1 // SPDX-License-Identifier: GPL-2.0
2 #include <errno.h>
3 #include <inttypes.h>
4 #include "string2.h"
5 #include <sys/param.h>
6 #include <sys/types.h>
7 #include <byteswap.h>
8 #include <unistd.h>
9 #include <stdio.h>
10 #include <stdlib.h>
11 #include <linux/compiler.h>
12 #include <linux/list.h>
13 #include <linux/kernel.h>
14 #include <linux/bitops.h>
15 #include <linux/string.h>
16 #include <linux/stringify.h>
17 #include <linux/zalloc.h>
18 #include <sys/stat.h>
19 #include <sys/utsname.h>
20 #include <linux/time64.h>
21 #include <dirent.h>
22 #ifdef HAVE_LIBBPF_SUPPORT
23 #include <bpf/libbpf.h>
24 #endif
25 #include <perf/cpumap.h>
26
27 #include "dso.h"
28 #include "evlist.h"
29 #include "evsel.h"
30 #include "util/evsel_fprintf.h"
31 #include "header.h"
32 #include "memswap.h"
33 #include "trace-event.h"
34 #include "session.h"
35 #include "symbol.h"
36 #include "debug.h"
37 #include "cpumap.h"
38 #include "pmu.h"
39 #include "vdso.h"
40 #include "strbuf.h"
41 #include "build-id.h"
42 #include "data.h"
43 #include <api/fs/fs.h>
44 #include "asm/bug.h"
45 #include "tool.h"
46 #include "time-utils.h"
47 #include "units.h"
48 #include "util/util.h" // perf_exe()
49 #include "cputopo.h"
50 #include "bpf-event.h"
51 #include "bpf-utils.h"
52 #include "clockid.h"
53 #include "pmu-hybrid.h"
54
55 #include <linux/ctype.h>
56 #include <internal/lib.h>
57
58 /*
59 * magic2 = "PERFILE2"
60 * must be a numerical value to let the endianness
61 * determine the memory layout. That way we are able
62 * to detect endianness when reading the perf.data file
63 * back.
64 *
65 * we check for legacy (PERFFILE) format.
66 */
67 static const char *__perf_magic1 = "PERFFILE";
68 static const u64 __perf_magic2 = 0x32454c4946524550ULL;
69 static const u64 __perf_magic2_sw = 0x50455246494c4532ULL;
70
71 #define PERF_MAGIC __perf_magic2
72
73 const char perf_version_string[] = PERF_VERSION;
74
75 struct perf_file_attr {
76 struct perf_event_attr attr;
77 struct perf_file_section ids;
78 };
79
perf_header__set_feat(struct perf_header * header,int feat)80 void perf_header__set_feat(struct perf_header *header, int feat)
81 {
82 set_bit(feat, header->adds_features);
83 }
84
perf_header__clear_feat(struct perf_header * header,int feat)85 void perf_header__clear_feat(struct perf_header *header, int feat)
86 {
87 clear_bit(feat, header->adds_features);
88 }
89
perf_header__has_feat(const struct perf_header * header,int feat)90 bool perf_header__has_feat(const struct perf_header *header, int feat)
91 {
92 return test_bit(feat, header->adds_features);
93 }
94
__do_write_fd(struct feat_fd * ff,const void * buf,size_t size)95 static int __do_write_fd(struct feat_fd *ff, const void *buf, size_t size)
96 {
97 ssize_t ret = writen(ff->fd, buf, size);
98
99 if (ret != (ssize_t)size)
100 return ret < 0 ? (int)ret : -1;
101 return 0;
102 }
103
__do_write_buf(struct feat_fd * ff,const void * buf,size_t size)104 static int __do_write_buf(struct feat_fd *ff, const void *buf, size_t size)
105 {
106 /* struct perf_event_header::size is u16 */
107 const size_t max_size = 0xffff - sizeof(struct perf_event_header);
108 size_t new_size = ff->size;
109 void *addr;
110
111 if (size + ff->offset > max_size)
112 return -E2BIG;
113
114 while (size > (new_size - ff->offset))
115 new_size <<= 1;
116 new_size = min(max_size, new_size);
117
118 if (ff->size < new_size) {
119 addr = realloc(ff->buf, new_size);
120 if (!addr)
121 return -ENOMEM;
122 ff->buf = addr;
123 ff->size = new_size;
124 }
125
126 memcpy(ff->buf + ff->offset, buf, size);
127 ff->offset += size;
128
129 return 0;
130 }
131
132 /* Return: 0 if succeeded, -ERR if failed. */
do_write(struct feat_fd * ff,const void * buf,size_t size)133 int do_write(struct feat_fd *ff, const void *buf, size_t size)
134 {
135 if (!ff->buf)
136 return __do_write_fd(ff, buf, size);
137 return __do_write_buf(ff, buf, size);
138 }
139
140 /* Return: 0 if succeeded, -ERR if failed. */
do_write_bitmap(struct feat_fd * ff,unsigned long * set,u64 size)141 static int do_write_bitmap(struct feat_fd *ff, unsigned long *set, u64 size)
142 {
143 u64 *p = (u64 *) set;
144 int i, ret;
145
146 ret = do_write(ff, &size, sizeof(size));
147 if (ret < 0)
148 return ret;
149
150 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
151 ret = do_write(ff, p + i, sizeof(*p));
152 if (ret < 0)
153 return ret;
154 }
155
156 return 0;
157 }
158
159 /* Return: 0 if succeeded, -ERR if failed. */
write_padded(struct feat_fd * ff,const void * bf,size_t count,size_t count_aligned)160 int write_padded(struct feat_fd *ff, const void *bf,
161 size_t count, size_t count_aligned)
162 {
163 static const char zero_buf[NAME_ALIGN];
164 int err = do_write(ff, bf, count);
165
166 if (!err)
167 err = do_write(ff, zero_buf, count_aligned - count);
168
169 return err;
170 }
171
172 #define string_size(str) \
173 (PERF_ALIGN((strlen(str) + 1), NAME_ALIGN) + sizeof(u32))
174
175 /* Return: 0 if succeeded, -ERR if failed. */
do_write_string(struct feat_fd * ff,const char * str)176 static int do_write_string(struct feat_fd *ff, const char *str)
177 {
178 u32 len, olen;
179 int ret;
180
181 olen = strlen(str) + 1;
182 len = PERF_ALIGN(olen, NAME_ALIGN);
183
184 /* write len, incl. \0 */
185 ret = do_write(ff, &len, sizeof(len));
186 if (ret < 0)
187 return ret;
188
189 return write_padded(ff, str, olen, len);
190 }
191
__do_read_fd(struct feat_fd * ff,void * addr,ssize_t size)192 static int __do_read_fd(struct feat_fd *ff, void *addr, ssize_t size)
193 {
194 ssize_t ret = readn(ff->fd, addr, size);
195
196 if (ret != size)
197 return ret < 0 ? (int)ret : -1;
198 return 0;
199 }
200
__do_read_buf(struct feat_fd * ff,void * addr,ssize_t size)201 static int __do_read_buf(struct feat_fd *ff, void *addr, ssize_t size)
202 {
203 if (size > (ssize_t)ff->size - ff->offset)
204 return -1;
205
206 memcpy(addr, ff->buf + ff->offset, size);
207 ff->offset += size;
208
209 return 0;
210
211 }
212
__do_read(struct feat_fd * ff,void * addr,ssize_t size)213 static int __do_read(struct feat_fd *ff, void *addr, ssize_t size)
214 {
215 if (!ff->buf)
216 return __do_read_fd(ff, addr, size);
217 return __do_read_buf(ff, addr, size);
218 }
219
do_read_u32(struct feat_fd * ff,u32 * addr)220 static int do_read_u32(struct feat_fd *ff, u32 *addr)
221 {
222 int ret;
223
224 ret = __do_read(ff, addr, sizeof(*addr));
225 if (ret)
226 return ret;
227
228 if (ff->ph->needs_swap)
229 *addr = bswap_32(*addr);
230 return 0;
231 }
232
do_read_u64(struct feat_fd * ff,u64 * addr)233 static int do_read_u64(struct feat_fd *ff, u64 *addr)
234 {
235 int ret;
236
237 ret = __do_read(ff, addr, sizeof(*addr));
238 if (ret)
239 return ret;
240
241 if (ff->ph->needs_swap)
242 *addr = bswap_64(*addr);
243 return 0;
244 }
245
do_read_string(struct feat_fd * ff)246 static char *do_read_string(struct feat_fd *ff)
247 {
248 u32 len;
249 char *buf;
250
251 if (do_read_u32(ff, &len))
252 return NULL;
253
254 buf = malloc(len);
255 if (!buf)
256 return NULL;
257
258 if (!__do_read(ff, buf, len)) {
259 /*
260 * strings are padded by zeroes
261 * thus the actual strlen of buf
262 * may be less than len
263 */
264 return buf;
265 }
266
267 free(buf);
268 return NULL;
269 }
270
271 /* Return: 0 if succeeded, -ERR if failed. */
do_read_bitmap(struct feat_fd * ff,unsigned long ** pset,u64 * psize)272 static int do_read_bitmap(struct feat_fd *ff, unsigned long **pset, u64 *psize)
273 {
274 unsigned long *set;
275 u64 size, *p;
276 int i, ret;
277
278 ret = do_read_u64(ff, &size);
279 if (ret)
280 return ret;
281
282 set = bitmap_zalloc(size);
283 if (!set)
284 return -ENOMEM;
285
286 p = (u64 *) set;
287
288 for (i = 0; (u64) i < BITS_TO_U64(size); i++) {
289 ret = do_read_u64(ff, p + i);
290 if (ret < 0) {
291 free(set);
292 return ret;
293 }
294 }
295
296 *pset = set;
297 *psize = size;
298 return 0;
299 }
300
write_tracing_data(struct feat_fd * ff,struct evlist * evlist)301 static int write_tracing_data(struct feat_fd *ff,
302 struct evlist *evlist)
303 {
304 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
305 return -1;
306
307 return read_tracing_data(ff->fd, &evlist->core.entries);
308 }
309
write_build_id(struct feat_fd * ff,struct evlist * evlist __maybe_unused)310 static int write_build_id(struct feat_fd *ff,
311 struct evlist *evlist __maybe_unused)
312 {
313 struct perf_session *session;
314 int err;
315
316 session = container_of(ff->ph, struct perf_session, header);
317
318 if (!perf_session__read_build_ids(session, true))
319 return -1;
320
321 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
322 return -1;
323
324 err = perf_session__write_buildid_table(session, ff);
325 if (err < 0) {
326 pr_debug("failed to write buildid table\n");
327 return err;
328 }
329 perf_session__cache_build_ids(session);
330
331 return 0;
332 }
333
write_hostname(struct feat_fd * ff,struct evlist * evlist __maybe_unused)334 static int write_hostname(struct feat_fd *ff,
335 struct evlist *evlist __maybe_unused)
336 {
337 struct utsname uts;
338 int ret;
339
340 ret = uname(&uts);
341 if (ret < 0)
342 return -1;
343
344 return do_write_string(ff, uts.nodename);
345 }
346
write_osrelease(struct feat_fd * ff,struct evlist * evlist __maybe_unused)347 static int write_osrelease(struct feat_fd *ff,
348 struct evlist *evlist __maybe_unused)
349 {
350 struct utsname uts;
351 int ret;
352
353 ret = uname(&uts);
354 if (ret < 0)
355 return -1;
356
357 return do_write_string(ff, uts.release);
358 }
359
write_arch(struct feat_fd * ff,struct evlist * evlist __maybe_unused)360 static int write_arch(struct feat_fd *ff,
361 struct evlist *evlist __maybe_unused)
362 {
363 struct utsname uts;
364 int ret;
365
366 ret = uname(&uts);
367 if (ret < 0)
368 return -1;
369
370 return do_write_string(ff, uts.machine);
371 }
372
write_version(struct feat_fd * ff,struct evlist * evlist __maybe_unused)373 static int write_version(struct feat_fd *ff,
374 struct evlist *evlist __maybe_unused)
375 {
376 return do_write_string(ff, perf_version_string);
377 }
378
__write_cpudesc(struct feat_fd * ff,const char * cpuinfo_proc)379 static int __write_cpudesc(struct feat_fd *ff, const char *cpuinfo_proc)
380 {
381 FILE *file;
382 char *buf = NULL;
383 char *s, *p;
384 const char *search = cpuinfo_proc;
385 size_t len = 0;
386 int ret = -1;
387
388 if (!search)
389 return -1;
390
391 file = fopen("/proc/cpuinfo", "r");
392 if (!file)
393 return -1;
394
395 while (getline(&buf, &len, file) > 0) {
396 ret = strncmp(buf, search, strlen(search));
397 if (!ret)
398 break;
399 }
400
401 if (ret) {
402 ret = -1;
403 goto done;
404 }
405
406 s = buf;
407
408 p = strchr(buf, ':');
409 if (p && *(p+1) == ' ' && *(p+2))
410 s = p + 2;
411 p = strchr(s, '\n');
412 if (p)
413 *p = '\0';
414
415 /* squash extra space characters (branding string) */
416 p = s;
417 while (*p) {
418 if (isspace(*p)) {
419 char *r = p + 1;
420 char *q = skip_spaces(r);
421 *p = ' ';
422 if (q != (p+1))
423 while ((*r++ = *q++));
424 }
425 p++;
426 }
427 ret = do_write_string(ff, s);
428 done:
429 free(buf);
430 fclose(file);
431 return ret;
432 }
433
write_cpudesc(struct feat_fd * ff,struct evlist * evlist __maybe_unused)434 static int write_cpudesc(struct feat_fd *ff,
435 struct evlist *evlist __maybe_unused)
436 {
437 #if defined(__powerpc__) || defined(__hppa__) || defined(__sparc__)
438 #define CPUINFO_PROC { "cpu", }
439 #elif defined(__s390__)
440 #define CPUINFO_PROC { "vendor_id", }
441 #elif defined(__sh__)
442 #define CPUINFO_PROC { "cpu type", }
443 #elif defined(__alpha__) || defined(__mips__)
444 #define CPUINFO_PROC { "cpu model", }
445 #elif defined(__arm__)
446 #define CPUINFO_PROC { "model name", "Processor", }
447 #elif defined(__arc__)
448 #define CPUINFO_PROC { "Processor", }
449 #elif defined(__xtensa__)
450 #define CPUINFO_PROC { "core ID", }
451 #else
452 #define CPUINFO_PROC { "model name", }
453 #endif
454 const char *cpuinfo_procs[] = CPUINFO_PROC;
455 #undef CPUINFO_PROC
456 unsigned int i;
457
458 for (i = 0; i < ARRAY_SIZE(cpuinfo_procs); i++) {
459 int ret;
460 ret = __write_cpudesc(ff, cpuinfo_procs[i]);
461 if (ret >= 0)
462 return ret;
463 }
464 return -1;
465 }
466
467
write_nrcpus(struct feat_fd * ff,struct evlist * evlist __maybe_unused)468 static int write_nrcpus(struct feat_fd *ff,
469 struct evlist *evlist __maybe_unused)
470 {
471 long nr;
472 u32 nrc, nra;
473 int ret;
474
475 nrc = cpu__max_present_cpu().cpu;
476
477 nr = sysconf(_SC_NPROCESSORS_ONLN);
478 if (nr < 0)
479 return -1;
480
481 nra = (u32)(nr & UINT_MAX);
482
483 ret = do_write(ff, &nrc, sizeof(nrc));
484 if (ret < 0)
485 return ret;
486
487 return do_write(ff, &nra, sizeof(nra));
488 }
489
write_event_desc(struct feat_fd * ff,struct evlist * evlist)490 static int write_event_desc(struct feat_fd *ff,
491 struct evlist *evlist)
492 {
493 struct evsel *evsel;
494 u32 nre, nri, sz;
495 int ret;
496
497 nre = evlist->core.nr_entries;
498
499 /*
500 * write number of events
501 */
502 ret = do_write(ff, &nre, sizeof(nre));
503 if (ret < 0)
504 return ret;
505
506 /*
507 * size of perf_event_attr struct
508 */
509 sz = (u32)sizeof(evsel->core.attr);
510 ret = do_write(ff, &sz, sizeof(sz));
511 if (ret < 0)
512 return ret;
513
514 evlist__for_each_entry(evlist, evsel) {
515 ret = do_write(ff, &evsel->core.attr, sz);
516 if (ret < 0)
517 return ret;
518 /*
519 * write number of unique id per event
520 * there is one id per instance of an event
521 *
522 * copy into an nri to be independent of the
523 * type of ids,
524 */
525 nri = evsel->core.ids;
526 ret = do_write(ff, &nri, sizeof(nri));
527 if (ret < 0)
528 return ret;
529
530 /*
531 * write event string as passed on cmdline
532 */
533 ret = do_write_string(ff, evsel__name(evsel));
534 if (ret < 0)
535 return ret;
536 /*
537 * write unique ids for this event
538 */
539 ret = do_write(ff, evsel->core.id, evsel->core.ids * sizeof(u64));
540 if (ret < 0)
541 return ret;
542 }
543 return 0;
544 }
545
write_cmdline(struct feat_fd * ff,struct evlist * evlist __maybe_unused)546 static int write_cmdline(struct feat_fd *ff,
547 struct evlist *evlist __maybe_unused)
548 {
549 char pbuf[MAXPATHLEN], *buf;
550 int i, ret, n;
551
552 /* actual path to perf binary */
553 buf = perf_exe(pbuf, MAXPATHLEN);
554
555 /* account for binary path */
556 n = perf_env.nr_cmdline + 1;
557
558 ret = do_write(ff, &n, sizeof(n));
559 if (ret < 0)
560 return ret;
561
562 ret = do_write_string(ff, buf);
563 if (ret < 0)
564 return ret;
565
566 for (i = 0 ; i < perf_env.nr_cmdline; i++) {
567 ret = do_write_string(ff, perf_env.cmdline_argv[i]);
568 if (ret < 0)
569 return ret;
570 }
571 return 0;
572 }
573
574
write_cpu_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)575 static int write_cpu_topology(struct feat_fd *ff,
576 struct evlist *evlist __maybe_unused)
577 {
578 struct cpu_topology *tp;
579 u32 i;
580 int ret, j;
581
582 tp = cpu_topology__new();
583 if (!tp)
584 return -1;
585
586 ret = do_write(ff, &tp->package_cpus_lists, sizeof(tp->package_cpus_lists));
587 if (ret < 0)
588 goto done;
589
590 for (i = 0; i < tp->package_cpus_lists; i++) {
591 ret = do_write_string(ff, tp->package_cpus_list[i]);
592 if (ret < 0)
593 goto done;
594 }
595 ret = do_write(ff, &tp->core_cpus_lists, sizeof(tp->core_cpus_lists));
596 if (ret < 0)
597 goto done;
598
599 for (i = 0; i < tp->core_cpus_lists; i++) {
600 ret = do_write_string(ff, tp->core_cpus_list[i]);
601 if (ret < 0)
602 break;
603 }
604
605 ret = perf_env__read_cpu_topology_map(&perf_env);
606 if (ret < 0)
607 goto done;
608
609 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
610 ret = do_write(ff, &perf_env.cpu[j].core_id,
611 sizeof(perf_env.cpu[j].core_id));
612 if (ret < 0)
613 return ret;
614 ret = do_write(ff, &perf_env.cpu[j].socket_id,
615 sizeof(perf_env.cpu[j].socket_id));
616 if (ret < 0)
617 return ret;
618 }
619
620 if (!tp->die_cpus_lists)
621 goto done;
622
623 ret = do_write(ff, &tp->die_cpus_lists, sizeof(tp->die_cpus_lists));
624 if (ret < 0)
625 goto done;
626
627 for (i = 0; i < tp->die_cpus_lists; i++) {
628 ret = do_write_string(ff, tp->die_cpus_list[i]);
629 if (ret < 0)
630 goto done;
631 }
632
633 for (j = 0; j < perf_env.nr_cpus_avail; j++) {
634 ret = do_write(ff, &perf_env.cpu[j].die_id,
635 sizeof(perf_env.cpu[j].die_id));
636 if (ret < 0)
637 return ret;
638 }
639
640 done:
641 cpu_topology__delete(tp);
642 return ret;
643 }
644
645
646
write_total_mem(struct feat_fd * ff,struct evlist * evlist __maybe_unused)647 static int write_total_mem(struct feat_fd *ff,
648 struct evlist *evlist __maybe_unused)
649 {
650 char *buf = NULL;
651 FILE *fp;
652 size_t len = 0;
653 int ret = -1, n;
654 uint64_t mem;
655
656 fp = fopen("/proc/meminfo", "r");
657 if (!fp)
658 return -1;
659
660 while (getline(&buf, &len, fp) > 0) {
661 ret = strncmp(buf, "MemTotal:", 9);
662 if (!ret)
663 break;
664 }
665 if (!ret) {
666 n = sscanf(buf, "%*s %"PRIu64, &mem);
667 if (n == 1)
668 ret = do_write(ff, &mem, sizeof(mem));
669 } else
670 ret = -1;
671 free(buf);
672 fclose(fp);
673 return ret;
674 }
675
write_numa_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)676 static int write_numa_topology(struct feat_fd *ff,
677 struct evlist *evlist __maybe_unused)
678 {
679 struct numa_topology *tp;
680 int ret = -1;
681 u32 i;
682
683 tp = numa_topology__new();
684 if (!tp)
685 return -ENOMEM;
686
687 ret = do_write(ff, &tp->nr, sizeof(u32));
688 if (ret < 0)
689 goto err;
690
691 for (i = 0; i < tp->nr; i++) {
692 struct numa_topology_node *n = &tp->nodes[i];
693
694 ret = do_write(ff, &n->node, sizeof(u32));
695 if (ret < 0)
696 goto err;
697
698 ret = do_write(ff, &n->mem_total, sizeof(u64));
699 if (ret)
700 goto err;
701
702 ret = do_write(ff, &n->mem_free, sizeof(u64));
703 if (ret)
704 goto err;
705
706 ret = do_write_string(ff, n->cpus);
707 if (ret < 0)
708 goto err;
709 }
710
711 ret = 0;
712
713 err:
714 numa_topology__delete(tp);
715 return ret;
716 }
717
718 /*
719 * File format:
720 *
721 * struct pmu_mappings {
722 * u32 pmu_num;
723 * struct pmu_map {
724 * u32 type;
725 * char name[];
726 * }[pmu_num];
727 * };
728 */
729
write_pmu_mappings(struct feat_fd * ff,struct evlist * evlist __maybe_unused)730 static int write_pmu_mappings(struct feat_fd *ff,
731 struct evlist *evlist __maybe_unused)
732 {
733 struct perf_pmu *pmu = NULL;
734 u32 pmu_num = 0;
735 int ret;
736
737 /*
738 * Do a first pass to count number of pmu to avoid lseek so this
739 * works in pipe mode as well.
740 */
741 while ((pmu = perf_pmu__scan(pmu))) {
742 if (!pmu->name)
743 continue;
744 pmu_num++;
745 }
746
747 ret = do_write(ff, &pmu_num, sizeof(pmu_num));
748 if (ret < 0)
749 return ret;
750
751 while ((pmu = perf_pmu__scan(pmu))) {
752 if (!pmu->name)
753 continue;
754
755 ret = do_write(ff, &pmu->type, sizeof(pmu->type));
756 if (ret < 0)
757 return ret;
758
759 ret = do_write_string(ff, pmu->name);
760 if (ret < 0)
761 return ret;
762 }
763
764 return 0;
765 }
766
767 /*
768 * File format:
769 *
770 * struct group_descs {
771 * u32 nr_groups;
772 * struct group_desc {
773 * char name[];
774 * u32 leader_idx;
775 * u32 nr_members;
776 * }[nr_groups];
777 * };
778 */
write_group_desc(struct feat_fd * ff,struct evlist * evlist)779 static int write_group_desc(struct feat_fd *ff,
780 struct evlist *evlist)
781 {
782 u32 nr_groups = evlist->core.nr_groups;
783 struct evsel *evsel;
784 int ret;
785
786 ret = do_write(ff, &nr_groups, sizeof(nr_groups));
787 if (ret < 0)
788 return ret;
789
790 evlist__for_each_entry(evlist, evsel) {
791 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
792 const char *name = evsel->group_name ?: "{anon_group}";
793 u32 leader_idx = evsel->core.idx;
794 u32 nr_members = evsel->core.nr_members;
795
796 ret = do_write_string(ff, name);
797 if (ret < 0)
798 return ret;
799
800 ret = do_write(ff, &leader_idx, sizeof(leader_idx));
801 if (ret < 0)
802 return ret;
803
804 ret = do_write(ff, &nr_members, sizeof(nr_members));
805 if (ret < 0)
806 return ret;
807 }
808 }
809 return 0;
810 }
811
812 /*
813 * Return the CPU id as a raw string.
814 *
815 * Each architecture should provide a more precise id string that
816 * can be use to match the architecture's "mapfile".
817 */
get_cpuid_str(struct perf_pmu * pmu __maybe_unused)818 char * __weak get_cpuid_str(struct perf_pmu *pmu __maybe_unused)
819 {
820 return NULL;
821 }
822
823 /* Return zero when the cpuid from the mapfile.csv matches the
824 * cpuid string generated on this platform.
825 * Otherwise return non-zero.
826 */
strcmp_cpuid_str(const char * mapcpuid,const char * cpuid)827 int __weak strcmp_cpuid_str(const char *mapcpuid, const char *cpuid)
828 {
829 regex_t re;
830 regmatch_t pmatch[1];
831 int match;
832
833 if (regcomp(&re, mapcpuid, REG_EXTENDED) != 0) {
834 /* Warn unable to generate match particular string. */
835 pr_info("Invalid regular expression %s\n", mapcpuid);
836 return 1;
837 }
838
839 match = !regexec(&re, cpuid, 1, pmatch, 0);
840 regfree(&re);
841 if (match) {
842 size_t match_len = (pmatch[0].rm_eo - pmatch[0].rm_so);
843
844 /* Verify the entire string matched. */
845 if (match_len == strlen(cpuid))
846 return 0;
847 }
848 return 1;
849 }
850
851 /*
852 * default get_cpuid(): nothing gets recorded
853 * actual implementation must be in arch/$(SRCARCH)/util/header.c
854 */
get_cpuid(char * buffer __maybe_unused,size_t sz __maybe_unused)855 int __weak get_cpuid(char *buffer __maybe_unused, size_t sz __maybe_unused)
856 {
857 return ENOSYS; /* Not implemented */
858 }
859
write_cpuid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)860 static int write_cpuid(struct feat_fd *ff,
861 struct evlist *evlist __maybe_unused)
862 {
863 char buffer[64];
864 int ret;
865
866 ret = get_cpuid(buffer, sizeof(buffer));
867 if (ret)
868 return -1;
869
870 return do_write_string(ff, buffer);
871 }
872
write_branch_stack(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)873 static int write_branch_stack(struct feat_fd *ff __maybe_unused,
874 struct evlist *evlist __maybe_unused)
875 {
876 return 0;
877 }
878
write_auxtrace(struct feat_fd * ff,struct evlist * evlist __maybe_unused)879 static int write_auxtrace(struct feat_fd *ff,
880 struct evlist *evlist __maybe_unused)
881 {
882 struct perf_session *session;
883 int err;
884
885 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
886 return -1;
887
888 session = container_of(ff->ph, struct perf_session, header);
889
890 err = auxtrace_index__write(ff->fd, &session->auxtrace_index);
891 if (err < 0)
892 pr_err("Failed to write auxtrace index\n");
893 return err;
894 }
895
write_clockid(struct feat_fd * ff,struct evlist * evlist __maybe_unused)896 static int write_clockid(struct feat_fd *ff,
897 struct evlist *evlist __maybe_unused)
898 {
899 return do_write(ff, &ff->ph->env.clock.clockid_res_ns,
900 sizeof(ff->ph->env.clock.clockid_res_ns));
901 }
902
write_clock_data(struct feat_fd * ff,struct evlist * evlist __maybe_unused)903 static int write_clock_data(struct feat_fd *ff,
904 struct evlist *evlist __maybe_unused)
905 {
906 u64 *data64;
907 u32 data32;
908 int ret;
909
910 /* version */
911 data32 = 1;
912
913 ret = do_write(ff, &data32, sizeof(data32));
914 if (ret < 0)
915 return ret;
916
917 /* clockid */
918 data32 = ff->ph->env.clock.clockid;
919
920 ret = do_write(ff, &data32, sizeof(data32));
921 if (ret < 0)
922 return ret;
923
924 /* TOD ref time */
925 data64 = &ff->ph->env.clock.tod_ns;
926
927 ret = do_write(ff, data64, sizeof(*data64));
928 if (ret < 0)
929 return ret;
930
931 /* clockid ref time */
932 data64 = &ff->ph->env.clock.clockid_ns;
933
934 return do_write(ff, data64, sizeof(*data64));
935 }
936
write_hybrid_topology(struct feat_fd * ff,struct evlist * evlist __maybe_unused)937 static int write_hybrid_topology(struct feat_fd *ff,
938 struct evlist *evlist __maybe_unused)
939 {
940 struct hybrid_topology *tp;
941 int ret;
942 u32 i;
943
944 tp = hybrid_topology__new();
945 if (!tp)
946 return -ENOENT;
947
948 ret = do_write(ff, &tp->nr, sizeof(u32));
949 if (ret < 0)
950 goto err;
951
952 for (i = 0; i < tp->nr; i++) {
953 struct hybrid_topology_node *n = &tp->nodes[i];
954
955 ret = do_write_string(ff, n->pmu_name);
956 if (ret < 0)
957 goto err;
958
959 ret = do_write_string(ff, n->cpus);
960 if (ret < 0)
961 goto err;
962 }
963
964 ret = 0;
965
966 err:
967 hybrid_topology__delete(tp);
968 return ret;
969 }
970
write_dir_format(struct feat_fd * ff,struct evlist * evlist __maybe_unused)971 static int write_dir_format(struct feat_fd *ff,
972 struct evlist *evlist __maybe_unused)
973 {
974 struct perf_session *session;
975 struct perf_data *data;
976
977 session = container_of(ff->ph, struct perf_session, header);
978 data = session->data;
979
980 if (WARN_ON(!perf_data__is_dir(data)))
981 return -1;
982
983 return do_write(ff, &data->dir.version, sizeof(data->dir.version));
984 }
985
986 /*
987 * Check whether a CPU is online
988 *
989 * Returns:
990 * 1 -> if CPU is online
991 * 0 -> if CPU is offline
992 * -1 -> error case
993 */
is_cpu_online(unsigned int cpu)994 int is_cpu_online(unsigned int cpu)
995 {
996 char *str;
997 size_t strlen;
998 char buf[256];
999 int status = -1;
1000 struct stat statbuf;
1001
1002 snprintf(buf, sizeof(buf),
1003 "/sys/devices/system/cpu/cpu%d", cpu);
1004 if (stat(buf, &statbuf) != 0)
1005 return 0;
1006
1007 /*
1008 * Check if /sys/devices/system/cpu/cpux/online file
1009 * exists. Some cases cpu0 won't have online file since
1010 * it is not expected to be turned off generally.
1011 * In kernels without CONFIG_HOTPLUG_CPU, this
1012 * file won't exist
1013 */
1014 snprintf(buf, sizeof(buf),
1015 "/sys/devices/system/cpu/cpu%d/online", cpu);
1016 if (stat(buf, &statbuf) != 0)
1017 return 1;
1018
1019 /*
1020 * Read online file using sysfs__read_str.
1021 * If read or open fails, return -1.
1022 * If read succeeds, return value from file
1023 * which gets stored in "str"
1024 */
1025 snprintf(buf, sizeof(buf),
1026 "devices/system/cpu/cpu%d/online", cpu);
1027
1028 if (sysfs__read_str(buf, &str, &strlen) < 0)
1029 return status;
1030
1031 status = atoi(str);
1032
1033 free(str);
1034 return status;
1035 }
1036
1037 #ifdef HAVE_LIBBPF_SUPPORT
write_bpf_prog_info(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1038 static int write_bpf_prog_info(struct feat_fd *ff,
1039 struct evlist *evlist __maybe_unused)
1040 {
1041 struct perf_env *env = &ff->ph->env;
1042 struct rb_root *root;
1043 struct rb_node *next;
1044 int ret;
1045
1046 down_read(&env->bpf_progs.lock);
1047
1048 ret = do_write(ff, &env->bpf_progs.infos_cnt,
1049 sizeof(env->bpf_progs.infos_cnt));
1050 if (ret < 0)
1051 goto out;
1052
1053 root = &env->bpf_progs.infos;
1054 next = rb_first(root);
1055 while (next) {
1056 struct bpf_prog_info_node *node;
1057 size_t len;
1058
1059 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1060 next = rb_next(&node->rb_node);
1061 len = sizeof(struct perf_bpil) +
1062 node->info_linear->data_len;
1063
1064 /* before writing to file, translate address to offset */
1065 bpil_addr_to_offs(node->info_linear);
1066 ret = do_write(ff, node->info_linear, len);
1067 /*
1068 * translate back to address even when do_write() fails,
1069 * so that this function never changes the data.
1070 */
1071 bpil_offs_to_addr(node->info_linear);
1072 if (ret < 0)
1073 goto out;
1074 }
1075 out:
1076 up_read(&env->bpf_progs.lock);
1077 return ret;
1078 }
1079
write_bpf_btf(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1080 static int write_bpf_btf(struct feat_fd *ff,
1081 struct evlist *evlist __maybe_unused)
1082 {
1083 struct perf_env *env = &ff->ph->env;
1084 struct rb_root *root;
1085 struct rb_node *next;
1086 int ret;
1087
1088 down_read(&env->bpf_progs.lock);
1089
1090 ret = do_write(ff, &env->bpf_progs.btfs_cnt,
1091 sizeof(env->bpf_progs.btfs_cnt));
1092
1093 if (ret < 0)
1094 goto out;
1095
1096 root = &env->bpf_progs.btfs;
1097 next = rb_first(root);
1098 while (next) {
1099 struct btf_node *node;
1100
1101 node = rb_entry(next, struct btf_node, rb_node);
1102 next = rb_next(&node->rb_node);
1103 ret = do_write(ff, &node->id,
1104 sizeof(u32) * 2 + node->data_size);
1105 if (ret < 0)
1106 goto out;
1107 }
1108 out:
1109 up_read(&env->bpf_progs.lock);
1110 return ret;
1111 }
1112 #endif // HAVE_LIBBPF_SUPPORT
1113
cpu_cache_level__sort(const void * a,const void * b)1114 static int cpu_cache_level__sort(const void *a, const void *b)
1115 {
1116 struct cpu_cache_level *cache_a = (struct cpu_cache_level *)a;
1117 struct cpu_cache_level *cache_b = (struct cpu_cache_level *)b;
1118
1119 return cache_a->level - cache_b->level;
1120 }
1121
cpu_cache_level__cmp(struct cpu_cache_level * a,struct cpu_cache_level * b)1122 static bool cpu_cache_level__cmp(struct cpu_cache_level *a, struct cpu_cache_level *b)
1123 {
1124 if (a->level != b->level)
1125 return false;
1126
1127 if (a->line_size != b->line_size)
1128 return false;
1129
1130 if (a->sets != b->sets)
1131 return false;
1132
1133 if (a->ways != b->ways)
1134 return false;
1135
1136 if (strcmp(a->type, b->type))
1137 return false;
1138
1139 if (strcmp(a->size, b->size))
1140 return false;
1141
1142 if (strcmp(a->map, b->map))
1143 return false;
1144
1145 return true;
1146 }
1147
cpu_cache_level__read(struct cpu_cache_level * cache,u32 cpu,u16 level)1148 static int cpu_cache_level__read(struct cpu_cache_level *cache, u32 cpu, u16 level)
1149 {
1150 char path[PATH_MAX], file[PATH_MAX];
1151 struct stat st;
1152 size_t len;
1153
1154 scnprintf(path, PATH_MAX, "devices/system/cpu/cpu%d/cache/index%d/", cpu, level);
1155 scnprintf(file, PATH_MAX, "%s/%s", sysfs__mountpoint(), path);
1156
1157 if (stat(file, &st))
1158 return 1;
1159
1160 scnprintf(file, PATH_MAX, "%s/level", path);
1161 if (sysfs__read_int(file, (int *) &cache->level))
1162 return -1;
1163
1164 scnprintf(file, PATH_MAX, "%s/coherency_line_size", path);
1165 if (sysfs__read_int(file, (int *) &cache->line_size))
1166 return -1;
1167
1168 scnprintf(file, PATH_MAX, "%s/number_of_sets", path);
1169 if (sysfs__read_int(file, (int *) &cache->sets))
1170 return -1;
1171
1172 scnprintf(file, PATH_MAX, "%s/ways_of_associativity", path);
1173 if (sysfs__read_int(file, (int *) &cache->ways))
1174 return -1;
1175
1176 scnprintf(file, PATH_MAX, "%s/type", path);
1177 if (sysfs__read_str(file, &cache->type, &len))
1178 return -1;
1179
1180 cache->type[len] = 0;
1181 cache->type = strim(cache->type);
1182
1183 scnprintf(file, PATH_MAX, "%s/size", path);
1184 if (sysfs__read_str(file, &cache->size, &len)) {
1185 zfree(&cache->type);
1186 return -1;
1187 }
1188
1189 cache->size[len] = 0;
1190 cache->size = strim(cache->size);
1191
1192 scnprintf(file, PATH_MAX, "%s/shared_cpu_list", path);
1193 if (sysfs__read_str(file, &cache->map, &len)) {
1194 zfree(&cache->size);
1195 zfree(&cache->type);
1196 return -1;
1197 }
1198
1199 cache->map[len] = 0;
1200 cache->map = strim(cache->map);
1201 return 0;
1202 }
1203
cpu_cache_level__fprintf(FILE * out,struct cpu_cache_level * c)1204 static void cpu_cache_level__fprintf(FILE *out, struct cpu_cache_level *c)
1205 {
1206 fprintf(out, "L%d %-15s %8s [%s]\n", c->level, c->type, c->size, c->map);
1207 }
1208
1209 #define MAX_CACHE_LVL 4
1210
build_caches(struct cpu_cache_level caches[],u32 * cntp)1211 static int build_caches(struct cpu_cache_level caches[], u32 *cntp)
1212 {
1213 u32 i, cnt = 0;
1214 u32 nr, cpu;
1215 u16 level;
1216
1217 nr = cpu__max_cpu().cpu;
1218
1219 for (cpu = 0; cpu < nr; cpu++) {
1220 for (level = 0; level < MAX_CACHE_LVL; level++) {
1221 struct cpu_cache_level c;
1222 int err;
1223
1224 err = cpu_cache_level__read(&c, cpu, level);
1225 if (err < 0)
1226 return err;
1227
1228 if (err == 1)
1229 break;
1230
1231 for (i = 0; i < cnt; i++) {
1232 if (cpu_cache_level__cmp(&c, &caches[i]))
1233 break;
1234 }
1235
1236 if (i == cnt)
1237 caches[cnt++] = c;
1238 else
1239 cpu_cache_level__free(&c);
1240 }
1241 }
1242 *cntp = cnt;
1243 return 0;
1244 }
1245
write_cache(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1246 static int write_cache(struct feat_fd *ff,
1247 struct evlist *evlist __maybe_unused)
1248 {
1249 u32 max_caches = cpu__max_cpu().cpu * MAX_CACHE_LVL;
1250 struct cpu_cache_level caches[max_caches];
1251 u32 cnt = 0, i, version = 1;
1252 int ret;
1253
1254 ret = build_caches(caches, &cnt);
1255 if (ret)
1256 goto out;
1257
1258 qsort(&caches, cnt, sizeof(struct cpu_cache_level), cpu_cache_level__sort);
1259
1260 ret = do_write(ff, &version, sizeof(u32));
1261 if (ret < 0)
1262 goto out;
1263
1264 ret = do_write(ff, &cnt, sizeof(u32));
1265 if (ret < 0)
1266 goto out;
1267
1268 for (i = 0; i < cnt; i++) {
1269 struct cpu_cache_level *c = &caches[i];
1270
1271 #define _W(v) \
1272 ret = do_write(ff, &c->v, sizeof(u32)); \
1273 if (ret < 0) \
1274 goto out;
1275
1276 _W(level)
1277 _W(line_size)
1278 _W(sets)
1279 _W(ways)
1280 #undef _W
1281
1282 #define _W(v) \
1283 ret = do_write_string(ff, (const char *) c->v); \
1284 if (ret < 0) \
1285 goto out;
1286
1287 _W(type)
1288 _W(size)
1289 _W(map)
1290 #undef _W
1291 }
1292
1293 out:
1294 for (i = 0; i < cnt; i++)
1295 cpu_cache_level__free(&caches[i]);
1296 return ret;
1297 }
1298
write_stat(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1299 static int write_stat(struct feat_fd *ff __maybe_unused,
1300 struct evlist *evlist __maybe_unused)
1301 {
1302 return 0;
1303 }
1304
write_sample_time(struct feat_fd * ff,struct evlist * evlist)1305 static int write_sample_time(struct feat_fd *ff,
1306 struct evlist *evlist)
1307 {
1308 int ret;
1309
1310 ret = do_write(ff, &evlist->first_sample_time,
1311 sizeof(evlist->first_sample_time));
1312 if (ret < 0)
1313 return ret;
1314
1315 return do_write(ff, &evlist->last_sample_time,
1316 sizeof(evlist->last_sample_time));
1317 }
1318
1319
memory_node__read(struct memory_node * n,unsigned long idx)1320 static int memory_node__read(struct memory_node *n, unsigned long idx)
1321 {
1322 unsigned int phys, size = 0;
1323 char path[PATH_MAX];
1324 struct dirent *ent;
1325 DIR *dir;
1326
1327 #define for_each_memory(mem, dir) \
1328 while ((ent = readdir(dir))) \
1329 if (strcmp(ent->d_name, ".") && \
1330 strcmp(ent->d_name, "..") && \
1331 sscanf(ent->d_name, "memory%u", &mem) == 1)
1332
1333 scnprintf(path, PATH_MAX,
1334 "%s/devices/system/node/node%lu",
1335 sysfs__mountpoint(), idx);
1336
1337 dir = opendir(path);
1338 if (!dir) {
1339 pr_warning("failed: can't open memory sysfs data\n");
1340 return -1;
1341 }
1342
1343 for_each_memory(phys, dir) {
1344 size = max(phys, size);
1345 }
1346
1347 size++;
1348
1349 n->set = bitmap_zalloc(size);
1350 if (!n->set) {
1351 closedir(dir);
1352 return -ENOMEM;
1353 }
1354
1355 n->node = idx;
1356 n->size = size;
1357
1358 rewinddir(dir);
1359
1360 for_each_memory(phys, dir) {
1361 set_bit(phys, n->set);
1362 }
1363
1364 closedir(dir);
1365 return 0;
1366 }
1367
memory_node__sort(const void * a,const void * b)1368 static int memory_node__sort(const void *a, const void *b)
1369 {
1370 const struct memory_node *na = a;
1371 const struct memory_node *nb = b;
1372
1373 return na->node - nb->node;
1374 }
1375
build_mem_topology(struct memory_node * nodes,u64 size,u64 * cntp)1376 static int build_mem_topology(struct memory_node *nodes, u64 size, u64 *cntp)
1377 {
1378 char path[PATH_MAX];
1379 struct dirent *ent;
1380 DIR *dir;
1381 u64 cnt = 0;
1382 int ret = 0;
1383
1384 scnprintf(path, PATH_MAX, "%s/devices/system/node/",
1385 sysfs__mountpoint());
1386
1387 dir = opendir(path);
1388 if (!dir) {
1389 pr_debug2("%s: couldn't read %s, does this arch have topology information?\n",
1390 __func__, path);
1391 return -1;
1392 }
1393
1394 while (!ret && (ent = readdir(dir))) {
1395 unsigned int idx;
1396 int r;
1397
1398 if (!strcmp(ent->d_name, ".") ||
1399 !strcmp(ent->d_name, ".."))
1400 continue;
1401
1402 r = sscanf(ent->d_name, "node%u", &idx);
1403 if (r != 1)
1404 continue;
1405
1406 if (WARN_ONCE(cnt >= size,
1407 "failed to write MEM_TOPOLOGY, way too many nodes\n")) {
1408 closedir(dir);
1409 return -1;
1410 }
1411
1412 ret = memory_node__read(&nodes[cnt++], idx);
1413 }
1414
1415 *cntp = cnt;
1416 closedir(dir);
1417
1418 if (!ret)
1419 qsort(nodes, cnt, sizeof(nodes[0]), memory_node__sort);
1420
1421 return ret;
1422 }
1423
1424 #define MAX_MEMORY_NODES 2000
1425
1426 /*
1427 * The MEM_TOPOLOGY holds physical memory map for every
1428 * node in system. The format of data is as follows:
1429 *
1430 * 0 - version | for future changes
1431 * 8 - block_size_bytes | /sys/devices/system/memory/block_size_bytes
1432 * 16 - count | number of nodes
1433 *
1434 * For each node we store map of physical indexes for
1435 * each node:
1436 *
1437 * 32 - node id | node index
1438 * 40 - size | size of bitmap
1439 * 48 - bitmap | bitmap of memory indexes that belongs to node
1440 */
write_mem_topology(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1441 static int write_mem_topology(struct feat_fd *ff __maybe_unused,
1442 struct evlist *evlist __maybe_unused)
1443 {
1444 static struct memory_node nodes[MAX_MEMORY_NODES];
1445 u64 bsize, version = 1, i, nr;
1446 int ret;
1447
1448 ret = sysfs__read_xll("devices/system/memory/block_size_bytes",
1449 (unsigned long long *) &bsize);
1450 if (ret)
1451 return ret;
1452
1453 ret = build_mem_topology(&nodes[0], MAX_MEMORY_NODES, &nr);
1454 if (ret)
1455 return ret;
1456
1457 ret = do_write(ff, &version, sizeof(version));
1458 if (ret < 0)
1459 goto out;
1460
1461 ret = do_write(ff, &bsize, sizeof(bsize));
1462 if (ret < 0)
1463 goto out;
1464
1465 ret = do_write(ff, &nr, sizeof(nr));
1466 if (ret < 0)
1467 goto out;
1468
1469 for (i = 0; i < nr; i++) {
1470 struct memory_node *n = &nodes[i];
1471
1472 #define _W(v) \
1473 ret = do_write(ff, &n->v, sizeof(n->v)); \
1474 if (ret < 0) \
1475 goto out;
1476
1477 _W(node)
1478 _W(size)
1479
1480 #undef _W
1481
1482 ret = do_write_bitmap(ff, n->set, n->size);
1483 if (ret < 0)
1484 goto out;
1485 }
1486
1487 out:
1488 return ret;
1489 }
1490
write_compressed(struct feat_fd * ff __maybe_unused,struct evlist * evlist __maybe_unused)1491 static int write_compressed(struct feat_fd *ff __maybe_unused,
1492 struct evlist *evlist __maybe_unused)
1493 {
1494 int ret;
1495
1496 ret = do_write(ff, &(ff->ph->env.comp_ver), sizeof(ff->ph->env.comp_ver));
1497 if (ret)
1498 return ret;
1499
1500 ret = do_write(ff, &(ff->ph->env.comp_type), sizeof(ff->ph->env.comp_type));
1501 if (ret)
1502 return ret;
1503
1504 ret = do_write(ff, &(ff->ph->env.comp_level), sizeof(ff->ph->env.comp_level));
1505 if (ret)
1506 return ret;
1507
1508 ret = do_write(ff, &(ff->ph->env.comp_ratio), sizeof(ff->ph->env.comp_ratio));
1509 if (ret)
1510 return ret;
1511
1512 return do_write(ff, &(ff->ph->env.comp_mmap_len), sizeof(ff->ph->env.comp_mmap_len));
1513 }
1514
__write_pmu_caps(struct feat_fd * ff,struct perf_pmu * pmu,bool write_pmu)1515 static int __write_pmu_caps(struct feat_fd *ff, struct perf_pmu *pmu,
1516 bool write_pmu)
1517 {
1518 struct perf_pmu_caps *caps = NULL;
1519 int ret;
1520
1521 ret = do_write(ff, &pmu->nr_caps, sizeof(pmu->nr_caps));
1522 if (ret < 0)
1523 return ret;
1524
1525 list_for_each_entry(caps, &pmu->caps, list) {
1526 ret = do_write_string(ff, caps->name);
1527 if (ret < 0)
1528 return ret;
1529
1530 ret = do_write_string(ff, caps->value);
1531 if (ret < 0)
1532 return ret;
1533 }
1534
1535 if (write_pmu) {
1536 ret = do_write_string(ff, pmu->name);
1537 if (ret < 0)
1538 return ret;
1539 }
1540
1541 return ret;
1542 }
1543
write_cpu_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1544 static int write_cpu_pmu_caps(struct feat_fd *ff,
1545 struct evlist *evlist __maybe_unused)
1546 {
1547 struct perf_pmu *cpu_pmu = perf_pmu__find("cpu");
1548 int ret;
1549
1550 if (!cpu_pmu)
1551 return -ENOENT;
1552
1553 ret = perf_pmu__caps_parse(cpu_pmu);
1554 if (ret < 0)
1555 return ret;
1556
1557 return __write_pmu_caps(ff, cpu_pmu, false);
1558 }
1559
write_pmu_caps(struct feat_fd * ff,struct evlist * evlist __maybe_unused)1560 static int write_pmu_caps(struct feat_fd *ff,
1561 struct evlist *evlist __maybe_unused)
1562 {
1563 struct perf_pmu *pmu = NULL;
1564 int nr_pmu = 0;
1565 int ret;
1566
1567 while ((pmu = perf_pmu__scan(pmu))) {
1568 if (!pmu->name || !strcmp(pmu->name, "cpu") ||
1569 perf_pmu__caps_parse(pmu) <= 0)
1570 continue;
1571 nr_pmu++;
1572 }
1573
1574 ret = do_write(ff, &nr_pmu, sizeof(nr_pmu));
1575 if (ret < 0)
1576 return ret;
1577
1578 if (!nr_pmu)
1579 return 0;
1580
1581 /*
1582 * Write hybrid pmu caps first to maintain compatibility with
1583 * older perf tool.
1584 */
1585 pmu = NULL;
1586 perf_pmu__for_each_hybrid_pmu(pmu) {
1587 ret = __write_pmu_caps(ff, pmu, true);
1588 if (ret < 0)
1589 return ret;
1590 }
1591
1592 pmu = NULL;
1593 while ((pmu = perf_pmu__scan(pmu))) {
1594 if (!pmu->name || !strcmp(pmu->name, "cpu") ||
1595 !pmu->nr_caps || perf_pmu__is_hybrid(pmu->name))
1596 continue;
1597
1598 ret = __write_pmu_caps(ff, pmu, true);
1599 if (ret < 0)
1600 return ret;
1601 }
1602 return 0;
1603 }
1604
print_hostname(struct feat_fd * ff,FILE * fp)1605 static void print_hostname(struct feat_fd *ff, FILE *fp)
1606 {
1607 fprintf(fp, "# hostname : %s\n", ff->ph->env.hostname);
1608 }
1609
print_osrelease(struct feat_fd * ff,FILE * fp)1610 static void print_osrelease(struct feat_fd *ff, FILE *fp)
1611 {
1612 fprintf(fp, "# os release : %s\n", ff->ph->env.os_release);
1613 }
1614
print_arch(struct feat_fd * ff,FILE * fp)1615 static void print_arch(struct feat_fd *ff, FILE *fp)
1616 {
1617 fprintf(fp, "# arch : %s\n", ff->ph->env.arch);
1618 }
1619
print_cpudesc(struct feat_fd * ff,FILE * fp)1620 static void print_cpudesc(struct feat_fd *ff, FILE *fp)
1621 {
1622 fprintf(fp, "# cpudesc : %s\n", ff->ph->env.cpu_desc);
1623 }
1624
print_nrcpus(struct feat_fd * ff,FILE * fp)1625 static void print_nrcpus(struct feat_fd *ff, FILE *fp)
1626 {
1627 fprintf(fp, "# nrcpus online : %u\n", ff->ph->env.nr_cpus_online);
1628 fprintf(fp, "# nrcpus avail : %u\n", ff->ph->env.nr_cpus_avail);
1629 }
1630
print_version(struct feat_fd * ff,FILE * fp)1631 static void print_version(struct feat_fd *ff, FILE *fp)
1632 {
1633 fprintf(fp, "# perf version : %s\n", ff->ph->env.version);
1634 }
1635
print_cmdline(struct feat_fd * ff,FILE * fp)1636 static void print_cmdline(struct feat_fd *ff, FILE *fp)
1637 {
1638 int nr, i;
1639
1640 nr = ff->ph->env.nr_cmdline;
1641
1642 fprintf(fp, "# cmdline : ");
1643
1644 for (i = 0; i < nr; i++) {
1645 char *argv_i = strdup(ff->ph->env.cmdline_argv[i]);
1646 if (!argv_i) {
1647 fprintf(fp, "%s ", ff->ph->env.cmdline_argv[i]);
1648 } else {
1649 char *mem = argv_i;
1650 do {
1651 char *quote = strchr(argv_i, '\'');
1652 if (!quote)
1653 break;
1654 *quote++ = '\0';
1655 fprintf(fp, "%s\\\'", argv_i);
1656 argv_i = quote;
1657 } while (1);
1658 fprintf(fp, "%s ", argv_i);
1659 free(mem);
1660 }
1661 }
1662 fputc('\n', fp);
1663 }
1664
print_cpu_topology(struct feat_fd * ff,FILE * fp)1665 static void print_cpu_topology(struct feat_fd *ff, FILE *fp)
1666 {
1667 struct perf_header *ph = ff->ph;
1668 int cpu_nr = ph->env.nr_cpus_avail;
1669 int nr, i;
1670 char *str;
1671
1672 nr = ph->env.nr_sibling_cores;
1673 str = ph->env.sibling_cores;
1674
1675 for (i = 0; i < nr; i++) {
1676 fprintf(fp, "# sibling sockets : %s\n", str);
1677 str += strlen(str) + 1;
1678 }
1679
1680 if (ph->env.nr_sibling_dies) {
1681 nr = ph->env.nr_sibling_dies;
1682 str = ph->env.sibling_dies;
1683
1684 for (i = 0; i < nr; i++) {
1685 fprintf(fp, "# sibling dies : %s\n", str);
1686 str += strlen(str) + 1;
1687 }
1688 }
1689
1690 nr = ph->env.nr_sibling_threads;
1691 str = ph->env.sibling_threads;
1692
1693 for (i = 0; i < nr; i++) {
1694 fprintf(fp, "# sibling threads : %s\n", str);
1695 str += strlen(str) + 1;
1696 }
1697
1698 if (ph->env.nr_sibling_dies) {
1699 if (ph->env.cpu != NULL) {
1700 for (i = 0; i < cpu_nr; i++)
1701 fprintf(fp, "# CPU %d: Core ID %d, "
1702 "Die ID %d, Socket ID %d\n",
1703 i, ph->env.cpu[i].core_id,
1704 ph->env.cpu[i].die_id,
1705 ph->env.cpu[i].socket_id);
1706 } else
1707 fprintf(fp, "# Core ID, Die ID and Socket ID "
1708 "information is not available\n");
1709 } else {
1710 if (ph->env.cpu != NULL) {
1711 for (i = 0; i < cpu_nr; i++)
1712 fprintf(fp, "# CPU %d: Core ID %d, "
1713 "Socket ID %d\n",
1714 i, ph->env.cpu[i].core_id,
1715 ph->env.cpu[i].socket_id);
1716 } else
1717 fprintf(fp, "# Core ID and Socket ID "
1718 "information is not available\n");
1719 }
1720 }
1721
print_clockid(struct feat_fd * ff,FILE * fp)1722 static void print_clockid(struct feat_fd *ff, FILE *fp)
1723 {
1724 fprintf(fp, "# clockid frequency: %"PRIu64" MHz\n",
1725 ff->ph->env.clock.clockid_res_ns * 1000);
1726 }
1727
print_clock_data(struct feat_fd * ff,FILE * fp)1728 static void print_clock_data(struct feat_fd *ff, FILE *fp)
1729 {
1730 struct timespec clockid_ns;
1731 char tstr[64], date[64];
1732 struct timeval tod_ns;
1733 clockid_t clockid;
1734 struct tm ltime;
1735 u64 ref;
1736
1737 if (!ff->ph->env.clock.enabled) {
1738 fprintf(fp, "# reference time disabled\n");
1739 return;
1740 }
1741
1742 /* Compute TOD time. */
1743 ref = ff->ph->env.clock.tod_ns;
1744 tod_ns.tv_sec = ref / NSEC_PER_SEC;
1745 ref -= tod_ns.tv_sec * NSEC_PER_SEC;
1746 tod_ns.tv_usec = ref / NSEC_PER_USEC;
1747
1748 /* Compute clockid time. */
1749 ref = ff->ph->env.clock.clockid_ns;
1750 clockid_ns.tv_sec = ref / NSEC_PER_SEC;
1751 ref -= clockid_ns.tv_sec * NSEC_PER_SEC;
1752 clockid_ns.tv_nsec = ref;
1753
1754 clockid = ff->ph->env.clock.clockid;
1755
1756 if (localtime_r(&tod_ns.tv_sec, <ime) == NULL)
1757 snprintf(tstr, sizeof(tstr), "<error>");
1758 else {
1759 strftime(date, sizeof(date), "%F %T", <ime);
1760 scnprintf(tstr, sizeof(tstr), "%s.%06d",
1761 date, (int) tod_ns.tv_usec);
1762 }
1763
1764 fprintf(fp, "# clockid: %s (%u)\n", clockid_name(clockid), clockid);
1765 fprintf(fp, "# reference time: %s = %ld.%06d (TOD) = %ld.%09ld (%s)\n",
1766 tstr, (long) tod_ns.tv_sec, (int) tod_ns.tv_usec,
1767 (long) clockid_ns.tv_sec, clockid_ns.tv_nsec,
1768 clockid_name(clockid));
1769 }
1770
print_hybrid_topology(struct feat_fd * ff,FILE * fp)1771 static void print_hybrid_topology(struct feat_fd *ff, FILE *fp)
1772 {
1773 int i;
1774 struct hybrid_node *n;
1775
1776 fprintf(fp, "# hybrid cpu system:\n");
1777 for (i = 0; i < ff->ph->env.nr_hybrid_nodes; i++) {
1778 n = &ff->ph->env.hybrid_nodes[i];
1779 fprintf(fp, "# %s cpu list : %s\n", n->pmu_name, n->cpus);
1780 }
1781 }
1782
print_dir_format(struct feat_fd * ff,FILE * fp)1783 static void print_dir_format(struct feat_fd *ff, FILE *fp)
1784 {
1785 struct perf_session *session;
1786 struct perf_data *data;
1787
1788 session = container_of(ff->ph, struct perf_session, header);
1789 data = session->data;
1790
1791 fprintf(fp, "# directory data version : %"PRIu64"\n", data->dir.version);
1792 }
1793
1794 #ifdef HAVE_LIBBPF_SUPPORT
print_bpf_prog_info(struct feat_fd * ff,FILE * fp)1795 static void print_bpf_prog_info(struct feat_fd *ff, FILE *fp)
1796 {
1797 struct perf_env *env = &ff->ph->env;
1798 struct rb_root *root;
1799 struct rb_node *next;
1800
1801 down_read(&env->bpf_progs.lock);
1802
1803 root = &env->bpf_progs.infos;
1804 next = rb_first(root);
1805
1806 while (next) {
1807 struct bpf_prog_info_node *node;
1808
1809 node = rb_entry(next, struct bpf_prog_info_node, rb_node);
1810 next = rb_next(&node->rb_node);
1811
1812 bpf_event__print_bpf_prog_info(&node->info_linear->info,
1813 env, fp);
1814 }
1815
1816 up_read(&env->bpf_progs.lock);
1817 }
1818
print_bpf_btf(struct feat_fd * ff,FILE * fp)1819 static void print_bpf_btf(struct feat_fd *ff, FILE *fp)
1820 {
1821 struct perf_env *env = &ff->ph->env;
1822 struct rb_root *root;
1823 struct rb_node *next;
1824
1825 down_read(&env->bpf_progs.lock);
1826
1827 root = &env->bpf_progs.btfs;
1828 next = rb_first(root);
1829
1830 while (next) {
1831 struct btf_node *node;
1832
1833 node = rb_entry(next, struct btf_node, rb_node);
1834 next = rb_next(&node->rb_node);
1835 fprintf(fp, "# btf info of id %u\n", node->id);
1836 }
1837
1838 up_read(&env->bpf_progs.lock);
1839 }
1840 #endif // HAVE_LIBBPF_SUPPORT
1841
free_event_desc(struct evsel * events)1842 static void free_event_desc(struct evsel *events)
1843 {
1844 struct evsel *evsel;
1845
1846 if (!events)
1847 return;
1848
1849 for (evsel = events; evsel->core.attr.size; evsel++) {
1850 zfree(&evsel->name);
1851 zfree(&evsel->core.id);
1852 }
1853
1854 free(events);
1855 }
1856
perf_attr_check(struct perf_event_attr * attr)1857 static bool perf_attr_check(struct perf_event_attr *attr)
1858 {
1859 if (attr->__reserved_1 || attr->__reserved_2 || attr->__reserved_3) {
1860 pr_warning("Reserved bits are set unexpectedly. "
1861 "Please update perf tool.\n");
1862 return false;
1863 }
1864
1865 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1)) {
1866 pr_warning("Unknown sample type (0x%llx) is detected. "
1867 "Please update perf tool.\n",
1868 attr->sample_type);
1869 return false;
1870 }
1871
1872 if (attr->read_format & ~(PERF_FORMAT_MAX-1)) {
1873 pr_warning("Unknown read format (0x%llx) is detected. "
1874 "Please update perf tool.\n",
1875 attr->read_format);
1876 return false;
1877 }
1878
1879 if ((attr->sample_type & PERF_SAMPLE_BRANCH_STACK) &&
1880 (attr->branch_sample_type & ~(PERF_SAMPLE_BRANCH_MAX-1))) {
1881 pr_warning("Unknown branch sample type (0x%llx) is detected. "
1882 "Please update perf tool.\n",
1883 attr->branch_sample_type);
1884
1885 return false;
1886 }
1887
1888 return true;
1889 }
1890
read_event_desc(struct feat_fd * ff)1891 static struct evsel *read_event_desc(struct feat_fd *ff)
1892 {
1893 struct evsel *evsel, *events = NULL;
1894 u64 *id;
1895 void *buf = NULL;
1896 u32 nre, sz, nr, i, j;
1897 size_t msz;
1898
1899 /* number of events */
1900 if (do_read_u32(ff, &nre))
1901 goto error;
1902
1903 if (do_read_u32(ff, &sz))
1904 goto error;
1905
1906 /* buffer to hold on file attr struct */
1907 buf = malloc(sz);
1908 if (!buf)
1909 goto error;
1910
1911 /* the last event terminates with evsel->core.attr.size == 0: */
1912 events = calloc(nre + 1, sizeof(*events));
1913 if (!events)
1914 goto error;
1915
1916 msz = sizeof(evsel->core.attr);
1917 if (sz < msz)
1918 msz = sz;
1919
1920 for (i = 0, evsel = events; i < nre; evsel++, i++) {
1921 evsel->core.idx = i;
1922
1923 /*
1924 * must read entire on-file attr struct to
1925 * sync up with layout.
1926 */
1927 if (__do_read(ff, buf, sz))
1928 goto error;
1929
1930 if (ff->ph->needs_swap)
1931 perf_event__attr_swap(buf);
1932
1933 memcpy(&evsel->core.attr, buf, msz);
1934
1935 if (!perf_attr_check(&evsel->core.attr))
1936 goto error;
1937
1938 if (do_read_u32(ff, &nr))
1939 goto error;
1940
1941 if (ff->ph->needs_swap)
1942 evsel->needs_swap = true;
1943
1944 evsel->name = do_read_string(ff);
1945 if (!evsel->name)
1946 goto error;
1947
1948 if (!nr)
1949 continue;
1950
1951 id = calloc(nr, sizeof(*id));
1952 if (!id)
1953 goto error;
1954 evsel->core.ids = nr;
1955 evsel->core.id = id;
1956
1957 for (j = 0 ; j < nr; j++) {
1958 if (do_read_u64(ff, id))
1959 goto error;
1960 id++;
1961 }
1962 }
1963 out:
1964 free(buf);
1965 return events;
1966 error:
1967 free_event_desc(events);
1968 events = NULL;
1969 goto out;
1970 }
1971
__desc_attr__fprintf(FILE * fp,const char * name,const char * val,void * priv __maybe_unused)1972 static int __desc_attr__fprintf(FILE *fp, const char *name, const char *val,
1973 void *priv __maybe_unused)
1974 {
1975 return fprintf(fp, ", %s = %s", name, val);
1976 }
1977
print_event_desc(struct feat_fd * ff,FILE * fp)1978 static void print_event_desc(struct feat_fd *ff, FILE *fp)
1979 {
1980 struct evsel *evsel, *events;
1981 u32 j;
1982 u64 *id;
1983
1984 if (ff->events)
1985 events = ff->events;
1986 else
1987 events = read_event_desc(ff);
1988
1989 if (!events) {
1990 fprintf(fp, "# event desc: not available or unable to read\n");
1991 return;
1992 }
1993
1994 for (evsel = events; evsel->core.attr.size; evsel++) {
1995 fprintf(fp, "# event : name = %s, ", evsel->name);
1996
1997 if (evsel->core.ids) {
1998 fprintf(fp, ", id = {");
1999 for (j = 0, id = evsel->core.id; j < evsel->core.ids; j++, id++) {
2000 if (j)
2001 fputc(',', fp);
2002 fprintf(fp, " %"PRIu64, *id);
2003 }
2004 fprintf(fp, " }");
2005 }
2006
2007 perf_event_attr__fprintf(fp, &evsel->core.attr, __desc_attr__fprintf, NULL);
2008
2009 fputc('\n', fp);
2010 }
2011
2012 free_event_desc(events);
2013 ff->events = NULL;
2014 }
2015
print_total_mem(struct feat_fd * ff,FILE * fp)2016 static void print_total_mem(struct feat_fd *ff, FILE *fp)
2017 {
2018 fprintf(fp, "# total memory : %llu kB\n", ff->ph->env.total_mem);
2019 }
2020
print_numa_topology(struct feat_fd * ff,FILE * fp)2021 static void print_numa_topology(struct feat_fd *ff, FILE *fp)
2022 {
2023 int i;
2024 struct numa_node *n;
2025
2026 for (i = 0; i < ff->ph->env.nr_numa_nodes; i++) {
2027 n = &ff->ph->env.numa_nodes[i];
2028
2029 fprintf(fp, "# node%u meminfo : total = %"PRIu64" kB,"
2030 " free = %"PRIu64" kB\n",
2031 n->node, n->mem_total, n->mem_free);
2032
2033 fprintf(fp, "# node%u cpu list : ", n->node);
2034 cpu_map__fprintf(n->map, fp);
2035 }
2036 }
2037
print_cpuid(struct feat_fd * ff,FILE * fp)2038 static void print_cpuid(struct feat_fd *ff, FILE *fp)
2039 {
2040 fprintf(fp, "# cpuid : %s\n", ff->ph->env.cpuid);
2041 }
2042
print_branch_stack(struct feat_fd * ff __maybe_unused,FILE * fp)2043 static void print_branch_stack(struct feat_fd *ff __maybe_unused, FILE *fp)
2044 {
2045 fprintf(fp, "# contains samples with branch stack\n");
2046 }
2047
print_auxtrace(struct feat_fd * ff __maybe_unused,FILE * fp)2048 static void print_auxtrace(struct feat_fd *ff __maybe_unused, FILE *fp)
2049 {
2050 fprintf(fp, "# contains AUX area data (e.g. instruction trace)\n");
2051 }
2052
print_stat(struct feat_fd * ff __maybe_unused,FILE * fp)2053 static void print_stat(struct feat_fd *ff __maybe_unused, FILE *fp)
2054 {
2055 fprintf(fp, "# contains stat data\n");
2056 }
2057
print_cache(struct feat_fd * ff,FILE * fp __maybe_unused)2058 static void print_cache(struct feat_fd *ff, FILE *fp __maybe_unused)
2059 {
2060 int i;
2061
2062 fprintf(fp, "# CPU cache info:\n");
2063 for (i = 0; i < ff->ph->env.caches_cnt; i++) {
2064 fprintf(fp, "# ");
2065 cpu_cache_level__fprintf(fp, &ff->ph->env.caches[i]);
2066 }
2067 }
2068
print_compressed(struct feat_fd * ff,FILE * fp)2069 static void print_compressed(struct feat_fd *ff, FILE *fp)
2070 {
2071 fprintf(fp, "# compressed : %s, level = %d, ratio = %d\n",
2072 ff->ph->env.comp_type == PERF_COMP_ZSTD ? "Zstd" : "Unknown",
2073 ff->ph->env.comp_level, ff->ph->env.comp_ratio);
2074 }
2075
__print_pmu_caps(FILE * fp,int nr_caps,char ** caps,char * pmu_name)2076 static void __print_pmu_caps(FILE *fp, int nr_caps, char **caps, char *pmu_name)
2077 {
2078 const char *delimiter = "";
2079 int i;
2080
2081 if (!nr_caps) {
2082 fprintf(fp, "# %s pmu capabilities: not available\n", pmu_name);
2083 return;
2084 }
2085
2086 fprintf(fp, "# %s pmu capabilities: ", pmu_name);
2087 for (i = 0; i < nr_caps; i++) {
2088 fprintf(fp, "%s%s", delimiter, caps[i]);
2089 delimiter = ", ";
2090 }
2091
2092 fprintf(fp, "\n");
2093 }
2094
print_cpu_pmu_caps(struct feat_fd * ff,FILE * fp)2095 static void print_cpu_pmu_caps(struct feat_fd *ff, FILE *fp)
2096 {
2097 __print_pmu_caps(fp, ff->ph->env.nr_cpu_pmu_caps,
2098 ff->ph->env.cpu_pmu_caps, (char *)"cpu");
2099 }
2100
print_pmu_caps(struct feat_fd * ff,FILE * fp)2101 static void print_pmu_caps(struct feat_fd *ff, FILE *fp)
2102 {
2103 struct pmu_caps *pmu_caps;
2104
2105 for (int i = 0; i < ff->ph->env.nr_pmus_with_caps; i++) {
2106 pmu_caps = &ff->ph->env.pmu_caps[i];
2107 __print_pmu_caps(fp, pmu_caps->nr_caps, pmu_caps->caps,
2108 pmu_caps->pmu_name);
2109 }
2110 }
2111
print_pmu_mappings(struct feat_fd * ff,FILE * fp)2112 static void print_pmu_mappings(struct feat_fd *ff, FILE *fp)
2113 {
2114 const char *delimiter = "# pmu mappings: ";
2115 char *str, *tmp;
2116 u32 pmu_num;
2117 u32 type;
2118
2119 pmu_num = ff->ph->env.nr_pmu_mappings;
2120 if (!pmu_num) {
2121 fprintf(fp, "# pmu mappings: not available\n");
2122 return;
2123 }
2124
2125 str = ff->ph->env.pmu_mappings;
2126
2127 while (pmu_num) {
2128 type = strtoul(str, &tmp, 0);
2129 if (*tmp != ':')
2130 goto error;
2131
2132 str = tmp + 1;
2133 fprintf(fp, "%s%s = %" PRIu32, delimiter, str, type);
2134
2135 delimiter = ", ";
2136 str += strlen(str) + 1;
2137 pmu_num--;
2138 }
2139
2140 fprintf(fp, "\n");
2141
2142 if (!pmu_num)
2143 return;
2144 error:
2145 fprintf(fp, "# pmu mappings: unable to read\n");
2146 }
2147
print_group_desc(struct feat_fd * ff,FILE * fp)2148 static void print_group_desc(struct feat_fd *ff, FILE *fp)
2149 {
2150 struct perf_session *session;
2151 struct evsel *evsel;
2152 u32 nr = 0;
2153
2154 session = container_of(ff->ph, struct perf_session, header);
2155
2156 evlist__for_each_entry(session->evlist, evsel) {
2157 if (evsel__is_group_leader(evsel) && evsel->core.nr_members > 1) {
2158 fprintf(fp, "# group: %s{%s", evsel->group_name ?: "", evsel__name(evsel));
2159
2160 nr = evsel->core.nr_members - 1;
2161 } else if (nr) {
2162 fprintf(fp, ",%s", evsel__name(evsel));
2163
2164 if (--nr == 0)
2165 fprintf(fp, "}\n");
2166 }
2167 }
2168 }
2169
print_sample_time(struct feat_fd * ff,FILE * fp)2170 static void print_sample_time(struct feat_fd *ff, FILE *fp)
2171 {
2172 struct perf_session *session;
2173 char time_buf[32];
2174 double d;
2175
2176 session = container_of(ff->ph, struct perf_session, header);
2177
2178 timestamp__scnprintf_usec(session->evlist->first_sample_time,
2179 time_buf, sizeof(time_buf));
2180 fprintf(fp, "# time of first sample : %s\n", time_buf);
2181
2182 timestamp__scnprintf_usec(session->evlist->last_sample_time,
2183 time_buf, sizeof(time_buf));
2184 fprintf(fp, "# time of last sample : %s\n", time_buf);
2185
2186 d = (double)(session->evlist->last_sample_time -
2187 session->evlist->first_sample_time) / NSEC_PER_MSEC;
2188
2189 fprintf(fp, "# sample duration : %10.3f ms\n", d);
2190 }
2191
memory_node__fprintf(struct memory_node * n,unsigned long long bsize,FILE * fp)2192 static void memory_node__fprintf(struct memory_node *n,
2193 unsigned long long bsize, FILE *fp)
2194 {
2195 char buf_map[100], buf_size[50];
2196 unsigned long long size;
2197
2198 size = bsize * bitmap_weight(n->set, n->size);
2199 unit_number__scnprintf(buf_size, 50, size);
2200
2201 bitmap_scnprintf(n->set, n->size, buf_map, 100);
2202 fprintf(fp, "# %3" PRIu64 " [%s]: %s\n", n->node, buf_size, buf_map);
2203 }
2204
print_mem_topology(struct feat_fd * ff,FILE * fp)2205 static void print_mem_topology(struct feat_fd *ff, FILE *fp)
2206 {
2207 struct memory_node *nodes;
2208 int i, nr;
2209
2210 nodes = ff->ph->env.memory_nodes;
2211 nr = ff->ph->env.nr_memory_nodes;
2212
2213 fprintf(fp, "# memory nodes (nr %d, block size 0x%llx):\n",
2214 nr, ff->ph->env.memory_bsize);
2215
2216 for (i = 0; i < nr; i++) {
2217 memory_node__fprintf(&nodes[i], ff->ph->env.memory_bsize, fp);
2218 }
2219 }
2220
__event_process_build_id(struct perf_record_header_build_id * bev,char * filename,struct perf_session * session)2221 static int __event_process_build_id(struct perf_record_header_build_id *bev,
2222 char *filename,
2223 struct perf_session *session)
2224 {
2225 int err = -1;
2226 struct machine *machine;
2227 u16 cpumode;
2228 struct dso *dso;
2229 enum dso_space_type dso_space;
2230
2231 machine = perf_session__findnew_machine(session, bev->pid);
2232 if (!machine)
2233 goto out;
2234
2235 cpumode = bev->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
2236
2237 switch (cpumode) {
2238 case PERF_RECORD_MISC_KERNEL:
2239 dso_space = DSO_SPACE__KERNEL;
2240 break;
2241 case PERF_RECORD_MISC_GUEST_KERNEL:
2242 dso_space = DSO_SPACE__KERNEL_GUEST;
2243 break;
2244 case PERF_RECORD_MISC_USER:
2245 case PERF_RECORD_MISC_GUEST_USER:
2246 dso_space = DSO_SPACE__USER;
2247 break;
2248 default:
2249 goto out;
2250 }
2251
2252 dso = machine__findnew_dso(machine, filename);
2253 if (dso != NULL) {
2254 char sbuild_id[SBUILD_ID_SIZE];
2255 struct build_id bid;
2256 size_t size = BUILD_ID_SIZE;
2257
2258 if (bev->header.misc & PERF_RECORD_MISC_BUILD_ID_SIZE)
2259 size = bev->size;
2260
2261 build_id__init(&bid, bev->data, size);
2262 dso__set_build_id(dso, &bid);
2263 dso->header_build_id = 1;
2264
2265 if (dso_space != DSO_SPACE__USER) {
2266 struct kmod_path m = { .name = NULL, };
2267
2268 if (!kmod_path__parse_name(&m, filename) && m.kmod)
2269 dso__set_module_info(dso, &m, machine);
2270
2271 dso->kernel = dso_space;
2272 free(m.name);
2273 }
2274
2275 build_id__sprintf(&dso->bid, sbuild_id);
2276 pr_debug("build id event received for %s: %s [%zu]\n",
2277 dso->long_name, sbuild_id, size);
2278 dso__put(dso);
2279 }
2280
2281 err = 0;
2282 out:
2283 return err;
2284 }
2285
perf_header__read_build_ids_abi_quirk(struct perf_header * header,int input,u64 offset,u64 size)2286 static int perf_header__read_build_ids_abi_quirk(struct perf_header *header,
2287 int input, u64 offset, u64 size)
2288 {
2289 struct perf_session *session = container_of(header, struct perf_session, header);
2290 struct {
2291 struct perf_event_header header;
2292 u8 build_id[PERF_ALIGN(BUILD_ID_SIZE, sizeof(u64))];
2293 char filename[0];
2294 } old_bev;
2295 struct perf_record_header_build_id bev;
2296 char filename[PATH_MAX];
2297 u64 limit = offset + size;
2298
2299 while (offset < limit) {
2300 ssize_t len;
2301
2302 if (readn(input, &old_bev, sizeof(old_bev)) != sizeof(old_bev))
2303 return -1;
2304
2305 if (header->needs_swap)
2306 perf_event_header__bswap(&old_bev.header);
2307
2308 len = old_bev.header.size - sizeof(old_bev);
2309 if (readn(input, filename, len) != len)
2310 return -1;
2311
2312 bev.header = old_bev.header;
2313
2314 /*
2315 * As the pid is the missing value, we need to fill
2316 * it properly. The header.misc value give us nice hint.
2317 */
2318 bev.pid = HOST_KERNEL_ID;
2319 if (bev.header.misc == PERF_RECORD_MISC_GUEST_USER ||
2320 bev.header.misc == PERF_RECORD_MISC_GUEST_KERNEL)
2321 bev.pid = DEFAULT_GUEST_KERNEL_ID;
2322
2323 memcpy(bev.build_id, old_bev.build_id, sizeof(bev.build_id));
2324 __event_process_build_id(&bev, filename, session);
2325
2326 offset += bev.header.size;
2327 }
2328
2329 return 0;
2330 }
2331
perf_header__read_build_ids(struct perf_header * header,int input,u64 offset,u64 size)2332 static int perf_header__read_build_ids(struct perf_header *header,
2333 int input, u64 offset, u64 size)
2334 {
2335 struct perf_session *session = container_of(header, struct perf_session, header);
2336 struct perf_record_header_build_id bev;
2337 char filename[PATH_MAX];
2338 u64 limit = offset + size, orig_offset = offset;
2339 int err = -1;
2340
2341 while (offset < limit) {
2342 ssize_t len;
2343
2344 if (readn(input, &bev, sizeof(bev)) != sizeof(bev))
2345 goto out;
2346
2347 if (header->needs_swap)
2348 perf_event_header__bswap(&bev.header);
2349
2350 len = bev.header.size - sizeof(bev);
2351 if (readn(input, filename, len) != len)
2352 goto out;
2353 /*
2354 * The a1645ce1 changeset:
2355 *
2356 * "perf: 'perf kvm' tool for monitoring guest performance from host"
2357 *
2358 * Added a field to struct perf_record_header_build_id that broke the file
2359 * format.
2360 *
2361 * Since the kernel build-id is the first entry, process the
2362 * table using the old format if the well known
2363 * '[kernel.kallsyms]' string for the kernel build-id has the
2364 * first 4 characters chopped off (where the pid_t sits).
2365 */
2366 if (memcmp(filename, "nel.kallsyms]", 13) == 0) {
2367 if (lseek(input, orig_offset, SEEK_SET) == (off_t)-1)
2368 return -1;
2369 return perf_header__read_build_ids_abi_quirk(header, input, offset, size);
2370 }
2371
2372 __event_process_build_id(&bev, filename, session);
2373
2374 offset += bev.header.size;
2375 }
2376 err = 0;
2377 out:
2378 return err;
2379 }
2380
2381 /* Macro for features that simply need to read and store a string. */
2382 #define FEAT_PROCESS_STR_FUN(__feat, __feat_env) \
2383 static int process_##__feat(struct feat_fd *ff, void *data __maybe_unused) \
2384 {\
2385 free(ff->ph->env.__feat_env); \
2386 ff->ph->env.__feat_env = do_read_string(ff); \
2387 return ff->ph->env.__feat_env ? 0 : -ENOMEM; \
2388 }
2389
2390 FEAT_PROCESS_STR_FUN(hostname, hostname);
2391 FEAT_PROCESS_STR_FUN(osrelease, os_release);
2392 FEAT_PROCESS_STR_FUN(version, version);
2393 FEAT_PROCESS_STR_FUN(arch, arch);
2394 FEAT_PROCESS_STR_FUN(cpudesc, cpu_desc);
2395 FEAT_PROCESS_STR_FUN(cpuid, cpuid);
2396
process_tracing_data(struct feat_fd * ff,void * data)2397 static int process_tracing_data(struct feat_fd *ff, void *data)
2398 {
2399 ssize_t ret = trace_report(ff->fd, data, false);
2400
2401 return ret < 0 ? -1 : 0;
2402 }
2403
process_build_id(struct feat_fd * ff,void * data __maybe_unused)2404 static int process_build_id(struct feat_fd *ff, void *data __maybe_unused)
2405 {
2406 if (perf_header__read_build_ids(ff->ph, ff->fd, ff->offset, ff->size))
2407 pr_debug("Failed to read buildids, continuing...\n");
2408 return 0;
2409 }
2410
process_nrcpus(struct feat_fd * ff,void * data __maybe_unused)2411 static int process_nrcpus(struct feat_fd *ff, void *data __maybe_unused)
2412 {
2413 int ret;
2414 u32 nr_cpus_avail, nr_cpus_online;
2415
2416 ret = do_read_u32(ff, &nr_cpus_avail);
2417 if (ret)
2418 return ret;
2419
2420 ret = do_read_u32(ff, &nr_cpus_online);
2421 if (ret)
2422 return ret;
2423 ff->ph->env.nr_cpus_avail = (int)nr_cpus_avail;
2424 ff->ph->env.nr_cpus_online = (int)nr_cpus_online;
2425 return 0;
2426 }
2427
process_total_mem(struct feat_fd * ff,void * data __maybe_unused)2428 static int process_total_mem(struct feat_fd *ff, void *data __maybe_unused)
2429 {
2430 u64 total_mem;
2431 int ret;
2432
2433 ret = do_read_u64(ff, &total_mem);
2434 if (ret)
2435 return -1;
2436 ff->ph->env.total_mem = (unsigned long long)total_mem;
2437 return 0;
2438 }
2439
evlist__find_by_index(struct evlist * evlist,int idx)2440 static struct evsel *evlist__find_by_index(struct evlist *evlist, int idx)
2441 {
2442 struct evsel *evsel;
2443
2444 evlist__for_each_entry(evlist, evsel) {
2445 if (evsel->core.idx == idx)
2446 return evsel;
2447 }
2448
2449 return NULL;
2450 }
2451
evlist__set_event_name(struct evlist * evlist,struct evsel * event)2452 static void evlist__set_event_name(struct evlist *evlist, struct evsel *event)
2453 {
2454 struct evsel *evsel;
2455
2456 if (!event->name)
2457 return;
2458
2459 evsel = evlist__find_by_index(evlist, event->core.idx);
2460 if (!evsel)
2461 return;
2462
2463 if (evsel->name)
2464 return;
2465
2466 evsel->name = strdup(event->name);
2467 }
2468
2469 static int
process_event_desc(struct feat_fd * ff,void * data __maybe_unused)2470 process_event_desc(struct feat_fd *ff, void *data __maybe_unused)
2471 {
2472 struct perf_session *session;
2473 struct evsel *evsel, *events = read_event_desc(ff);
2474
2475 if (!events)
2476 return 0;
2477
2478 session = container_of(ff->ph, struct perf_session, header);
2479
2480 if (session->data->is_pipe) {
2481 /* Save events for reading later by print_event_desc,
2482 * since they can't be read again in pipe mode. */
2483 ff->events = events;
2484 }
2485
2486 for (evsel = events; evsel->core.attr.size; evsel++)
2487 evlist__set_event_name(session->evlist, evsel);
2488
2489 if (!session->data->is_pipe)
2490 free_event_desc(events);
2491
2492 return 0;
2493 }
2494
process_cmdline(struct feat_fd * ff,void * data __maybe_unused)2495 static int process_cmdline(struct feat_fd *ff, void *data __maybe_unused)
2496 {
2497 char *str, *cmdline = NULL, **argv = NULL;
2498 u32 nr, i, len = 0;
2499
2500 if (do_read_u32(ff, &nr))
2501 return -1;
2502
2503 ff->ph->env.nr_cmdline = nr;
2504
2505 cmdline = zalloc(ff->size + nr + 1);
2506 if (!cmdline)
2507 return -1;
2508
2509 argv = zalloc(sizeof(char *) * (nr + 1));
2510 if (!argv)
2511 goto error;
2512
2513 for (i = 0; i < nr; i++) {
2514 str = do_read_string(ff);
2515 if (!str)
2516 goto error;
2517
2518 argv[i] = cmdline + len;
2519 memcpy(argv[i], str, strlen(str) + 1);
2520 len += strlen(str) + 1;
2521 free(str);
2522 }
2523 ff->ph->env.cmdline = cmdline;
2524 ff->ph->env.cmdline_argv = (const char **) argv;
2525 return 0;
2526
2527 error:
2528 free(argv);
2529 free(cmdline);
2530 return -1;
2531 }
2532
process_cpu_topology(struct feat_fd * ff,void * data __maybe_unused)2533 static int process_cpu_topology(struct feat_fd *ff, void *data __maybe_unused)
2534 {
2535 u32 nr, i;
2536 char *str;
2537 struct strbuf sb;
2538 int cpu_nr = ff->ph->env.nr_cpus_avail;
2539 u64 size = 0;
2540 struct perf_header *ph = ff->ph;
2541 bool do_core_id_test = true;
2542
2543 ph->env.cpu = calloc(cpu_nr, sizeof(*ph->env.cpu));
2544 if (!ph->env.cpu)
2545 return -1;
2546
2547 if (do_read_u32(ff, &nr))
2548 goto free_cpu;
2549
2550 ph->env.nr_sibling_cores = nr;
2551 size += sizeof(u32);
2552 if (strbuf_init(&sb, 128) < 0)
2553 goto free_cpu;
2554
2555 for (i = 0; i < nr; i++) {
2556 str = do_read_string(ff);
2557 if (!str)
2558 goto error;
2559
2560 /* include a NULL character at the end */
2561 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2562 goto error;
2563 size += string_size(str);
2564 free(str);
2565 }
2566 ph->env.sibling_cores = strbuf_detach(&sb, NULL);
2567
2568 if (do_read_u32(ff, &nr))
2569 return -1;
2570
2571 ph->env.nr_sibling_threads = nr;
2572 size += sizeof(u32);
2573
2574 for (i = 0; i < nr; i++) {
2575 str = do_read_string(ff);
2576 if (!str)
2577 goto error;
2578
2579 /* include a NULL character at the end */
2580 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2581 goto error;
2582 size += string_size(str);
2583 free(str);
2584 }
2585 ph->env.sibling_threads = strbuf_detach(&sb, NULL);
2586
2587 /*
2588 * The header may be from old perf,
2589 * which doesn't include core id and socket id information.
2590 */
2591 if (ff->size <= size) {
2592 zfree(&ph->env.cpu);
2593 return 0;
2594 }
2595
2596 /* On s390 the socket_id number is not related to the numbers of cpus.
2597 * The socket_id number might be higher than the numbers of cpus.
2598 * This depends on the configuration.
2599 * AArch64 is the same.
2600 */
2601 if (ph->env.arch && (!strncmp(ph->env.arch, "s390", 4)
2602 || !strncmp(ph->env.arch, "aarch64", 7)))
2603 do_core_id_test = false;
2604
2605 for (i = 0; i < (u32)cpu_nr; i++) {
2606 if (do_read_u32(ff, &nr))
2607 goto free_cpu;
2608
2609 ph->env.cpu[i].core_id = nr;
2610 size += sizeof(u32);
2611
2612 if (do_read_u32(ff, &nr))
2613 goto free_cpu;
2614
2615 if (do_core_id_test && nr != (u32)-1 && nr > (u32)cpu_nr) {
2616 pr_debug("socket_id number is too big."
2617 "You may need to upgrade the perf tool.\n");
2618 goto free_cpu;
2619 }
2620
2621 ph->env.cpu[i].socket_id = nr;
2622 size += sizeof(u32);
2623 }
2624
2625 /*
2626 * The header may be from old perf,
2627 * which doesn't include die information.
2628 */
2629 if (ff->size <= size)
2630 return 0;
2631
2632 if (do_read_u32(ff, &nr))
2633 return -1;
2634
2635 ph->env.nr_sibling_dies = nr;
2636 size += sizeof(u32);
2637
2638 for (i = 0; i < nr; i++) {
2639 str = do_read_string(ff);
2640 if (!str)
2641 goto error;
2642
2643 /* include a NULL character at the end */
2644 if (strbuf_add(&sb, str, strlen(str) + 1) < 0)
2645 goto error;
2646 size += string_size(str);
2647 free(str);
2648 }
2649 ph->env.sibling_dies = strbuf_detach(&sb, NULL);
2650
2651 for (i = 0; i < (u32)cpu_nr; i++) {
2652 if (do_read_u32(ff, &nr))
2653 goto free_cpu;
2654
2655 ph->env.cpu[i].die_id = nr;
2656 }
2657
2658 return 0;
2659
2660 error:
2661 strbuf_release(&sb);
2662 free_cpu:
2663 zfree(&ph->env.cpu);
2664 return -1;
2665 }
2666
process_numa_topology(struct feat_fd * ff,void * data __maybe_unused)2667 static int process_numa_topology(struct feat_fd *ff, void *data __maybe_unused)
2668 {
2669 struct numa_node *nodes, *n;
2670 u32 nr, i;
2671 char *str;
2672
2673 /* nr nodes */
2674 if (do_read_u32(ff, &nr))
2675 return -1;
2676
2677 nodes = zalloc(sizeof(*nodes) * nr);
2678 if (!nodes)
2679 return -ENOMEM;
2680
2681 for (i = 0; i < nr; i++) {
2682 n = &nodes[i];
2683
2684 /* node number */
2685 if (do_read_u32(ff, &n->node))
2686 goto error;
2687
2688 if (do_read_u64(ff, &n->mem_total))
2689 goto error;
2690
2691 if (do_read_u64(ff, &n->mem_free))
2692 goto error;
2693
2694 str = do_read_string(ff);
2695 if (!str)
2696 goto error;
2697
2698 n->map = perf_cpu_map__new(str);
2699 if (!n->map)
2700 goto error;
2701
2702 free(str);
2703 }
2704 ff->ph->env.nr_numa_nodes = nr;
2705 ff->ph->env.numa_nodes = nodes;
2706 return 0;
2707
2708 error:
2709 free(nodes);
2710 return -1;
2711 }
2712
process_pmu_mappings(struct feat_fd * ff,void * data __maybe_unused)2713 static int process_pmu_mappings(struct feat_fd *ff, void *data __maybe_unused)
2714 {
2715 char *name;
2716 u32 pmu_num;
2717 u32 type;
2718 struct strbuf sb;
2719
2720 if (do_read_u32(ff, &pmu_num))
2721 return -1;
2722
2723 if (!pmu_num) {
2724 pr_debug("pmu mappings not available\n");
2725 return 0;
2726 }
2727
2728 ff->ph->env.nr_pmu_mappings = pmu_num;
2729 if (strbuf_init(&sb, 128) < 0)
2730 return -1;
2731
2732 while (pmu_num) {
2733 if (do_read_u32(ff, &type))
2734 goto error;
2735
2736 name = do_read_string(ff);
2737 if (!name)
2738 goto error;
2739
2740 if (strbuf_addf(&sb, "%u:%s", type, name) < 0)
2741 goto error;
2742 /* include a NULL character at the end */
2743 if (strbuf_add(&sb, "", 1) < 0)
2744 goto error;
2745
2746 if (!strcmp(name, "msr"))
2747 ff->ph->env.msr_pmu_type = type;
2748
2749 free(name);
2750 pmu_num--;
2751 }
2752 ff->ph->env.pmu_mappings = strbuf_detach(&sb, NULL);
2753 return 0;
2754
2755 error:
2756 strbuf_release(&sb);
2757 return -1;
2758 }
2759
process_group_desc(struct feat_fd * ff,void * data __maybe_unused)2760 static int process_group_desc(struct feat_fd *ff, void *data __maybe_unused)
2761 {
2762 size_t ret = -1;
2763 u32 i, nr, nr_groups;
2764 struct perf_session *session;
2765 struct evsel *evsel, *leader = NULL;
2766 struct group_desc {
2767 char *name;
2768 u32 leader_idx;
2769 u32 nr_members;
2770 } *desc;
2771
2772 if (do_read_u32(ff, &nr_groups))
2773 return -1;
2774
2775 ff->ph->env.nr_groups = nr_groups;
2776 if (!nr_groups) {
2777 pr_debug("group desc not available\n");
2778 return 0;
2779 }
2780
2781 desc = calloc(nr_groups, sizeof(*desc));
2782 if (!desc)
2783 return -1;
2784
2785 for (i = 0; i < nr_groups; i++) {
2786 desc[i].name = do_read_string(ff);
2787 if (!desc[i].name)
2788 goto out_free;
2789
2790 if (do_read_u32(ff, &desc[i].leader_idx))
2791 goto out_free;
2792
2793 if (do_read_u32(ff, &desc[i].nr_members))
2794 goto out_free;
2795 }
2796
2797 /*
2798 * Rebuild group relationship based on the group_desc
2799 */
2800 session = container_of(ff->ph, struct perf_session, header);
2801 session->evlist->core.nr_groups = nr_groups;
2802
2803 i = nr = 0;
2804 evlist__for_each_entry(session->evlist, evsel) {
2805 if (evsel->core.idx == (int) desc[i].leader_idx) {
2806 evsel__set_leader(evsel, evsel);
2807 /* {anon_group} is a dummy name */
2808 if (strcmp(desc[i].name, "{anon_group}")) {
2809 evsel->group_name = desc[i].name;
2810 desc[i].name = NULL;
2811 }
2812 evsel->core.nr_members = desc[i].nr_members;
2813
2814 if (i >= nr_groups || nr > 0) {
2815 pr_debug("invalid group desc\n");
2816 goto out_free;
2817 }
2818
2819 leader = evsel;
2820 nr = evsel->core.nr_members - 1;
2821 i++;
2822 } else if (nr) {
2823 /* This is a group member */
2824 evsel__set_leader(evsel, leader);
2825
2826 nr--;
2827 }
2828 }
2829
2830 if (i != nr_groups || nr != 0) {
2831 pr_debug("invalid group desc\n");
2832 goto out_free;
2833 }
2834
2835 ret = 0;
2836 out_free:
2837 for (i = 0; i < nr_groups; i++)
2838 zfree(&desc[i].name);
2839 free(desc);
2840
2841 return ret;
2842 }
2843
process_auxtrace(struct feat_fd * ff,void * data __maybe_unused)2844 static int process_auxtrace(struct feat_fd *ff, void *data __maybe_unused)
2845 {
2846 struct perf_session *session;
2847 int err;
2848
2849 session = container_of(ff->ph, struct perf_session, header);
2850
2851 err = auxtrace_index__process(ff->fd, ff->size, session,
2852 ff->ph->needs_swap);
2853 if (err < 0)
2854 pr_err("Failed to process auxtrace index\n");
2855 return err;
2856 }
2857
process_cache(struct feat_fd * ff,void * data __maybe_unused)2858 static int process_cache(struct feat_fd *ff, void *data __maybe_unused)
2859 {
2860 struct cpu_cache_level *caches;
2861 u32 cnt, i, version;
2862
2863 if (do_read_u32(ff, &version))
2864 return -1;
2865
2866 if (version != 1)
2867 return -1;
2868
2869 if (do_read_u32(ff, &cnt))
2870 return -1;
2871
2872 caches = zalloc(sizeof(*caches) * cnt);
2873 if (!caches)
2874 return -1;
2875
2876 for (i = 0; i < cnt; i++) {
2877 struct cpu_cache_level c;
2878
2879 #define _R(v) \
2880 if (do_read_u32(ff, &c.v))\
2881 goto out_free_caches; \
2882
2883 _R(level)
2884 _R(line_size)
2885 _R(sets)
2886 _R(ways)
2887 #undef _R
2888
2889 #define _R(v) \
2890 c.v = do_read_string(ff); \
2891 if (!c.v) \
2892 goto out_free_caches;
2893
2894 _R(type)
2895 _R(size)
2896 _R(map)
2897 #undef _R
2898
2899 caches[i] = c;
2900 }
2901
2902 ff->ph->env.caches = caches;
2903 ff->ph->env.caches_cnt = cnt;
2904 return 0;
2905 out_free_caches:
2906 free(caches);
2907 return -1;
2908 }
2909
process_sample_time(struct feat_fd * ff,void * data __maybe_unused)2910 static int process_sample_time(struct feat_fd *ff, void *data __maybe_unused)
2911 {
2912 struct perf_session *session;
2913 u64 first_sample_time, last_sample_time;
2914 int ret;
2915
2916 session = container_of(ff->ph, struct perf_session, header);
2917
2918 ret = do_read_u64(ff, &first_sample_time);
2919 if (ret)
2920 return -1;
2921
2922 ret = do_read_u64(ff, &last_sample_time);
2923 if (ret)
2924 return -1;
2925
2926 session->evlist->first_sample_time = first_sample_time;
2927 session->evlist->last_sample_time = last_sample_time;
2928 return 0;
2929 }
2930
process_mem_topology(struct feat_fd * ff,void * data __maybe_unused)2931 static int process_mem_topology(struct feat_fd *ff,
2932 void *data __maybe_unused)
2933 {
2934 struct memory_node *nodes;
2935 u64 version, i, nr, bsize;
2936 int ret = -1;
2937
2938 if (do_read_u64(ff, &version))
2939 return -1;
2940
2941 if (version != 1)
2942 return -1;
2943
2944 if (do_read_u64(ff, &bsize))
2945 return -1;
2946
2947 if (do_read_u64(ff, &nr))
2948 return -1;
2949
2950 nodes = zalloc(sizeof(*nodes) * nr);
2951 if (!nodes)
2952 return -1;
2953
2954 for (i = 0; i < nr; i++) {
2955 struct memory_node n;
2956
2957 #define _R(v) \
2958 if (do_read_u64(ff, &n.v)) \
2959 goto out; \
2960
2961 _R(node)
2962 _R(size)
2963
2964 #undef _R
2965
2966 if (do_read_bitmap(ff, &n.set, &n.size))
2967 goto out;
2968
2969 nodes[i] = n;
2970 }
2971
2972 ff->ph->env.memory_bsize = bsize;
2973 ff->ph->env.memory_nodes = nodes;
2974 ff->ph->env.nr_memory_nodes = nr;
2975 ret = 0;
2976
2977 out:
2978 if (ret)
2979 free(nodes);
2980 return ret;
2981 }
2982
process_clockid(struct feat_fd * ff,void * data __maybe_unused)2983 static int process_clockid(struct feat_fd *ff,
2984 void *data __maybe_unused)
2985 {
2986 if (do_read_u64(ff, &ff->ph->env.clock.clockid_res_ns))
2987 return -1;
2988
2989 return 0;
2990 }
2991
process_clock_data(struct feat_fd * ff,void * _data __maybe_unused)2992 static int process_clock_data(struct feat_fd *ff,
2993 void *_data __maybe_unused)
2994 {
2995 u32 data32;
2996 u64 data64;
2997
2998 /* version */
2999 if (do_read_u32(ff, &data32))
3000 return -1;
3001
3002 if (data32 != 1)
3003 return -1;
3004
3005 /* clockid */
3006 if (do_read_u32(ff, &data32))
3007 return -1;
3008
3009 ff->ph->env.clock.clockid = data32;
3010
3011 /* TOD ref time */
3012 if (do_read_u64(ff, &data64))
3013 return -1;
3014
3015 ff->ph->env.clock.tod_ns = data64;
3016
3017 /* clockid ref time */
3018 if (do_read_u64(ff, &data64))
3019 return -1;
3020
3021 ff->ph->env.clock.clockid_ns = data64;
3022 ff->ph->env.clock.enabled = true;
3023 return 0;
3024 }
3025
process_hybrid_topology(struct feat_fd * ff,void * data __maybe_unused)3026 static int process_hybrid_topology(struct feat_fd *ff,
3027 void *data __maybe_unused)
3028 {
3029 struct hybrid_node *nodes, *n;
3030 u32 nr, i;
3031
3032 /* nr nodes */
3033 if (do_read_u32(ff, &nr))
3034 return -1;
3035
3036 nodes = zalloc(sizeof(*nodes) * nr);
3037 if (!nodes)
3038 return -ENOMEM;
3039
3040 for (i = 0; i < nr; i++) {
3041 n = &nodes[i];
3042
3043 n->pmu_name = do_read_string(ff);
3044 if (!n->pmu_name)
3045 goto error;
3046
3047 n->cpus = do_read_string(ff);
3048 if (!n->cpus)
3049 goto error;
3050 }
3051
3052 ff->ph->env.nr_hybrid_nodes = nr;
3053 ff->ph->env.hybrid_nodes = nodes;
3054 return 0;
3055
3056 error:
3057 for (i = 0; i < nr; i++) {
3058 free(nodes[i].pmu_name);
3059 free(nodes[i].cpus);
3060 }
3061
3062 free(nodes);
3063 return -1;
3064 }
3065
process_dir_format(struct feat_fd * ff,void * _data __maybe_unused)3066 static int process_dir_format(struct feat_fd *ff,
3067 void *_data __maybe_unused)
3068 {
3069 struct perf_session *session;
3070 struct perf_data *data;
3071
3072 session = container_of(ff->ph, struct perf_session, header);
3073 data = session->data;
3074
3075 if (WARN_ON(!perf_data__is_dir(data)))
3076 return -1;
3077
3078 return do_read_u64(ff, &data->dir.version);
3079 }
3080
3081 #ifdef HAVE_LIBBPF_SUPPORT
process_bpf_prog_info(struct feat_fd * ff,void * data __maybe_unused)3082 static int process_bpf_prog_info(struct feat_fd *ff, void *data __maybe_unused)
3083 {
3084 struct bpf_prog_info_node *info_node;
3085 struct perf_env *env = &ff->ph->env;
3086 struct perf_bpil *info_linear;
3087 u32 count, i;
3088 int err = -1;
3089
3090 if (ff->ph->needs_swap) {
3091 pr_warning("interpreting bpf_prog_info from systems with endianness is not yet supported\n");
3092 return 0;
3093 }
3094
3095 if (do_read_u32(ff, &count))
3096 return -1;
3097
3098 down_write(&env->bpf_progs.lock);
3099
3100 for (i = 0; i < count; ++i) {
3101 u32 info_len, data_len;
3102
3103 info_linear = NULL;
3104 info_node = NULL;
3105 if (do_read_u32(ff, &info_len))
3106 goto out;
3107 if (do_read_u32(ff, &data_len))
3108 goto out;
3109
3110 if (info_len > sizeof(struct bpf_prog_info)) {
3111 pr_warning("detected invalid bpf_prog_info\n");
3112 goto out;
3113 }
3114
3115 info_linear = malloc(sizeof(struct perf_bpil) +
3116 data_len);
3117 if (!info_linear)
3118 goto out;
3119 info_linear->info_len = sizeof(struct bpf_prog_info);
3120 info_linear->data_len = data_len;
3121 if (do_read_u64(ff, (u64 *)(&info_linear->arrays)))
3122 goto out;
3123 if (__do_read(ff, &info_linear->info, info_len))
3124 goto out;
3125 if (info_len < sizeof(struct bpf_prog_info))
3126 memset(((void *)(&info_linear->info)) + info_len, 0,
3127 sizeof(struct bpf_prog_info) - info_len);
3128
3129 if (__do_read(ff, info_linear->data, data_len))
3130 goto out;
3131
3132 info_node = malloc(sizeof(struct bpf_prog_info_node));
3133 if (!info_node)
3134 goto out;
3135
3136 /* after reading from file, translate offset to address */
3137 bpil_offs_to_addr(info_linear);
3138 info_node->info_linear = info_linear;
3139 perf_env__insert_bpf_prog_info(env, info_node);
3140 }
3141
3142 up_write(&env->bpf_progs.lock);
3143 return 0;
3144 out:
3145 free(info_linear);
3146 free(info_node);
3147 up_write(&env->bpf_progs.lock);
3148 return err;
3149 }
3150
process_bpf_btf(struct feat_fd * ff,void * data __maybe_unused)3151 static int process_bpf_btf(struct feat_fd *ff, void *data __maybe_unused)
3152 {
3153 struct perf_env *env = &ff->ph->env;
3154 struct btf_node *node = NULL;
3155 u32 count, i;
3156 int err = -1;
3157
3158 if (ff->ph->needs_swap) {
3159 pr_warning("interpreting btf from systems with endianness is not yet supported\n");
3160 return 0;
3161 }
3162
3163 if (do_read_u32(ff, &count))
3164 return -1;
3165
3166 down_write(&env->bpf_progs.lock);
3167
3168 for (i = 0; i < count; ++i) {
3169 u32 id, data_size;
3170
3171 if (do_read_u32(ff, &id))
3172 goto out;
3173 if (do_read_u32(ff, &data_size))
3174 goto out;
3175
3176 node = malloc(sizeof(struct btf_node) + data_size);
3177 if (!node)
3178 goto out;
3179
3180 node->id = id;
3181 node->data_size = data_size;
3182
3183 if (__do_read(ff, node->data, data_size))
3184 goto out;
3185
3186 perf_env__insert_btf(env, node);
3187 node = NULL;
3188 }
3189
3190 err = 0;
3191 out:
3192 up_write(&env->bpf_progs.lock);
3193 free(node);
3194 return err;
3195 }
3196 #endif // HAVE_LIBBPF_SUPPORT
3197
process_compressed(struct feat_fd * ff,void * data __maybe_unused)3198 static int process_compressed(struct feat_fd *ff,
3199 void *data __maybe_unused)
3200 {
3201 if (do_read_u32(ff, &(ff->ph->env.comp_ver)))
3202 return -1;
3203
3204 if (do_read_u32(ff, &(ff->ph->env.comp_type)))
3205 return -1;
3206
3207 if (do_read_u32(ff, &(ff->ph->env.comp_level)))
3208 return -1;
3209
3210 if (do_read_u32(ff, &(ff->ph->env.comp_ratio)))
3211 return -1;
3212
3213 if (do_read_u32(ff, &(ff->ph->env.comp_mmap_len)))
3214 return -1;
3215
3216 return 0;
3217 }
3218
__process_pmu_caps(struct feat_fd * ff,int * nr_caps,char *** caps,unsigned int * max_branches)3219 static int __process_pmu_caps(struct feat_fd *ff, int *nr_caps,
3220 char ***caps, unsigned int *max_branches)
3221 {
3222 char *name, *value, *ptr;
3223 u32 nr_pmu_caps, i;
3224
3225 *nr_caps = 0;
3226 *caps = NULL;
3227
3228 if (do_read_u32(ff, &nr_pmu_caps))
3229 return -1;
3230
3231 if (!nr_pmu_caps)
3232 return 0;
3233
3234 *caps = zalloc(sizeof(char *) * nr_pmu_caps);
3235 if (!*caps)
3236 return -1;
3237
3238 for (i = 0; i < nr_pmu_caps; i++) {
3239 name = do_read_string(ff);
3240 if (!name)
3241 goto error;
3242
3243 value = do_read_string(ff);
3244 if (!value)
3245 goto free_name;
3246
3247 if (asprintf(&ptr, "%s=%s", name, value) < 0)
3248 goto free_value;
3249
3250 (*caps)[i] = ptr;
3251
3252 if (!strcmp(name, "branches"))
3253 *max_branches = atoi(value);
3254
3255 free(value);
3256 free(name);
3257 }
3258 *nr_caps = nr_pmu_caps;
3259 return 0;
3260
3261 free_value:
3262 free(value);
3263 free_name:
3264 free(name);
3265 error:
3266 for (; i > 0; i--)
3267 free((*caps)[i - 1]);
3268 free(*caps);
3269 *caps = NULL;
3270 *nr_caps = 0;
3271 return -1;
3272 }
3273
process_cpu_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3274 static int process_cpu_pmu_caps(struct feat_fd *ff,
3275 void *data __maybe_unused)
3276 {
3277 int ret = __process_pmu_caps(ff, &ff->ph->env.nr_cpu_pmu_caps,
3278 &ff->ph->env.cpu_pmu_caps,
3279 &ff->ph->env.max_branches);
3280
3281 if (!ret && !ff->ph->env.cpu_pmu_caps)
3282 pr_debug("cpu pmu capabilities not available\n");
3283 return ret;
3284 }
3285
process_pmu_caps(struct feat_fd * ff,void * data __maybe_unused)3286 static int process_pmu_caps(struct feat_fd *ff, void *data __maybe_unused)
3287 {
3288 struct pmu_caps *pmu_caps;
3289 u32 nr_pmu, i;
3290 int ret;
3291 int j;
3292
3293 if (do_read_u32(ff, &nr_pmu))
3294 return -1;
3295
3296 if (!nr_pmu) {
3297 pr_debug("pmu capabilities not available\n");
3298 return 0;
3299 }
3300
3301 pmu_caps = zalloc(sizeof(*pmu_caps) * nr_pmu);
3302 if (!pmu_caps)
3303 return -ENOMEM;
3304
3305 for (i = 0; i < nr_pmu; i++) {
3306 ret = __process_pmu_caps(ff, &pmu_caps[i].nr_caps,
3307 &pmu_caps[i].caps,
3308 &pmu_caps[i].max_branches);
3309 if (ret)
3310 goto err;
3311
3312 pmu_caps[i].pmu_name = do_read_string(ff);
3313 if (!pmu_caps[i].pmu_name) {
3314 ret = -1;
3315 goto err;
3316 }
3317 if (!pmu_caps[i].nr_caps) {
3318 pr_debug("%s pmu capabilities not available\n",
3319 pmu_caps[i].pmu_name);
3320 }
3321 }
3322
3323 ff->ph->env.nr_pmus_with_caps = nr_pmu;
3324 ff->ph->env.pmu_caps = pmu_caps;
3325 return 0;
3326
3327 err:
3328 for (i = 0; i < nr_pmu; i++) {
3329 for (j = 0; j < pmu_caps[i].nr_caps; j++)
3330 free(pmu_caps[i].caps[j]);
3331 free(pmu_caps[i].caps);
3332 free(pmu_caps[i].pmu_name);
3333 }
3334
3335 free(pmu_caps);
3336 return ret;
3337 }
3338
3339 #define FEAT_OPR(n, func, __full_only) \
3340 [HEADER_##n] = { \
3341 .name = __stringify(n), \
3342 .write = write_##func, \
3343 .print = print_##func, \
3344 .full_only = __full_only, \
3345 .process = process_##func, \
3346 .synthesize = true \
3347 }
3348
3349 #define FEAT_OPN(n, func, __full_only) \
3350 [HEADER_##n] = { \
3351 .name = __stringify(n), \
3352 .write = write_##func, \
3353 .print = print_##func, \
3354 .full_only = __full_only, \
3355 .process = process_##func \
3356 }
3357
3358 /* feature_ops not implemented: */
3359 #define print_tracing_data NULL
3360 #define print_build_id NULL
3361
3362 #define process_branch_stack NULL
3363 #define process_stat NULL
3364
3365 // Only used in util/synthetic-events.c
3366 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE];
3367
3368 const struct perf_header_feature_ops feat_ops[HEADER_LAST_FEATURE] = {
3369 FEAT_OPN(TRACING_DATA, tracing_data, false),
3370 FEAT_OPN(BUILD_ID, build_id, false),
3371 FEAT_OPR(HOSTNAME, hostname, false),
3372 FEAT_OPR(OSRELEASE, osrelease, false),
3373 FEAT_OPR(VERSION, version, false),
3374 FEAT_OPR(ARCH, arch, false),
3375 FEAT_OPR(NRCPUS, nrcpus, false),
3376 FEAT_OPR(CPUDESC, cpudesc, false),
3377 FEAT_OPR(CPUID, cpuid, false),
3378 FEAT_OPR(TOTAL_MEM, total_mem, false),
3379 FEAT_OPR(EVENT_DESC, event_desc, false),
3380 FEAT_OPR(CMDLINE, cmdline, false),
3381 FEAT_OPR(CPU_TOPOLOGY, cpu_topology, true),
3382 FEAT_OPR(NUMA_TOPOLOGY, numa_topology, true),
3383 FEAT_OPN(BRANCH_STACK, branch_stack, false),
3384 FEAT_OPR(PMU_MAPPINGS, pmu_mappings, false),
3385 FEAT_OPR(GROUP_DESC, group_desc, false),
3386 FEAT_OPN(AUXTRACE, auxtrace, false),
3387 FEAT_OPN(STAT, stat, false),
3388 FEAT_OPN(CACHE, cache, true),
3389 FEAT_OPR(SAMPLE_TIME, sample_time, false),
3390 FEAT_OPR(MEM_TOPOLOGY, mem_topology, true),
3391 FEAT_OPR(CLOCKID, clockid, false),
3392 FEAT_OPN(DIR_FORMAT, dir_format, false),
3393 #ifdef HAVE_LIBBPF_SUPPORT
3394 FEAT_OPR(BPF_PROG_INFO, bpf_prog_info, false),
3395 FEAT_OPR(BPF_BTF, bpf_btf, false),
3396 #endif
3397 FEAT_OPR(COMPRESSED, compressed, false),
3398 FEAT_OPR(CPU_PMU_CAPS, cpu_pmu_caps, false),
3399 FEAT_OPR(CLOCK_DATA, clock_data, false),
3400 FEAT_OPN(HYBRID_TOPOLOGY, hybrid_topology, true),
3401 FEAT_OPR(PMU_CAPS, pmu_caps, false),
3402 };
3403
3404 struct header_print_data {
3405 FILE *fp;
3406 bool full; /* extended list of headers */
3407 };
3408
perf_file_section__fprintf_info(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3409 static int perf_file_section__fprintf_info(struct perf_file_section *section,
3410 struct perf_header *ph,
3411 int feat, int fd, void *data)
3412 {
3413 struct header_print_data *hd = data;
3414 struct feat_fd ff;
3415
3416 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3417 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3418 "%d, continuing...\n", section->offset, feat);
3419 return 0;
3420 }
3421 if (feat >= HEADER_LAST_FEATURE) {
3422 pr_warning("unknown feature %d\n", feat);
3423 return 0;
3424 }
3425 if (!feat_ops[feat].print)
3426 return 0;
3427
3428 ff = (struct feat_fd) {
3429 .fd = fd,
3430 .ph = ph,
3431 };
3432
3433 if (!feat_ops[feat].full_only || hd->full)
3434 feat_ops[feat].print(&ff, hd->fp);
3435 else
3436 fprintf(hd->fp, "# %s info available, use -I to display\n",
3437 feat_ops[feat].name);
3438
3439 return 0;
3440 }
3441
perf_header__fprintf_info(struct perf_session * session,FILE * fp,bool full)3442 int perf_header__fprintf_info(struct perf_session *session, FILE *fp, bool full)
3443 {
3444 struct header_print_data hd;
3445 struct perf_header *header = &session->header;
3446 int fd = perf_data__fd(session->data);
3447 struct stat st;
3448 time_t stctime;
3449 int ret, bit;
3450
3451 hd.fp = fp;
3452 hd.full = full;
3453
3454 ret = fstat(fd, &st);
3455 if (ret == -1)
3456 return -1;
3457
3458 stctime = st.st_mtime;
3459 fprintf(fp, "# captured on : %s", ctime(&stctime));
3460
3461 fprintf(fp, "# header version : %u\n", header->version);
3462 fprintf(fp, "# data offset : %" PRIu64 "\n", header->data_offset);
3463 fprintf(fp, "# data size : %" PRIu64 "\n", header->data_size);
3464 fprintf(fp, "# feat offset : %" PRIu64 "\n", header->feat_offset);
3465
3466 perf_header__process_sections(header, fd, &hd,
3467 perf_file_section__fprintf_info);
3468
3469 if (session->data->is_pipe)
3470 return 0;
3471
3472 fprintf(fp, "# missing features: ");
3473 for_each_clear_bit(bit, header->adds_features, HEADER_LAST_FEATURE) {
3474 if (bit)
3475 fprintf(fp, "%s ", feat_ops[bit].name);
3476 }
3477
3478 fprintf(fp, "\n");
3479 return 0;
3480 }
3481
3482 struct header_fw {
3483 struct feat_writer fw;
3484 struct feat_fd *ff;
3485 };
3486
feat_writer_cb(struct feat_writer * fw,void * buf,size_t sz)3487 static int feat_writer_cb(struct feat_writer *fw, void *buf, size_t sz)
3488 {
3489 struct header_fw *h = container_of(fw, struct header_fw, fw);
3490
3491 return do_write(h->ff, buf, sz);
3492 }
3493
do_write_feat(struct feat_fd * ff,int type,struct perf_file_section ** p,struct evlist * evlist,struct feat_copier * fc)3494 static int do_write_feat(struct feat_fd *ff, int type,
3495 struct perf_file_section **p,
3496 struct evlist *evlist,
3497 struct feat_copier *fc)
3498 {
3499 int err;
3500 int ret = 0;
3501
3502 if (perf_header__has_feat(ff->ph, type)) {
3503 if (!feat_ops[type].write)
3504 return -1;
3505
3506 if (WARN(ff->buf, "Error: calling %s in pipe-mode.\n", __func__))
3507 return -1;
3508
3509 (*p)->offset = lseek(ff->fd, 0, SEEK_CUR);
3510
3511 /*
3512 * Hook to let perf inject copy features sections from the input
3513 * file.
3514 */
3515 if (fc && fc->copy) {
3516 struct header_fw h = {
3517 .fw.write = feat_writer_cb,
3518 .ff = ff,
3519 };
3520
3521 /* ->copy() returns 0 if the feature was not copied */
3522 err = fc->copy(fc, type, &h.fw);
3523 } else {
3524 err = 0;
3525 }
3526 if (!err)
3527 err = feat_ops[type].write(ff, evlist);
3528 if (err < 0) {
3529 pr_debug("failed to write feature %s\n", feat_ops[type].name);
3530
3531 /* undo anything written */
3532 lseek(ff->fd, (*p)->offset, SEEK_SET);
3533
3534 return -1;
3535 }
3536 (*p)->size = lseek(ff->fd, 0, SEEK_CUR) - (*p)->offset;
3537 (*p)++;
3538 }
3539 return ret;
3540 }
3541
perf_header__adds_write(struct perf_header * header,struct evlist * evlist,int fd,struct feat_copier * fc)3542 static int perf_header__adds_write(struct perf_header *header,
3543 struct evlist *evlist, int fd,
3544 struct feat_copier *fc)
3545 {
3546 int nr_sections;
3547 struct feat_fd ff;
3548 struct perf_file_section *feat_sec, *p;
3549 int sec_size;
3550 u64 sec_start;
3551 int feat;
3552 int err;
3553
3554 ff = (struct feat_fd){
3555 .fd = fd,
3556 .ph = header,
3557 };
3558
3559 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3560 if (!nr_sections)
3561 return 0;
3562
3563 feat_sec = p = calloc(nr_sections, sizeof(*feat_sec));
3564 if (feat_sec == NULL)
3565 return -ENOMEM;
3566
3567 sec_size = sizeof(*feat_sec) * nr_sections;
3568
3569 sec_start = header->feat_offset;
3570 lseek(fd, sec_start + sec_size, SEEK_SET);
3571
3572 for_each_set_bit(feat, header->adds_features, HEADER_FEAT_BITS) {
3573 if (do_write_feat(&ff, feat, &p, evlist, fc))
3574 perf_header__clear_feat(header, feat);
3575 }
3576
3577 lseek(fd, sec_start, SEEK_SET);
3578 /*
3579 * may write more than needed due to dropped feature, but
3580 * this is okay, reader will skip the missing entries
3581 */
3582 err = do_write(&ff, feat_sec, sec_size);
3583 if (err < 0)
3584 pr_debug("failed to write feature section\n");
3585 free(feat_sec);
3586 return err;
3587 }
3588
perf_header__write_pipe(int fd)3589 int perf_header__write_pipe(int fd)
3590 {
3591 struct perf_pipe_file_header f_header;
3592 struct feat_fd ff;
3593 int err;
3594
3595 ff = (struct feat_fd){ .fd = fd };
3596
3597 f_header = (struct perf_pipe_file_header){
3598 .magic = PERF_MAGIC,
3599 .size = sizeof(f_header),
3600 };
3601
3602 err = do_write(&ff, &f_header, sizeof(f_header));
3603 if (err < 0) {
3604 pr_debug("failed to write perf pipe header\n");
3605 return err;
3606 }
3607
3608 return 0;
3609 }
3610
perf_session__do_write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit,struct feat_copier * fc)3611 static int perf_session__do_write_header(struct perf_session *session,
3612 struct evlist *evlist,
3613 int fd, bool at_exit,
3614 struct feat_copier *fc)
3615 {
3616 struct perf_file_header f_header;
3617 struct perf_file_attr f_attr;
3618 struct perf_header *header = &session->header;
3619 struct evsel *evsel;
3620 struct feat_fd ff;
3621 u64 attr_offset;
3622 int err;
3623
3624 ff = (struct feat_fd){ .fd = fd};
3625 lseek(fd, sizeof(f_header), SEEK_SET);
3626
3627 evlist__for_each_entry(session->evlist, evsel) {
3628 evsel->id_offset = lseek(fd, 0, SEEK_CUR);
3629 err = do_write(&ff, evsel->core.id, evsel->core.ids * sizeof(u64));
3630 if (err < 0) {
3631 pr_debug("failed to write perf header\n");
3632 return err;
3633 }
3634 }
3635
3636 attr_offset = lseek(ff.fd, 0, SEEK_CUR);
3637
3638 evlist__for_each_entry(evlist, evsel) {
3639 if (evsel->core.attr.size < sizeof(evsel->core.attr)) {
3640 /*
3641 * We are likely in "perf inject" and have read
3642 * from an older file. Update attr size so that
3643 * reader gets the right offset to the ids.
3644 */
3645 evsel->core.attr.size = sizeof(evsel->core.attr);
3646 }
3647 f_attr = (struct perf_file_attr){
3648 .attr = evsel->core.attr,
3649 .ids = {
3650 .offset = evsel->id_offset,
3651 .size = evsel->core.ids * sizeof(u64),
3652 }
3653 };
3654 err = do_write(&ff, &f_attr, sizeof(f_attr));
3655 if (err < 0) {
3656 pr_debug("failed to write perf header attribute\n");
3657 return err;
3658 }
3659 }
3660
3661 if (!header->data_offset)
3662 header->data_offset = lseek(fd, 0, SEEK_CUR);
3663 header->feat_offset = header->data_offset + header->data_size;
3664
3665 if (at_exit) {
3666 err = perf_header__adds_write(header, evlist, fd, fc);
3667 if (err < 0)
3668 return err;
3669 }
3670
3671 f_header = (struct perf_file_header){
3672 .magic = PERF_MAGIC,
3673 .size = sizeof(f_header),
3674 .attr_size = sizeof(f_attr),
3675 .attrs = {
3676 .offset = attr_offset,
3677 .size = evlist->core.nr_entries * sizeof(f_attr),
3678 },
3679 .data = {
3680 .offset = header->data_offset,
3681 .size = header->data_size,
3682 },
3683 /* event_types is ignored, store zeros */
3684 };
3685
3686 memcpy(&f_header.adds_features, &header->adds_features, sizeof(header->adds_features));
3687
3688 lseek(fd, 0, SEEK_SET);
3689 err = do_write(&ff, &f_header, sizeof(f_header));
3690 if (err < 0) {
3691 pr_debug("failed to write perf header\n");
3692 return err;
3693 }
3694 lseek(fd, header->data_offset + header->data_size, SEEK_SET);
3695
3696 return 0;
3697 }
3698
perf_session__write_header(struct perf_session * session,struct evlist * evlist,int fd,bool at_exit)3699 int perf_session__write_header(struct perf_session *session,
3700 struct evlist *evlist,
3701 int fd, bool at_exit)
3702 {
3703 return perf_session__do_write_header(session, evlist, fd, at_exit, NULL);
3704 }
3705
perf_session__data_offset(const struct evlist * evlist)3706 size_t perf_session__data_offset(const struct evlist *evlist)
3707 {
3708 struct evsel *evsel;
3709 size_t data_offset;
3710
3711 data_offset = sizeof(struct perf_file_header);
3712 evlist__for_each_entry(evlist, evsel) {
3713 data_offset += evsel->core.ids * sizeof(u64);
3714 }
3715 data_offset += evlist->core.nr_entries * sizeof(struct perf_file_attr);
3716
3717 return data_offset;
3718 }
3719
perf_session__inject_header(struct perf_session * session,struct evlist * evlist,int fd,struct feat_copier * fc)3720 int perf_session__inject_header(struct perf_session *session,
3721 struct evlist *evlist,
3722 int fd,
3723 struct feat_copier *fc)
3724 {
3725 return perf_session__do_write_header(session, evlist, fd, true, fc);
3726 }
3727
perf_header__getbuffer64(struct perf_header * header,int fd,void * buf,size_t size)3728 static int perf_header__getbuffer64(struct perf_header *header,
3729 int fd, void *buf, size_t size)
3730 {
3731 if (readn(fd, buf, size) <= 0)
3732 return -1;
3733
3734 if (header->needs_swap)
3735 mem_bswap_64(buf, size);
3736
3737 return 0;
3738 }
3739
perf_header__process_sections(struct perf_header * header,int fd,void * data,int (* process)(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data))3740 int perf_header__process_sections(struct perf_header *header, int fd,
3741 void *data,
3742 int (*process)(struct perf_file_section *section,
3743 struct perf_header *ph,
3744 int feat, int fd, void *data))
3745 {
3746 struct perf_file_section *feat_sec, *sec;
3747 int nr_sections;
3748 int sec_size;
3749 int feat;
3750 int err;
3751
3752 nr_sections = bitmap_weight(header->adds_features, HEADER_FEAT_BITS);
3753 if (!nr_sections)
3754 return 0;
3755
3756 feat_sec = sec = calloc(nr_sections, sizeof(*feat_sec));
3757 if (!feat_sec)
3758 return -1;
3759
3760 sec_size = sizeof(*feat_sec) * nr_sections;
3761
3762 lseek(fd, header->feat_offset, SEEK_SET);
3763
3764 err = perf_header__getbuffer64(header, fd, feat_sec, sec_size);
3765 if (err < 0)
3766 goto out_free;
3767
3768 for_each_set_bit(feat, header->adds_features, HEADER_LAST_FEATURE) {
3769 err = process(sec++, header, feat, fd, data);
3770 if (err < 0)
3771 goto out_free;
3772 }
3773 err = 0;
3774 out_free:
3775 free(feat_sec);
3776 return err;
3777 }
3778
3779 static const int attr_file_abi_sizes[] = {
3780 [0] = PERF_ATTR_SIZE_VER0,
3781 [1] = PERF_ATTR_SIZE_VER1,
3782 [2] = PERF_ATTR_SIZE_VER2,
3783 [3] = PERF_ATTR_SIZE_VER3,
3784 [4] = PERF_ATTR_SIZE_VER4,
3785 0,
3786 };
3787
3788 /*
3789 * In the legacy file format, the magic number is not used to encode endianness.
3790 * hdr_sz was used to encode endianness. But given that hdr_sz can vary based
3791 * on ABI revisions, we need to try all combinations for all endianness to
3792 * detect the endianness.
3793 */
try_all_file_abis(uint64_t hdr_sz,struct perf_header * ph)3794 static int try_all_file_abis(uint64_t hdr_sz, struct perf_header *ph)
3795 {
3796 uint64_t ref_size, attr_size;
3797 int i;
3798
3799 for (i = 0 ; attr_file_abi_sizes[i]; i++) {
3800 ref_size = attr_file_abi_sizes[i]
3801 + sizeof(struct perf_file_section);
3802 if (hdr_sz != ref_size) {
3803 attr_size = bswap_64(hdr_sz);
3804 if (attr_size != ref_size)
3805 continue;
3806
3807 ph->needs_swap = true;
3808 }
3809 pr_debug("ABI%d perf.data file detected, need_swap=%d\n",
3810 i,
3811 ph->needs_swap);
3812 return 0;
3813 }
3814 /* could not determine endianness */
3815 return -1;
3816 }
3817
3818 #define PERF_PIPE_HDR_VER0 16
3819
3820 static const size_t attr_pipe_abi_sizes[] = {
3821 [0] = PERF_PIPE_HDR_VER0,
3822 0,
3823 };
3824
3825 /*
3826 * In the legacy pipe format, there is an implicit assumption that endianness
3827 * between host recording the samples, and host parsing the samples is the
3828 * same. This is not always the case given that the pipe output may always be
3829 * redirected into a file and analyzed on a different machine with possibly a
3830 * different endianness and perf_event ABI revisions in the perf tool itself.
3831 */
try_all_pipe_abis(uint64_t hdr_sz,struct perf_header * ph)3832 static int try_all_pipe_abis(uint64_t hdr_sz, struct perf_header *ph)
3833 {
3834 u64 attr_size;
3835 int i;
3836
3837 for (i = 0 ; attr_pipe_abi_sizes[i]; i++) {
3838 if (hdr_sz != attr_pipe_abi_sizes[i]) {
3839 attr_size = bswap_64(hdr_sz);
3840 if (attr_size != hdr_sz)
3841 continue;
3842
3843 ph->needs_swap = true;
3844 }
3845 pr_debug("Pipe ABI%d perf.data file detected\n", i);
3846 return 0;
3847 }
3848 return -1;
3849 }
3850
is_perf_magic(u64 magic)3851 bool is_perf_magic(u64 magic)
3852 {
3853 if (!memcmp(&magic, __perf_magic1, sizeof(magic))
3854 || magic == __perf_magic2
3855 || magic == __perf_magic2_sw)
3856 return true;
3857
3858 return false;
3859 }
3860
check_magic_endian(u64 magic,uint64_t hdr_sz,bool is_pipe,struct perf_header * ph)3861 static int check_magic_endian(u64 magic, uint64_t hdr_sz,
3862 bool is_pipe, struct perf_header *ph)
3863 {
3864 int ret;
3865
3866 /* check for legacy format */
3867 ret = memcmp(&magic, __perf_magic1, sizeof(magic));
3868 if (ret == 0) {
3869 ph->version = PERF_HEADER_VERSION_1;
3870 pr_debug("legacy perf.data format\n");
3871 if (is_pipe)
3872 return try_all_pipe_abis(hdr_sz, ph);
3873
3874 return try_all_file_abis(hdr_sz, ph);
3875 }
3876 /*
3877 * the new magic number serves two purposes:
3878 * - unique number to identify actual perf.data files
3879 * - encode endianness of file
3880 */
3881 ph->version = PERF_HEADER_VERSION_2;
3882
3883 /* check magic number with one endianness */
3884 if (magic == __perf_magic2)
3885 return 0;
3886
3887 /* check magic number with opposite endianness */
3888 if (magic != __perf_magic2_sw)
3889 return -1;
3890
3891 ph->needs_swap = true;
3892
3893 return 0;
3894 }
3895
perf_file_header__read(struct perf_file_header * header,struct perf_header * ph,int fd)3896 int perf_file_header__read(struct perf_file_header *header,
3897 struct perf_header *ph, int fd)
3898 {
3899 ssize_t ret;
3900
3901 lseek(fd, 0, SEEK_SET);
3902
3903 ret = readn(fd, header, sizeof(*header));
3904 if (ret <= 0)
3905 return -1;
3906
3907 if (check_magic_endian(header->magic,
3908 header->attr_size, false, ph) < 0) {
3909 pr_debug("magic/endian check failed\n");
3910 return -1;
3911 }
3912
3913 if (ph->needs_swap) {
3914 mem_bswap_64(header, offsetof(struct perf_file_header,
3915 adds_features));
3916 }
3917
3918 if (header->size != sizeof(*header)) {
3919 /* Support the previous format */
3920 if (header->size == offsetof(typeof(*header), adds_features))
3921 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3922 else
3923 return -1;
3924 } else if (ph->needs_swap) {
3925 /*
3926 * feature bitmap is declared as an array of unsigned longs --
3927 * not good since its size can differ between the host that
3928 * generated the data file and the host analyzing the file.
3929 *
3930 * We need to handle endianness, but we don't know the size of
3931 * the unsigned long where the file was generated. Take a best
3932 * guess at determining it: try 64-bit swap first (ie., file
3933 * created on a 64-bit host), and check if the hostname feature
3934 * bit is set (this feature bit is forced on as of fbe96f2).
3935 * If the bit is not, undo the 64-bit swap and try a 32-bit
3936 * swap. If the hostname bit is still not set (e.g., older data
3937 * file), punt and fallback to the original behavior --
3938 * clearing all feature bits and setting buildid.
3939 */
3940 mem_bswap_64(&header->adds_features,
3941 BITS_TO_U64(HEADER_FEAT_BITS));
3942
3943 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3944 /* unswap as u64 */
3945 mem_bswap_64(&header->adds_features,
3946 BITS_TO_U64(HEADER_FEAT_BITS));
3947
3948 /* unswap as u32 */
3949 mem_bswap_32(&header->adds_features,
3950 BITS_TO_U32(HEADER_FEAT_BITS));
3951 }
3952
3953 if (!test_bit(HEADER_HOSTNAME, header->adds_features)) {
3954 bitmap_zero(header->adds_features, HEADER_FEAT_BITS);
3955 set_bit(HEADER_BUILD_ID, header->adds_features);
3956 }
3957 }
3958
3959 memcpy(&ph->adds_features, &header->adds_features,
3960 sizeof(ph->adds_features));
3961
3962 ph->data_offset = header->data.offset;
3963 ph->data_size = header->data.size;
3964 ph->feat_offset = header->data.offset + header->data.size;
3965 return 0;
3966 }
3967
perf_file_section__process(struct perf_file_section * section,struct perf_header * ph,int feat,int fd,void * data)3968 static int perf_file_section__process(struct perf_file_section *section,
3969 struct perf_header *ph,
3970 int feat, int fd, void *data)
3971 {
3972 struct feat_fd fdd = {
3973 .fd = fd,
3974 .ph = ph,
3975 .size = section->size,
3976 .offset = section->offset,
3977 };
3978
3979 if (lseek(fd, section->offset, SEEK_SET) == (off_t)-1) {
3980 pr_debug("Failed to lseek to %" PRIu64 " offset for feature "
3981 "%d, continuing...\n", section->offset, feat);
3982 return 0;
3983 }
3984
3985 if (feat >= HEADER_LAST_FEATURE) {
3986 pr_debug("unknown feature %d, continuing...\n", feat);
3987 return 0;
3988 }
3989
3990 if (!feat_ops[feat].process)
3991 return 0;
3992
3993 return feat_ops[feat].process(&fdd, data);
3994 }
3995
perf_file_header__read_pipe(struct perf_pipe_file_header * header,struct perf_header * ph,struct perf_data * data,bool repipe,int repipe_fd)3996 static int perf_file_header__read_pipe(struct perf_pipe_file_header *header,
3997 struct perf_header *ph,
3998 struct perf_data* data,
3999 bool repipe, int repipe_fd)
4000 {
4001 struct feat_fd ff = {
4002 .fd = repipe_fd,
4003 .ph = ph,
4004 };
4005 ssize_t ret;
4006
4007 ret = perf_data__read(data, header, sizeof(*header));
4008 if (ret <= 0)
4009 return -1;
4010
4011 if (check_magic_endian(header->magic, header->size, true, ph) < 0) {
4012 pr_debug("endian/magic failed\n");
4013 return -1;
4014 }
4015
4016 if (ph->needs_swap)
4017 header->size = bswap_64(header->size);
4018
4019 if (repipe && do_write(&ff, header, sizeof(*header)) < 0)
4020 return -1;
4021
4022 return 0;
4023 }
4024
perf_header__read_pipe(struct perf_session * session,int repipe_fd)4025 static int perf_header__read_pipe(struct perf_session *session, int repipe_fd)
4026 {
4027 struct perf_header *header = &session->header;
4028 struct perf_pipe_file_header f_header;
4029
4030 if (perf_file_header__read_pipe(&f_header, header, session->data,
4031 session->repipe, repipe_fd) < 0) {
4032 pr_debug("incompatible file format\n");
4033 return -EINVAL;
4034 }
4035
4036 return f_header.size == sizeof(f_header) ? 0 : -1;
4037 }
4038
read_attr(int fd,struct perf_header * ph,struct perf_file_attr * f_attr)4039 static int read_attr(int fd, struct perf_header *ph,
4040 struct perf_file_attr *f_attr)
4041 {
4042 struct perf_event_attr *attr = &f_attr->attr;
4043 size_t sz, left;
4044 size_t our_sz = sizeof(f_attr->attr);
4045 ssize_t ret;
4046
4047 memset(f_attr, 0, sizeof(*f_attr));
4048
4049 /* read minimal guaranteed structure */
4050 ret = readn(fd, attr, PERF_ATTR_SIZE_VER0);
4051 if (ret <= 0) {
4052 pr_debug("cannot read %d bytes of header attr\n",
4053 PERF_ATTR_SIZE_VER0);
4054 return -1;
4055 }
4056
4057 /* on file perf_event_attr size */
4058 sz = attr->size;
4059
4060 if (ph->needs_swap)
4061 sz = bswap_32(sz);
4062
4063 if (sz == 0) {
4064 /* assume ABI0 */
4065 sz = PERF_ATTR_SIZE_VER0;
4066 } else if (sz > our_sz) {
4067 pr_debug("file uses a more recent and unsupported ABI"
4068 " (%zu bytes extra)\n", sz - our_sz);
4069 return -1;
4070 }
4071 /* what we have not yet read and that we know about */
4072 left = sz - PERF_ATTR_SIZE_VER0;
4073 if (left) {
4074 void *ptr = attr;
4075 ptr += PERF_ATTR_SIZE_VER0;
4076
4077 ret = readn(fd, ptr, left);
4078 }
4079 /* read perf_file_section, ids are read in caller */
4080 ret = readn(fd, &f_attr->ids, sizeof(f_attr->ids));
4081
4082 return ret <= 0 ? -1 : 0;
4083 }
4084
evsel__prepare_tracepoint_event(struct evsel * evsel,struct tep_handle * pevent)4085 static int evsel__prepare_tracepoint_event(struct evsel *evsel, struct tep_handle *pevent)
4086 {
4087 struct tep_event *event;
4088 char bf[128];
4089
4090 /* already prepared */
4091 if (evsel->tp_format)
4092 return 0;
4093
4094 if (pevent == NULL) {
4095 pr_debug("broken or missing trace data\n");
4096 return -1;
4097 }
4098
4099 event = tep_find_event(pevent, evsel->core.attr.config);
4100 if (event == NULL) {
4101 pr_debug("cannot find event format for %d\n", (int)evsel->core.attr.config);
4102 return -1;
4103 }
4104
4105 if (!evsel->name) {
4106 snprintf(bf, sizeof(bf), "%s:%s", event->system, event->name);
4107 evsel->name = strdup(bf);
4108 if (evsel->name == NULL)
4109 return -1;
4110 }
4111
4112 evsel->tp_format = event;
4113 return 0;
4114 }
4115
evlist__prepare_tracepoint_events(struct evlist * evlist,struct tep_handle * pevent)4116 static int evlist__prepare_tracepoint_events(struct evlist *evlist, struct tep_handle *pevent)
4117 {
4118 struct evsel *pos;
4119
4120 evlist__for_each_entry(evlist, pos) {
4121 if (pos->core.attr.type == PERF_TYPE_TRACEPOINT &&
4122 evsel__prepare_tracepoint_event(pos, pevent))
4123 return -1;
4124 }
4125
4126 return 0;
4127 }
4128
perf_session__read_header(struct perf_session * session,int repipe_fd)4129 int perf_session__read_header(struct perf_session *session, int repipe_fd)
4130 {
4131 struct perf_data *data = session->data;
4132 struct perf_header *header = &session->header;
4133 struct perf_file_header f_header;
4134 struct perf_file_attr f_attr;
4135 u64 f_id;
4136 int nr_attrs, nr_ids, i, j, err;
4137 int fd = perf_data__fd(data);
4138
4139 session->evlist = evlist__new();
4140 if (session->evlist == NULL)
4141 return -ENOMEM;
4142
4143 session->evlist->env = &header->env;
4144 session->machines.host.env = &header->env;
4145
4146 /*
4147 * We can read 'pipe' data event from regular file,
4148 * check for the pipe header regardless of source.
4149 */
4150 err = perf_header__read_pipe(session, repipe_fd);
4151 if (!err || perf_data__is_pipe(data)) {
4152 data->is_pipe = true;
4153 return err;
4154 }
4155
4156 if (perf_file_header__read(&f_header, header, fd) < 0)
4157 return -EINVAL;
4158
4159 if (header->needs_swap && data->in_place_update) {
4160 pr_err("In-place update not supported when byte-swapping is required\n");
4161 return -EINVAL;
4162 }
4163
4164 /*
4165 * Sanity check that perf.data was written cleanly; data size is
4166 * initialized to 0 and updated only if the on_exit function is run.
4167 * If data size is still 0 then the file contains only partial
4168 * information. Just warn user and process it as much as it can.
4169 */
4170 if (f_header.data.size == 0) {
4171 pr_warning("WARNING: The %s file's data size field is 0 which is unexpected.\n"
4172 "Was the 'perf record' command properly terminated?\n",
4173 data->file.path);
4174 }
4175
4176 if (f_header.attr_size == 0) {
4177 pr_err("ERROR: The %s file's attr size field is 0 which is unexpected.\n"
4178 "Was the 'perf record' command properly terminated?\n",
4179 data->file.path);
4180 return -EINVAL;
4181 }
4182
4183 nr_attrs = f_header.attrs.size / f_header.attr_size;
4184 lseek(fd, f_header.attrs.offset, SEEK_SET);
4185
4186 for (i = 0; i < nr_attrs; i++) {
4187 struct evsel *evsel;
4188 off_t tmp;
4189
4190 if (read_attr(fd, header, &f_attr) < 0)
4191 goto out_errno;
4192
4193 if (header->needs_swap) {
4194 f_attr.ids.size = bswap_64(f_attr.ids.size);
4195 f_attr.ids.offset = bswap_64(f_attr.ids.offset);
4196 perf_event__attr_swap(&f_attr.attr);
4197 }
4198
4199 tmp = lseek(fd, 0, SEEK_CUR);
4200 evsel = evsel__new(&f_attr.attr);
4201
4202 if (evsel == NULL)
4203 goto out_delete_evlist;
4204
4205 evsel->needs_swap = header->needs_swap;
4206 /*
4207 * Do it before so that if perf_evsel__alloc_id fails, this
4208 * entry gets purged too at evlist__delete().
4209 */
4210 evlist__add(session->evlist, evsel);
4211
4212 nr_ids = f_attr.ids.size / sizeof(u64);
4213 /*
4214 * We don't have the cpu and thread maps on the header, so
4215 * for allocating the perf_sample_id table we fake 1 cpu and
4216 * hattr->ids threads.
4217 */
4218 if (perf_evsel__alloc_id(&evsel->core, 1, nr_ids))
4219 goto out_delete_evlist;
4220
4221 lseek(fd, f_attr.ids.offset, SEEK_SET);
4222
4223 for (j = 0; j < nr_ids; j++) {
4224 if (perf_header__getbuffer64(header, fd, &f_id, sizeof(f_id)))
4225 goto out_errno;
4226
4227 perf_evlist__id_add(&session->evlist->core, &evsel->core, 0, j, f_id);
4228 }
4229
4230 lseek(fd, tmp, SEEK_SET);
4231 }
4232
4233 perf_header__process_sections(header, fd, &session->tevent,
4234 perf_file_section__process);
4235
4236 if (evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent))
4237 goto out_delete_evlist;
4238
4239 return 0;
4240 out_errno:
4241 return -errno;
4242
4243 out_delete_evlist:
4244 evlist__delete(session->evlist);
4245 session->evlist = NULL;
4246 return -ENOMEM;
4247 }
4248
perf_event__process_feature(struct perf_session * session,union perf_event * event)4249 int perf_event__process_feature(struct perf_session *session,
4250 union perf_event *event)
4251 {
4252 struct perf_tool *tool = session->tool;
4253 struct feat_fd ff = { .fd = 0 };
4254 struct perf_record_header_feature *fe = (struct perf_record_header_feature *)event;
4255 int type = fe->header.type;
4256 u64 feat = fe->feat_id;
4257 int ret = 0;
4258
4259 if (type < 0 || type >= PERF_RECORD_HEADER_MAX) {
4260 pr_warning("invalid record type %d in pipe-mode\n", type);
4261 return 0;
4262 }
4263 if (feat == HEADER_RESERVED || feat >= HEADER_LAST_FEATURE) {
4264 pr_warning("invalid record type %d in pipe-mode\n", type);
4265 return -1;
4266 }
4267
4268 if (!feat_ops[feat].process)
4269 return 0;
4270
4271 ff.buf = (void *)fe->data;
4272 ff.size = event->header.size - sizeof(*fe);
4273 ff.ph = &session->header;
4274
4275 if (feat_ops[feat].process(&ff, NULL)) {
4276 ret = -1;
4277 goto out;
4278 }
4279
4280 if (!feat_ops[feat].print || !tool->show_feat_hdr)
4281 goto out;
4282
4283 if (!feat_ops[feat].full_only ||
4284 tool->show_feat_hdr >= SHOW_FEAT_HEADER_FULL_INFO) {
4285 feat_ops[feat].print(&ff, stdout);
4286 } else {
4287 fprintf(stdout, "# %s info available, use -I to display\n",
4288 feat_ops[feat].name);
4289 }
4290 out:
4291 free_event_desc(ff.events);
4292 return ret;
4293 }
4294
perf_event__fprintf_event_update(union perf_event * event,FILE * fp)4295 size_t perf_event__fprintf_event_update(union perf_event *event, FILE *fp)
4296 {
4297 struct perf_record_event_update *ev = &event->event_update;
4298 struct perf_cpu_map *map;
4299 size_t ret;
4300
4301 ret = fprintf(fp, "\n... id: %" PRI_lu64 "\n", ev->id);
4302
4303 switch (ev->type) {
4304 case PERF_EVENT_UPDATE__SCALE:
4305 ret += fprintf(fp, "... scale: %f\n", ev->scale.scale);
4306 break;
4307 case PERF_EVENT_UPDATE__UNIT:
4308 ret += fprintf(fp, "... unit: %s\n", ev->unit);
4309 break;
4310 case PERF_EVENT_UPDATE__NAME:
4311 ret += fprintf(fp, "... name: %s\n", ev->name);
4312 break;
4313 case PERF_EVENT_UPDATE__CPUS:
4314 ret += fprintf(fp, "... ");
4315
4316 map = cpu_map__new_data(&ev->cpus.cpus);
4317 if (map)
4318 ret += cpu_map__fprintf(map, fp);
4319 else
4320 ret += fprintf(fp, "failed to get cpus\n");
4321 break;
4322 default:
4323 ret += fprintf(fp, "... unknown type\n");
4324 break;
4325 }
4326
4327 return ret;
4328 }
4329
perf_event__process_attr(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4330 int perf_event__process_attr(struct perf_tool *tool __maybe_unused,
4331 union perf_event *event,
4332 struct evlist **pevlist)
4333 {
4334 u32 i, ids, n_ids;
4335 struct evsel *evsel;
4336 struct evlist *evlist = *pevlist;
4337
4338 if (evlist == NULL) {
4339 *pevlist = evlist = evlist__new();
4340 if (evlist == NULL)
4341 return -ENOMEM;
4342 }
4343
4344 evsel = evsel__new(&event->attr.attr);
4345 if (evsel == NULL)
4346 return -ENOMEM;
4347
4348 evlist__add(evlist, evsel);
4349
4350 ids = event->header.size;
4351 ids -= (void *)&event->attr.id - (void *)event;
4352 n_ids = ids / sizeof(u64);
4353 /*
4354 * We don't have the cpu and thread maps on the header, so
4355 * for allocating the perf_sample_id table we fake 1 cpu and
4356 * hattr->ids threads.
4357 */
4358 if (perf_evsel__alloc_id(&evsel->core, 1, n_ids))
4359 return -ENOMEM;
4360
4361 for (i = 0; i < n_ids; i++) {
4362 perf_evlist__id_add(&evlist->core, &evsel->core, 0, i, event->attr.id[i]);
4363 }
4364
4365 return 0;
4366 }
4367
perf_event__process_event_update(struct perf_tool * tool __maybe_unused,union perf_event * event,struct evlist ** pevlist)4368 int perf_event__process_event_update(struct perf_tool *tool __maybe_unused,
4369 union perf_event *event,
4370 struct evlist **pevlist)
4371 {
4372 struct perf_record_event_update *ev = &event->event_update;
4373 struct evlist *evlist;
4374 struct evsel *evsel;
4375 struct perf_cpu_map *map;
4376
4377 if (dump_trace)
4378 perf_event__fprintf_event_update(event, stdout);
4379
4380 if (!pevlist || *pevlist == NULL)
4381 return -EINVAL;
4382
4383 evlist = *pevlist;
4384
4385 evsel = evlist__id2evsel(evlist, ev->id);
4386 if (evsel == NULL)
4387 return -EINVAL;
4388
4389 switch (ev->type) {
4390 case PERF_EVENT_UPDATE__UNIT:
4391 free((char *)evsel->unit);
4392 evsel->unit = strdup(ev->unit);
4393 break;
4394 case PERF_EVENT_UPDATE__NAME:
4395 free(evsel->name);
4396 evsel->name = strdup(ev->name);
4397 break;
4398 case PERF_EVENT_UPDATE__SCALE:
4399 evsel->scale = ev->scale.scale;
4400 break;
4401 case PERF_EVENT_UPDATE__CPUS:
4402 map = cpu_map__new_data(&ev->cpus.cpus);
4403 if (map) {
4404 perf_cpu_map__put(evsel->core.own_cpus);
4405 evsel->core.own_cpus = map;
4406 } else
4407 pr_err("failed to get event_update cpus\n");
4408 default:
4409 break;
4410 }
4411
4412 return 0;
4413 }
4414
perf_event__process_tracing_data(struct perf_session * session,union perf_event * event)4415 int perf_event__process_tracing_data(struct perf_session *session,
4416 union perf_event *event)
4417 {
4418 ssize_t size_read, padding, size = event->tracing_data.size;
4419 int fd = perf_data__fd(session->data);
4420 char buf[BUFSIZ];
4421
4422 /*
4423 * The pipe fd is already in proper place and in any case
4424 * we can't move it, and we'd screw the case where we read
4425 * 'pipe' data from regular file. The trace_report reads
4426 * data from 'fd' so we need to set it directly behind the
4427 * event, where the tracing data starts.
4428 */
4429 if (!perf_data__is_pipe(session->data)) {
4430 off_t offset = lseek(fd, 0, SEEK_CUR);
4431
4432 /* setup for reading amidst mmap */
4433 lseek(fd, offset + sizeof(struct perf_record_header_tracing_data),
4434 SEEK_SET);
4435 }
4436
4437 size_read = trace_report(fd, &session->tevent,
4438 session->repipe);
4439 padding = PERF_ALIGN(size_read, sizeof(u64)) - size_read;
4440
4441 if (readn(fd, buf, padding) < 0) {
4442 pr_err("%s: reading input file", __func__);
4443 return -1;
4444 }
4445 if (session->repipe) {
4446 int retw = write(STDOUT_FILENO, buf, padding);
4447 if (retw <= 0 || retw != padding) {
4448 pr_err("%s: repiping tracing data padding", __func__);
4449 return -1;
4450 }
4451 }
4452
4453 if (size_read + padding != size) {
4454 pr_err("%s: tracing data size mismatch", __func__);
4455 return -1;
4456 }
4457
4458 evlist__prepare_tracepoint_events(session->evlist, session->tevent.pevent);
4459
4460 return size_read + padding;
4461 }
4462
perf_event__process_build_id(struct perf_session * session,union perf_event * event)4463 int perf_event__process_build_id(struct perf_session *session,
4464 union perf_event *event)
4465 {
4466 __event_process_build_id(&event->build_id,
4467 event->build_id.filename,
4468 session);
4469 return 0;
4470 }
4471