {
1957 /* Could not find a valid APQN for this adapter */
1958 if (ac) {
1959 AP_DBF_INFO("%s(%d) no type info (no APQN found), rm card and queue devs\n",
1960 __func__, ap);
1961 ap_scan_rm_card_dev_and_queue_devs(ac);
1962 put_device(dev);
1963 } else {
1964 AP_DBF_DBG("%s(%d) no type info (no APQN found), ignored\n",
1965 __func__, ap);
1966 }
1967 return;
1968 }
1969 if (!type) {
1970 /* No apdater type info available, an unusable adapter */
1971 if (ac) {
1972 AP_DBF_INFO("%s(%d) no valid type (0) info, rm card and queue devs\n",
1973 __func__, ap);
1974 ap_scan_rm_card_dev_and_queue_devs(ac);
1975 put_device(dev);
1976 } else {
1977 AP_DBF_DBG("%s(%d) no valid type (0) info, ignored\n",
1978 __func__, ap);
1979 }
1980 return;
1981 }
1982
1983 if (ac) {
1984 /* Check APQN against existing card device for changes */
1985 if (ac->raw_hwtype != type) {
1986 AP_DBF_INFO("%s(%d) hwtype %d changed, rm card and queue devs\n",
1987 __func__, ap, type);
1988 ap_scan_rm_card_dev_and_queue_devs(ac);
1989 put_device(dev);
1990 ac = NULL;
1991 } else if (ac->functions != func) {
1992 AP_DBF_INFO("%s(%d) functions 0x%08x changed, rm card and queue devs\n",
1993 __func__, ap, type);
1994 ap_scan_rm_card_dev_and_queue_devs(ac);
1995 put_device(dev);
1996 ac = NULL;
1997 } else {
1998 /* handle checkstop state change */
1999 if (chkstop && !ac->chkstop) {
2000 /* checkstop on */
2001 ac->chkstop = true;
2002 AP_DBF_INFO("%s(%d) card dev checkstop on\n",
2003 __func__, ap);
2004 } else if (!chkstop && ac->chkstop) {
2005 /* checkstop off */
2006 ac->chkstop = false;
2007 AP_DBF_INFO("%s(%d) card dev checkstop off\n",
2008 __func__, ap);
2009 }
2010 /* handle config state change */
2011 if (decfg && ac->config) {
2012 ac->config = false;
2013 AP_DBF_INFO("%s(%d) card dev config off\n",
2014 __func__, ap);
2015 ap_send_config_uevent(&ac->ap_dev, ac->config);
2016 } else if (!decfg && !ac->config) {
2017 ac->config = true;
2018 AP_DBF_INFO("%s(%d) card dev config on\n",
2019 __func__, ap);
2020 ap_send_config_uevent(&ac->ap_dev, ac->config);
2021 }
2022 }
2023 }
2024
2025 if (!ac) {
2026 /* Build a new card device */
2027 comp_type = ap_get_compatible_type(qid, type, func);
2028 if (!comp_type) {
2029 AP_DBF_WARN("%s(%d) type %d, can't get compatibility type\n",
2030 __func__, ap, type);
2031 return;
2032 }
2033 ac = ap_card_create(ap, depth, type, comp_type, func, ml);
2034 if (!ac) {
2035 AP_DBF_WARN("%s(%d) ap_card_create() failed\n",
2036 __func__, ap);
2037 return;
2038 }
2039 ac->config = !decfg;
2040 ac->chkstop = chkstop;
2041 dev = &ac->ap_dev.device;
2042 dev->bus = &ap_bus_type;
2043 dev->parent = ap_root_device;
2044 dev_set_name(dev, "card%02x", ap);
2045 /* maybe enlarge ap_max_msg_size to support this card */
2046 if (ac->maxmsgsize > atomic_read(&ap_max_msg_size)) {
2047 atomic_set(&ap_max_msg_size, ac->maxmsgsize);
2048 AP_DBF_INFO("%s(%d) ap_max_msg_size update to %d byte\n",
2049 __func__, ap,
2050 atomic_read(&ap_max_msg_size));
2051 }
2052 /* Register the new card device with AP bus */
2053 rc = device_register(dev);
2054 if (rc) {
2055 AP_DBF_WARN("%s(%d) device_register() failed\n",
2056 __func__, ap);
2057 put_device(dev);
2058 return;
2059 }
2060 /* get it and thus adjust reference counter */
2061 get_device(dev);
2062 if (decfg)
2063 AP_DBF_INFO("%s(%d) new (decfg) card dev type=%d func=0x%08x created\n",
2064 __func__, ap, type, func);
2065 else if (chkstop)
2066 AP_DBF_INFO("%s(%d) new (chkstop) card dev type=%d func=0x%08x created\n",
2067 __func__, ap, type, func);
2068 else
2069 AP_DBF_INFO("%s(%d) new card dev type=%d func=0x%08x created\n",
2070 __func__, ap, type, func);
2071 }
2072
2073 /* Verify the domains and the queue devices for this card */
2074 ap_scan_domains(ac);
2075
2076 /* release the card device */
2077 put_device(&ac->ap_dev.device);
2078 }
2079
2080 /**
2081 * ap_get_configuration - get the host AP configuration
2082 *
2083 * Stores the host AP configuration information returned from the previous call
2084 * to Query Configuration Information (QCI), then retrieves and stores the
2085 * current AP configuration returned from QCI.
2086 *
2087 * Return: true if the host AP configuration changed between calls to QCI;
2088 * otherwise, return false.
2089 */
ap_get_configuration(void)2090 static bool ap_get_configuration(void)
2091 {
2092 if (!ap_qci_info) /* QCI not supported */
2093 return false;
2094
2095 memcpy(ap_qci_info_old, ap_qci_info, sizeof(*ap_qci_info));
2096 ap_fetch_qci_info(ap_qci_info);
2097
2098 return memcmp(ap_qci_info, ap_qci_info_old,
2099 sizeof(struct ap_config_info)) != 0;
2100 }
2101
2102 /**
2103 * ap_scan_bus(): Scan the AP bus for new devices
2104 * Runs periodically, workqueue timer (ap_config_time)
2105 * @unused: Unused pointer.
2106 */
ap_scan_bus(struct work_struct * unused)2107 static void ap_scan_bus(struct work_struct *unused)
2108 {
2109 int ap, config_changed = 0;
2110
2111 /* config change notify */
2112 config_changed = ap_get_configuration();
2113 if (config_changed)
2114 notify_config_changed();
2115 ap_select_domain();
2116
2117 AP_DBF_DBG("%s running\n", __func__);
2118
2119 /* loop over all possible adapters */
2120 for (ap = 0; ap <= ap_max_adapter_id; ap++)
2121 ap_scan_adapter(ap);
2122
2123 /* scan complete notify */
2124 if (config_changed)
2125 notify_scan_complete();
2126
2127 /* check if there is at least one queue available with default domain */
2128 if (ap_domain_index >= 0) {
2129 struct device *dev =
2130 bus_find_device(&ap_bus_type, NULL,
2131 (void *)(long)ap_domain_index,
2132 __match_queue_device_with_queue_id);
2133 if (dev)
2134 put_device(dev);
2135 else
2136 AP_DBF_INFO("%s no queue device with default domain %d available\n",
2137 __func__, ap_domain_index);
2138 }
2139
2140 if (atomic64_inc_return(&ap_scan_bus_count) == 1) {
2141 AP_DBF_DBG("%s init scan complete\n", __func__);
2142 ap_send_init_scan_done_uevent();
2143 ap_check_bindings_complete();
2144 }
2145
2146 mod_timer(&ap_config_timer, jiffies + ap_config_time * HZ);
2147 }
2148
ap_config_timeout(struct timer_list * unused)2149 static void ap_config_timeout(struct timer_list *unused)
2150 {
2151 queue_work(system_long_wq, &ap_scan_work);
2152 }
2153
ap_debug_init(void)2154 static int __init ap_debug_init(void)
2155 {
2156 ap_dbf_info = debug_register("ap", 2, 1,
2157 DBF_MAX_SPRINTF_ARGS * sizeof(long));
2158 debug_register_view(ap_dbf_info, &debug_sprintf_view);
2159 debug_set_level(ap_dbf_info, DBF_ERR);
2160
2161 return 0;
2162 }
2163
ap_perms_init(void)2164 static void __init ap_perms_init(void)
2165 {
2166 /* all resources usable if no kernel parameter string given */
2167 memset(&ap_perms.ioctlm, 0xFF, sizeof(ap_perms.ioctlm));
2168 memset(&ap_perms.apm, 0xFF, sizeof(ap_perms.apm));
2169 memset(&ap_perms.aqm, 0xFF, sizeof(ap_perms.aqm));
2170
2171 /* apm kernel parameter string */
2172 if (apm_str) {
2173 memset(&ap_perms.apm, 0, sizeof(ap_perms.apm));
2174 ap_parse_mask_str(apm_str, ap_perms.apm, AP_DEVICES,
2175 &ap_perms_mutex);
2176 }
2177
2178 /* aqm kernel parameter string */
2179 if (aqm_str) {
2180 memset(&ap_perms.aqm, 0, sizeof(ap_perms.aqm));
2181 ap_parse_mask_str(aqm_str, ap_perms.aqm, AP_DOMAINS,
2182 &ap_perms_mutex);
2183 }
2184 }
2185
2186 /**
2187 * ap_module_init(): The module initialization code.
2188 *
2189 * Initializes the module.
2190 */
ap_module_init(void)2191 static int __init ap_module_init(void)
2192 {
2193 int rc;
2194
2195 rc = ap_debug_init();
2196 if (rc)
2197 return rc;
2198
2199 if (!ap_instructions_available()) {
2200 pr_warn("The hardware system does not support AP instructions\n");
2201 return -ENODEV;
2202 }
2203
2204 /* init ap_queue hashtable */
2205 hash_init(ap_queues);
2206
2207 /* set up the AP permissions (ioctls, ap and aq masks) */
2208 ap_perms_init();
2209
2210 /* Get AP configuration data if available */
2211 ap_init_qci_info();
2212
2213 /* check default domain setting */
2214 if (ap_domain_index < -1 || ap_domain_index > ap_max_domain_id ||
2215 (ap_domain_index >= 0 &&
2216 !test_bit_inv(ap_domain_index, ap_perms.aqm))) {
2217 pr_warn("%d is not a valid cryptographic domain\n",
2218 ap_domain_index);
2219 ap_domain_index = -1;
2220 }
2221
2222 /* enable interrupts if available */
2223 if (ap_interrupts_available() && ap_useirq) {
2224 rc = register_adapter_interrupt(&ap_airq);
2225 ap_irq_flag = (rc == 0);
2226 }
2227
2228 /* Create /sys/bus/ap. */
2229 rc = bus_register(&ap_bus_type);
2230 if (rc)
2231 goto out;
2232
2233 /* Create /sys/devices/ap. */
2234 ap_root_device = root_device_register("ap");
2235 rc = PTR_ERR_OR_ZERO(ap_root_device);
2236 if (rc)
2237 goto out_bus;
2238 ap_root_device->bus = &ap_bus_type;
2239
2240 /* Setup the AP bus rescan timer. */
2241 timer_setup(&ap_config_timer, ap_config_timeout, 0);
2242
2243 /*
2244 * Setup the high resultion poll timer.
2245 * If we are running under z/VM adjust polling to z/VM polling rate.
2246 */
2247 if (MACHINE_IS_VM)
2248 poll_timeout = 1500000;
2249 hrtimer_init(&ap_poll_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
2250 ap_poll_timer.function = ap_poll_timeout;
2251
2252 /* Start the low priority AP bus poll thread. */
2253 if (ap_thread_flag) {
2254 rc = ap_poll_thread_start();
2255 if (rc)
2256 goto out_work;
2257 }
2258
2259 queue_work(system_long_wq, &ap_scan_work);
2260
2261 return 0;
2262
2263 out_work:
2264 hrtimer_cancel(&ap_poll_timer);
2265 root_device_unregister(ap_root_device);
2266 out_bus:
2267 bus_unregister(&ap_bus_type);
2268 out:
2269 if (ap_irq_flag)
2270 unregister_adapter_interrupt(&ap_airq);
2271 kfree(ap_qci_info);
2272 return rc;
2273 }
2274 device_initcall(ap_module_init);
2275