1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * NVM Express device driver
4  * Copyright (c) 2011-2014, Intel Corporation.
5  */
6 
7 #include <linux/blkdev.h>
8 #include <linux/blk-mq.h>
9 #include <linux/blk-integrity.h>
10 #include <linux/compat.h>
11 #include <linux/delay.h>
12 #include <linux/errno.h>
13 #include <linux/hdreg.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/slab.h>
18 #include <linux/types.h>
19 #include <linux/pr.h>
20 #include <linux/ptrace.h>
21 #include <linux/nvme_ioctl.h>
22 #include <linux/pm_qos.h>
23 #include <asm/unaligned.h>
24 
25 #include "nvme.h"
26 #include "fabrics.h"
27 #include <linux/nvme-auth.h>
28 
29 #define CREATE_TRACE_POINTS
30 #include "trace.h"
31 
32 #define NVME_MINORS		(1U << MINORBITS)
33 
34 struct nvme_ns_info {
35 	struct nvme_ns_ids ids;
36 	u32 nsid;
37 	__le32 anagrpid;
38 	bool is_shared;
39 	bool is_readonly;
40 	bool is_ready;
41 };
42 
43 unsigned int admin_timeout = 60;
44 module_param(admin_timeout, uint, 0644);
45 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
46 EXPORT_SYMBOL_GPL(admin_timeout);
47 
48 unsigned int nvme_io_timeout = 30;
49 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
50 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
51 EXPORT_SYMBOL_GPL(nvme_io_timeout);
52 
53 static unsigned char shutdown_timeout = 5;
54 module_param(shutdown_timeout, byte, 0644);
55 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
56 
57 static u8 nvme_max_retries = 5;
58 module_param_named(max_retries, nvme_max_retries, byte, 0644);
59 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
60 
61 static unsigned long default_ps_max_latency_us = 100000;
62 module_param(default_ps_max_latency_us, ulong, 0644);
63 MODULE_PARM_DESC(default_ps_max_latency_us,
64 		 "max power saving latency for new devices; use PM QOS to change per device");
65 
66 static bool force_apst;
67 module_param(force_apst, bool, 0644);
68 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
69 
70 static unsigned long apst_primary_timeout_ms = 100;
71 module_param(apst_primary_timeout_ms, ulong, 0644);
72 MODULE_PARM_DESC(apst_primary_timeout_ms,
73 	"primary APST timeout in ms");
74 
75 static unsigned long apst_secondary_timeout_ms = 2000;
76 module_param(apst_secondary_timeout_ms, ulong, 0644);
77 MODULE_PARM_DESC(apst_secondary_timeout_ms,
78 	"secondary APST timeout in ms");
79 
80 static unsigned long apst_primary_latency_tol_us = 15000;
81 module_param(apst_primary_latency_tol_us, ulong, 0644);
82 MODULE_PARM_DESC(apst_primary_latency_tol_us,
83 	"primary APST latency tolerance in us");
84 
85 static unsigned long apst_secondary_latency_tol_us = 100000;
86 module_param(apst_secondary_latency_tol_us, ulong, 0644);
87 MODULE_PARM_DESC(apst_secondary_latency_tol_us,
88 	"secondary APST latency tolerance in us");
89 
90 /*
91  * nvme_wq - hosts nvme related works that are not reset or delete
92  * nvme_reset_wq - hosts nvme reset works
93  * nvme_delete_wq - hosts nvme delete works
94  *
95  * nvme_wq will host works such as scan, aen handling, fw activation,
96  * keep-alive, periodic reconnects etc. nvme_reset_wq
97  * runs reset works which also flush works hosted on nvme_wq for
98  * serialization purposes. nvme_delete_wq host controller deletion
99  * works which flush reset works for serialization.
100  */
101 struct workqueue_struct *nvme_wq;
102 EXPORT_SYMBOL_GPL(nvme_wq);
103 
104 struct workqueue_struct *nvme_reset_wq;
105 EXPORT_SYMBOL_GPL(nvme_reset_wq);
106 
107 struct workqueue_struct *nvme_delete_wq;
108 EXPORT_SYMBOL_GPL(nvme_delete_wq);
109 
110 static LIST_HEAD(nvme_subsystems);
111 static DEFINE_MUTEX(nvme_subsystems_lock);
112 
113 static DEFINE_IDA(nvme_instance_ida);
114 static dev_t nvme_ctrl_base_chr_devt;
115 static struct class *nvme_class;
116 static struct class *nvme_subsys_class;
117 
118 static DEFINE_IDA(nvme_ns_chr_minor_ida);
119 static dev_t nvme_ns_chr_devt;
120 static struct class *nvme_ns_chr_class;
121 
122 static void nvme_put_subsystem(struct nvme_subsystem *subsys);
123 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
124 					   unsigned nsid);
125 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
126 				   struct nvme_command *cmd);
127 
nvme_queue_scan(struct nvme_ctrl * ctrl)128 void nvme_queue_scan(struct nvme_ctrl *ctrl)
129 {
130 	/*
131 	 * Only new queue scan work when admin and IO queues are both alive
132 	 */
133 	if (ctrl->state == NVME_CTRL_LIVE && ctrl->tagset)
134 		queue_work(nvme_wq, &ctrl->scan_work);
135 }
136 
137 /*
138  * Use this function to proceed with scheduling reset_work for a controller
139  * that had previously been set to the resetting state. This is intended for
140  * code paths that can't be interrupted by other reset attempts. A hot removal
141  * may prevent this from succeeding.
142  */
nvme_try_sched_reset(struct nvme_ctrl * ctrl)143 int nvme_try_sched_reset(struct nvme_ctrl *ctrl)
144 {
145 	if (ctrl->state != NVME_CTRL_RESETTING)
146 		return -EBUSY;
147 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
148 		return -EBUSY;
149 	return 0;
150 }
151 EXPORT_SYMBOL_GPL(nvme_try_sched_reset);
152 
nvme_failfast_work(struct work_struct * work)153 static void nvme_failfast_work(struct work_struct *work)
154 {
155 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
156 			struct nvme_ctrl, failfast_work);
157 
158 	if (ctrl->state != NVME_CTRL_CONNECTING)
159 		return;
160 
161 	set_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
162 	dev_info(ctrl->device, "failfast expired\n");
163 	nvme_kick_requeue_lists(ctrl);
164 }
165 
nvme_start_failfast_work(struct nvme_ctrl * ctrl)166 static inline void nvme_start_failfast_work(struct nvme_ctrl *ctrl)
167 {
168 	if (!ctrl->opts || ctrl->opts->fast_io_fail_tmo == -1)
169 		return;
170 
171 	schedule_delayed_work(&ctrl->failfast_work,
172 			      ctrl->opts->fast_io_fail_tmo * HZ);
173 }
174 
nvme_stop_failfast_work(struct nvme_ctrl * ctrl)175 static inline void nvme_stop_failfast_work(struct nvme_ctrl *ctrl)
176 {
177 	if (!ctrl->opts)
178 		return;
179 
180 	cancel_delayed_work_sync(&ctrl->failfast_work);
181 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
182 }
183 
184 
nvme_reset_ctrl(struct nvme_ctrl * ctrl)185 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
186 {
187 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
188 		return -EBUSY;
189 	if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
190 		return -EBUSY;
191 	return 0;
192 }
193 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
194 
nvme_reset_ctrl_sync(struct nvme_ctrl * ctrl)195 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
196 {
197 	int ret;
198 
199 	ret = nvme_reset_ctrl(ctrl);
200 	if (!ret) {
201 		flush_work(&ctrl->reset_work);
202 		if (ctrl->state != NVME_CTRL_LIVE)
203 			ret = -ENETRESET;
204 	}
205 
206 	return ret;
207 }
208 
nvme_do_delete_ctrl(struct nvme_ctrl * ctrl)209 static void nvme_do_delete_ctrl(struct nvme_ctrl *ctrl)
210 {
211 	dev_info(ctrl->device,
212 		 "Removing ctrl: NQN \"%s\"\n", nvmf_ctrl_subsysnqn(ctrl));
213 
214 	flush_work(&ctrl->reset_work);
215 	nvme_stop_ctrl(ctrl);
216 	nvme_remove_namespaces(ctrl);
217 	ctrl->ops->delete_ctrl(ctrl);
218 	nvme_uninit_ctrl(ctrl);
219 }
220 
nvme_delete_ctrl_work(struct work_struct * work)221 static void nvme_delete_ctrl_work(struct work_struct *work)
222 {
223 	struct nvme_ctrl *ctrl =
224 		container_of(work, struct nvme_ctrl, delete_work);
225 
226 	nvme_do_delete_ctrl(ctrl);
227 }
228 
nvme_delete_ctrl(struct nvme_ctrl * ctrl)229 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
230 {
231 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
232 		return -EBUSY;
233 	if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
234 		return -EBUSY;
235 	return 0;
236 }
237 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
238 
nvme_delete_ctrl_sync(struct nvme_ctrl * ctrl)239 static void nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
240 {
241 	/*
242 	 * Keep a reference until nvme_do_delete_ctrl() complete,
243 	 * since ->delete_ctrl can free the controller.
244 	 */
245 	nvme_get_ctrl(ctrl);
246 	if (nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
247 		nvme_do_delete_ctrl(ctrl);
248 	nvme_put_ctrl(ctrl);
249 }
250 
nvme_error_status(u16 status)251 static blk_status_t nvme_error_status(u16 status)
252 {
253 	switch (status & 0x7ff) {
254 	case NVME_SC_SUCCESS:
255 		return BLK_STS_OK;
256 	case NVME_SC_CAP_EXCEEDED:
257 		return BLK_STS_NOSPC;
258 	case NVME_SC_LBA_RANGE:
259 	case NVME_SC_CMD_INTERRUPTED:
260 	case NVME_SC_NS_NOT_READY:
261 		return BLK_STS_TARGET;
262 	case NVME_SC_BAD_ATTRIBUTES:
263 	case NVME_SC_ONCS_NOT_SUPPORTED:
264 	case NVME_SC_INVALID_OPCODE:
265 	case NVME_SC_INVALID_FIELD:
266 	case NVME_SC_INVALID_NS:
267 		return BLK_STS_NOTSUPP;
268 	case NVME_SC_WRITE_FAULT:
269 	case NVME_SC_READ_ERROR:
270 	case NVME_SC_UNWRITTEN_BLOCK:
271 	case NVME_SC_ACCESS_DENIED:
272 	case NVME_SC_READ_ONLY:
273 	case NVME_SC_COMPARE_FAILED:
274 		return BLK_STS_MEDIUM;
275 	case NVME_SC_GUARD_CHECK:
276 	case NVME_SC_APPTAG_CHECK:
277 	case NVME_SC_REFTAG_CHECK:
278 	case NVME_SC_INVALID_PI:
279 		return BLK_STS_PROTECTION;
280 	case NVME_SC_RESERVATION_CONFLICT:
281 		return BLK_STS_NEXUS;
282 	case NVME_SC_HOST_PATH_ERROR:
283 		return BLK_STS_TRANSPORT;
284 	case NVME_SC_ZONE_TOO_MANY_ACTIVE:
285 		return BLK_STS_ZONE_ACTIVE_RESOURCE;
286 	case NVME_SC_ZONE_TOO_MANY_OPEN:
287 		return BLK_STS_ZONE_OPEN_RESOURCE;
288 	default:
289 		return BLK_STS_IOERR;
290 	}
291 }
292 
nvme_retry_req(struct request * req)293 static void nvme_retry_req(struct request *req)
294 {
295 	unsigned long delay = 0;
296 	u16 crd;
297 
298 	/* The mask and shift result must be <= 3 */
299 	crd = (nvme_req(req)->status & NVME_SC_CRD) >> 11;
300 	if (crd)
301 		delay = nvme_req(req)->ctrl->crdt[crd - 1] * 100;
302 
303 	nvme_req(req)->retries++;
304 	blk_mq_requeue_request(req, false);
305 	blk_mq_delay_kick_requeue_list(req->q, delay);
306 }
307 
nvme_log_error(struct request * req)308 static void nvme_log_error(struct request *req)
309 {
310 	struct nvme_ns *ns = req->q->queuedata;
311 	struct nvme_request *nr = nvme_req(req);
312 
313 	if (ns) {
314 		pr_err_ratelimited("%s: %s(0x%x) @ LBA %llu, %llu blocks, %s (sct 0x%x / sc 0x%x) %s%s\n",
315 		       ns->disk ? ns->disk->disk_name : "?",
316 		       nvme_get_opcode_str(nr->cmd->common.opcode),
317 		       nr->cmd->common.opcode,
318 		       (unsigned long long)nvme_sect_to_lba(ns, blk_rq_pos(req)),
319 		       (unsigned long long)blk_rq_bytes(req) >> ns->lba_shift,
320 		       nvme_get_error_status_str(nr->status),
321 		       nr->status >> 8 & 7,	/* Status Code Type */
322 		       nr->status & 0xff,	/* Status Code */
323 		       nr->status & NVME_SC_MORE ? "MORE " : "",
324 		       nr->status & NVME_SC_DNR  ? "DNR "  : "");
325 		return;
326 	}
327 
328 	pr_err_ratelimited("%s: %s(0x%x), %s (sct 0x%x / sc 0x%x) %s%s\n",
329 			   dev_name(nr->ctrl->device),
330 			   nvme_get_admin_opcode_str(nr->cmd->common.opcode),
331 			   nr->cmd->common.opcode,
332 			   nvme_get_error_status_str(nr->status),
333 			   nr->status >> 8 & 7,	/* Status Code Type */
334 			   nr->status & 0xff,	/* Status Code */
335 			   nr->status & NVME_SC_MORE ? "MORE " : "",
336 			   nr->status & NVME_SC_DNR  ? "DNR "  : "");
337 }
338 
339 enum nvme_disposition {
340 	COMPLETE,
341 	RETRY,
342 	FAILOVER,
343 	AUTHENTICATE,
344 };
345 
nvme_decide_disposition(struct request * req)346 static inline enum nvme_disposition nvme_decide_disposition(struct request *req)
347 {
348 	if (likely(nvme_req(req)->status == 0))
349 		return COMPLETE;
350 
351 	if ((nvme_req(req)->status & 0x7ff) == NVME_SC_AUTH_REQUIRED)
352 		return AUTHENTICATE;
353 
354 	if (blk_noretry_request(req) ||
355 	    (nvme_req(req)->status & NVME_SC_DNR) ||
356 	    nvme_req(req)->retries >= nvme_max_retries)
357 		return COMPLETE;
358 
359 	if (req->cmd_flags & REQ_NVME_MPATH) {
360 		if (nvme_is_path_error(nvme_req(req)->status) ||
361 		    blk_queue_dying(req->q))
362 			return FAILOVER;
363 	} else {
364 		if (blk_queue_dying(req->q))
365 			return COMPLETE;
366 	}
367 
368 	return RETRY;
369 }
370 
nvme_end_req_zoned(struct request * req)371 static inline void nvme_end_req_zoned(struct request *req)
372 {
373 	if (IS_ENABLED(CONFIG_BLK_DEV_ZONED) &&
374 	    req_op(req) == REQ_OP_ZONE_APPEND)
375 		req->__sector = nvme_lba_to_sect(req->q->queuedata,
376 			le64_to_cpu(nvme_req(req)->result.u64));
377 }
378 
nvme_end_req(struct request * req)379 static inline void nvme_end_req(struct request *req)
380 {
381 	blk_status_t status = nvme_error_status(nvme_req(req)->status);
382 
383 	if (unlikely(nvme_req(req)->status && !(req->rq_flags & RQF_QUIET)))
384 		nvme_log_error(req);
385 	nvme_end_req_zoned(req);
386 	nvme_trace_bio_complete(req);
387 	blk_mq_end_request(req, status);
388 }
389 
nvme_complete_rq(struct request * req)390 void nvme_complete_rq(struct request *req)
391 {
392 	struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
393 
394 	trace_nvme_complete_rq(req);
395 	nvme_cleanup_cmd(req);
396 
397 	if (ctrl->kas)
398 		ctrl->comp_seen = true;
399 
400 	switch (nvme_decide_disposition(req)) {
401 	case COMPLETE:
402 		nvme_end_req(req);
403 		return;
404 	case RETRY:
405 		nvme_retry_req(req);
406 		return;
407 	case FAILOVER:
408 		nvme_failover_req(req);
409 		return;
410 	case AUTHENTICATE:
411 #ifdef CONFIG_NVME_AUTH
412 		queue_work(nvme_wq, &ctrl->dhchap_auth_work);
413 		nvme_retry_req(req);
414 #else
415 		nvme_end_req(req);
416 #endif
417 		return;
418 	}
419 }
420 EXPORT_SYMBOL_GPL(nvme_complete_rq);
421 
nvme_complete_batch_req(struct request * req)422 void nvme_complete_batch_req(struct request *req)
423 {
424 	trace_nvme_complete_rq(req);
425 	nvme_cleanup_cmd(req);
426 	nvme_end_req_zoned(req);
427 }
428 EXPORT_SYMBOL_GPL(nvme_complete_batch_req);
429 
430 /*
431  * Called to unwind from ->queue_rq on a failed command submission so that the
432  * multipathing code gets called to potentially failover to another path.
433  * The caller needs to unwind all transport specific resource allocations and
434  * must return propagate the return value.
435  */
nvme_host_path_error(struct request * req)436 blk_status_t nvme_host_path_error(struct request *req)
437 {
438 	nvme_req(req)->status = NVME_SC_HOST_PATH_ERROR;
439 	blk_mq_set_request_complete(req);
440 	nvme_complete_rq(req);
441 	return BLK_STS_OK;
442 }
443 EXPORT_SYMBOL_GPL(nvme_host_path_error);
444 
nvme_cancel_request(struct request * req,void * data)445 bool nvme_cancel_request(struct request *req, void *data)
446 {
447 	dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
448 				"Cancelling I/O %d", req->tag);
449 
450 	/* don't abort one completed request */
451 	if (blk_mq_request_completed(req))
452 		return true;
453 
454 	nvme_req(req)->status = NVME_SC_HOST_ABORTED_CMD;
455 	nvme_req(req)->flags |= NVME_REQ_CANCELLED;
456 	blk_mq_complete_request(req);
457 	return true;
458 }
459 EXPORT_SYMBOL_GPL(nvme_cancel_request);
460 
nvme_cancel_tagset(struct nvme_ctrl * ctrl)461 void nvme_cancel_tagset(struct nvme_ctrl *ctrl)
462 {
463 	if (ctrl->tagset) {
464 		blk_mq_tagset_busy_iter(ctrl->tagset,
465 				nvme_cancel_request, ctrl);
466 		blk_mq_tagset_wait_completed_request(ctrl->tagset);
467 	}
468 }
469 EXPORT_SYMBOL_GPL(nvme_cancel_tagset);
470 
nvme_cancel_admin_tagset(struct nvme_ctrl * ctrl)471 void nvme_cancel_admin_tagset(struct nvme_ctrl *ctrl)
472 {
473 	if (ctrl->admin_tagset) {
474 		blk_mq_tagset_busy_iter(ctrl->admin_tagset,
475 				nvme_cancel_request, ctrl);
476 		blk_mq_tagset_wait_completed_request(ctrl->admin_tagset);
477 	}
478 }
479 EXPORT_SYMBOL_GPL(nvme_cancel_admin_tagset);
480 
nvme_change_ctrl_state(struct nvme_ctrl * ctrl,enum nvme_ctrl_state new_state)481 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
482 		enum nvme_ctrl_state new_state)
483 {
484 	enum nvme_ctrl_state old_state;
485 	unsigned long flags;
486 	bool changed = false;
487 
488 	spin_lock_irqsave(&ctrl->lock, flags);
489 
490 	old_state = ctrl->state;
491 	switch (new_state) {
492 	case NVME_CTRL_LIVE:
493 		switch (old_state) {
494 		case NVME_CTRL_NEW:
495 		case NVME_CTRL_RESETTING:
496 		case NVME_CTRL_CONNECTING:
497 			changed = true;
498 			fallthrough;
499 		default:
500 			break;
501 		}
502 		break;
503 	case NVME_CTRL_RESETTING:
504 		switch (old_state) {
505 		case NVME_CTRL_NEW:
506 		case NVME_CTRL_LIVE:
507 			changed = true;
508 			fallthrough;
509 		default:
510 			break;
511 		}
512 		break;
513 	case NVME_CTRL_CONNECTING:
514 		switch (old_state) {
515 		case NVME_CTRL_NEW:
516 		case NVME_CTRL_RESETTING:
517 			changed = true;
518 			fallthrough;
519 		default:
520 			break;
521 		}
522 		break;
523 	case NVME_CTRL_DELETING:
524 		switch (old_state) {
525 		case NVME_CTRL_LIVE:
526 		case NVME_CTRL_RESETTING:
527 		case NVME_CTRL_CONNECTING:
528 			changed = true;
529 			fallthrough;
530 		default:
531 			break;
532 		}
533 		break;
534 	case NVME_CTRL_DELETING_NOIO:
535 		switch (old_state) {
536 		case NVME_CTRL_DELETING:
537 		case NVME_CTRL_DEAD:
538 			changed = true;
539 			fallthrough;
540 		default:
541 			break;
542 		}
543 		break;
544 	case NVME_CTRL_DEAD:
545 		switch (old_state) {
546 		case NVME_CTRL_DELETING:
547 			changed = true;
548 			fallthrough;
549 		default:
550 			break;
551 		}
552 		break;
553 	default:
554 		break;
555 	}
556 
557 	if (changed) {
558 		ctrl->state = new_state;
559 		wake_up_all(&ctrl->state_wq);
560 	}
561 
562 	spin_unlock_irqrestore(&ctrl->lock, flags);
563 	if (!changed)
564 		return false;
565 
566 	if (ctrl->state == NVME_CTRL_LIVE) {
567 		if (old_state == NVME_CTRL_CONNECTING)
568 			nvme_stop_failfast_work(ctrl);
569 		nvme_kick_requeue_lists(ctrl);
570 	} else if (ctrl->state == NVME_CTRL_CONNECTING &&
571 		old_state == NVME_CTRL_RESETTING) {
572 		nvme_start_failfast_work(ctrl);
573 	}
574 	return changed;
575 }
576 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
577 
578 /*
579  * Returns true for sink states that can't ever transition back to live.
580  */
nvme_state_terminal(struct nvme_ctrl * ctrl)581 static bool nvme_state_terminal(struct nvme_ctrl *ctrl)
582 {
583 	switch (ctrl->state) {
584 	case NVME_CTRL_NEW:
585 	case NVME_CTRL_LIVE:
586 	case NVME_CTRL_RESETTING:
587 	case NVME_CTRL_CONNECTING:
588 		return false;
589 	case NVME_CTRL_DELETING:
590 	case NVME_CTRL_DELETING_NOIO:
591 	case NVME_CTRL_DEAD:
592 		return true;
593 	default:
594 		WARN_ONCE(1, "Unhandled ctrl state:%d", ctrl->state);
595 		return true;
596 	}
597 }
598 
599 /*
600  * Waits for the controller state to be resetting, or returns false if it is
601  * not possible to ever transition to that state.
602  */
nvme_wait_reset(struct nvme_ctrl * ctrl)603 bool nvme_wait_reset(struct nvme_ctrl *ctrl)
604 {
605 	wait_event(ctrl->state_wq,
606 		   nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING) ||
607 		   nvme_state_terminal(ctrl));
608 	return ctrl->state == NVME_CTRL_RESETTING;
609 }
610 EXPORT_SYMBOL_GPL(nvme_wait_reset);
611 
nvme_free_ns_head(struct kref * ref)612 static void nvme_free_ns_head(struct kref *ref)
613 {
614 	struct nvme_ns_head *head =
615 		container_of(ref, struct nvme_ns_head, ref);
616 
617 	nvme_mpath_remove_disk(head);
618 	ida_free(&head->subsys->ns_ida, head->instance);
619 	cleanup_srcu_struct(&head->srcu);
620 	nvme_put_subsystem(head->subsys);
621 	kfree(head);
622 }
623 
nvme_tryget_ns_head(struct nvme_ns_head * head)624 bool nvme_tryget_ns_head(struct nvme_ns_head *head)
625 {
626 	return kref_get_unless_zero(&head->ref);
627 }
628 
nvme_put_ns_head(struct nvme_ns_head * head)629 void nvme_put_ns_head(struct nvme_ns_head *head)
630 {
631 	kref_put(&head->ref, nvme_free_ns_head);
632 }
633 
nvme_free_ns(struct kref * kref)634 static void nvme_free_ns(struct kref *kref)
635 {
636 	struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
637 
638 	put_disk(ns->disk);
639 	nvme_put_ns_head(ns->head);
640 	nvme_put_ctrl(ns->ctrl);
641 	kfree(ns);
642 }
643 
nvme_get_ns(struct nvme_ns * ns)644 static inline bool nvme_get_ns(struct nvme_ns *ns)
645 {
646 	return kref_get_unless_zero(&ns->kref);
647 }
648 
nvme_put_ns(struct nvme_ns * ns)649 void nvme_put_ns(struct nvme_ns *ns)
650 {
651 	kref_put(&ns->kref, nvme_free_ns);
652 }
653 EXPORT_SYMBOL_NS_GPL(nvme_put_ns, NVME_TARGET_PASSTHRU);
654 
nvme_clear_nvme_request(struct request * req)655 static inline void nvme_clear_nvme_request(struct request *req)
656 {
657 	nvme_req(req)->status = 0;
658 	nvme_req(req)->retries = 0;
659 	nvme_req(req)->flags = 0;
660 	req->rq_flags |= RQF_DONTPREP;
661 }
662 
663 /* initialize a passthrough request */
nvme_init_request(struct request * req,struct nvme_command * cmd)664 void nvme_init_request(struct request *req, struct nvme_command *cmd)
665 {
666 	if (req->q->queuedata)
667 		req->timeout = NVME_IO_TIMEOUT;
668 	else /* no queuedata implies admin queue */
669 		req->timeout = NVME_ADMIN_TIMEOUT;
670 
671 	/* passthru commands should let the driver set the SGL flags */
672 	cmd->common.flags &= ~NVME_CMD_SGL_ALL;
673 
674 	req->cmd_flags |= REQ_FAILFAST_DRIVER;
675 	if (req->mq_hctx->type == HCTX_TYPE_POLL)
676 		req->cmd_flags |= REQ_POLLED;
677 	nvme_clear_nvme_request(req);
678 	req->rq_flags |= RQF_QUIET;
679 	memcpy(nvme_req(req)->cmd, cmd, sizeof(*cmd));
680 }
681 EXPORT_SYMBOL_GPL(nvme_init_request);
682 
683 /*
684  * For something we're not in a state to send to the device the default action
685  * is to busy it and retry it after the controller state is recovered.  However,
686  * if the controller is deleting or if anything is marked for failfast or
687  * nvme multipath it is immediately failed.
688  *
689  * Note: commands used to initialize the controller will be marked for failfast.
690  * Note: nvme cli/ioctl commands are marked for failfast.
691  */
nvme_fail_nonready_command(struct nvme_ctrl * ctrl,struct request * rq)692 blk_status_t nvme_fail_nonready_command(struct nvme_ctrl *ctrl,
693 		struct request *rq)
694 {
695 	if (ctrl->state != NVME_CTRL_DELETING_NOIO &&
696 	    ctrl->state != NVME_CTRL_DELETING &&
697 	    ctrl->state != NVME_CTRL_DEAD &&
698 	    !test_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags) &&
699 	    !blk_noretry_request(rq) && !(rq->cmd_flags & REQ_NVME_MPATH))
700 		return BLK_STS_RESOURCE;
701 	return nvme_host_path_error(rq);
702 }
703 EXPORT_SYMBOL_GPL(nvme_fail_nonready_command);
704 
__nvme_check_ready(struct nvme_ctrl * ctrl,struct request * rq,bool queue_live)705 bool __nvme_check_ready(struct nvme_ctrl *ctrl, struct request *rq,
706 		bool queue_live)
707 {
708 	struct nvme_request *req = nvme_req(rq);
709 
710 	/*
711 	 * currently we have a problem sending passthru commands
712 	 * on the admin_q if the controller is not LIVE because we can't
713 	 * make sure that they are going out after the admin connect,
714 	 * controller enable and/or other commands in the initialization
715 	 * sequence. until the controller will be LIVE, fail with
716 	 * BLK_STS_RESOURCE so that they will be rescheduled.
717 	 */
718 	if (rq->q == ctrl->admin_q && (req->flags & NVME_REQ_USERCMD))
719 		return false;
720 
721 	if (ctrl->ops->flags & NVME_F_FABRICS) {
722 		/*
723 		 * Only allow commands on a live queue, except for the connect
724 		 * command, which is require to set the queue live in the
725 		 * appropinquate states.
726 		 */
727 		switch (ctrl->state) {
728 		case NVME_CTRL_CONNECTING:
729 			if (blk_rq_is_passthrough(rq) && nvme_is_fabrics(req->cmd) &&
730 			    (req->cmd->fabrics.fctype == nvme_fabrics_type_connect ||
731 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_send ||
732 			     req->cmd->fabrics.fctype == nvme_fabrics_type_auth_receive))
733 				return true;
734 			break;
735 		default:
736 			break;
737 		case NVME_CTRL_DEAD:
738 			return false;
739 		}
740 	}
741 
742 	return queue_live;
743 }
744 EXPORT_SYMBOL_GPL(__nvme_check_ready);
745 
nvme_setup_flush(struct nvme_ns * ns,struct nvme_command * cmnd)746 static inline void nvme_setup_flush(struct nvme_ns *ns,
747 		struct nvme_command *cmnd)
748 {
749 	memset(cmnd, 0, sizeof(*cmnd));
750 	cmnd->common.opcode = nvme_cmd_flush;
751 	cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
752 }
753 
nvme_setup_discard(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)754 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
755 		struct nvme_command *cmnd)
756 {
757 	unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
758 	struct nvme_dsm_range *range;
759 	struct bio *bio;
760 
761 	/*
762 	 * Some devices do not consider the DSM 'Number of Ranges' field when
763 	 * determining how much data to DMA. Always allocate memory for maximum
764 	 * number of segments to prevent device reading beyond end of buffer.
765 	 */
766 	static const size_t alloc_size = sizeof(*range) * NVME_DSM_MAX_RANGES;
767 
768 	range = kzalloc(alloc_size, GFP_ATOMIC | __GFP_NOWARN);
769 	if (!range) {
770 		/*
771 		 * If we fail allocation our range, fallback to the controller
772 		 * discard page. If that's also busy, it's safe to return
773 		 * busy, as we know we can make progress once that's freed.
774 		 */
775 		if (test_and_set_bit_lock(0, &ns->ctrl->discard_page_busy))
776 			return BLK_STS_RESOURCE;
777 
778 		range = page_address(ns->ctrl->discard_page);
779 	}
780 
781 	__rq_for_each_bio(bio, req) {
782 		u64 slba = nvme_sect_to_lba(ns, bio->bi_iter.bi_sector);
783 		u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
784 
785 		if (n < segments) {
786 			range[n].cattr = cpu_to_le32(0);
787 			range[n].nlb = cpu_to_le32(nlb);
788 			range[n].slba = cpu_to_le64(slba);
789 		}
790 		n++;
791 	}
792 
793 	if (WARN_ON_ONCE(n != segments)) {
794 		if (virt_to_page(range) == ns->ctrl->discard_page)
795 			clear_bit_unlock(0, &ns->ctrl->discard_page_busy);
796 		else
797 			kfree(range);
798 		return BLK_STS_IOERR;
799 	}
800 
801 	memset(cmnd, 0, sizeof(*cmnd));
802 	cmnd->dsm.opcode = nvme_cmd_dsm;
803 	cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
804 	cmnd->dsm.nr = cpu_to_le32(segments - 1);
805 	cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
806 
807 	req->special_vec.bv_page = virt_to_page(range);
808 	req->special_vec.bv_offset = offset_in_page(range);
809 	req->special_vec.bv_len = alloc_size;
810 	req->rq_flags |= RQF_SPECIAL_PAYLOAD;
811 
812 	return BLK_STS_OK;
813 }
814 
nvme_set_ref_tag(struct nvme_ns * ns,struct nvme_command * cmnd,struct request * req)815 static void nvme_set_ref_tag(struct nvme_ns *ns, struct nvme_command *cmnd,
816 			      struct request *req)
817 {
818 	u32 upper, lower;
819 	u64 ref48;
820 
821 	/* both rw and write zeroes share the same reftag format */
822 	switch (ns->guard_type) {
823 	case NVME_NVM_NS_16B_GUARD:
824 		cmnd->rw.reftag = cpu_to_le32(t10_pi_ref_tag(req));
825 		break;
826 	case NVME_NVM_NS_64B_GUARD:
827 		ref48 = ext_pi_ref_tag(req);
828 		lower = lower_32_bits(ref48);
829 		upper = upper_32_bits(ref48);
830 
831 		cmnd->rw.reftag = cpu_to_le32(lower);
832 		cmnd->rw.cdw3 = cpu_to_le32(upper);
833 		break;
834 	default:
835 		break;
836 	}
837 }
838 
nvme_setup_write_zeroes(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd)839 static inline blk_status_t nvme_setup_write_zeroes(struct nvme_ns *ns,
840 		struct request *req, struct nvme_command *cmnd)
841 {
842 	memset(cmnd, 0, sizeof(*cmnd));
843 
844 	if (ns->ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
845 		return nvme_setup_discard(ns, req, cmnd);
846 
847 	cmnd->write_zeroes.opcode = nvme_cmd_write_zeroes;
848 	cmnd->write_zeroes.nsid = cpu_to_le32(ns->head->ns_id);
849 	cmnd->write_zeroes.slba =
850 		cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
851 	cmnd->write_zeroes.length =
852 		cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
853 
854 	if (nvme_ns_has_pi(ns)) {
855 		cmnd->write_zeroes.control = cpu_to_le16(NVME_RW_PRINFO_PRACT);
856 
857 		switch (ns->pi_type) {
858 		case NVME_NS_DPS_PI_TYPE1:
859 		case NVME_NS_DPS_PI_TYPE2:
860 			nvme_set_ref_tag(ns, cmnd, req);
861 			break;
862 		}
863 	}
864 
865 	return BLK_STS_OK;
866 }
867 
nvme_setup_rw(struct nvme_ns * ns,struct request * req,struct nvme_command * cmnd,enum nvme_opcode op)868 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
869 		struct request *req, struct nvme_command *cmnd,
870 		enum nvme_opcode op)
871 {
872 	u16 control = 0;
873 	u32 dsmgmt = 0;
874 
875 	if (req->cmd_flags & REQ_FUA)
876 		control |= NVME_RW_FUA;
877 	if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
878 		control |= NVME_RW_LR;
879 
880 	if (req->cmd_flags & REQ_RAHEAD)
881 		dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
882 
883 	cmnd->rw.opcode = op;
884 	cmnd->rw.flags = 0;
885 	cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
886 	cmnd->rw.cdw2 = 0;
887 	cmnd->rw.cdw3 = 0;
888 	cmnd->rw.metadata = 0;
889 	cmnd->rw.slba = cpu_to_le64(nvme_sect_to_lba(ns, blk_rq_pos(req)));
890 	cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
891 	cmnd->rw.reftag = 0;
892 	cmnd->rw.apptag = 0;
893 	cmnd->rw.appmask = 0;
894 
895 	if (ns->ms) {
896 		/*
897 		 * If formated with metadata, the block layer always provides a
898 		 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled.  Else
899 		 * we enable the PRACT bit for protection information or set the
900 		 * namespace capacity to zero to prevent any I/O.
901 		 */
902 		if (!blk_integrity_rq(req)) {
903 			if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
904 				return BLK_STS_NOTSUPP;
905 			control |= NVME_RW_PRINFO_PRACT;
906 		}
907 
908 		switch (ns->pi_type) {
909 		case NVME_NS_DPS_PI_TYPE3:
910 			control |= NVME_RW_PRINFO_PRCHK_GUARD;
911 			break;
912 		case NVME_NS_DPS_PI_TYPE1:
913 		case NVME_NS_DPS_PI_TYPE2:
914 			control |= NVME_RW_PRINFO_PRCHK_GUARD |
915 					NVME_RW_PRINFO_PRCHK_REF;
916 			if (op == nvme_cmd_zone_append)
917 				control |= NVME_RW_APPEND_PIREMAP;
918 			nvme_set_ref_tag(ns, cmnd, req);
919 			break;
920 		}
921 	}
922 
923 	cmnd->rw.control = cpu_to_le16(control);
924 	cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
925 	return 0;
926 }
927 
nvme_cleanup_cmd(struct request * req)928 void nvme_cleanup_cmd(struct request *req)
929 {
930 	if (req->rq_flags & RQF_SPECIAL_PAYLOAD) {
931 		struct nvme_ctrl *ctrl = nvme_req(req)->ctrl;
932 
933 		if (req->special_vec.bv_page == ctrl->discard_page)
934 			clear_bit_unlock(0, &ctrl->discard_page_busy);
935 		else
936 			kfree(bvec_virt(&req->special_vec));
937 	}
938 }
939 EXPORT_SYMBOL_GPL(nvme_cleanup_cmd);
940 
nvme_setup_cmd(struct nvme_ns * ns,struct request * req)941 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req)
942 {
943 	struct nvme_command *cmd = nvme_req(req)->cmd;
944 	blk_status_t ret = BLK_STS_OK;
945 
946 	if (!(req->rq_flags & RQF_DONTPREP))
947 		nvme_clear_nvme_request(req);
948 
949 	switch (req_op(req)) {
950 	case REQ_OP_DRV_IN:
951 	case REQ_OP_DRV_OUT:
952 		/* these are setup prior to execution in nvme_init_request() */
953 		break;
954 	case REQ_OP_FLUSH:
955 		nvme_setup_flush(ns, cmd);
956 		break;
957 	case REQ_OP_ZONE_RESET_ALL:
958 	case REQ_OP_ZONE_RESET:
959 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_RESET);
960 		break;
961 	case REQ_OP_ZONE_OPEN:
962 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_OPEN);
963 		break;
964 	case REQ_OP_ZONE_CLOSE:
965 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_CLOSE);
966 		break;
967 	case REQ_OP_ZONE_FINISH:
968 		ret = nvme_setup_zone_mgmt_send(ns, req, cmd, NVME_ZONE_FINISH);
969 		break;
970 	case REQ_OP_WRITE_ZEROES:
971 		ret = nvme_setup_write_zeroes(ns, req, cmd);
972 		break;
973 	case REQ_OP_DISCARD:
974 		ret = nvme_setup_discard(ns, req, cmd);
975 		break;
976 	case REQ_OP_READ:
977 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_read);
978 		break;
979 	case REQ_OP_WRITE:
980 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_write);
981 		break;
982 	case REQ_OP_ZONE_APPEND:
983 		ret = nvme_setup_rw(ns, req, cmd, nvme_cmd_zone_append);
984 		break;
985 	default:
986 		WARN_ON_ONCE(1);
987 		return BLK_STS_IOERR;
988 	}
989 
990 	cmd->common.command_id = nvme_cid(req);
991 	trace_nvme_setup_cmd(req, cmd);
992 	return ret;
993 }
994 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
995 
996 /*
997  * Return values:
998  * 0:  success
999  * >0: nvme controller's cqe status response
1000  * <0: kernel error in lieu of controller response
1001  */
nvme_execute_rq(struct request * rq,bool at_head)1002 static int nvme_execute_rq(struct request *rq, bool at_head)
1003 {
1004 	blk_status_t status;
1005 
1006 	status = blk_execute_rq(rq, at_head);
1007 	if (nvme_req(rq)->flags & NVME_REQ_CANCELLED)
1008 		return -EINTR;
1009 	if (nvme_req(rq)->status)
1010 		return nvme_req(rq)->status;
1011 	return blk_status_to_errno(status);
1012 }
1013 
1014 /*
1015  * Returns 0 on success.  If the result is negative, it's a Linux error code;
1016  * if the result is positive, it's an NVM Express status code
1017  */
__nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,union nvme_result * result,void * buffer,unsigned bufflen,int qid,int at_head,blk_mq_req_flags_t flags)1018 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1019 		union nvme_result *result, void *buffer, unsigned bufflen,
1020 		int qid, int at_head, blk_mq_req_flags_t flags)
1021 {
1022 	struct request *req;
1023 	int ret;
1024 
1025 	if (qid == NVME_QID_ANY)
1026 		req = blk_mq_alloc_request(q, nvme_req_op(cmd), flags);
1027 	else
1028 		req = blk_mq_alloc_request_hctx(q, nvme_req_op(cmd), flags,
1029 						qid - 1);
1030 
1031 	if (IS_ERR(req))
1032 		return PTR_ERR(req);
1033 	nvme_init_request(req, cmd);
1034 
1035 	if (buffer && bufflen) {
1036 		ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
1037 		if (ret)
1038 			goto out;
1039 	}
1040 
1041 	ret = nvme_execute_rq(req, at_head);
1042 	if (result && ret >= 0)
1043 		*result = nvme_req(req)->result;
1044  out:
1045 	blk_mq_free_request(req);
1046 	return ret;
1047 }
1048 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
1049 
nvme_submit_sync_cmd(struct request_queue * q,struct nvme_command * cmd,void * buffer,unsigned bufflen)1050 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
1051 		void *buffer, unsigned bufflen)
1052 {
1053 	return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen,
1054 			NVME_QID_ANY, 0, 0);
1055 }
1056 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
1057 
nvme_known_admin_effects(u8 opcode)1058 static u32 nvme_known_admin_effects(u8 opcode)
1059 {
1060 	switch (opcode) {
1061 	case nvme_admin_format_nvm:
1062 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_NCC |
1063 			NVME_CMD_EFFECTS_CSE_MASK;
1064 	case nvme_admin_sanitize_nvm:
1065 		return NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK;
1066 	default:
1067 		break;
1068 	}
1069 	return 0;
1070 }
1071 
nvme_known_nvm_effects(u8 opcode)1072 static u32 nvme_known_nvm_effects(u8 opcode)
1073 {
1074 	switch (opcode) {
1075 	case nvme_cmd_write:
1076 	case nvme_cmd_write_zeroes:
1077 	case nvme_cmd_write_uncor:
1078 		 return NVME_CMD_EFFECTS_LBCC;
1079 	default:
1080 		return 0;
1081 	}
1082 }
1083 
nvme_command_effects(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1084 u32 nvme_command_effects(struct nvme_ctrl *ctrl, struct nvme_ns *ns, u8 opcode)
1085 {
1086 	u32 effects = 0;
1087 
1088 	if (ns) {
1089 		if (ns->head->effects)
1090 			effects = le32_to_cpu(ns->head->effects->iocs[opcode]);
1091 		if (ns->head->ids.csi == NVME_CSI_NVM)
1092 			effects |= nvme_known_nvm_effects(opcode);
1093 		if (effects & ~(NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC))
1094 			dev_warn_once(ctrl->device,
1095 				"IO command:%02x has unusual effects:%08x\n",
1096 				opcode, effects);
1097 
1098 		/*
1099 		 * NVME_CMD_EFFECTS_CSE_MASK causes a freeze all I/O queues,
1100 		 * which would deadlock when done on an I/O command.  Note that
1101 		 * We already warn about an unusual effect above.
1102 		 */
1103 		effects &= ~NVME_CMD_EFFECTS_CSE_MASK;
1104 	} else {
1105 		if (ctrl->effects)
1106 			effects = le32_to_cpu(ctrl->effects->acs[opcode]);
1107 		effects |= nvme_known_admin_effects(opcode);
1108 	}
1109 
1110 	return effects;
1111 }
1112 EXPORT_SYMBOL_NS_GPL(nvme_command_effects, NVME_TARGET_PASSTHRU);
1113 
nvme_passthru_start(struct nvme_ctrl * ctrl,struct nvme_ns * ns,u8 opcode)1114 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1115 			       u8 opcode)
1116 {
1117 	u32 effects = nvme_command_effects(ctrl, ns, opcode);
1118 
1119 	/*
1120 	 * For simplicity, IO to all namespaces is quiesced even if the command
1121 	 * effects say only one namespace is affected.
1122 	 */
1123 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1124 		mutex_lock(&ctrl->scan_lock);
1125 		mutex_lock(&ctrl->subsys->lock);
1126 		nvme_mpath_start_freeze(ctrl->subsys);
1127 		nvme_mpath_wait_freeze(ctrl->subsys);
1128 		nvme_start_freeze(ctrl);
1129 		nvme_wait_freeze(ctrl);
1130 	}
1131 	return effects;
1132 }
1133 
nvme_passthru_end(struct nvme_ctrl * ctrl,u32 effects,struct nvme_command * cmd,int status)1134 void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects,
1135 		       struct nvme_command *cmd, int status)
1136 {
1137 	if (effects & NVME_CMD_EFFECTS_CSE_MASK) {
1138 		nvme_unfreeze(ctrl);
1139 		nvme_mpath_unfreeze(ctrl->subsys);
1140 		mutex_unlock(&ctrl->subsys->lock);
1141 		nvme_remove_invalid_namespaces(ctrl, NVME_NSID_ALL);
1142 		mutex_unlock(&ctrl->scan_lock);
1143 	}
1144 	if (effects & NVME_CMD_EFFECTS_CCC)
1145 		nvme_init_ctrl_finish(ctrl);
1146 	if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC)) {
1147 		nvme_queue_scan(ctrl);
1148 		flush_work(&ctrl->scan_work);
1149 	}
1150 
1151 	switch (cmd->common.opcode) {
1152 	case nvme_admin_set_features:
1153 		switch (le32_to_cpu(cmd->common.cdw10) & 0xFF) {
1154 		case NVME_FEAT_KATO:
1155 			/*
1156 			 * Keep alive commands interval on the host should be
1157 			 * updated when KATO is modified by Set Features
1158 			 * commands.
1159 			 */
1160 			if (!status)
1161 				nvme_update_keep_alive(ctrl, cmd);
1162 			break;
1163 		default:
1164 			break;
1165 		}
1166 		break;
1167 	default:
1168 		break;
1169 	}
1170 }
1171 EXPORT_SYMBOL_NS_GPL(nvme_passthru_end, NVME_TARGET_PASSTHRU);
1172 
nvme_execute_passthru_rq(struct request * rq,u32 * effects)1173 int nvme_execute_passthru_rq(struct request *rq, u32 *effects)
1174 {
1175 	struct nvme_command *cmd = nvme_req(rq)->cmd;
1176 	struct nvme_ctrl *ctrl = nvme_req(rq)->ctrl;
1177 	struct nvme_ns *ns = rq->q->queuedata;
1178 
1179 	*effects = nvme_passthru_start(ctrl, ns, cmd->common.opcode);
1180 	return nvme_execute_rq(rq, false);
1181 }
1182 EXPORT_SYMBOL_NS_GPL(nvme_execute_passthru_rq, NVME_TARGET_PASSTHRU);
1183 
1184 /*
1185  * Recommended frequency for KATO commands per NVMe 1.4 section 7.12.1:
1186  *
1187  *   The host should send Keep Alive commands at half of the Keep Alive Timeout
1188  *   accounting for transport roundtrip times [..].
1189  */
nvme_queue_keep_alive_work(struct nvme_ctrl * ctrl)1190 static void nvme_queue_keep_alive_work(struct nvme_ctrl *ctrl)
1191 {
1192 	queue_delayed_work(nvme_wq, &ctrl->ka_work, ctrl->kato * HZ / 2);
1193 }
1194 
nvme_keep_alive_end_io(struct request * rq,blk_status_t status)1195 static enum rq_end_io_ret nvme_keep_alive_end_io(struct request *rq,
1196 						 blk_status_t status)
1197 {
1198 	struct nvme_ctrl *ctrl = rq->end_io_data;
1199 	unsigned long flags;
1200 	bool startka = false;
1201 
1202 	blk_mq_free_request(rq);
1203 
1204 	if (status) {
1205 		dev_err(ctrl->device,
1206 			"failed nvme_keep_alive_end_io error=%d\n",
1207 				status);
1208 		return RQ_END_IO_NONE;
1209 	}
1210 
1211 	ctrl->comp_seen = false;
1212 	spin_lock_irqsave(&ctrl->lock, flags);
1213 	if (ctrl->state == NVME_CTRL_LIVE ||
1214 	    ctrl->state == NVME_CTRL_CONNECTING)
1215 		startka = true;
1216 	spin_unlock_irqrestore(&ctrl->lock, flags);
1217 	if (startka)
1218 		nvme_queue_keep_alive_work(ctrl);
1219 	return RQ_END_IO_NONE;
1220 }
1221 
nvme_keep_alive_work(struct work_struct * work)1222 static void nvme_keep_alive_work(struct work_struct *work)
1223 {
1224 	struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
1225 			struct nvme_ctrl, ka_work);
1226 	bool comp_seen = ctrl->comp_seen;
1227 	struct request *rq;
1228 
1229 	if ((ctrl->ctratt & NVME_CTRL_ATTR_TBKAS) && comp_seen) {
1230 		dev_dbg(ctrl->device,
1231 			"reschedule traffic based keep-alive timer\n");
1232 		ctrl->comp_seen = false;
1233 		nvme_queue_keep_alive_work(ctrl);
1234 		return;
1235 	}
1236 
1237 	rq = blk_mq_alloc_request(ctrl->admin_q, nvme_req_op(&ctrl->ka_cmd),
1238 				  BLK_MQ_REQ_RESERVED | BLK_MQ_REQ_NOWAIT);
1239 	if (IS_ERR(rq)) {
1240 		/* allocation failure, reset the controller */
1241 		dev_err(ctrl->device, "keep-alive failed: %ld\n", PTR_ERR(rq));
1242 		nvme_reset_ctrl(ctrl);
1243 		return;
1244 	}
1245 	nvme_init_request(rq, &ctrl->ka_cmd);
1246 
1247 	rq->timeout = ctrl->kato * HZ;
1248 	rq->end_io = nvme_keep_alive_end_io;
1249 	rq->end_io_data = ctrl;
1250 	blk_execute_rq_nowait(rq, false);
1251 }
1252 
nvme_start_keep_alive(struct nvme_ctrl * ctrl)1253 static void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
1254 {
1255 	if (unlikely(ctrl->kato == 0))
1256 		return;
1257 
1258 	nvme_queue_keep_alive_work(ctrl);
1259 }
1260 
nvme_stop_keep_alive(struct nvme_ctrl * ctrl)1261 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
1262 {
1263 	if (unlikely(ctrl->kato == 0))
1264 		return;
1265 
1266 	cancel_delayed_work_sync(&ctrl->ka_work);
1267 }
1268 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
1269 
nvme_update_keep_alive(struct nvme_ctrl * ctrl,struct nvme_command * cmd)1270 static void nvme_update_keep_alive(struct nvme_ctrl *ctrl,
1271 				   struct nvme_command *cmd)
1272 {
1273 	unsigned int new_kato =
1274 		DIV_ROUND_UP(le32_to_cpu(cmd->common.cdw11), 1000);
1275 
1276 	dev_info(ctrl->device,
1277 		 "keep alive interval updated from %u ms to %u ms\n",
1278 		 ctrl->kato * 1000 / 2, new_kato * 1000 / 2);
1279 
1280 	nvme_stop_keep_alive(ctrl);
1281 	ctrl->kato = new_kato;
1282 	nvme_start_keep_alive(ctrl);
1283 }
1284 
1285 /*
1286  * In NVMe 1.0 the CNS field was just a binary controller or namespace
1287  * flag, thus sending any new CNS opcodes has a big chance of not working.
1288  * Qemu unfortunately had that bug after reporting a 1.1 version compliance
1289  * (but not for any later version).
1290  */
nvme_ctrl_limited_cns(struct nvme_ctrl * ctrl)1291 static bool nvme_ctrl_limited_cns(struct nvme_ctrl *ctrl)
1292 {
1293 	if (ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)
1294 		return ctrl->vs < NVME_VS(1, 2, 0);
1295 	return ctrl->vs < NVME_VS(1, 1, 0);
1296 }
1297 
nvme_identify_ctrl(struct nvme_ctrl * dev,struct nvme_id_ctrl ** id)1298 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
1299 {
1300 	struct nvme_command c = { };
1301 	int error;
1302 
1303 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1304 	c.identify.opcode = nvme_admin_identify;
1305 	c.identify.cns = NVME_ID_CNS_CTRL;
1306 
1307 	*id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
1308 	if (!*id)
1309 		return -ENOMEM;
1310 
1311 	error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
1312 			sizeof(struct nvme_id_ctrl));
1313 	if (error)
1314 		kfree(*id);
1315 	return error;
1316 }
1317 
nvme_process_ns_desc(struct nvme_ctrl * ctrl,struct nvme_ns_ids * ids,struct nvme_ns_id_desc * cur,bool * csi_seen)1318 static int nvme_process_ns_desc(struct nvme_ctrl *ctrl, struct nvme_ns_ids *ids,
1319 		struct nvme_ns_id_desc *cur, bool *csi_seen)
1320 {
1321 	const char *warn_str = "ctrl returned bogus length:";
1322 	void *data = cur;
1323 
1324 	switch (cur->nidt) {
1325 	case NVME_NIDT_EUI64:
1326 		if (cur->nidl != NVME_NIDT_EUI64_LEN) {
1327 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_EUI64\n",
1328 				 warn_str, cur->nidl);
1329 			return -1;
1330 		}
1331 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1332 			return NVME_NIDT_EUI64_LEN;
1333 		memcpy(ids->eui64, data + sizeof(*cur), NVME_NIDT_EUI64_LEN);
1334 		return NVME_NIDT_EUI64_LEN;
1335 	case NVME_NIDT_NGUID:
1336 		if (cur->nidl != NVME_NIDT_NGUID_LEN) {
1337 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_NGUID\n",
1338 				 warn_str, cur->nidl);
1339 			return -1;
1340 		}
1341 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1342 			return NVME_NIDT_NGUID_LEN;
1343 		memcpy(ids->nguid, data + sizeof(*cur), NVME_NIDT_NGUID_LEN);
1344 		return NVME_NIDT_NGUID_LEN;
1345 	case NVME_NIDT_UUID:
1346 		if (cur->nidl != NVME_NIDT_UUID_LEN) {
1347 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_UUID\n",
1348 				 warn_str, cur->nidl);
1349 			return -1;
1350 		}
1351 		if (ctrl->quirks & NVME_QUIRK_BOGUS_NID)
1352 			return NVME_NIDT_UUID_LEN;
1353 		uuid_copy(&ids->uuid, data + sizeof(*cur));
1354 		return NVME_NIDT_UUID_LEN;
1355 	case NVME_NIDT_CSI:
1356 		if (cur->nidl != NVME_NIDT_CSI_LEN) {
1357 			dev_warn(ctrl->device, "%s %d for NVME_NIDT_CSI\n",
1358 				 warn_str, cur->nidl);
1359 			return -1;
1360 		}
1361 		memcpy(&ids->csi, data + sizeof(*cur), NVME_NIDT_CSI_LEN);
1362 		*csi_seen = true;
1363 		return NVME_NIDT_CSI_LEN;
1364 	default:
1365 		/* Skip unknown types */
1366 		return cur->nidl;
1367 	}
1368 }
1369 
nvme_identify_ns_descs(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1370 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl,
1371 		struct nvme_ns_info *info)
1372 {
1373 	struct nvme_command c = { };
1374 	bool csi_seen = false;
1375 	int status, pos, len;
1376 	void *data;
1377 
1378 	if (ctrl->vs < NVME_VS(1, 3, 0) && !nvme_multi_css(ctrl))
1379 		return 0;
1380 	if (ctrl->quirks & NVME_QUIRK_NO_NS_DESC_LIST)
1381 		return 0;
1382 
1383 	c.identify.opcode = nvme_admin_identify;
1384 	c.identify.nsid = cpu_to_le32(info->nsid);
1385 	c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
1386 
1387 	data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
1388 	if (!data)
1389 		return -ENOMEM;
1390 
1391 	status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
1392 				      NVME_IDENTIFY_DATA_SIZE);
1393 	if (status) {
1394 		dev_warn(ctrl->device,
1395 			"Identify Descriptors failed (nsid=%u, status=0x%x)\n",
1396 			info->nsid, status);
1397 		goto free_data;
1398 	}
1399 
1400 	for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
1401 		struct nvme_ns_id_desc *cur = data + pos;
1402 
1403 		if (cur->nidl == 0)
1404 			break;
1405 
1406 		len = nvme_process_ns_desc(ctrl, &info->ids, cur, &csi_seen);
1407 		if (len < 0)
1408 			break;
1409 
1410 		len += sizeof(*cur);
1411 	}
1412 
1413 	if (nvme_multi_css(ctrl) && !csi_seen) {
1414 		dev_warn(ctrl->device, "Command set not reported for nsid:%d\n",
1415 			 info->nsid);
1416 		status = -EINVAL;
1417 	}
1418 
1419 free_data:
1420 	kfree(data);
1421 	return status;
1422 }
1423 
nvme_identify_ns(struct nvme_ctrl * ctrl,unsigned nsid,struct nvme_id_ns ** id)1424 static int nvme_identify_ns(struct nvme_ctrl *ctrl, unsigned nsid,
1425 			struct nvme_id_ns **id)
1426 {
1427 	struct nvme_command c = { };
1428 	int error;
1429 
1430 	/* gcc-4.4.4 (at least) has issues with initializers and anon unions */
1431 	c.identify.opcode = nvme_admin_identify;
1432 	c.identify.nsid = cpu_to_le32(nsid);
1433 	c.identify.cns = NVME_ID_CNS_NS;
1434 
1435 	*id = kmalloc(sizeof(**id), GFP_KERNEL);
1436 	if (!*id)
1437 		return -ENOMEM;
1438 
1439 	error = nvme_submit_sync_cmd(ctrl->admin_q, &c, *id, sizeof(**id));
1440 	if (error) {
1441 		dev_warn(ctrl->device, "Identify namespace failed (%d)\n", error);
1442 		goto out_free_id;
1443 	}
1444 
1445 	error = NVME_SC_INVALID_NS | NVME_SC_DNR;
1446 	if ((*id)->ncap == 0) /* namespace not allocated or attached */
1447 		goto out_free_id;
1448 	return 0;
1449 
1450 out_free_id:
1451 	kfree(*id);
1452 	return error;
1453 }
1454 
nvme_ns_info_from_identify(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1455 static int nvme_ns_info_from_identify(struct nvme_ctrl *ctrl,
1456 		struct nvme_ns_info *info)
1457 {
1458 	struct nvme_ns_ids *ids = &info->ids;
1459 	struct nvme_id_ns *id;
1460 	int ret;
1461 
1462 	ret = nvme_identify_ns(ctrl, info->nsid, &id);
1463 	if (ret)
1464 		return ret;
1465 	info->anagrpid = id->anagrpid;
1466 	info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1467 	info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1468 	info->is_ready = true;
1469 	if (ctrl->quirks & NVME_QUIRK_BOGUS_NID) {
1470 		dev_info(ctrl->device,
1471 			 "Ignoring bogus Namespace Identifiers\n");
1472 	} else {
1473 		if (ctrl->vs >= NVME_VS(1, 1, 0) &&
1474 		    !memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
1475 			memcpy(ids->eui64, id->eui64, sizeof(ids->eui64));
1476 		if (ctrl->vs >= NVME_VS(1, 2, 0) &&
1477 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
1478 			memcpy(ids->nguid, id->nguid, sizeof(ids->nguid));
1479 	}
1480 	kfree(id);
1481 	return 0;
1482 }
1483 
nvme_ns_info_from_id_cs_indep(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)1484 static int nvme_ns_info_from_id_cs_indep(struct nvme_ctrl *ctrl,
1485 		struct nvme_ns_info *info)
1486 {
1487 	struct nvme_id_ns_cs_indep *id;
1488 	struct nvme_command c = {
1489 		.identify.opcode	= nvme_admin_identify,
1490 		.identify.nsid		= cpu_to_le32(info->nsid),
1491 		.identify.cns		= NVME_ID_CNS_NS_CS_INDEP,
1492 	};
1493 	int ret;
1494 
1495 	id = kmalloc(sizeof(*id), GFP_KERNEL);
1496 	if (!id)
1497 		return -ENOMEM;
1498 
1499 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
1500 	if (!ret) {
1501 		info->anagrpid = id->anagrpid;
1502 		info->is_shared = id->nmic & NVME_NS_NMIC_SHARED;
1503 		info->is_readonly = id->nsattr & NVME_NS_ATTR_RO;
1504 		info->is_ready = id->nstat & NVME_NSTAT_NRDY;
1505 	}
1506 	kfree(id);
1507 	return ret;
1508 }
1509 
nvme_features(struct nvme_ctrl * dev,u8 op,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1510 static int nvme_features(struct nvme_ctrl *dev, u8 op, unsigned int fid,
1511 		unsigned int dword11, void *buffer, size_t buflen, u32 *result)
1512 {
1513 	union nvme_result res = { 0 };
1514 	struct nvme_command c = { };
1515 	int ret;
1516 
1517 	c.features.opcode = op;
1518 	c.features.fid = cpu_to_le32(fid);
1519 	c.features.dword11 = cpu_to_le32(dword11);
1520 
1521 	ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
1522 			buffer, buflen, NVME_QID_ANY, 0, 0);
1523 	if (ret >= 0 && result)
1524 		*result = le32_to_cpu(res.u32);
1525 	return ret;
1526 }
1527 
nvme_set_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1528 int nvme_set_features(struct nvme_ctrl *dev, unsigned int fid,
1529 		      unsigned int dword11, void *buffer, size_t buflen,
1530 		      u32 *result)
1531 {
1532 	return nvme_features(dev, nvme_admin_set_features, fid, dword11, buffer,
1533 			     buflen, result);
1534 }
1535 EXPORT_SYMBOL_GPL(nvme_set_features);
1536 
nvme_get_features(struct nvme_ctrl * dev,unsigned int fid,unsigned int dword11,void * buffer,size_t buflen,u32 * result)1537 int nvme_get_features(struct nvme_ctrl *dev, unsigned int fid,
1538 		      unsigned int dword11, void *buffer, size_t buflen,
1539 		      u32 *result)
1540 {
1541 	return nvme_features(dev, nvme_admin_get_features, fid, dword11, buffer,
1542 			     buflen, result);
1543 }
1544 EXPORT_SYMBOL_GPL(nvme_get_features);
1545 
nvme_set_queue_count(struct nvme_ctrl * ctrl,int * count)1546 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1547 {
1548 	u32 q_count = (*count - 1) | ((*count - 1) << 16);
1549 	u32 result;
1550 	int status, nr_io_queues;
1551 
1552 	status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1553 			&result);
1554 	if (status < 0)
1555 		return status;
1556 
1557 	/*
1558 	 * Degraded controllers might return an error when setting the queue
1559 	 * count.  We still want to be able to bring them online and offer
1560 	 * access to the admin queue, as that might be only way to fix them up.
1561 	 */
1562 	if (status > 0) {
1563 		dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1564 		*count = 0;
1565 	} else {
1566 		nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1567 		*count = min(*count, nr_io_queues);
1568 	}
1569 
1570 	return 0;
1571 }
1572 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1573 
1574 #define NVME_AEN_SUPPORTED \
1575 	(NVME_AEN_CFG_NS_ATTR | NVME_AEN_CFG_FW_ACT | \
1576 	 NVME_AEN_CFG_ANA_CHANGE | NVME_AEN_CFG_DISC_CHANGE)
1577 
nvme_enable_aen(struct nvme_ctrl * ctrl)1578 static void nvme_enable_aen(struct nvme_ctrl *ctrl)
1579 {
1580 	u32 result, supported_aens = ctrl->oaes & NVME_AEN_SUPPORTED;
1581 	int status;
1582 
1583 	if (!supported_aens)
1584 		return;
1585 
1586 	status = nvme_set_features(ctrl, NVME_FEAT_ASYNC_EVENT, supported_aens,
1587 			NULL, 0, &result);
1588 	if (status)
1589 		dev_warn(ctrl->device, "Failed to configure AEN (cfg %x)\n",
1590 			 supported_aens);
1591 
1592 	queue_work(nvme_wq, &ctrl->async_event_work);
1593 }
1594 
nvme_ns_open(struct nvme_ns * ns)1595 static int nvme_ns_open(struct nvme_ns *ns)
1596 {
1597 
1598 	/* should never be called due to GENHD_FL_HIDDEN */
1599 	if (WARN_ON_ONCE(nvme_ns_head_multipath(ns->head)))
1600 		goto fail;
1601 	if (!nvme_get_ns(ns))
1602 		goto fail;
1603 	if (!try_module_get(ns->ctrl->ops->module))
1604 		goto fail_put_ns;
1605 
1606 	return 0;
1607 
1608 fail_put_ns:
1609 	nvme_put_ns(ns);
1610 fail:
1611 	return -ENXIO;
1612 }
1613 
nvme_ns_release(struct nvme_ns * ns)1614 static void nvme_ns_release(struct nvme_ns *ns)
1615 {
1616 
1617 	module_put(ns->ctrl->ops->module);
1618 	nvme_put_ns(ns);
1619 }
1620 
nvme_open(struct block_device * bdev,fmode_t mode)1621 static int nvme_open(struct block_device *bdev, fmode_t mode)
1622 {
1623 	return nvme_ns_open(bdev->bd_disk->private_data);
1624 }
1625 
nvme_release(struct gendisk * disk,fmode_t mode)1626 static void nvme_release(struct gendisk *disk, fmode_t mode)
1627 {
1628 	nvme_ns_release(disk->private_data);
1629 }
1630 
nvme_getgeo(struct block_device * bdev,struct hd_geometry * geo)1631 int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1632 {
1633 	/* some standard values */
1634 	geo->heads = 1 << 6;
1635 	geo->sectors = 1 << 5;
1636 	geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1637 	return 0;
1638 }
1639 
1640 #ifdef CONFIG_BLK_DEV_INTEGRITY
nvme_init_integrity(struct gendisk * disk,struct nvme_ns * ns,u32 max_integrity_segments)1641 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1642 				u32 max_integrity_segments)
1643 {
1644 	struct blk_integrity integrity = { };
1645 
1646 	switch (ns->pi_type) {
1647 	case NVME_NS_DPS_PI_TYPE3:
1648 		switch (ns->guard_type) {
1649 		case NVME_NVM_NS_16B_GUARD:
1650 			integrity.profile = &t10_pi_type3_crc;
1651 			integrity.tag_size = sizeof(u16) + sizeof(u32);
1652 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1653 			break;
1654 		case NVME_NVM_NS_64B_GUARD:
1655 			integrity.profile = &ext_pi_type3_crc64;
1656 			integrity.tag_size = sizeof(u16) + 6;
1657 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1658 			break;
1659 		default:
1660 			integrity.profile = NULL;
1661 			break;
1662 		}
1663 		break;
1664 	case NVME_NS_DPS_PI_TYPE1:
1665 	case NVME_NS_DPS_PI_TYPE2:
1666 		switch (ns->guard_type) {
1667 		case NVME_NVM_NS_16B_GUARD:
1668 			integrity.profile = &t10_pi_type1_crc;
1669 			integrity.tag_size = sizeof(u16);
1670 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1671 			break;
1672 		case NVME_NVM_NS_64B_GUARD:
1673 			integrity.profile = &ext_pi_type1_crc64;
1674 			integrity.tag_size = sizeof(u16);
1675 			integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1676 			break;
1677 		default:
1678 			integrity.profile = NULL;
1679 			break;
1680 		}
1681 		break;
1682 	default:
1683 		integrity.profile = NULL;
1684 		break;
1685 	}
1686 
1687 	integrity.tuple_size = ns->ms;
1688 	blk_integrity_register(disk, &integrity);
1689 	blk_queue_max_integrity_segments(disk->queue, max_integrity_segments);
1690 }
1691 #else
nvme_init_integrity(struct gendisk * disk,struct nvme_ns * ns,u32 max_integrity_segments)1692 static void nvme_init_integrity(struct gendisk *disk, struct nvme_ns *ns,
1693 				u32 max_integrity_segments)
1694 {
1695 }
1696 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1697 
nvme_config_discard(struct gendisk * disk,struct nvme_ns * ns)1698 static void nvme_config_discard(struct gendisk *disk, struct nvme_ns *ns)
1699 {
1700 	struct nvme_ctrl *ctrl = ns->ctrl;
1701 	struct request_queue *queue = disk->queue;
1702 	u32 size = queue_logical_block_size(queue);
1703 
1704 	if (ctrl->max_discard_sectors == 0) {
1705 		blk_queue_max_discard_sectors(queue, 0);
1706 		return;
1707 	}
1708 
1709 	BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1710 			NVME_DSM_MAX_RANGES);
1711 
1712 	queue->limits.discard_granularity = size;
1713 
1714 	/* If discard is already enabled, don't reset queue limits */
1715 	if (queue->limits.max_discard_sectors)
1716 		return;
1717 
1718 	if (ctrl->dmrsl && ctrl->dmrsl <= nvme_sect_to_lba(ns, UINT_MAX))
1719 		ctrl->max_discard_sectors = nvme_lba_to_sect(ns, ctrl->dmrsl);
1720 
1721 	blk_queue_max_discard_sectors(queue, ctrl->max_discard_sectors);
1722 	blk_queue_max_discard_segments(queue, ctrl->max_discard_segments);
1723 
1724 	if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1725 		blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1726 }
1727 
nvme_ns_ids_equal(struct nvme_ns_ids * a,struct nvme_ns_ids * b)1728 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1729 {
1730 	return uuid_equal(&a->uuid, &b->uuid) &&
1731 		memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1732 		memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0 &&
1733 		a->csi == b->csi;
1734 }
1735 
nvme_init_ms(struct nvme_ns * ns,struct nvme_id_ns * id)1736 static int nvme_init_ms(struct nvme_ns *ns, struct nvme_id_ns *id)
1737 {
1738 	bool first = id->dps & NVME_NS_DPS_PI_FIRST;
1739 	unsigned lbaf = nvme_lbaf_index(id->flbas);
1740 	struct nvme_ctrl *ctrl = ns->ctrl;
1741 	struct nvme_command c = { };
1742 	struct nvme_id_ns_nvm *nvm;
1743 	int ret = 0;
1744 	u32 elbaf;
1745 
1746 	ns->pi_size = 0;
1747 	ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1748 	if (!(ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)) {
1749 		ns->pi_size = sizeof(struct t10_pi_tuple);
1750 		ns->guard_type = NVME_NVM_NS_16B_GUARD;
1751 		goto set_pi;
1752 	}
1753 
1754 	nvm = kzalloc(sizeof(*nvm), GFP_KERNEL);
1755 	if (!nvm)
1756 		return -ENOMEM;
1757 
1758 	c.identify.opcode = nvme_admin_identify;
1759 	c.identify.nsid = cpu_to_le32(ns->head->ns_id);
1760 	c.identify.cns = NVME_ID_CNS_CS_NS;
1761 	c.identify.csi = NVME_CSI_NVM;
1762 
1763 	ret = nvme_submit_sync_cmd(ns->ctrl->admin_q, &c, nvm, sizeof(*nvm));
1764 	if (ret)
1765 		goto free_data;
1766 
1767 	elbaf = le32_to_cpu(nvm->elbaf[lbaf]);
1768 
1769 	/* no support for storage tag formats right now */
1770 	if (nvme_elbaf_sts(elbaf))
1771 		goto free_data;
1772 
1773 	ns->guard_type = nvme_elbaf_guard_type(elbaf);
1774 	switch (ns->guard_type) {
1775 	case NVME_NVM_NS_64B_GUARD:
1776 		ns->pi_size = sizeof(struct crc64_pi_tuple);
1777 		break;
1778 	case NVME_NVM_NS_16B_GUARD:
1779 		ns->pi_size = sizeof(struct t10_pi_tuple);
1780 		break;
1781 	default:
1782 		break;
1783 	}
1784 
1785 free_data:
1786 	kfree(nvm);
1787 set_pi:
1788 	if (ns->pi_size && (first || ns->ms == ns->pi_size))
1789 		ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1790 	else
1791 		ns->pi_type = 0;
1792 
1793 	return ret;
1794 }
1795 
nvme_configure_metadata(struct nvme_ns * ns,struct nvme_id_ns * id)1796 static void nvme_configure_metadata(struct nvme_ns *ns, struct nvme_id_ns *id)
1797 {
1798 	struct nvme_ctrl *ctrl = ns->ctrl;
1799 
1800 	if (nvme_init_ms(ns, id))
1801 		return;
1802 
1803 	ns->features &= ~(NVME_NS_METADATA_SUPPORTED | NVME_NS_EXT_LBAS);
1804 	if (!ns->ms || !(ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1805 		return;
1806 
1807 	if (ctrl->ops->flags & NVME_F_FABRICS) {
1808 		/*
1809 		 * The NVMe over Fabrics specification only supports metadata as
1810 		 * part of the extended data LBA.  We rely on HCA/HBA support to
1811 		 * remap the separate metadata buffer from the block layer.
1812 		 */
1813 		if (WARN_ON_ONCE(!(id->flbas & NVME_NS_FLBAS_META_EXT)))
1814 			return;
1815 
1816 		ns->features |= NVME_NS_EXT_LBAS;
1817 
1818 		/*
1819 		 * The current fabrics transport drivers support namespace
1820 		 * metadata formats only if nvme_ns_has_pi() returns true.
1821 		 * Suppress support for all other formats so the namespace will
1822 		 * have a 0 capacity and not be usable through the block stack.
1823 		 *
1824 		 * Note, this check will need to be modified if any drivers
1825 		 * gain the ability to use other metadata formats.
1826 		 */
1827 		if (ctrl->max_integrity_segments && nvme_ns_has_pi(ns))
1828 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1829 	} else {
1830 		/*
1831 		 * For PCIe controllers, we can't easily remap the separate
1832 		 * metadata buffer from the block layer and thus require a
1833 		 * separate metadata buffer for block layer metadata/PI support.
1834 		 * We allow extended LBAs for the passthrough interface, though.
1835 		 */
1836 		if (id->flbas & NVME_NS_FLBAS_META_EXT)
1837 			ns->features |= NVME_NS_EXT_LBAS;
1838 		else
1839 			ns->features |= NVME_NS_METADATA_SUPPORTED;
1840 	}
1841 }
1842 
nvme_set_queue_limits(struct nvme_ctrl * ctrl,struct request_queue * q)1843 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1844 		struct request_queue *q)
1845 {
1846 	bool vwc = ctrl->vwc & NVME_CTRL_VWC_PRESENT;
1847 
1848 	if (ctrl->max_hw_sectors) {
1849 		u32 max_segments =
1850 			(ctrl->max_hw_sectors / (NVME_CTRL_PAGE_SIZE >> 9)) + 1;
1851 
1852 		max_segments = min_not_zero(max_segments, ctrl->max_segments);
1853 		blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1854 		blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1855 	}
1856 	blk_queue_virt_boundary(q, NVME_CTRL_PAGE_SIZE - 1);
1857 	blk_queue_dma_alignment(q, 3);
1858 	blk_queue_write_cache(q, vwc, vwc);
1859 }
1860 
nvme_update_disk_info(struct gendisk * disk,struct nvme_ns * ns,struct nvme_id_ns * id)1861 static void nvme_update_disk_info(struct gendisk *disk,
1862 		struct nvme_ns *ns, struct nvme_id_ns *id)
1863 {
1864 	sector_t capacity = nvme_lba_to_sect(ns, le64_to_cpu(id->nsze));
1865 	unsigned short bs = 1 << ns->lba_shift;
1866 	u32 atomic_bs, phys_bs, io_opt = 0;
1867 
1868 	/*
1869 	 * The block layer can't support LBA sizes larger than the page size
1870 	 * yet, so catch this early and don't allow block I/O.
1871 	 */
1872 	if (ns->lba_shift > PAGE_SHIFT) {
1873 		capacity = 0;
1874 		bs = (1 << 9);
1875 	}
1876 
1877 	blk_integrity_unregister(disk);
1878 
1879 	atomic_bs = phys_bs = bs;
1880 	if (id->nabo == 0) {
1881 		/*
1882 		 * Bit 1 indicates whether NAWUPF is defined for this namespace
1883 		 * and whether it should be used instead of AWUPF. If NAWUPF ==
1884 		 * 0 then AWUPF must be used instead.
1885 		 */
1886 		if (id->nsfeat & NVME_NS_FEAT_ATOMICS && id->nawupf)
1887 			atomic_bs = (1 + le16_to_cpu(id->nawupf)) * bs;
1888 		else
1889 			atomic_bs = (1 + ns->ctrl->subsys->awupf) * bs;
1890 	}
1891 
1892 	if (id->nsfeat & NVME_NS_FEAT_IO_OPT) {
1893 		/* NPWG = Namespace Preferred Write Granularity */
1894 		phys_bs = bs * (1 + le16_to_cpu(id->npwg));
1895 		/* NOWS = Namespace Optimal Write Size */
1896 		io_opt = bs * (1 + le16_to_cpu(id->nows));
1897 	}
1898 
1899 	blk_queue_logical_block_size(disk->queue, bs);
1900 	/*
1901 	 * Linux filesystems assume writing a single physical block is
1902 	 * an atomic operation. Hence limit the physical block size to the
1903 	 * value of the Atomic Write Unit Power Fail parameter.
1904 	 */
1905 	blk_queue_physical_block_size(disk->queue, min(phys_bs, atomic_bs));
1906 	blk_queue_io_min(disk->queue, phys_bs);
1907 	blk_queue_io_opt(disk->queue, io_opt);
1908 
1909 	/*
1910 	 * Register a metadata profile for PI, or the plain non-integrity NVMe
1911 	 * metadata masquerading as Type 0 if supported, otherwise reject block
1912 	 * I/O to namespaces with metadata except when the namespace supports
1913 	 * PI, as it can strip/insert in that case.
1914 	 */
1915 	if (ns->ms) {
1916 		if (IS_ENABLED(CONFIG_BLK_DEV_INTEGRITY) &&
1917 		    (ns->features & NVME_NS_METADATA_SUPPORTED))
1918 			nvme_init_integrity(disk, ns,
1919 					    ns->ctrl->max_integrity_segments);
1920 		else if (!nvme_ns_has_pi(ns))
1921 			capacity = 0;
1922 	}
1923 
1924 	set_capacity_and_notify(disk, capacity);
1925 
1926 	nvme_config_discard(disk, ns);
1927 	blk_queue_max_write_zeroes_sectors(disk->queue,
1928 					   ns->ctrl->max_zeroes_sectors);
1929 }
1930 
nvme_ns_is_readonly(struct nvme_ns * ns,struct nvme_ns_info * info)1931 static bool nvme_ns_is_readonly(struct nvme_ns *ns, struct nvme_ns_info *info)
1932 {
1933 	return info->is_readonly || test_bit(NVME_NS_FORCE_RO, &ns->flags);
1934 }
1935 
nvme_first_scan(struct gendisk * disk)1936 static inline bool nvme_first_scan(struct gendisk *disk)
1937 {
1938 	/* nvme_alloc_ns() scans the disk prior to adding it */
1939 	return !disk_live(disk);
1940 }
1941 
nvme_set_chunk_sectors(struct nvme_ns * ns,struct nvme_id_ns * id)1942 static void nvme_set_chunk_sectors(struct nvme_ns *ns, struct nvme_id_ns *id)
1943 {
1944 	struct nvme_ctrl *ctrl = ns->ctrl;
1945 	u32 iob;
1946 
1947 	if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1948 	    is_power_of_2(ctrl->max_hw_sectors))
1949 		iob = ctrl->max_hw_sectors;
1950 	else
1951 		iob = nvme_lba_to_sect(ns, le16_to_cpu(id->noiob));
1952 
1953 	if (!iob)
1954 		return;
1955 
1956 	if (!is_power_of_2(iob)) {
1957 		if (nvme_first_scan(ns->disk))
1958 			pr_warn("%s: ignoring unaligned IO boundary:%u\n",
1959 				ns->disk->disk_name, iob);
1960 		return;
1961 	}
1962 
1963 	if (blk_queue_is_zoned(ns->disk->queue)) {
1964 		if (nvme_first_scan(ns->disk))
1965 			pr_warn("%s: ignoring zoned namespace IO boundary\n",
1966 				ns->disk->disk_name);
1967 		return;
1968 	}
1969 
1970 	blk_queue_chunk_sectors(ns->queue, iob);
1971 }
1972 
nvme_update_ns_info_generic(struct nvme_ns * ns,struct nvme_ns_info * info)1973 static int nvme_update_ns_info_generic(struct nvme_ns *ns,
1974 		struct nvme_ns_info *info)
1975 {
1976 	blk_mq_freeze_queue(ns->disk->queue);
1977 	nvme_set_queue_limits(ns->ctrl, ns->queue);
1978 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
1979 	blk_mq_unfreeze_queue(ns->disk->queue);
1980 
1981 	if (nvme_ns_head_multipath(ns->head)) {
1982 		blk_mq_freeze_queue(ns->head->disk->queue);
1983 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
1984 		nvme_mpath_revalidate_paths(ns);
1985 		blk_stack_limits(&ns->head->disk->queue->limits,
1986 				 &ns->queue->limits, 0);
1987 		ns->head->disk->flags |= GENHD_FL_HIDDEN;
1988 		blk_mq_unfreeze_queue(ns->head->disk->queue);
1989 	}
1990 
1991 	/* Hide the block-interface for these devices */
1992 	ns->disk->flags |= GENHD_FL_HIDDEN;
1993 	set_bit(NVME_NS_READY, &ns->flags);
1994 
1995 	return 0;
1996 }
1997 
nvme_update_ns_info_block(struct nvme_ns * ns,struct nvme_ns_info * info)1998 static int nvme_update_ns_info_block(struct nvme_ns *ns,
1999 		struct nvme_ns_info *info)
2000 {
2001 	struct nvme_id_ns *id;
2002 	unsigned lbaf;
2003 	int ret;
2004 
2005 	ret = nvme_identify_ns(ns->ctrl, info->nsid, &id);
2006 	if (ret)
2007 		return ret;
2008 
2009 	blk_mq_freeze_queue(ns->disk->queue);
2010 	lbaf = nvme_lbaf_index(id->flbas);
2011 	ns->lba_shift = id->lbaf[lbaf].ds;
2012 	nvme_set_queue_limits(ns->ctrl, ns->queue);
2013 
2014 	nvme_configure_metadata(ns, id);
2015 	nvme_set_chunk_sectors(ns, id);
2016 	nvme_update_disk_info(ns->disk, ns, id);
2017 
2018 	if (ns->head->ids.csi == NVME_CSI_ZNS) {
2019 		ret = nvme_update_zone_info(ns, lbaf);
2020 		if (ret) {
2021 			blk_mq_unfreeze_queue(ns->disk->queue);
2022 			goto out;
2023 		}
2024 	}
2025 
2026 	set_disk_ro(ns->disk, nvme_ns_is_readonly(ns, info));
2027 	set_bit(NVME_NS_READY, &ns->flags);
2028 	blk_mq_unfreeze_queue(ns->disk->queue);
2029 
2030 	if (blk_queue_is_zoned(ns->queue)) {
2031 		ret = nvme_revalidate_zones(ns);
2032 		if (ret && !nvme_first_scan(ns->disk))
2033 			goto out;
2034 	}
2035 
2036 	if (nvme_ns_head_multipath(ns->head)) {
2037 		blk_mq_freeze_queue(ns->head->disk->queue);
2038 		nvme_update_disk_info(ns->head->disk, ns, id);
2039 		set_disk_ro(ns->head->disk, nvme_ns_is_readonly(ns, info));
2040 		nvme_mpath_revalidate_paths(ns);
2041 		blk_stack_limits(&ns->head->disk->queue->limits,
2042 				 &ns->queue->limits, 0);
2043 		disk_update_readahead(ns->head->disk);
2044 		blk_mq_unfreeze_queue(ns->head->disk->queue);
2045 	}
2046 
2047 	ret = 0;
2048 out:
2049 	/*
2050 	 * If probing fails due an unsupported feature, hide the block device,
2051 	 * but still allow other access.
2052 	 */
2053 	if (ret == -ENODEV) {
2054 		ns->disk->flags |= GENHD_FL_HIDDEN;
2055 		set_bit(NVME_NS_READY, &ns->flags);
2056 		ret = 0;
2057 	}
2058 	kfree(id);
2059 	return ret;
2060 }
2061 
nvme_update_ns_info(struct nvme_ns * ns,struct nvme_ns_info * info)2062 static int nvme_update_ns_info(struct nvme_ns *ns, struct nvme_ns_info *info)
2063 {
2064 	switch (info->ids.csi) {
2065 	case NVME_CSI_ZNS:
2066 		if (!IS_ENABLED(CONFIG_BLK_DEV_ZONED)) {
2067 			dev_info(ns->ctrl->device,
2068 	"block device for nsid %u not supported without CONFIG_BLK_DEV_ZONED\n",
2069 				info->nsid);
2070 			return nvme_update_ns_info_generic(ns, info);
2071 		}
2072 		return nvme_update_ns_info_block(ns, info);
2073 	case NVME_CSI_NVM:
2074 		return nvme_update_ns_info_block(ns, info);
2075 	default:
2076 		dev_info(ns->ctrl->device,
2077 			"block device for nsid %u not supported (csi %u)\n",
2078 			info->nsid, info->ids.csi);
2079 		return nvme_update_ns_info_generic(ns, info);
2080 	}
2081 }
2082 
nvme_pr_type(enum pr_type type)2083 static char nvme_pr_type(enum pr_type type)
2084 {
2085 	switch (type) {
2086 	case PR_WRITE_EXCLUSIVE:
2087 		return 1;
2088 	case PR_EXCLUSIVE_ACCESS:
2089 		return 2;
2090 	case PR_WRITE_EXCLUSIVE_REG_ONLY:
2091 		return 3;
2092 	case PR_EXCLUSIVE_ACCESS_REG_ONLY:
2093 		return 4;
2094 	case PR_WRITE_EXCLUSIVE_ALL_REGS:
2095 		return 5;
2096 	case PR_EXCLUSIVE_ACCESS_ALL_REGS:
2097 		return 6;
2098 	default:
2099 		return 0;
2100 	}
2101 }
2102 
nvme_send_ns_head_pr_command(struct block_device * bdev,struct nvme_command * c,u8 data[16])2103 static int nvme_send_ns_head_pr_command(struct block_device *bdev,
2104 		struct nvme_command *c, u8 data[16])
2105 {
2106 	struct nvme_ns_head *head = bdev->bd_disk->private_data;
2107 	int srcu_idx = srcu_read_lock(&head->srcu);
2108 	struct nvme_ns *ns = nvme_find_path(head);
2109 	int ret = -EWOULDBLOCK;
2110 
2111 	if (ns) {
2112 		c->common.nsid = cpu_to_le32(ns->head->ns_id);
2113 		ret = nvme_submit_sync_cmd(ns->queue, c, data, 16);
2114 	}
2115 	srcu_read_unlock(&head->srcu, srcu_idx);
2116 	return ret;
2117 }
2118 
nvme_send_ns_pr_command(struct nvme_ns * ns,struct nvme_command * c,u8 data[16])2119 static int nvme_send_ns_pr_command(struct nvme_ns *ns, struct nvme_command *c,
2120 		u8 data[16])
2121 {
2122 	c->common.nsid = cpu_to_le32(ns->head->ns_id);
2123 	return nvme_submit_sync_cmd(ns->queue, c, data, 16);
2124 }
2125 
nvme_pr_command(struct block_device * bdev,u32 cdw10,u64 key,u64 sa_key,u8 op)2126 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
2127 				u64 key, u64 sa_key, u8 op)
2128 {
2129 	struct nvme_command c = { };
2130 	u8 data[16] = { 0, };
2131 
2132 	put_unaligned_le64(key, &data[0]);
2133 	put_unaligned_le64(sa_key, &data[8]);
2134 
2135 	c.common.opcode = op;
2136 	c.common.cdw10 = cpu_to_le32(cdw10);
2137 
2138 	if (IS_ENABLED(CONFIG_NVME_MULTIPATH) &&
2139 	    bdev->bd_disk->fops == &nvme_ns_head_ops)
2140 		return nvme_send_ns_head_pr_command(bdev, &c, data);
2141 	return nvme_send_ns_pr_command(bdev->bd_disk->private_data, &c, data);
2142 }
2143 
nvme_pr_register(struct block_device * bdev,u64 old,u64 new,unsigned flags)2144 static int nvme_pr_register(struct block_device *bdev, u64 old,
2145 		u64 new, unsigned flags)
2146 {
2147 	u32 cdw10;
2148 
2149 	if (flags & ~PR_FL_IGNORE_KEY)
2150 		return -EOPNOTSUPP;
2151 
2152 	cdw10 = old ? 2 : 0;
2153 	cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
2154 	cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
2155 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
2156 }
2157 
nvme_pr_reserve(struct block_device * bdev,u64 key,enum pr_type type,unsigned flags)2158 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
2159 		enum pr_type type, unsigned flags)
2160 {
2161 	u32 cdw10;
2162 
2163 	if (flags & ~PR_FL_IGNORE_KEY)
2164 		return -EOPNOTSUPP;
2165 
2166 	cdw10 = nvme_pr_type(type) << 8;
2167 	cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
2168 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
2169 }
2170 
nvme_pr_preempt(struct block_device * bdev,u64 old,u64 new,enum pr_type type,bool abort)2171 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
2172 		enum pr_type type, bool abort)
2173 {
2174 	u32 cdw10 = nvme_pr_type(type) << 8 | (abort ? 2 : 1);
2175 
2176 	return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
2177 }
2178 
nvme_pr_clear(struct block_device * bdev,u64 key)2179 static int nvme_pr_clear(struct block_device *bdev, u64 key)
2180 {
2181 	u32 cdw10 = 1 | (key ? 0 : 1 << 3);
2182 
2183 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2184 }
2185 
nvme_pr_release(struct block_device * bdev,u64 key,enum pr_type type)2186 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2187 {
2188 	u32 cdw10 = nvme_pr_type(type) << 8 | (key ? 0 : 1 << 3);
2189 
2190 	return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
2191 }
2192 
2193 const struct pr_ops nvme_pr_ops = {
2194 	.pr_register	= nvme_pr_register,
2195 	.pr_reserve	= nvme_pr_reserve,
2196 	.pr_release	= nvme_pr_release,
2197 	.pr_preempt	= nvme_pr_preempt,
2198 	.pr_clear	= nvme_pr_clear,
2199 };
2200 
2201 #ifdef CONFIG_BLK_SED_OPAL
nvme_sec_submit(void * data,u16 spsp,u8 secp,void * buffer,size_t len,bool send)2202 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
2203 		bool send)
2204 {
2205 	struct nvme_ctrl *ctrl = data;
2206 	struct nvme_command cmd = { };
2207 
2208 	if (send)
2209 		cmd.common.opcode = nvme_admin_security_send;
2210 	else
2211 		cmd.common.opcode = nvme_admin_security_recv;
2212 	cmd.common.nsid = 0;
2213 	cmd.common.cdw10 = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
2214 	cmd.common.cdw11 = cpu_to_le32(len);
2215 
2216 	return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
2217 			NVME_QID_ANY, 1, 0);
2218 }
2219 EXPORT_SYMBOL_GPL(nvme_sec_submit);
2220 #endif /* CONFIG_BLK_SED_OPAL */
2221 
2222 #ifdef CONFIG_BLK_DEV_ZONED
nvme_report_zones(struct gendisk * disk,sector_t sector,unsigned int nr_zones,report_zones_cb cb,void * data)2223 static int nvme_report_zones(struct gendisk *disk, sector_t sector,
2224 		unsigned int nr_zones, report_zones_cb cb, void *data)
2225 {
2226 	return nvme_ns_report_zones(disk->private_data, sector, nr_zones, cb,
2227 			data);
2228 }
2229 #else
2230 #define nvme_report_zones	NULL
2231 #endif /* CONFIG_BLK_DEV_ZONED */
2232 
2233 static const struct block_device_operations nvme_bdev_ops = {
2234 	.owner		= THIS_MODULE,
2235 	.ioctl		= nvme_ioctl,
2236 	.compat_ioctl	= blkdev_compat_ptr_ioctl,
2237 	.open		= nvme_open,
2238 	.release	= nvme_release,
2239 	.getgeo		= nvme_getgeo,
2240 	.report_zones	= nvme_report_zones,
2241 	.pr_ops		= &nvme_pr_ops,
2242 };
2243 
nvme_wait_ready(struct nvme_ctrl * ctrl,u32 timeout,bool enabled)2244 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u32 timeout, bool enabled)
2245 {
2246 	unsigned long timeout_jiffies = ((timeout + 1) * HZ / 2) + jiffies;
2247 	u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
2248 	int ret;
2249 
2250 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2251 		if (csts == ~0)
2252 			return -ENODEV;
2253 		if ((csts & NVME_CSTS_RDY) == bit)
2254 			break;
2255 
2256 		usleep_range(1000, 2000);
2257 		if (fatal_signal_pending(current))
2258 			return -EINTR;
2259 		if (time_after(jiffies, timeout_jiffies)) {
2260 			dev_err(ctrl->device,
2261 				"Device not ready; aborting %s, CSTS=0x%x\n",
2262 				enabled ? "initialisation" : "reset", csts);
2263 			return -ENODEV;
2264 		}
2265 	}
2266 
2267 	return ret;
2268 }
2269 
2270 /*
2271  * If the device has been passed off to us in an enabled state, just clear
2272  * the enabled bit.  The spec says we should set the 'shutdown notification
2273  * bits', but doing so may cause the device to complete commands to the
2274  * admin queue ... and we don't know what memory that might be pointing at!
2275  */
nvme_disable_ctrl(struct nvme_ctrl * ctrl)2276 int nvme_disable_ctrl(struct nvme_ctrl *ctrl)
2277 {
2278 	int ret;
2279 
2280 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2281 	ctrl->ctrl_config &= ~NVME_CC_ENABLE;
2282 
2283 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2284 	if (ret)
2285 		return ret;
2286 
2287 	if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
2288 		msleep(NVME_QUIRK_DELAY_AMOUNT);
2289 
2290 	return nvme_wait_ready(ctrl, NVME_CAP_TIMEOUT(ctrl->cap), false);
2291 }
2292 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
2293 
nvme_enable_ctrl(struct nvme_ctrl * ctrl)2294 int nvme_enable_ctrl(struct nvme_ctrl *ctrl)
2295 {
2296 	unsigned dev_page_min;
2297 	u32 timeout;
2298 	int ret;
2299 
2300 	ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &ctrl->cap);
2301 	if (ret) {
2302 		dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2303 		return ret;
2304 	}
2305 	dev_page_min = NVME_CAP_MPSMIN(ctrl->cap) + 12;
2306 
2307 	if (NVME_CTRL_PAGE_SHIFT < dev_page_min) {
2308 		dev_err(ctrl->device,
2309 			"Minimum device page size %u too large for host (%u)\n",
2310 			1 << dev_page_min, 1 << NVME_CTRL_PAGE_SHIFT);
2311 		return -ENODEV;
2312 	}
2313 
2314 	if (NVME_CAP_CSS(ctrl->cap) & NVME_CAP_CSS_CSI)
2315 		ctrl->ctrl_config = NVME_CC_CSS_CSI;
2316 	else
2317 		ctrl->ctrl_config = NVME_CC_CSS_NVM;
2318 
2319 	if (ctrl->cap & NVME_CAP_CRMS_CRWMS) {
2320 		u32 crto;
2321 
2322 		ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CRTO, &crto);
2323 		if (ret) {
2324 			dev_err(ctrl->device, "Reading CRTO failed (%d)\n",
2325 				ret);
2326 			return ret;
2327 		}
2328 
2329 		if (ctrl->cap & NVME_CAP_CRMS_CRIMS) {
2330 			ctrl->ctrl_config |= NVME_CC_CRIME;
2331 			timeout = NVME_CRTO_CRIMT(crto);
2332 		} else {
2333 			timeout = NVME_CRTO_CRWMT(crto);
2334 		}
2335 	} else {
2336 		timeout = NVME_CAP_TIMEOUT(ctrl->cap);
2337 	}
2338 
2339 	ctrl->ctrl_config |= (NVME_CTRL_PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
2340 	ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
2341 	ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
2342 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2343 	if (ret)
2344 		return ret;
2345 
2346 	/* Flush write to device (required if transport is PCI) */
2347 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CC, &ctrl->ctrl_config);
2348 	if (ret)
2349 		return ret;
2350 
2351 	ctrl->ctrl_config |= NVME_CC_ENABLE;
2352 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2353 	if (ret)
2354 		return ret;
2355 	return nvme_wait_ready(ctrl, timeout, true);
2356 }
2357 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
2358 
nvme_shutdown_ctrl(struct nvme_ctrl * ctrl)2359 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
2360 {
2361 	unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
2362 	u32 csts;
2363 	int ret;
2364 
2365 	ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
2366 	ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
2367 
2368 	ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
2369 	if (ret)
2370 		return ret;
2371 
2372 	while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
2373 		if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
2374 			break;
2375 
2376 		msleep(100);
2377 		if (fatal_signal_pending(current))
2378 			return -EINTR;
2379 		if (time_after(jiffies, timeout)) {
2380 			dev_err(ctrl->device,
2381 				"Device shutdown incomplete; abort shutdown\n");
2382 			return -ENODEV;
2383 		}
2384 	}
2385 
2386 	return ret;
2387 }
2388 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
2389 
nvme_configure_timestamp(struct nvme_ctrl * ctrl)2390 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
2391 {
2392 	__le64 ts;
2393 	int ret;
2394 
2395 	if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
2396 		return 0;
2397 
2398 	ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
2399 	ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
2400 			NULL);
2401 	if (ret)
2402 		dev_warn_once(ctrl->device,
2403 			"could not set timestamp (%d)\n", ret);
2404 	return ret;
2405 }
2406 
nvme_configure_host_options(struct nvme_ctrl * ctrl)2407 static int nvme_configure_host_options(struct nvme_ctrl *ctrl)
2408 {
2409 	struct nvme_feat_host_behavior *host;
2410 	u8 acre = 0, lbafee = 0;
2411 	int ret;
2412 
2413 	/* Don't bother enabling the feature if retry delay is not reported */
2414 	if (ctrl->crdt[0])
2415 		acre = NVME_ENABLE_ACRE;
2416 	if (ctrl->ctratt & NVME_CTRL_ATTR_ELBAS)
2417 		lbafee = NVME_ENABLE_LBAFEE;
2418 
2419 	if (!acre && !lbafee)
2420 		return 0;
2421 
2422 	host = kzalloc(sizeof(*host), GFP_KERNEL);
2423 	if (!host)
2424 		return 0;
2425 
2426 	host->acre = acre;
2427 	host->lbafee = lbafee;
2428 	ret = nvme_set_features(ctrl, NVME_FEAT_HOST_BEHAVIOR, 0,
2429 				host, sizeof(*host), NULL);
2430 	kfree(host);
2431 	return ret;
2432 }
2433 
2434 /*
2435  * The function checks whether the given total (exlat + enlat) latency of
2436  * a power state allows the latter to be used as an APST transition target.
2437  * It does so by comparing the latency to the primary and secondary latency
2438  * tolerances defined by module params. If there's a match, the corresponding
2439  * timeout value is returned and the matching tolerance index (1 or 2) is
2440  * reported.
2441  */
nvme_apst_get_transition_time(u64 total_latency,u64 * transition_time,unsigned * last_index)2442 static bool nvme_apst_get_transition_time(u64 total_latency,
2443 		u64 *transition_time, unsigned *last_index)
2444 {
2445 	if (total_latency <= apst_primary_latency_tol_us) {
2446 		if (*last_index == 1)
2447 			return false;
2448 		*last_index = 1;
2449 		*transition_time = apst_primary_timeout_ms;
2450 		return true;
2451 	}
2452 	if (apst_secondary_timeout_ms &&
2453 		total_latency <= apst_secondary_latency_tol_us) {
2454 		if (*last_index <= 2)
2455 			return false;
2456 		*last_index = 2;
2457 		*transition_time = apst_secondary_timeout_ms;
2458 		return true;
2459 	}
2460 	return false;
2461 }
2462 
2463 /*
2464  * APST (Autonomous Power State Transition) lets us program a table of power
2465  * state transitions that the controller will perform automatically.
2466  *
2467  * Depending on module params, one of the two supported techniques will be used:
2468  *
2469  * - If the parameters provide explicit timeouts and tolerances, they will be
2470  *   used to build a table with up to 2 non-operational states to transition to.
2471  *   The default parameter values were selected based on the values used by
2472  *   Microsoft's and Intel's NVMe drivers. Yet, since we don't implement dynamic
2473  *   regeneration of the APST table in the event of switching between external
2474  *   and battery power, the timeouts and tolerances reflect a compromise
2475  *   between values used by Microsoft for AC and battery scenarios.
2476  * - If not, we'll configure the table with a simple heuristic: we are willing
2477  *   to spend at most 2% of the time transitioning between power states.
2478  *   Therefore, when running in any given state, we will enter the next
2479  *   lower-power non-operational state after waiting 50 * (enlat + exlat)
2480  *   microseconds, as long as that state's exit latency is under the requested
2481  *   maximum latency.
2482  *
2483  * We will not autonomously enter any non-operational state for which the total
2484  * latency exceeds ps_max_latency_us.
2485  *
2486  * Users can set ps_max_latency_us to zero to turn off APST.
2487  */
nvme_configure_apst(struct nvme_ctrl * ctrl)2488 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
2489 {
2490 	struct nvme_feat_auto_pst *table;
2491 	unsigned apste = 0;
2492 	u64 max_lat_us = 0;
2493 	__le64 target = 0;
2494 	int max_ps = -1;
2495 	int state;
2496 	int ret;
2497 	unsigned last_lt_index = UINT_MAX;
2498 
2499 	/*
2500 	 * If APST isn't supported or if we haven't been initialized yet,
2501 	 * then don't do anything.
2502 	 */
2503 	if (!ctrl->apsta)
2504 		return 0;
2505 
2506 	if (ctrl->npss > 31) {
2507 		dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
2508 		return 0;
2509 	}
2510 
2511 	table = kzalloc(sizeof(*table), GFP_KERNEL);
2512 	if (!table)
2513 		return 0;
2514 
2515 	if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
2516 		/* Turn off APST. */
2517 		dev_dbg(ctrl->device, "APST disabled\n");
2518 		goto done;
2519 	}
2520 
2521 	/*
2522 	 * Walk through all states from lowest- to highest-power.
2523 	 * According to the spec, lower-numbered states use more power.  NPSS,
2524 	 * despite the name, is the index of the lowest-power state, not the
2525 	 * number of states.
2526 	 */
2527 	for (state = (int)ctrl->npss; state >= 0; state--) {
2528 		u64 total_latency_us, exit_latency_us, transition_ms;
2529 
2530 		if (target)
2531 			table->entries[state] = target;
2532 
2533 		/*
2534 		 * Don't allow transitions to the deepest state if it's quirked
2535 		 * off.
2536 		 */
2537 		if (state == ctrl->npss &&
2538 		    (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
2539 			continue;
2540 
2541 		/*
2542 		 * Is this state a useful non-operational state for higher-power
2543 		 * states to autonomously transition to?
2544 		 */
2545 		if (!(ctrl->psd[state].flags & NVME_PS_FLAGS_NON_OP_STATE))
2546 			continue;
2547 
2548 		exit_latency_us = (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
2549 		if (exit_latency_us > ctrl->ps_max_latency_us)
2550 			continue;
2551 
2552 		total_latency_us = exit_latency_us +
2553 			le32_to_cpu(ctrl->psd[state].entry_lat);
2554 
2555 		/*
2556 		 * This state is good. It can be used as the APST idle target
2557 		 * for higher power states.
2558 		 */
2559 		if (apst_primary_timeout_ms && apst_primary_latency_tol_us) {
2560 			if (!nvme_apst_get_transition_time(total_latency_us,
2561 					&transition_ms, &last_lt_index))
2562 				continue;
2563 		} else {
2564 			transition_ms = total_latency_us + 19;
2565 			do_div(transition_ms, 20);
2566 			if (transition_ms > (1 << 24) - 1)
2567 				transition_ms = (1 << 24) - 1;
2568 		}
2569 
2570 		target = cpu_to_le64((state << 3) | (transition_ms << 8));
2571 		if (max_ps == -1)
2572 			max_ps = state;
2573 		if (total_latency_us > max_lat_us)
2574 			max_lat_us = total_latency_us;
2575 	}
2576 
2577 	if (max_ps == -1)
2578 		dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
2579 	else
2580 		dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
2581 			max_ps, max_lat_us, (int)sizeof(*table), table);
2582 	apste = 1;
2583 
2584 done:
2585 	ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
2586 				table, sizeof(*table), NULL);
2587 	if (ret)
2588 		dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
2589 	kfree(table);
2590 	return ret;
2591 }
2592 
nvme_set_latency_tolerance(struct device * dev,s32 val)2593 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
2594 {
2595 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2596 	u64 latency;
2597 
2598 	switch (val) {
2599 	case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
2600 	case PM_QOS_LATENCY_ANY:
2601 		latency = U64_MAX;
2602 		break;
2603 
2604 	default:
2605 		latency = val;
2606 	}
2607 
2608 	if (ctrl->ps_max_latency_us != latency) {
2609 		ctrl->ps_max_latency_us = latency;
2610 		if (ctrl->state == NVME_CTRL_LIVE)
2611 			nvme_configure_apst(ctrl);
2612 	}
2613 }
2614 
2615 struct nvme_core_quirk_entry {
2616 	/*
2617 	 * NVMe model and firmware strings are padded with spaces.  For
2618 	 * simplicity, strings in the quirk table are padded with NULLs
2619 	 * instead.
2620 	 */
2621 	u16 vid;
2622 	const char *mn;
2623 	const char *fr;
2624 	unsigned long quirks;
2625 };
2626 
2627 static const struct nvme_core_quirk_entry core_quirks[] = {
2628 	{
2629 		/*
2630 		 * This Toshiba device seems to die using any APST states.  See:
2631 		 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
2632 		 */
2633 		.vid = 0x1179,
2634 		.mn = "THNSF5256GPUK TOSHIBA",
2635 		.quirks = NVME_QUIRK_NO_APST,
2636 	},
2637 	{
2638 		/*
2639 		 * This LiteON CL1-3D*-Q11 firmware version has a race
2640 		 * condition associated with actions related to suspend to idle
2641 		 * LiteON has resolved the problem in future firmware
2642 		 */
2643 		.vid = 0x14a4,
2644 		.fr = "22301111",
2645 		.quirks = NVME_QUIRK_SIMPLE_SUSPEND,
2646 	},
2647 	{
2648 		/*
2649 		 * This Kioxia CD6-V Series / HPE PE8030 device times out and
2650 		 * aborts I/O during any load, but more easily reproducible
2651 		 * with discards (fstrim).
2652 		 *
2653 		 * The device is left in a state where it is also not possible
2654 		 * to use "nvme set-feature" to disable APST, but booting with
2655 		 * nvme_core.default_ps_max_latency=0 works.
2656 		 */
2657 		.vid = 0x1e0f,
2658 		.mn = "KCD6XVUL6T40",
2659 		.quirks = NVME_QUIRK_NO_APST,
2660 	},
2661 	{
2662 		/*
2663 		 * The external Samsung X5 SSD fails initialization without a
2664 		 * delay before checking if it is ready and has a whole set of
2665 		 * other problems.  To make this even more interesting, it
2666 		 * shares the PCI ID with internal Samsung 970 Evo Plus that
2667 		 * does not need or want these quirks.
2668 		 */
2669 		.vid = 0x144d,
2670 		.mn = "Samsung Portable SSD X5",
2671 		.quirks = NVME_QUIRK_DELAY_BEFORE_CHK_RDY |
2672 			  NVME_QUIRK_NO_DEEPEST_PS |
2673 			  NVME_QUIRK_IGNORE_DEV_SUBNQN,
2674 	}
2675 };
2676 
2677 /* match is null-terminated but idstr is space-padded. */
string_matches(const char * idstr,const char * match,size_t len)2678 static bool string_matches(const char *idstr, const char *match, size_t len)
2679 {
2680 	size_t matchlen;
2681 
2682 	if (!match)
2683 		return true;
2684 
2685 	matchlen = strlen(match);
2686 	WARN_ON_ONCE(matchlen > len);
2687 
2688 	if (memcmp(idstr, match, matchlen))
2689 		return false;
2690 
2691 	for (; matchlen < len; matchlen++)
2692 		if (idstr[matchlen] != ' ')
2693 			return false;
2694 
2695 	return true;
2696 }
2697 
quirk_matches(const struct nvme_id_ctrl * id,const struct nvme_core_quirk_entry * q)2698 static bool quirk_matches(const struct nvme_id_ctrl *id,
2699 			  const struct nvme_core_quirk_entry *q)
2700 {
2701 	return q->vid == le16_to_cpu(id->vid) &&
2702 		string_matches(id->mn, q->mn, sizeof(id->mn)) &&
2703 		string_matches(id->fr, q->fr, sizeof(id->fr));
2704 }
2705 
nvme_init_subnqn(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2706 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2707 		struct nvme_id_ctrl *id)
2708 {
2709 	size_t nqnlen;
2710 	int off;
2711 
2712 	if(!(ctrl->quirks & NVME_QUIRK_IGNORE_DEV_SUBNQN)) {
2713 		nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2714 		if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2715 			strscpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2716 			return;
2717 		}
2718 
2719 		if (ctrl->vs >= NVME_VS(1, 2, 1))
2720 			dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2721 	}
2722 
2723 	/*
2724 	 * Generate a "fake" NQN similar to the one in Section 4.5 of the NVMe
2725 	 * Base Specification 2.0.  It is slightly different from the format
2726 	 * specified there due to historic reasons, and we can't change it now.
2727 	 */
2728 	off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2729 			"nqn.2014.08.org.nvmexpress:%04x%04x",
2730 			le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2731 	memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2732 	off += sizeof(id->sn);
2733 	memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2734 	off += sizeof(id->mn);
2735 	memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2736 }
2737 
nvme_release_subsystem(struct device * dev)2738 static void nvme_release_subsystem(struct device *dev)
2739 {
2740 	struct nvme_subsystem *subsys =
2741 		container_of(dev, struct nvme_subsystem, dev);
2742 
2743 	if (subsys->instance >= 0)
2744 		ida_free(&nvme_instance_ida, subsys->instance);
2745 	kfree(subsys);
2746 }
2747 
nvme_destroy_subsystem(struct kref * ref)2748 static void nvme_destroy_subsystem(struct kref *ref)
2749 {
2750 	struct nvme_subsystem *subsys =
2751 			container_of(ref, struct nvme_subsystem, ref);
2752 
2753 	mutex_lock(&nvme_subsystems_lock);
2754 	list_del(&subsys->entry);
2755 	mutex_unlock(&nvme_subsystems_lock);
2756 
2757 	ida_destroy(&subsys->ns_ida);
2758 	device_del(&subsys->dev);
2759 	put_device(&subsys->dev);
2760 }
2761 
nvme_put_subsystem(struct nvme_subsystem * subsys)2762 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2763 {
2764 	kref_put(&subsys->ref, nvme_destroy_subsystem);
2765 }
2766 
__nvme_find_get_subsystem(const char * subsysnqn)2767 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2768 {
2769 	struct nvme_subsystem *subsys;
2770 
2771 	lockdep_assert_held(&nvme_subsystems_lock);
2772 
2773 	/*
2774 	 * Fail matches for discovery subsystems. This results
2775 	 * in each discovery controller bound to a unique subsystem.
2776 	 * This avoids issues with validating controller values
2777 	 * that can only be true when there is a single unique subsystem.
2778 	 * There may be multiple and completely independent entities
2779 	 * that provide discovery controllers.
2780 	 */
2781 	if (!strcmp(subsysnqn, NVME_DISC_SUBSYS_NAME))
2782 		return NULL;
2783 
2784 	list_for_each_entry(subsys, &nvme_subsystems, entry) {
2785 		if (strcmp(subsys->subnqn, subsysnqn))
2786 			continue;
2787 		if (!kref_get_unless_zero(&subsys->ref))
2788 			continue;
2789 		return subsys;
2790 	}
2791 
2792 	return NULL;
2793 }
2794 
2795 #define SUBSYS_ATTR_RO(_name, _mode, _show)			\
2796 	struct device_attribute subsys_attr_##_name = \
2797 		__ATTR(_name, _mode, _show, NULL)
2798 
nvme_subsys_show_nqn(struct device * dev,struct device_attribute * attr,char * buf)2799 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2800 				    struct device_attribute *attr,
2801 				    char *buf)
2802 {
2803 	struct nvme_subsystem *subsys =
2804 		container_of(dev, struct nvme_subsystem, dev);
2805 
2806 	return sysfs_emit(buf, "%s\n", subsys->subnqn);
2807 }
2808 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2809 
nvme_subsys_show_type(struct device * dev,struct device_attribute * attr,char * buf)2810 static ssize_t nvme_subsys_show_type(struct device *dev,
2811 				    struct device_attribute *attr,
2812 				    char *buf)
2813 {
2814 	struct nvme_subsystem *subsys =
2815 		container_of(dev, struct nvme_subsystem, dev);
2816 
2817 	switch (subsys->subtype) {
2818 	case NVME_NQN_DISC:
2819 		return sysfs_emit(buf, "discovery\n");
2820 	case NVME_NQN_NVME:
2821 		return sysfs_emit(buf, "nvm\n");
2822 	default:
2823 		return sysfs_emit(buf, "reserved\n");
2824 	}
2825 }
2826 static SUBSYS_ATTR_RO(subsystype, S_IRUGO, nvme_subsys_show_type);
2827 
2828 #define nvme_subsys_show_str_function(field)				\
2829 static ssize_t subsys_##field##_show(struct device *dev,		\
2830 			    struct device_attribute *attr, char *buf)	\
2831 {									\
2832 	struct nvme_subsystem *subsys =					\
2833 		container_of(dev, struct nvme_subsystem, dev);		\
2834 	return sysfs_emit(buf, "%.*s\n",				\
2835 			   (int)sizeof(subsys->field), subsys->field);	\
2836 }									\
2837 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2838 
2839 nvme_subsys_show_str_function(model);
2840 nvme_subsys_show_str_function(serial);
2841 nvme_subsys_show_str_function(firmware_rev);
2842 
2843 static struct attribute *nvme_subsys_attrs[] = {
2844 	&subsys_attr_model.attr,
2845 	&subsys_attr_serial.attr,
2846 	&subsys_attr_firmware_rev.attr,
2847 	&subsys_attr_subsysnqn.attr,
2848 	&subsys_attr_subsystype.attr,
2849 #ifdef CONFIG_NVME_MULTIPATH
2850 	&subsys_attr_iopolicy.attr,
2851 #endif
2852 	NULL,
2853 };
2854 
2855 static const struct attribute_group nvme_subsys_attrs_group = {
2856 	.attrs = nvme_subsys_attrs,
2857 };
2858 
2859 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2860 	&nvme_subsys_attrs_group,
2861 	NULL,
2862 };
2863 
nvme_discovery_ctrl(struct nvme_ctrl * ctrl)2864 static inline bool nvme_discovery_ctrl(struct nvme_ctrl *ctrl)
2865 {
2866 	return ctrl->opts && ctrl->opts->discovery_nqn;
2867 }
2868 
nvme_validate_cntlid(struct nvme_subsystem * subsys,struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2869 static bool nvme_validate_cntlid(struct nvme_subsystem *subsys,
2870 		struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2871 {
2872 	struct nvme_ctrl *tmp;
2873 
2874 	lockdep_assert_held(&nvme_subsystems_lock);
2875 
2876 	list_for_each_entry(tmp, &subsys->ctrls, subsys_entry) {
2877 		if (nvme_state_terminal(tmp))
2878 			continue;
2879 
2880 		if (tmp->cntlid == ctrl->cntlid) {
2881 			dev_err(ctrl->device,
2882 				"Duplicate cntlid %u with %s, subsys %s, rejecting\n",
2883 				ctrl->cntlid, dev_name(tmp->device),
2884 				subsys->subnqn);
2885 			return false;
2886 		}
2887 
2888 		if ((id->cmic & NVME_CTRL_CMIC_MULTI_CTRL) ||
2889 		    nvme_discovery_ctrl(ctrl))
2890 			continue;
2891 
2892 		dev_err(ctrl->device,
2893 			"Subsystem does not support multiple controllers\n");
2894 		return false;
2895 	}
2896 
2897 	return true;
2898 }
2899 
nvme_init_subsystem(struct nvme_ctrl * ctrl,struct nvme_id_ctrl * id)2900 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2901 {
2902 	struct nvme_subsystem *subsys, *found;
2903 	int ret;
2904 
2905 	subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2906 	if (!subsys)
2907 		return -ENOMEM;
2908 
2909 	subsys->instance = -1;
2910 	mutex_init(&subsys->lock);
2911 	kref_init(&subsys->ref);
2912 	INIT_LIST_HEAD(&subsys->ctrls);
2913 	INIT_LIST_HEAD(&subsys->nsheads);
2914 	nvme_init_subnqn(subsys, ctrl, id);
2915 	memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2916 	memcpy(subsys->model, id->mn, sizeof(subsys->model));
2917 	subsys->vendor_id = le16_to_cpu(id->vid);
2918 	subsys->cmic = id->cmic;
2919 
2920 	/* Versions prior to 1.4 don't necessarily report a valid type */
2921 	if (id->cntrltype == NVME_CTRL_DISC ||
2922 	    !strcmp(subsys->subnqn, NVME_DISC_SUBSYS_NAME))
2923 		subsys->subtype = NVME_NQN_DISC;
2924 	else
2925 		subsys->subtype = NVME_NQN_NVME;
2926 
2927 	if (nvme_discovery_ctrl(ctrl) && subsys->subtype != NVME_NQN_DISC) {
2928 		dev_err(ctrl->device,
2929 			"Subsystem %s is not a discovery controller",
2930 			subsys->subnqn);
2931 		kfree(subsys);
2932 		return -EINVAL;
2933 	}
2934 	subsys->awupf = le16_to_cpu(id->awupf);
2935 	nvme_mpath_default_iopolicy(subsys);
2936 
2937 	subsys->dev.class = nvme_subsys_class;
2938 	subsys->dev.release = nvme_release_subsystem;
2939 	subsys->dev.groups = nvme_subsys_attrs_groups;
2940 	dev_set_name(&subsys->dev, "nvme-subsys%d", ctrl->instance);
2941 	device_initialize(&subsys->dev);
2942 
2943 	mutex_lock(&nvme_subsystems_lock);
2944 	found = __nvme_find_get_subsystem(subsys->subnqn);
2945 	if (found) {
2946 		put_device(&subsys->dev);
2947 		subsys = found;
2948 
2949 		if (!nvme_validate_cntlid(subsys, ctrl, id)) {
2950 			ret = -EINVAL;
2951 			goto out_put_subsystem;
2952 		}
2953 	} else {
2954 		ret = device_add(&subsys->dev);
2955 		if (ret) {
2956 			dev_err(ctrl->device,
2957 				"failed to register subsystem device.\n");
2958 			put_device(&subsys->dev);
2959 			goto out_unlock;
2960 		}
2961 		ida_init(&subsys->ns_ida);
2962 		list_add_tail(&subsys->entry, &nvme_subsystems);
2963 	}
2964 
2965 	ret = sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2966 				dev_name(ctrl->device));
2967 	if (ret) {
2968 		dev_err(ctrl->device,
2969 			"failed to create sysfs link from subsystem.\n");
2970 		goto out_put_subsystem;
2971 	}
2972 
2973 	if (!found)
2974 		subsys->instance = ctrl->instance;
2975 	ctrl->subsys = subsys;
2976 	list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2977 	mutex_unlock(&nvme_subsystems_lock);
2978 	return 0;
2979 
2980 out_put_subsystem:
2981 	nvme_put_subsystem(subsys);
2982 out_unlock:
2983 	mutex_unlock(&nvme_subsystems_lock);
2984 	return ret;
2985 }
2986 
nvme_get_log(struct nvme_ctrl * ctrl,u32 nsid,u8 log_page,u8 lsp,u8 csi,void * log,size_t size,u64 offset)2987 int nvme_get_log(struct nvme_ctrl *ctrl, u32 nsid, u8 log_page, u8 lsp, u8 csi,
2988 		void *log, size_t size, u64 offset)
2989 {
2990 	struct nvme_command c = { };
2991 	u32 dwlen = nvme_bytes_to_numd(size);
2992 
2993 	c.get_log_page.opcode = nvme_admin_get_log_page;
2994 	c.get_log_page.nsid = cpu_to_le32(nsid);
2995 	c.get_log_page.lid = log_page;
2996 	c.get_log_page.lsp = lsp;
2997 	c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2998 	c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2999 	c.get_log_page.lpol = cpu_to_le32(lower_32_bits(offset));
3000 	c.get_log_page.lpou = cpu_to_le32(upper_32_bits(offset));
3001 	c.get_log_page.csi = csi;
3002 
3003 	return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
3004 }
3005 
nvme_get_effects_log(struct nvme_ctrl * ctrl,u8 csi,struct nvme_effects_log ** log)3006 static int nvme_get_effects_log(struct nvme_ctrl *ctrl, u8 csi,
3007 				struct nvme_effects_log **log)
3008 {
3009 	struct nvme_effects_log	*cel = xa_load(&ctrl->cels, csi);
3010 	int ret;
3011 
3012 	if (cel)
3013 		goto out;
3014 
3015 	cel = kzalloc(sizeof(*cel), GFP_KERNEL);
3016 	if (!cel)
3017 		return -ENOMEM;
3018 
3019 	ret = nvme_get_log(ctrl, 0x00, NVME_LOG_CMD_EFFECTS, 0, csi,
3020 			cel, sizeof(*cel), 0);
3021 	if (ret) {
3022 		kfree(cel);
3023 		return ret;
3024 	}
3025 
3026 	xa_store(&ctrl->cels, csi, cel, GFP_KERNEL);
3027 out:
3028 	*log = cel;
3029 	return 0;
3030 }
3031 
nvme_mps_to_sectors(struct nvme_ctrl * ctrl,u32 units)3032 static inline u32 nvme_mps_to_sectors(struct nvme_ctrl *ctrl, u32 units)
3033 {
3034 	u32 page_shift = NVME_CAP_MPSMIN(ctrl->cap) + 12, val;
3035 
3036 	if (check_shl_overflow(1U, units + page_shift - 9, &val))
3037 		return UINT_MAX;
3038 	return val;
3039 }
3040 
nvme_init_non_mdts_limits(struct nvme_ctrl * ctrl)3041 static int nvme_init_non_mdts_limits(struct nvme_ctrl *ctrl)
3042 {
3043 	struct nvme_command c = { };
3044 	struct nvme_id_ctrl_nvm *id;
3045 	int ret;
3046 
3047 	if (ctrl->oncs & NVME_CTRL_ONCS_DSM) {
3048 		ctrl->max_discard_sectors = UINT_MAX;
3049 		ctrl->max_discard_segments = NVME_DSM_MAX_RANGES;
3050 	} else {
3051 		ctrl->max_discard_sectors = 0;
3052 		ctrl->max_discard_segments = 0;
3053 	}
3054 
3055 	/*
3056 	 * Even though NVMe spec explicitly states that MDTS is not applicable
3057 	 * to the write-zeroes, we are cautious and limit the size to the
3058 	 * controllers max_hw_sectors value, which is based on the MDTS field
3059 	 * and possibly other limiting factors.
3060 	 */
3061 	if ((ctrl->oncs & NVME_CTRL_ONCS_WRITE_ZEROES) &&
3062 	    !(ctrl->quirks & NVME_QUIRK_DISABLE_WRITE_ZEROES))
3063 		ctrl->max_zeroes_sectors = ctrl->max_hw_sectors;
3064 	else
3065 		ctrl->max_zeroes_sectors = 0;
3066 
3067 	if (nvme_ctrl_limited_cns(ctrl))
3068 		return 0;
3069 
3070 	id = kzalloc(sizeof(*id), GFP_KERNEL);
3071 	if (!id)
3072 		return -ENOMEM;
3073 
3074 	c.identify.opcode = nvme_admin_identify;
3075 	c.identify.cns = NVME_ID_CNS_CS_CTRL;
3076 	c.identify.csi = NVME_CSI_NVM;
3077 
3078 	ret = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
3079 	if (ret)
3080 		goto free_data;
3081 
3082 	if (id->dmrl)
3083 		ctrl->max_discard_segments = id->dmrl;
3084 	ctrl->dmrsl = le32_to_cpu(id->dmrsl);
3085 	if (id->wzsl)
3086 		ctrl->max_zeroes_sectors = nvme_mps_to_sectors(ctrl, id->wzsl);
3087 
3088 free_data:
3089 	kfree(id);
3090 	return ret;
3091 }
3092 
nvme_init_identify(struct nvme_ctrl * ctrl)3093 static int nvme_init_identify(struct nvme_ctrl *ctrl)
3094 {
3095 	struct nvme_id_ctrl *id;
3096 	u32 max_hw_sectors;
3097 	bool prev_apst_enabled;
3098 	int ret;
3099 
3100 	ret = nvme_identify_ctrl(ctrl, &id);
3101 	if (ret) {
3102 		dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
3103 		return -EIO;
3104 	}
3105 
3106 	if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
3107 		ret = nvme_get_effects_log(ctrl, NVME_CSI_NVM, &ctrl->effects);
3108 		if (ret < 0)
3109 			goto out_free;
3110 	}
3111 
3112 	if (!(ctrl->ops->flags & NVME_F_FABRICS))
3113 		ctrl->cntlid = le16_to_cpu(id->cntlid);
3114 
3115 	if (!ctrl->identified) {
3116 		unsigned int i;
3117 
3118 		/*
3119 		 * Check for quirks.  Quirk can depend on firmware version,
3120 		 * so, in principle, the set of quirks present can change
3121 		 * across a reset.  As a possible future enhancement, we
3122 		 * could re-scan for quirks every time we reinitialize
3123 		 * the device, but we'd have to make sure that the driver
3124 		 * behaves intelligently if the quirks change.
3125 		 */
3126 		for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
3127 			if (quirk_matches(id, &core_quirks[i]))
3128 				ctrl->quirks |= core_quirks[i].quirks;
3129 		}
3130 
3131 		ret = nvme_init_subsystem(ctrl, id);
3132 		if (ret)
3133 			goto out_free;
3134 	}
3135 	memcpy(ctrl->subsys->firmware_rev, id->fr,
3136 	       sizeof(ctrl->subsys->firmware_rev));
3137 
3138 	if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
3139 		dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
3140 		ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
3141 	}
3142 
3143 	ctrl->crdt[0] = le16_to_cpu(id->crdt1);
3144 	ctrl->crdt[1] = le16_to_cpu(id->crdt2);
3145 	ctrl->crdt[2] = le16_to_cpu(id->crdt3);
3146 
3147 	ctrl->oacs = le16_to_cpu(id->oacs);
3148 	ctrl->oncs = le16_to_cpu(id->oncs);
3149 	ctrl->mtfa = le16_to_cpu(id->mtfa);
3150 	ctrl->oaes = le32_to_cpu(id->oaes);
3151 	ctrl->wctemp = le16_to_cpu(id->wctemp);
3152 	ctrl->cctemp = le16_to_cpu(id->cctemp);
3153 
3154 	atomic_set(&ctrl->abort_limit, id->acl + 1);
3155 	ctrl->vwc = id->vwc;
3156 	if (id->mdts)
3157 		max_hw_sectors = nvme_mps_to_sectors(ctrl, id->mdts);
3158 	else
3159 		max_hw_sectors = UINT_MAX;
3160 	ctrl->max_hw_sectors =
3161 		min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
3162 
3163 	nvme_set_queue_limits(ctrl, ctrl->admin_q);
3164 	ctrl->sgls = le32_to_cpu(id->sgls);
3165 	ctrl->kas = le16_to_cpu(id->kas);
3166 	ctrl->max_namespaces = le32_to_cpu(id->mnan);
3167 	ctrl->ctratt = le32_to_cpu(id->ctratt);
3168 
3169 	ctrl->cntrltype = id->cntrltype;
3170 	ctrl->dctype = id->dctype;
3171 
3172 	if (id->rtd3e) {
3173 		/* us -> s */
3174 		u32 transition_time = le32_to_cpu(id->rtd3e) / USEC_PER_SEC;
3175 
3176 		ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
3177 						 shutdown_timeout, 60);
3178 
3179 		if (ctrl->shutdown_timeout != shutdown_timeout)
3180 			dev_info(ctrl->device,
3181 				 "Shutdown timeout set to %u seconds\n",
3182 				 ctrl->shutdown_timeout);
3183 	} else
3184 		ctrl->shutdown_timeout = shutdown_timeout;
3185 
3186 	ctrl->npss = id->npss;
3187 	ctrl->apsta = id->apsta;
3188 	prev_apst_enabled = ctrl->apst_enabled;
3189 	if (ctrl->quirks & NVME_QUIRK_NO_APST) {
3190 		if (force_apst && id->apsta) {
3191 			dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
3192 			ctrl->apst_enabled = true;
3193 		} else {
3194 			ctrl->apst_enabled = false;
3195 		}
3196 	} else {
3197 		ctrl->apst_enabled = id->apsta;
3198 	}
3199 	memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
3200 
3201 	if (ctrl->ops->flags & NVME_F_FABRICS) {
3202 		ctrl->icdoff = le16_to_cpu(id->icdoff);
3203 		ctrl->ioccsz = le32_to_cpu(id->ioccsz);
3204 		ctrl->iorcsz = le32_to_cpu(id->iorcsz);
3205 		ctrl->maxcmd = le16_to_cpu(id->maxcmd);
3206 
3207 		/*
3208 		 * In fabrics we need to verify the cntlid matches the
3209 		 * admin connect
3210 		 */
3211 		if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
3212 			dev_err(ctrl->device,
3213 				"Mismatching cntlid: Connect %u vs Identify "
3214 				"%u, rejecting\n",
3215 				ctrl->cntlid, le16_to_cpu(id->cntlid));
3216 			ret = -EINVAL;
3217 			goto out_free;
3218 		}
3219 
3220 		if (!nvme_discovery_ctrl(ctrl) && !ctrl->kas) {
3221 			dev_err(ctrl->device,
3222 				"keep-alive support is mandatory for fabrics\n");
3223 			ret = -EINVAL;
3224 			goto out_free;
3225 		}
3226 	} else {
3227 		ctrl->hmpre = le32_to_cpu(id->hmpre);
3228 		ctrl->hmmin = le32_to_cpu(id->hmmin);
3229 		ctrl->hmminds = le32_to_cpu(id->hmminds);
3230 		ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
3231 	}
3232 
3233 	ret = nvme_mpath_init_identify(ctrl, id);
3234 	if (ret < 0)
3235 		goto out_free;
3236 
3237 	if (ctrl->apst_enabled && !prev_apst_enabled)
3238 		dev_pm_qos_expose_latency_tolerance(ctrl->device);
3239 	else if (!ctrl->apst_enabled && prev_apst_enabled)
3240 		dev_pm_qos_hide_latency_tolerance(ctrl->device);
3241 
3242 out_free:
3243 	kfree(id);
3244 	return ret;
3245 }
3246 
3247 /*
3248  * Initialize the cached copies of the Identify data and various controller
3249  * register in our nvme_ctrl structure.  This should be called as soon as
3250  * the admin queue is fully up and running.
3251  */
nvme_init_ctrl_finish(struct nvme_ctrl * ctrl)3252 int nvme_init_ctrl_finish(struct nvme_ctrl *ctrl)
3253 {
3254 	int ret;
3255 
3256 	ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
3257 	if (ret) {
3258 		dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
3259 		return ret;
3260 	}
3261 
3262 	ctrl->sqsize = min_t(u16, NVME_CAP_MQES(ctrl->cap), ctrl->sqsize);
3263 
3264 	if (ctrl->vs >= NVME_VS(1, 1, 0))
3265 		ctrl->subsystem = NVME_CAP_NSSRC(ctrl->cap);
3266 
3267 	ret = nvme_init_identify(ctrl);
3268 	if (ret)
3269 		return ret;
3270 
3271 	ret = nvme_configure_apst(ctrl);
3272 	if (ret < 0)
3273 		return ret;
3274 
3275 	ret = nvme_configure_timestamp(ctrl);
3276 	if (ret < 0)
3277 		return ret;
3278 
3279 	ret = nvme_configure_host_options(ctrl);
3280 	if (ret < 0)
3281 		return ret;
3282 
3283 	if (!ctrl->identified && !nvme_discovery_ctrl(ctrl)) {
3284 		/*
3285 		 * Do not return errors unless we are in a controller reset,
3286 		 * the controller works perfectly fine without hwmon.
3287 		 */
3288 		ret = nvme_hwmon_init(ctrl);
3289 		if (ret == -EINTR)
3290 			return ret;
3291 	}
3292 
3293 	ctrl->identified = true;
3294 
3295 	return 0;
3296 }
3297 EXPORT_SYMBOL_GPL(nvme_init_ctrl_finish);
3298 
nvme_dev_open(struct inode * inode,struct file * file)3299 static int nvme_dev_open(struct inode *inode, struct file *file)
3300 {
3301 	struct nvme_ctrl *ctrl =
3302 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3303 
3304 	switch (ctrl->state) {
3305 	case NVME_CTRL_LIVE:
3306 		break;
3307 	default:
3308 		return -EWOULDBLOCK;
3309 	}
3310 
3311 	nvme_get_ctrl(ctrl);
3312 	if (!try_module_get(ctrl->ops->module)) {
3313 		nvme_put_ctrl(ctrl);
3314 		return -EINVAL;
3315 	}
3316 
3317 	file->private_data = ctrl;
3318 	return 0;
3319 }
3320 
nvme_dev_release(struct inode * inode,struct file * file)3321 static int nvme_dev_release(struct inode *inode, struct file *file)
3322 {
3323 	struct nvme_ctrl *ctrl =
3324 		container_of(inode->i_cdev, struct nvme_ctrl, cdev);
3325 
3326 	module_put(ctrl->ops->module);
3327 	nvme_put_ctrl(ctrl);
3328 	return 0;
3329 }
3330 
3331 static const struct file_operations nvme_dev_fops = {
3332 	.owner		= THIS_MODULE,
3333 	.open		= nvme_dev_open,
3334 	.release	= nvme_dev_release,
3335 	.unlocked_ioctl	= nvme_dev_ioctl,
3336 	.compat_ioctl	= compat_ptr_ioctl,
3337 	.uring_cmd	= nvme_dev_uring_cmd,
3338 };
3339 
nvme_sysfs_reset(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3340 static ssize_t nvme_sysfs_reset(struct device *dev,
3341 				struct device_attribute *attr, const char *buf,
3342 				size_t count)
3343 {
3344 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3345 	int ret;
3346 
3347 	ret = nvme_reset_ctrl_sync(ctrl);
3348 	if (ret < 0)
3349 		return ret;
3350 	return count;
3351 }
3352 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
3353 
nvme_sysfs_rescan(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3354 static ssize_t nvme_sysfs_rescan(struct device *dev,
3355 				struct device_attribute *attr, const char *buf,
3356 				size_t count)
3357 {
3358 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3359 
3360 	nvme_queue_scan(ctrl);
3361 	return count;
3362 }
3363 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
3364 
dev_to_ns_head(struct device * dev)3365 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
3366 {
3367 	struct gendisk *disk = dev_to_disk(dev);
3368 
3369 	if (disk->fops == &nvme_bdev_ops)
3370 		return nvme_get_ns_from_dev(dev)->head;
3371 	else
3372 		return disk->private_data;
3373 }
3374 
wwid_show(struct device * dev,struct device_attribute * attr,char * buf)3375 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
3376 		char *buf)
3377 {
3378 	struct nvme_ns_head *head = dev_to_ns_head(dev);
3379 	struct nvme_ns_ids *ids = &head->ids;
3380 	struct nvme_subsystem *subsys = head->subsys;
3381 	int serial_len = sizeof(subsys->serial);
3382 	int model_len = sizeof(subsys->model);
3383 
3384 	if (!uuid_is_null(&ids->uuid))
3385 		return sysfs_emit(buf, "uuid.%pU\n", &ids->uuid);
3386 
3387 	if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3388 		return sysfs_emit(buf, "eui.%16phN\n", ids->nguid);
3389 
3390 	if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3391 		return sysfs_emit(buf, "eui.%8phN\n", ids->eui64);
3392 
3393 	while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
3394 				  subsys->serial[serial_len - 1] == '\0'))
3395 		serial_len--;
3396 	while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
3397 				 subsys->model[model_len - 1] == '\0'))
3398 		model_len--;
3399 
3400 	return sysfs_emit(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
3401 		serial_len, subsys->serial, model_len, subsys->model,
3402 		head->ns_id);
3403 }
3404 static DEVICE_ATTR_RO(wwid);
3405 
nguid_show(struct device * dev,struct device_attribute * attr,char * buf)3406 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
3407 		char *buf)
3408 {
3409 	return sysfs_emit(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
3410 }
3411 static DEVICE_ATTR_RO(nguid);
3412 
uuid_show(struct device * dev,struct device_attribute * attr,char * buf)3413 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
3414 		char *buf)
3415 {
3416 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3417 
3418 	/* For backward compatibility expose the NGUID to userspace if
3419 	 * we have no UUID set
3420 	 */
3421 	if (uuid_is_null(&ids->uuid)) {
3422 		dev_warn_ratelimited(dev,
3423 			"No UUID available providing old NGUID\n");
3424 		return sysfs_emit(buf, "%pU\n", ids->nguid);
3425 	}
3426 	return sysfs_emit(buf, "%pU\n", &ids->uuid);
3427 }
3428 static DEVICE_ATTR_RO(uuid);
3429 
eui_show(struct device * dev,struct device_attribute * attr,char * buf)3430 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
3431 		char *buf)
3432 {
3433 	return sysfs_emit(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
3434 }
3435 static DEVICE_ATTR_RO(eui);
3436 
nsid_show(struct device * dev,struct device_attribute * attr,char * buf)3437 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
3438 		char *buf)
3439 {
3440 	return sysfs_emit(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
3441 }
3442 static DEVICE_ATTR_RO(nsid);
3443 
3444 static struct attribute *nvme_ns_id_attrs[] = {
3445 	&dev_attr_wwid.attr,
3446 	&dev_attr_uuid.attr,
3447 	&dev_attr_nguid.attr,
3448 	&dev_attr_eui.attr,
3449 	&dev_attr_nsid.attr,
3450 #ifdef CONFIG_NVME_MULTIPATH
3451 	&dev_attr_ana_grpid.attr,
3452 	&dev_attr_ana_state.attr,
3453 #endif
3454 	NULL,
3455 };
3456 
nvme_ns_id_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)3457 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
3458 		struct attribute *a, int n)
3459 {
3460 	struct device *dev = container_of(kobj, struct device, kobj);
3461 	struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
3462 
3463 	if (a == &dev_attr_uuid.attr) {
3464 		if (uuid_is_null(&ids->uuid) &&
3465 		    !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3466 			return 0;
3467 	}
3468 	if (a == &dev_attr_nguid.attr) {
3469 		if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
3470 			return 0;
3471 	}
3472 	if (a == &dev_attr_eui.attr) {
3473 		if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
3474 			return 0;
3475 	}
3476 #ifdef CONFIG_NVME_MULTIPATH
3477 	if (a == &dev_attr_ana_grpid.attr || a == &dev_attr_ana_state.attr) {
3478 		if (dev_to_disk(dev)->fops != &nvme_bdev_ops) /* per-path attr */
3479 			return 0;
3480 		if (!nvme_ctrl_use_ana(nvme_get_ns_from_dev(dev)->ctrl))
3481 			return 0;
3482 	}
3483 #endif
3484 	return a->mode;
3485 }
3486 
3487 static const struct attribute_group nvme_ns_id_attr_group = {
3488 	.attrs		= nvme_ns_id_attrs,
3489 	.is_visible	= nvme_ns_id_attrs_are_visible,
3490 };
3491 
3492 const struct attribute_group *nvme_ns_id_attr_groups[] = {
3493 	&nvme_ns_id_attr_group,
3494 	NULL,
3495 };
3496 
3497 #define nvme_show_str_function(field)						\
3498 static ssize_t  field##_show(struct device *dev,				\
3499 			    struct device_attribute *attr, char *buf)		\
3500 {										\
3501         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3502         return sysfs_emit(buf, "%.*s\n",					\
3503 		(int)sizeof(ctrl->subsys->field), ctrl->subsys->field);		\
3504 }										\
3505 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3506 
3507 nvme_show_str_function(model);
3508 nvme_show_str_function(serial);
3509 nvme_show_str_function(firmware_rev);
3510 
3511 #define nvme_show_int_function(field)						\
3512 static ssize_t  field##_show(struct device *dev,				\
3513 			    struct device_attribute *attr, char *buf)		\
3514 {										\
3515         struct nvme_ctrl *ctrl = dev_get_drvdata(dev);				\
3516         return sysfs_emit(buf, "%d\n", ctrl->field);				\
3517 }										\
3518 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
3519 
3520 nvme_show_int_function(cntlid);
3521 nvme_show_int_function(numa_node);
3522 nvme_show_int_function(queue_count);
3523 nvme_show_int_function(sqsize);
3524 nvme_show_int_function(kato);
3525 
nvme_sysfs_delete(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3526 static ssize_t nvme_sysfs_delete(struct device *dev,
3527 				struct device_attribute *attr, const char *buf,
3528 				size_t count)
3529 {
3530 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3531 
3532 	if (device_remove_file_self(dev, attr))
3533 		nvme_delete_ctrl_sync(ctrl);
3534 	return count;
3535 }
3536 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
3537 
nvme_sysfs_show_transport(struct device * dev,struct device_attribute * attr,char * buf)3538 static ssize_t nvme_sysfs_show_transport(struct device *dev,
3539 					 struct device_attribute *attr,
3540 					 char *buf)
3541 {
3542 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3543 
3544 	return sysfs_emit(buf, "%s\n", ctrl->ops->name);
3545 }
3546 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
3547 
nvme_sysfs_show_state(struct device * dev,struct device_attribute * attr,char * buf)3548 static ssize_t nvme_sysfs_show_state(struct device *dev,
3549 				     struct device_attribute *attr,
3550 				     char *buf)
3551 {
3552 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3553 	static const char *const state_name[] = {
3554 		[NVME_CTRL_NEW]		= "new",
3555 		[NVME_CTRL_LIVE]	= "live",
3556 		[NVME_CTRL_RESETTING]	= "resetting",
3557 		[NVME_CTRL_CONNECTING]	= "connecting",
3558 		[NVME_CTRL_DELETING]	= "deleting",
3559 		[NVME_CTRL_DELETING_NOIO]= "deleting (no IO)",
3560 		[NVME_CTRL_DEAD]	= "dead",
3561 	};
3562 
3563 	if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
3564 	    state_name[ctrl->state])
3565 		return sysfs_emit(buf, "%s\n", state_name[ctrl->state]);
3566 
3567 	return sysfs_emit(buf, "unknown state\n");
3568 }
3569 
3570 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
3571 
nvme_sysfs_show_subsysnqn(struct device * dev,struct device_attribute * attr,char * buf)3572 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
3573 					 struct device_attribute *attr,
3574 					 char *buf)
3575 {
3576 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3577 
3578 	return sysfs_emit(buf, "%s\n", ctrl->subsys->subnqn);
3579 }
3580 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
3581 
nvme_sysfs_show_hostnqn(struct device * dev,struct device_attribute * attr,char * buf)3582 static ssize_t nvme_sysfs_show_hostnqn(struct device *dev,
3583 					struct device_attribute *attr,
3584 					char *buf)
3585 {
3586 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3587 
3588 	return sysfs_emit(buf, "%s\n", ctrl->opts->host->nqn);
3589 }
3590 static DEVICE_ATTR(hostnqn, S_IRUGO, nvme_sysfs_show_hostnqn, NULL);
3591 
nvme_sysfs_show_hostid(struct device * dev,struct device_attribute * attr,char * buf)3592 static ssize_t nvme_sysfs_show_hostid(struct device *dev,
3593 					struct device_attribute *attr,
3594 					char *buf)
3595 {
3596 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3597 
3598 	return sysfs_emit(buf, "%pU\n", &ctrl->opts->host->id);
3599 }
3600 static DEVICE_ATTR(hostid, S_IRUGO, nvme_sysfs_show_hostid, NULL);
3601 
nvme_sysfs_show_address(struct device * dev,struct device_attribute * attr,char * buf)3602 static ssize_t nvme_sysfs_show_address(struct device *dev,
3603 					 struct device_attribute *attr,
3604 					 char *buf)
3605 {
3606 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3607 
3608 	return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
3609 }
3610 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
3611 
nvme_ctrl_loss_tmo_show(struct device * dev,struct device_attribute * attr,char * buf)3612 static ssize_t nvme_ctrl_loss_tmo_show(struct device *dev,
3613 		struct device_attribute *attr, char *buf)
3614 {
3615 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3616 	struct nvmf_ctrl_options *opts = ctrl->opts;
3617 
3618 	if (ctrl->opts->max_reconnects == -1)
3619 		return sysfs_emit(buf, "off\n");
3620 	return sysfs_emit(buf, "%d\n",
3621 			  opts->max_reconnects * opts->reconnect_delay);
3622 }
3623 
nvme_ctrl_loss_tmo_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3624 static ssize_t nvme_ctrl_loss_tmo_store(struct device *dev,
3625 		struct device_attribute *attr, const char *buf, size_t count)
3626 {
3627 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3628 	struct nvmf_ctrl_options *opts = ctrl->opts;
3629 	int ctrl_loss_tmo, err;
3630 
3631 	err = kstrtoint(buf, 10, &ctrl_loss_tmo);
3632 	if (err)
3633 		return -EINVAL;
3634 
3635 	if (ctrl_loss_tmo < 0)
3636 		opts->max_reconnects = -1;
3637 	else
3638 		opts->max_reconnects = DIV_ROUND_UP(ctrl_loss_tmo,
3639 						opts->reconnect_delay);
3640 	return count;
3641 }
3642 static DEVICE_ATTR(ctrl_loss_tmo, S_IRUGO | S_IWUSR,
3643 	nvme_ctrl_loss_tmo_show, nvme_ctrl_loss_tmo_store);
3644 
nvme_ctrl_reconnect_delay_show(struct device * dev,struct device_attribute * attr,char * buf)3645 static ssize_t nvme_ctrl_reconnect_delay_show(struct device *dev,
3646 		struct device_attribute *attr, char *buf)
3647 {
3648 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3649 
3650 	if (ctrl->opts->reconnect_delay == -1)
3651 		return sysfs_emit(buf, "off\n");
3652 	return sysfs_emit(buf, "%d\n", ctrl->opts->reconnect_delay);
3653 }
3654 
nvme_ctrl_reconnect_delay_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3655 static ssize_t nvme_ctrl_reconnect_delay_store(struct device *dev,
3656 		struct device_attribute *attr, const char *buf, size_t count)
3657 {
3658 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3659 	unsigned int v;
3660 	int err;
3661 
3662 	err = kstrtou32(buf, 10, &v);
3663 	if (err)
3664 		return err;
3665 
3666 	ctrl->opts->reconnect_delay = v;
3667 	return count;
3668 }
3669 static DEVICE_ATTR(reconnect_delay, S_IRUGO | S_IWUSR,
3670 	nvme_ctrl_reconnect_delay_show, nvme_ctrl_reconnect_delay_store);
3671 
nvme_ctrl_fast_io_fail_tmo_show(struct device * dev,struct device_attribute * attr,char * buf)3672 static ssize_t nvme_ctrl_fast_io_fail_tmo_show(struct device *dev,
3673 		struct device_attribute *attr, char *buf)
3674 {
3675 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3676 
3677 	if (ctrl->opts->fast_io_fail_tmo == -1)
3678 		return sysfs_emit(buf, "off\n");
3679 	return sysfs_emit(buf, "%d\n", ctrl->opts->fast_io_fail_tmo);
3680 }
3681 
nvme_ctrl_fast_io_fail_tmo_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3682 static ssize_t nvme_ctrl_fast_io_fail_tmo_store(struct device *dev,
3683 		struct device_attribute *attr, const char *buf, size_t count)
3684 {
3685 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3686 	struct nvmf_ctrl_options *opts = ctrl->opts;
3687 	int fast_io_fail_tmo, err;
3688 
3689 	err = kstrtoint(buf, 10, &fast_io_fail_tmo);
3690 	if (err)
3691 		return -EINVAL;
3692 
3693 	if (fast_io_fail_tmo < 0)
3694 		opts->fast_io_fail_tmo = -1;
3695 	else
3696 		opts->fast_io_fail_tmo = fast_io_fail_tmo;
3697 	return count;
3698 }
3699 static DEVICE_ATTR(fast_io_fail_tmo, S_IRUGO | S_IWUSR,
3700 	nvme_ctrl_fast_io_fail_tmo_show, nvme_ctrl_fast_io_fail_tmo_store);
3701 
cntrltype_show(struct device * dev,struct device_attribute * attr,char * buf)3702 static ssize_t cntrltype_show(struct device *dev,
3703 			      struct device_attribute *attr, char *buf)
3704 {
3705 	static const char * const type[] = {
3706 		[NVME_CTRL_IO] = "io\n",
3707 		[NVME_CTRL_DISC] = "discovery\n",
3708 		[NVME_CTRL_ADMIN] = "admin\n",
3709 	};
3710 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3711 
3712 	if (ctrl->cntrltype > NVME_CTRL_ADMIN || !type[ctrl->cntrltype])
3713 		return sysfs_emit(buf, "reserved\n");
3714 
3715 	return sysfs_emit(buf, type[ctrl->cntrltype]);
3716 }
3717 static DEVICE_ATTR_RO(cntrltype);
3718 
dctype_show(struct device * dev,struct device_attribute * attr,char * buf)3719 static ssize_t dctype_show(struct device *dev,
3720 			   struct device_attribute *attr, char *buf)
3721 {
3722 	static const char * const type[] = {
3723 		[NVME_DCTYPE_NOT_REPORTED] = "none\n",
3724 		[NVME_DCTYPE_DDC] = "ddc\n",
3725 		[NVME_DCTYPE_CDC] = "cdc\n",
3726 	};
3727 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3728 
3729 	if (ctrl->dctype > NVME_DCTYPE_CDC || !type[ctrl->dctype])
3730 		return sysfs_emit(buf, "reserved\n");
3731 
3732 	return sysfs_emit(buf, type[ctrl->dctype]);
3733 }
3734 static DEVICE_ATTR_RO(dctype);
3735 
3736 #ifdef CONFIG_NVME_AUTH
nvme_ctrl_dhchap_secret_show(struct device * dev,struct device_attribute * attr,char * buf)3737 static ssize_t nvme_ctrl_dhchap_secret_show(struct device *dev,
3738 		struct device_attribute *attr, char *buf)
3739 {
3740 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3741 	struct nvmf_ctrl_options *opts = ctrl->opts;
3742 
3743 	if (!opts->dhchap_secret)
3744 		return sysfs_emit(buf, "none\n");
3745 	return sysfs_emit(buf, "%s\n", opts->dhchap_secret);
3746 }
3747 
nvme_ctrl_dhchap_secret_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3748 static ssize_t nvme_ctrl_dhchap_secret_store(struct device *dev,
3749 		struct device_attribute *attr, const char *buf, size_t count)
3750 {
3751 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3752 	struct nvmf_ctrl_options *opts = ctrl->opts;
3753 	char *dhchap_secret;
3754 
3755 	if (!ctrl->opts->dhchap_secret)
3756 		return -EINVAL;
3757 	if (count < 7)
3758 		return -EINVAL;
3759 	if (memcmp(buf, "DHHC-1:", 7))
3760 		return -EINVAL;
3761 
3762 	dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3763 	if (!dhchap_secret)
3764 		return -ENOMEM;
3765 	memcpy(dhchap_secret, buf, count);
3766 	nvme_auth_stop(ctrl);
3767 	if (strcmp(dhchap_secret, opts->dhchap_secret)) {
3768 		struct nvme_dhchap_key *key, *host_key;
3769 		int ret;
3770 
3771 		ret = nvme_auth_generate_key(dhchap_secret, &key);
3772 		if (ret)
3773 			return ret;
3774 		kfree(opts->dhchap_secret);
3775 		opts->dhchap_secret = dhchap_secret;
3776 		host_key = ctrl->host_key;
3777 		ctrl->host_key = key;
3778 		nvme_auth_free_key(host_key);
3779 		/* Key has changed; re-authentication with new key */
3780 		nvme_auth_reset(ctrl);
3781 	}
3782 	/* Start re-authentication */
3783 	dev_info(ctrl->device, "re-authenticating controller\n");
3784 	queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3785 
3786 	return count;
3787 }
3788 static DEVICE_ATTR(dhchap_secret, S_IRUGO | S_IWUSR,
3789 	nvme_ctrl_dhchap_secret_show, nvme_ctrl_dhchap_secret_store);
3790 
nvme_ctrl_dhchap_ctrl_secret_show(struct device * dev,struct device_attribute * attr,char * buf)3791 static ssize_t nvme_ctrl_dhchap_ctrl_secret_show(struct device *dev,
3792 		struct device_attribute *attr, char *buf)
3793 {
3794 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3795 	struct nvmf_ctrl_options *opts = ctrl->opts;
3796 
3797 	if (!opts->dhchap_ctrl_secret)
3798 		return sysfs_emit(buf, "none\n");
3799 	return sysfs_emit(buf, "%s\n", opts->dhchap_ctrl_secret);
3800 }
3801 
nvme_ctrl_dhchap_ctrl_secret_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)3802 static ssize_t nvme_ctrl_dhchap_ctrl_secret_store(struct device *dev,
3803 		struct device_attribute *attr, const char *buf, size_t count)
3804 {
3805 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3806 	struct nvmf_ctrl_options *opts = ctrl->opts;
3807 	char *dhchap_secret;
3808 
3809 	if (!ctrl->opts->dhchap_ctrl_secret)
3810 		return -EINVAL;
3811 	if (count < 7)
3812 		return -EINVAL;
3813 	if (memcmp(buf, "DHHC-1:", 7))
3814 		return -EINVAL;
3815 
3816 	dhchap_secret = kzalloc(count + 1, GFP_KERNEL);
3817 	if (!dhchap_secret)
3818 		return -ENOMEM;
3819 	memcpy(dhchap_secret, buf, count);
3820 	nvme_auth_stop(ctrl);
3821 	if (strcmp(dhchap_secret, opts->dhchap_ctrl_secret)) {
3822 		struct nvme_dhchap_key *key, *ctrl_key;
3823 		int ret;
3824 
3825 		ret = nvme_auth_generate_key(dhchap_secret, &key);
3826 		if (ret)
3827 			return ret;
3828 		kfree(opts->dhchap_ctrl_secret);
3829 		opts->dhchap_ctrl_secret = dhchap_secret;
3830 		ctrl_key = ctrl->ctrl_key;
3831 		ctrl->ctrl_key = key;
3832 		nvme_auth_free_key(ctrl_key);
3833 		/* Key has changed; re-authentication with new key */
3834 		nvme_auth_reset(ctrl);
3835 	}
3836 	/* Start re-authentication */
3837 	dev_info(ctrl->device, "re-authenticating controller\n");
3838 	queue_work(nvme_wq, &ctrl->dhchap_auth_work);
3839 
3840 	return count;
3841 }
3842 static DEVICE_ATTR(dhchap_ctrl_secret, S_IRUGO | S_IWUSR,
3843 	nvme_ctrl_dhchap_ctrl_secret_show, nvme_ctrl_dhchap_ctrl_secret_store);
3844 #endif
3845 
3846 static struct attribute *nvme_dev_attrs[] = {
3847 	&dev_attr_reset_controller.attr,
3848 	&dev_attr_rescan_controller.attr,
3849 	&dev_attr_model.attr,
3850 	&dev_attr_serial.attr,
3851 	&dev_attr_firmware_rev.attr,
3852 	&dev_attr_cntlid.attr,
3853 	&dev_attr_delete_controller.attr,
3854 	&dev_attr_transport.attr,
3855 	&dev_attr_subsysnqn.attr,
3856 	&dev_attr_address.attr,
3857 	&dev_attr_state.attr,
3858 	&dev_attr_numa_node.attr,
3859 	&dev_attr_queue_count.attr,
3860 	&dev_attr_sqsize.attr,
3861 	&dev_attr_hostnqn.attr,
3862 	&dev_attr_hostid.attr,
3863 	&dev_attr_ctrl_loss_tmo.attr,
3864 	&dev_attr_reconnect_delay.attr,
3865 	&dev_attr_fast_io_fail_tmo.attr,
3866 	&dev_attr_kato.attr,
3867 	&dev_attr_cntrltype.attr,
3868 	&dev_attr_dctype.attr,
3869 #ifdef CONFIG_NVME_AUTH
3870 	&dev_attr_dhchap_secret.attr,
3871 	&dev_attr_dhchap_ctrl_secret.attr,
3872 #endif
3873 	NULL
3874 };
3875 
nvme_dev_attrs_are_visible(struct kobject * kobj,struct attribute * a,int n)3876 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
3877 		struct attribute *a, int n)
3878 {
3879 	struct device *dev = container_of(kobj, struct device, kobj);
3880 	struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
3881 
3882 	if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
3883 		return 0;
3884 	if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
3885 		return 0;
3886 	if (a == &dev_attr_hostnqn.attr && !ctrl->opts)
3887 		return 0;
3888 	if (a == &dev_attr_hostid.attr && !ctrl->opts)
3889 		return 0;
3890 	if (a == &dev_attr_ctrl_loss_tmo.attr && !ctrl->opts)
3891 		return 0;
3892 	if (a == &dev_attr_reconnect_delay.attr && !ctrl->opts)
3893 		return 0;
3894 	if (a == &dev_attr_fast_io_fail_tmo.attr && !ctrl->opts)
3895 		return 0;
3896 #ifdef CONFIG_NVME_AUTH
3897 	if (a == &dev_attr_dhchap_secret.attr && !ctrl->opts)
3898 		return 0;
3899 	if (a == &dev_attr_dhchap_ctrl_secret.attr && !ctrl->opts)
3900 		return 0;
3901 #endif
3902 
3903 	return a->mode;
3904 }
3905 
3906 const struct attribute_group nvme_dev_attrs_group = {
3907 	.attrs		= nvme_dev_attrs,
3908 	.is_visible	= nvme_dev_attrs_are_visible,
3909 };
3910 EXPORT_SYMBOL_GPL(nvme_dev_attrs_group);
3911 
3912 static const struct attribute_group *nvme_dev_attr_groups[] = {
3913 	&nvme_dev_attrs_group,
3914 	NULL,
3915 };
3916 
nvme_find_ns_head(struct nvme_ctrl * ctrl,unsigned nsid)3917 static struct nvme_ns_head *nvme_find_ns_head(struct nvme_ctrl *ctrl,
3918 		unsigned nsid)
3919 {
3920 	struct nvme_ns_head *h;
3921 
3922 	lockdep_assert_held(&ctrl->subsys->lock);
3923 
3924 	list_for_each_entry(h, &ctrl->subsys->nsheads, entry) {
3925 		/*
3926 		 * Private namespaces can share NSIDs under some conditions.
3927 		 * In that case we can't use the same ns_head for namespaces
3928 		 * with the same NSID.
3929 		 */
3930 		if (h->ns_id != nsid || !nvme_is_unique_nsid(ctrl, h))
3931 			continue;
3932 		if (!list_empty(&h->list) && nvme_tryget_ns_head(h))
3933 			return h;
3934 	}
3935 
3936 	return NULL;
3937 }
3938 
nvme_subsys_check_duplicate_ids(struct nvme_subsystem * subsys,struct nvme_ns_ids * ids)3939 static int nvme_subsys_check_duplicate_ids(struct nvme_subsystem *subsys,
3940 		struct nvme_ns_ids *ids)
3941 {
3942 	bool has_uuid = !uuid_is_null(&ids->uuid);
3943 	bool has_nguid = memchr_inv(ids->nguid, 0, sizeof(ids->nguid));
3944 	bool has_eui64 = memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
3945 	struct nvme_ns_head *h;
3946 
3947 	lockdep_assert_held(&subsys->lock);
3948 
3949 	list_for_each_entry(h, &subsys->nsheads, entry) {
3950 		if (has_uuid && uuid_equal(&ids->uuid, &h->ids.uuid))
3951 			return -EINVAL;
3952 		if (has_nguid &&
3953 		    memcmp(&ids->nguid, &h->ids.nguid, sizeof(ids->nguid)) == 0)
3954 			return -EINVAL;
3955 		if (has_eui64 &&
3956 		    memcmp(&ids->eui64, &h->ids.eui64, sizeof(ids->eui64)) == 0)
3957 			return -EINVAL;
3958 	}
3959 
3960 	return 0;
3961 }
3962 
nvme_cdev_rel(struct device * dev)3963 static void nvme_cdev_rel(struct device *dev)
3964 {
3965 	ida_free(&nvme_ns_chr_minor_ida, MINOR(dev->devt));
3966 }
3967 
nvme_cdev_del(struct cdev * cdev,struct device * cdev_device)3968 void nvme_cdev_del(struct cdev *cdev, struct device *cdev_device)
3969 {
3970 	cdev_device_del(cdev, cdev_device);
3971 	put_device(cdev_device);
3972 }
3973 
nvme_cdev_add(struct cdev * cdev,struct device * cdev_device,const struct file_operations * fops,struct module * owner)3974 int nvme_cdev_add(struct cdev *cdev, struct device *cdev_device,
3975 		const struct file_operations *fops, struct module *owner)
3976 {
3977 	int minor, ret;
3978 
3979 	minor = ida_alloc(&nvme_ns_chr_minor_ida, GFP_KERNEL);
3980 	if (minor < 0)
3981 		return minor;
3982 	cdev_device->devt = MKDEV(MAJOR(nvme_ns_chr_devt), minor);
3983 	cdev_device->class = nvme_ns_chr_class;
3984 	cdev_device->release = nvme_cdev_rel;
3985 	device_initialize(cdev_device);
3986 	cdev_init(cdev, fops);
3987 	cdev->owner = owner;
3988 	ret = cdev_device_add(cdev, cdev_device);
3989 	if (ret)
3990 		put_device(cdev_device);
3991 
3992 	return ret;
3993 }
3994 
nvme_ns_chr_open(struct inode * inode,struct file * file)3995 static int nvme_ns_chr_open(struct inode *inode, struct file *file)
3996 {
3997 	return nvme_ns_open(container_of(inode->i_cdev, struct nvme_ns, cdev));
3998 }
3999 
nvme_ns_chr_release(struct inode * inode,struct file * file)4000 static int nvme_ns_chr_release(struct inode *inode, struct file *file)
4001 {
4002 	nvme_ns_release(container_of(inode->i_cdev, struct nvme_ns, cdev));
4003 	return 0;
4004 }
4005 
4006 static const struct file_operations nvme_ns_chr_fops = {
4007 	.owner		= THIS_MODULE,
4008 	.open		= nvme_ns_chr_open,
4009 	.release	= nvme_ns_chr_release,
4010 	.unlocked_ioctl	= nvme_ns_chr_ioctl,
4011 	.compat_ioctl	= compat_ptr_ioctl,
4012 	.uring_cmd	= nvme_ns_chr_uring_cmd,
4013 	.uring_cmd_iopoll = nvme_ns_chr_uring_cmd_iopoll,
4014 };
4015 
nvme_add_ns_cdev(struct nvme_ns * ns)4016 static int nvme_add_ns_cdev(struct nvme_ns *ns)
4017 {
4018 	int ret;
4019 
4020 	ns->cdev_device.parent = ns->ctrl->device;
4021 	ret = dev_set_name(&ns->cdev_device, "ng%dn%d",
4022 			   ns->ctrl->instance, ns->head->instance);
4023 	if (ret)
4024 		return ret;
4025 
4026 	return nvme_cdev_add(&ns->cdev, &ns->cdev_device, &nvme_ns_chr_fops,
4027 			     ns->ctrl->ops->module);
4028 }
4029 
nvme_alloc_ns_head(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)4030 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
4031 		struct nvme_ns_info *info)
4032 {
4033 	struct nvme_ns_head *head;
4034 	size_t size = sizeof(*head);
4035 	int ret = -ENOMEM;
4036 
4037 #ifdef CONFIG_NVME_MULTIPATH
4038 	size += num_possible_nodes() * sizeof(struct nvme_ns *);
4039 #endif
4040 
4041 	head = kzalloc(size, GFP_KERNEL);
4042 	if (!head)
4043 		goto out;
4044 	ret = ida_alloc_min(&ctrl->subsys->ns_ida, 1, GFP_KERNEL);
4045 	if (ret < 0)
4046 		goto out_free_head;
4047 	head->instance = ret;
4048 	INIT_LIST_HEAD(&head->list);
4049 	ret = init_srcu_struct(&head->srcu);
4050 	if (ret)
4051 		goto out_ida_remove;
4052 	head->subsys = ctrl->subsys;
4053 	head->ns_id = info->nsid;
4054 	head->ids = info->ids;
4055 	head->shared = info->is_shared;
4056 	kref_init(&head->ref);
4057 
4058 	if (head->ids.csi) {
4059 		ret = nvme_get_effects_log(ctrl, head->ids.csi, &head->effects);
4060 		if (ret)
4061 			goto out_cleanup_srcu;
4062 	} else
4063 		head->effects = ctrl->effects;
4064 
4065 	ret = nvme_mpath_alloc_disk(ctrl, head);
4066 	if (ret)
4067 		goto out_cleanup_srcu;
4068 
4069 	list_add_tail(&head->entry, &ctrl->subsys->nsheads);
4070 
4071 	kref_get(&ctrl->subsys->ref);
4072 
4073 	return head;
4074 out_cleanup_srcu:
4075 	cleanup_srcu_struct(&head->srcu);
4076 out_ida_remove:
4077 	ida_free(&ctrl->subsys->ns_ida, head->instance);
4078 out_free_head:
4079 	kfree(head);
4080 out:
4081 	if (ret > 0)
4082 		ret = blk_status_to_errno(nvme_error_status(ret));
4083 	return ERR_PTR(ret);
4084 }
4085 
nvme_global_check_duplicate_ids(struct nvme_subsystem * this,struct nvme_ns_ids * ids)4086 static int nvme_global_check_duplicate_ids(struct nvme_subsystem *this,
4087 		struct nvme_ns_ids *ids)
4088 {
4089 	struct nvme_subsystem *s;
4090 	int ret = 0;
4091 
4092 	/*
4093 	 * Note that this check is racy as we try to avoid holding the global
4094 	 * lock over the whole ns_head creation.  But it is only intended as
4095 	 * a sanity check anyway.
4096 	 */
4097 	mutex_lock(&nvme_subsystems_lock);
4098 	list_for_each_entry(s, &nvme_subsystems, entry) {
4099 		if (s == this)
4100 			continue;
4101 		mutex_lock(&s->lock);
4102 		ret = nvme_subsys_check_duplicate_ids(s, ids);
4103 		mutex_unlock(&s->lock);
4104 		if (ret)
4105 			break;
4106 	}
4107 	mutex_unlock(&nvme_subsystems_lock);
4108 
4109 	return ret;
4110 }
4111 
nvme_init_ns_head(struct nvme_ns * ns,struct nvme_ns_info * info)4112 static int nvme_init_ns_head(struct nvme_ns *ns, struct nvme_ns_info *info)
4113 {
4114 	struct nvme_ctrl *ctrl = ns->ctrl;
4115 	struct nvme_ns_head *head = NULL;
4116 	int ret;
4117 
4118 	ret = nvme_global_check_duplicate_ids(ctrl->subsys, &info->ids);
4119 	if (ret) {
4120 		dev_err(ctrl->device,
4121 			"globally duplicate IDs for nsid %d\n", info->nsid);
4122 		nvme_print_device_info(ctrl);
4123 		return ret;
4124 	}
4125 
4126 	mutex_lock(&ctrl->subsys->lock);
4127 	head = nvme_find_ns_head(ctrl, info->nsid);
4128 	if (!head) {
4129 		ret = nvme_subsys_check_duplicate_ids(ctrl->subsys, &info->ids);
4130 		if (ret) {
4131 			dev_err(ctrl->device,
4132 				"duplicate IDs in subsystem for nsid %d\n",
4133 				info->nsid);
4134 			goto out_unlock;
4135 		}
4136 		head = nvme_alloc_ns_head(ctrl, info);
4137 		if (IS_ERR(head)) {
4138 			ret = PTR_ERR(head);
4139 			goto out_unlock;
4140 		}
4141 	} else {
4142 		ret = -EINVAL;
4143 		if (!info->is_shared || !head->shared) {
4144 			dev_err(ctrl->device,
4145 				"Duplicate unshared namespace %d\n",
4146 				info->nsid);
4147 			goto out_put_ns_head;
4148 		}
4149 		if (!nvme_ns_ids_equal(&head->ids, &info->ids)) {
4150 			dev_err(ctrl->device,
4151 				"IDs don't match for shared namespace %d\n",
4152 					info->nsid);
4153 			goto out_put_ns_head;
4154 		}
4155 
4156 		if (!multipath && !list_empty(&head->list)) {
4157 			dev_warn(ctrl->device,
4158 				"Found shared namespace %d, but multipathing not supported.\n",
4159 				info->nsid);
4160 			dev_warn_once(ctrl->device,
4161 				"Support for shared namespaces without CONFIG_NVME_MULTIPATH is deprecated and will be removed in Linux 6.0\n.");
4162 		}
4163 	}
4164 
4165 	list_add_tail_rcu(&ns->siblings, &head->list);
4166 	ns->head = head;
4167 	mutex_unlock(&ctrl->subsys->lock);
4168 	return 0;
4169 
4170 out_put_ns_head:
4171 	nvme_put_ns_head(head);
4172 out_unlock:
4173 	mutex_unlock(&ctrl->subsys->lock);
4174 	return ret;
4175 }
4176 
nvme_find_get_ns(struct nvme_ctrl * ctrl,unsigned nsid)4177 struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4178 {
4179 	struct nvme_ns *ns, *ret = NULL;
4180 
4181 	down_read(&ctrl->namespaces_rwsem);
4182 	list_for_each_entry(ns, &ctrl->namespaces, list) {
4183 		if (ns->head->ns_id == nsid) {
4184 			if (!nvme_get_ns(ns))
4185 				continue;
4186 			ret = ns;
4187 			break;
4188 		}
4189 		if (ns->head->ns_id > nsid)
4190 			break;
4191 	}
4192 	up_read(&ctrl->namespaces_rwsem);
4193 	return ret;
4194 }
4195 EXPORT_SYMBOL_NS_GPL(nvme_find_get_ns, NVME_TARGET_PASSTHRU);
4196 
4197 /*
4198  * Add the namespace to the controller list while keeping the list ordered.
4199  */
nvme_ns_add_to_ctrl_list(struct nvme_ns * ns)4200 static void nvme_ns_add_to_ctrl_list(struct nvme_ns *ns)
4201 {
4202 	struct nvme_ns *tmp;
4203 
4204 	list_for_each_entry_reverse(tmp, &ns->ctrl->namespaces, list) {
4205 		if (tmp->head->ns_id < ns->head->ns_id) {
4206 			list_add(&ns->list, &tmp->list);
4207 			return;
4208 		}
4209 	}
4210 	list_add(&ns->list, &ns->ctrl->namespaces);
4211 }
4212 
nvme_alloc_ns(struct nvme_ctrl * ctrl,struct nvme_ns_info * info)4213 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, struct nvme_ns_info *info)
4214 {
4215 	struct nvme_ns *ns;
4216 	struct gendisk *disk;
4217 	int node = ctrl->numa_node;
4218 
4219 	ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
4220 	if (!ns)
4221 		return;
4222 
4223 	disk = blk_mq_alloc_disk(ctrl->tagset, ns);
4224 	if (IS_ERR(disk))
4225 		goto out_free_ns;
4226 	disk->fops = &nvme_bdev_ops;
4227 	disk->private_data = ns;
4228 
4229 	ns->disk = disk;
4230 	ns->queue = disk->queue;
4231 
4232 	if (ctrl->opts && ctrl->opts->data_digest)
4233 		blk_queue_flag_set(QUEUE_FLAG_STABLE_WRITES, ns->queue);
4234 
4235 	blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
4236 	if (ctrl->ops->supports_pci_p2pdma &&
4237 	    ctrl->ops->supports_pci_p2pdma(ctrl))
4238 		blk_queue_flag_set(QUEUE_FLAG_PCI_P2PDMA, ns->queue);
4239 
4240 	ns->ctrl = ctrl;
4241 	kref_init(&ns->kref);
4242 
4243 	if (nvme_init_ns_head(ns, info))
4244 		goto out_cleanup_disk;
4245 
4246 	/*
4247 	 * If multipathing is enabled, the device name for all disks and not
4248 	 * just those that represent shared namespaces needs to be based on the
4249 	 * subsystem instance.  Using the controller instance for private
4250 	 * namespaces could lead to naming collisions between shared and private
4251 	 * namespaces if they don't use a common numbering scheme.
4252 	 *
4253 	 * If multipathing is not enabled, disk names must use the controller
4254 	 * instance as shared namespaces will show up as multiple block
4255 	 * devices.
4256 	 */
4257 	if (ns->head->disk) {
4258 		sprintf(disk->disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
4259 			ctrl->instance, ns->head->instance);
4260 		disk->flags |= GENHD_FL_HIDDEN;
4261 	} else if (multipath) {
4262 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->subsys->instance,
4263 			ns->head->instance);
4264 	} else {
4265 		sprintf(disk->disk_name, "nvme%dn%d", ctrl->instance,
4266 			ns->head->instance);
4267 	}
4268 
4269 	if (nvme_update_ns_info(ns, info))
4270 		goto out_unlink_ns;
4271 
4272 	down_write(&ctrl->namespaces_rwsem);
4273 	nvme_ns_add_to_ctrl_list(ns);
4274 	up_write(&ctrl->namespaces_rwsem);
4275 	nvme_get_ctrl(ctrl);
4276 
4277 	if (device_add_disk(ctrl->device, ns->disk, nvme_ns_id_attr_groups))
4278 		goto out_cleanup_ns_from_list;
4279 
4280 	if (!nvme_ns_head_multipath(ns->head))
4281 		nvme_add_ns_cdev(ns);
4282 
4283 	nvme_mpath_add_disk(ns, info->anagrpid);
4284 	nvme_fault_inject_init(&ns->fault_inject, ns->disk->disk_name);
4285 
4286 	return;
4287 
4288  out_cleanup_ns_from_list:
4289 	nvme_put_ctrl(ctrl);
4290 	down_write(&ctrl->namespaces_rwsem);
4291 	list_del_init(&ns->list);
4292 	up_write(&ctrl->namespaces_rwsem);
4293  out_unlink_ns:
4294 	mutex_lock(&ctrl->subsys->lock);
4295 	list_del_rcu(&ns->siblings);
4296 	if (list_empty(&ns->head->list))
4297 		list_del_init(&ns->head->entry);
4298 	mutex_unlock(&ctrl->subsys->lock);
4299 	nvme_put_ns_head(ns->head);
4300  out_cleanup_disk:
4301 	put_disk(disk);
4302  out_free_ns:
4303 	kfree(ns);
4304 }
4305 
nvme_ns_remove(struct nvme_ns * ns)4306 static void nvme_ns_remove(struct nvme_ns *ns)
4307 {
4308 	bool last_path = false;
4309 
4310 	if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
4311 		return;
4312 
4313 	clear_bit(NVME_NS_READY, &ns->flags);
4314 	set_capacity(ns->disk, 0);
4315 	nvme_fault_inject_fini(&ns->fault_inject);
4316 
4317 	/*
4318 	 * Ensure that !NVME_NS_READY is seen by other threads to prevent
4319 	 * this ns going back into current_path.
4320 	 */
4321 	synchronize_srcu(&ns->head->srcu);
4322 
4323 	/* wait for concurrent submissions */
4324 	if (nvme_mpath_clear_current_path(ns))
4325 		synchronize_srcu(&ns->head->srcu);
4326 
4327 	mutex_lock(&ns->ctrl->subsys->lock);
4328 	list_del_rcu(&ns->siblings);
4329 	if (list_empty(&ns->head->list)) {
4330 		list_del_init(&ns->head->entry);
4331 		last_path = true;
4332 	}
4333 	mutex_unlock(&ns->ctrl->subsys->lock);
4334 
4335 	/* guarantee not available in head->list */
4336 	synchronize_srcu(&ns->head->srcu);
4337 
4338 	if (!nvme_ns_head_multipath(ns->head))
4339 		nvme_cdev_del(&ns->cdev, &ns->cdev_device);
4340 	del_gendisk(ns->disk);
4341 
4342 	down_write(&ns->ctrl->namespaces_rwsem);
4343 	list_del_init(&ns->list);
4344 	up_write(&ns->ctrl->namespaces_rwsem);
4345 
4346 	if (last_path)
4347 		nvme_mpath_shutdown_disk(ns->head);
4348 	nvme_put_ns(ns);
4349 }
4350 
nvme_ns_remove_by_nsid(struct nvme_ctrl * ctrl,u32 nsid)4351 static void nvme_ns_remove_by_nsid(struct nvme_ctrl *ctrl, u32 nsid)
4352 {
4353 	struct nvme_ns *ns = nvme_find_get_ns(ctrl, nsid);
4354 
4355 	if (ns) {
4356 		nvme_ns_remove(ns);
4357 		nvme_put_ns(ns);
4358 	}
4359 }
4360 
nvme_validate_ns(struct nvme_ns * ns,struct nvme_ns_info * info)4361 static void nvme_validate_ns(struct nvme_ns *ns, struct nvme_ns_info *info)
4362 {
4363 	int ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4364 
4365 	if (test_bit(NVME_NS_DEAD, &ns->flags))
4366 		goto out;
4367 
4368 	ret = NVME_SC_INVALID_NS | NVME_SC_DNR;
4369 	if (!nvme_ns_ids_equal(&ns->head->ids, &info->ids)) {
4370 		dev_err(ns->ctrl->device,
4371 			"identifiers changed for nsid %d\n", ns->head->ns_id);
4372 		goto out;
4373 	}
4374 
4375 	ret = nvme_update_ns_info(ns, info);
4376 out:
4377 	/*
4378 	 * Only remove the namespace if we got a fatal error back from the
4379 	 * device, otherwise ignore the error and just move on.
4380 	 *
4381 	 * TODO: we should probably schedule a delayed retry here.
4382 	 */
4383 	if (ret > 0 && (ret & NVME_SC_DNR))
4384 		nvme_ns_remove(ns);
4385 }
4386 
nvme_scan_ns(struct nvme_ctrl * ctrl,unsigned nsid)4387 static void nvme_scan_ns(struct nvme_ctrl *ctrl, unsigned nsid)
4388 {
4389 	struct nvme_ns_info info = { .nsid = nsid };
4390 	struct nvme_ns *ns;
4391 
4392 	if (nvme_identify_ns_descs(ctrl, &info))
4393 		return;
4394 
4395 	if (info.ids.csi != NVME_CSI_NVM && !nvme_multi_css(ctrl)) {
4396 		dev_warn(ctrl->device,
4397 			"command set not reported for nsid: %d\n", nsid);
4398 		return;
4399 	}
4400 
4401 	/*
4402 	 * If available try to use the Command Set Idependent Identify Namespace
4403 	 * data structure to find all the generic information that is needed to
4404 	 * set up a namespace.  If not fall back to the legacy version.
4405 	 */
4406 	if ((ctrl->cap & NVME_CAP_CRMS_CRIMS) ||
4407 	    (info.ids.csi != NVME_CSI_NVM && info.ids.csi != NVME_CSI_ZNS)) {
4408 		if (nvme_ns_info_from_id_cs_indep(ctrl, &info))
4409 			return;
4410 	} else {
4411 		if (nvme_ns_info_from_identify(ctrl, &info))
4412 			return;
4413 	}
4414 
4415 	/*
4416 	 * Ignore the namespace if it is not ready. We will get an AEN once it
4417 	 * becomes ready and restart the scan.
4418 	 */
4419 	if (!info.is_ready)
4420 		return;
4421 
4422 	ns = nvme_find_get_ns(ctrl, nsid);
4423 	if (ns) {
4424 		nvme_validate_ns(ns, &info);
4425 		nvme_put_ns(ns);
4426 	} else {
4427 		nvme_alloc_ns(ctrl, &info);
4428 	}
4429 }
4430 
nvme_remove_invalid_namespaces(struct nvme_ctrl * ctrl,unsigned nsid)4431 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
4432 					unsigned nsid)
4433 {
4434 	struct nvme_ns *ns, *next;
4435 	LIST_HEAD(rm_list);
4436 
4437 	down_write(&ctrl->namespaces_rwsem);
4438 	list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
4439 		if (ns->head->ns_id > nsid || test_bit(NVME_NS_DEAD, &ns->flags))
4440 			list_move_tail(&ns->list, &rm_list);
4441 	}
4442 	up_write(&ctrl->namespaces_rwsem);
4443 
4444 	list_for_each_entry_safe(ns, next, &rm_list, list)
4445 		nvme_ns_remove(ns);
4446 
4447 }
4448 
nvme_scan_ns_list(struct nvme_ctrl * ctrl)4449 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl)
4450 {
4451 	const int nr_entries = NVME_IDENTIFY_DATA_SIZE / sizeof(__le32);
4452 	__le32 *ns_list;
4453 	u32 prev = 0;
4454 	int ret = 0, i;
4455 
4456 	if (nvme_ctrl_limited_cns(ctrl))
4457 		return -EOPNOTSUPP;
4458 
4459 	ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
4460 	if (!ns_list)
4461 		return -ENOMEM;
4462 
4463 	for (;;) {
4464 		struct nvme_command cmd = {
4465 			.identify.opcode	= nvme_admin_identify,
4466 			.identify.cns		= NVME_ID_CNS_NS_ACTIVE_LIST,
4467 			.identify.nsid		= cpu_to_le32(prev),
4468 		};
4469 
4470 		ret = nvme_submit_sync_cmd(ctrl->admin_q, &cmd, ns_list,
4471 					    NVME_IDENTIFY_DATA_SIZE);
4472 		if (ret) {
4473 			dev_warn(ctrl->device,
4474 				"Identify NS List failed (status=0x%x)\n", ret);
4475 			goto free;
4476 		}
4477 
4478 		for (i = 0; i < nr_entries; i++) {
4479 			u32 nsid = le32_to_cpu(ns_list[i]);
4480 
4481 			if (!nsid)	/* end of the list? */
4482 				goto out;
4483 			nvme_scan_ns(ctrl, nsid);
4484 			while (++prev < nsid)
4485 				nvme_ns_remove_by_nsid(ctrl, prev);
4486 		}
4487 	}
4488  out:
4489 	nvme_remove_invalid_namespaces(ctrl, prev);
4490  free:
4491 	kfree(ns_list);
4492 	return ret;
4493 }
4494 
nvme_scan_ns_sequential(struct nvme_ctrl * ctrl)4495 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl)
4496 {
4497 	struct nvme_id_ctrl *id;
4498 	u32 nn, i;
4499 
4500 	if (nvme_identify_ctrl(ctrl, &id))
4501 		return;
4502 	nn = le32_to_cpu(id->nn);
4503 	kfree(id);
4504 
4505 	for (i = 1; i <= nn; i++)
4506 		nvme_scan_ns(ctrl, i);
4507 
4508 	nvme_remove_invalid_namespaces(ctrl, nn);
4509 }
4510 
nvme_clear_changed_ns_log(struct nvme_ctrl * ctrl)4511 static void nvme_clear_changed_ns_log(struct nvme_ctrl *ctrl)
4512 {
4513 	size_t log_size = NVME_MAX_CHANGED_NAMESPACES * sizeof(__le32);
4514 	__le32 *log;
4515 	int error;
4516 
4517 	log = kzalloc(log_size, GFP_KERNEL);
4518 	if (!log)
4519 		return;
4520 
4521 	/*
4522 	 * We need to read the log to clear the AEN, but we don't want to rely
4523 	 * on it for the changed namespace information as userspace could have
4524 	 * raced with us in reading the log page, which could cause us to miss
4525 	 * updates.
4526 	 */
4527 	error = nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_CHANGED_NS, 0,
4528 			NVME_CSI_NVM, log, log_size, 0);
4529 	if (error)
4530 		dev_warn(ctrl->device,
4531 			"reading changed ns log failed: %d\n", error);
4532 
4533 	kfree(log);
4534 }
4535 
nvme_scan_work(struct work_struct * work)4536 static void nvme_scan_work(struct work_struct *work)
4537 {
4538 	struct nvme_ctrl *ctrl =
4539 		container_of(work, struct nvme_ctrl, scan_work);
4540 	int ret;
4541 
4542 	/* No tagset on a live ctrl means IO queues could not created */
4543 	if (ctrl->state != NVME_CTRL_LIVE || !ctrl->tagset)
4544 		return;
4545 
4546 	/*
4547 	 * Identify controller limits can change at controller reset due to
4548 	 * new firmware download, even though it is not common we cannot ignore
4549 	 * such scenario. Controller's non-mdts limits are reported in the unit
4550 	 * of logical blocks that is dependent on the format of attached
4551 	 * namespace. Hence re-read the limits at the time of ns allocation.
4552 	 */
4553 	ret = nvme_init_non_mdts_limits(ctrl);
4554 	if (ret < 0) {
4555 		dev_warn(ctrl->device,
4556 			"reading non-mdts-limits failed: %d\n", ret);
4557 		return;
4558 	}
4559 
4560 	if (test_and_clear_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events)) {
4561 		dev_info(ctrl->device, "rescanning namespaces.\n");
4562 		nvme_clear_changed_ns_log(ctrl);
4563 	}
4564 
4565 	mutex_lock(&ctrl->scan_lock);
4566 	if (nvme_scan_ns_list(ctrl) != 0)
4567 		nvme_scan_ns_sequential(ctrl);
4568 	mutex_unlock(&ctrl->scan_lock);
4569 }
4570 
4571 /*
4572  * This function iterates the namespace list unlocked to allow recovery from
4573  * controller failure. It is up to the caller to ensure the namespace list is
4574  * not modified by scan work while this function is executing.
4575  */
nvme_remove_namespaces(struct nvme_ctrl * ctrl)4576 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
4577 {
4578 	struct nvme_ns *ns, *next;
4579 	LIST_HEAD(ns_list);
4580 
4581 	/*
4582 	 * make sure to requeue I/O to all namespaces as these
4583 	 * might result from the scan itself and must complete
4584 	 * for the scan_work to make progress
4585 	 */
4586 	nvme_mpath_clear_ctrl_paths(ctrl);
4587 
4588 	/* prevent racing with ns scanning */
4589 	flush_work(&ctrl->scan_work);
4590 
4591 	/*
4592 	 * The dead states indicates the controller was not gracefully
4593 	 * disconnected. In that case, we won't be able to flush any data while
4594 	 * removing the namespaces' disks; fail all the queues now to avoid
4595 	 * potentially having to clean up the failed sync later.
4596 	 */
4597 	if (ctrl->state == NVME_CTRL_DEAD)
4598 		nvme_kill_queues(ctrl);
4599 
4600 	/* this is a no-op when called from the controller reset handler */
4601 	nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING_NOIO);
4602 
4603 	down_write(&ctrl->namespaces_rwsem);
4604 	list_splice_init(&ctrl->namespaces, &ns_list);
4605 	up_write(&ctrl->namespaces_rwsem);
4606 
4607 	list_for_each_entry_safe(ns, next, &ns_list, list)
4608 		nvme_ns_remove(ns);
4609 }
4610 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
4611 
nvme_class_uevent(struct device * dev,struct kobj_uevent_env * env)4612 static int nvme_class_uevent(struct device *dev, struct kobj_uevent_env *env)
4613 {
4614 	struct nvme_ctrl *ctrl =
4615 		container_of(dev, struct nvme_ctrl, ctrl_device);
4616 	struct nvmf_ctrl_options *opts = ctrl->opts;
4617 	int ret;
4618 
4619 	ret = add_uevent_var(env, "NVME_TRTYPE=%s", ctrl->ops->name);
4620 	if (ret)
4621 		return ret;
4622 
4623 	if (opts) {
4624 		ret = add_uevent_var(env, "NVME_TRADDR=%s", opts->traddr);
4625 		if (ret)
4626 			return ret;
4627 
4628 		ret = add_uevent_var(env, "NVME_TRSVCID=%s",
4629 				opts->trsvcid ?: "none");
4630 		if (ret)
4631 			return ret;
4632 
4633 		ret = add_uevent_var(env, "NVME_HOST_TRADDR=%s",
4634 				opts->host_traddr ?: "none");
4635 		if (ret)
4636 			return ret;
4637 
4638 		ret = add_uevent_var(env, "NVME_HOST_IFACE=%s",
4639 				opts->host_iface ?: "none");
4640 	}
4641 	return ret;
4642 }
4643 
nvme_change_uevent(struct nvme_ctrl * ctrl,char * envdata)4644 static void nvme_change_uevent(struct nvme_ctrl *ctrl, char *envdata)
4645 {
4646 	char *envp[2] = { envdata, NULL };
4647 
4648 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4649 }
4650 
nvme_aen_uevent(struct nvme_ctrl * ctrl)4651 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
4652 {
4653 	char *envp[2] = { NULL, NULL };
4654 	u32 aen_result = ctrl->aen_result;
4655 
4656 	ctrl->aen_result = 0;
4657 	if (!aen_result)
4658 		return;
4659 
4660 	envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
4661 	if (!envp[0])
4662 		return;
4663 	kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
4664 	kfree(envp[0]);
4665 }
4666 
nvme_async_event_work(struct work_struct * work)4667 static void nvme_async_event_work(struct work_struct *work)
4668 {
4669 	struct nvme_ctrl *ctrl =
4670 		container_of(work, struct nvme_ctrl, async_event_work);
4671 
4672 	nvme_aen_uevent(ctrl);
4673 
4674 	/*
4675 	 * The transport drivers must guarantee AER submission here is safe by
4676 	 * flushing ctrl async_event_work after changing the controller state
4677 	 * from LIVE and before freeing the admin queue.
4678 	*/
4679 	if (ctrl->state == NVME_CTRL_LIVE)
4680 		ctrl->ops->submit_async_event(ctrl);
4681 }
4682 
nvme_ctrl_pp_status(struct nvme_ctrl * ctrl)4683 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
4684 {
4685 
4686 	u32 csts;
4687 
4688 	if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
4689 		return false;
4690 
4691 	if (csts == ~0)
4692 		return false;
4693 
4694 	return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
4695 }
4696 
nvme_get_fw_slot_info(struct nvme_ctrl * ctrl)4697 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
4698 {
4699 	struct nvme_fw_slot_info_log *log;
4700 
4701 	log = kmalloc(sizeof(*log), GFP_KERNEL);
4702 	if (!log)
4703 		return;
4704 
4705 	if (nvme_get_log(ctrl, NVME_NSID_ALL, NVME_LOG_FW_SLOT, 0, NVME_CSI_NVM,
4706 			log, sizeof(*log), 0))
4707 		dev_warn(ctrl->device, "Get FW SLOT INFO log error\n");
4708 	kfree(log);
4709 }
4710 
nvme_fw_act_work(struct work_struct * work)4711 static void nvme_fw_act_work(struct work_struct *work)
4712 {
4713 	struct nvme_ctrl *ctrl = container_of(work,
4714 				struct nvme_ctrl, fw_act_work);
4715 	unsigned long fw_act_timeout;
4716 
4717 	if (ctrl->mtfa)
4718 		fw_act_timeout = jiffies +
4719 				msecs_to_jiffies(ctrl->mtfa * 100);
4720 	else
4721 		fw_act_timeout = jiffies +
4722 				msecs_to_jiffies(admin_timeout * 1000);
4723 
4724 	nvme_stop_queues(ctrl);
4725 	while (nvme_ctrl_pp_status(ctrl)) {
4726 		if (time_after(jiffies, fw_act_timeout)) {
4727 			dev_warn(ctrl->device,
4728 				"Fw activation timeout, reset controller\n");
4729 			nvme_try_sched_reset(ctrl);
4730 			return;
4731 		}
4732 		msleep(100);
4733 	}
4734 
4735 	if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_LIVE))
4736 		return;
4737 
4738 	nvme_start_queues(ctrl);
4739 	/* read FW slot information to clear the AER */
4740 	nvme_get_fw_slot_info(ctrl);
4741 
4742 	queue_work(nvme_wq, &ctrl->async_event_work);
4743 }
4744 
nvme_aer_type(u32 result)4745 static u32 nvme_aer_type(u32 result)
4746 {
4747 	return result & 0x7;
4748 }
4749 
nvme_aer_subtype(u32 result)4750 static u32 nvme_aer_subtype(u32 result)
4751 {
4752 	return (result & 0xff00) >> 8;
4753 }
4754 
nvme_handle_aen_notice(struct nvme_ctrl * ctrl,u32 result)4755 static bool nvme_handle_aen_notice(struct nvme_ctrl *ctrl, u32 result)
4756 {
4757 	u32 aer_notice_type = nvme_aer_subtype(result);
4758 	bool requeue = true;
4759 
4760 	trace_nvme_async_event(ctrl, aer_notice_type);
4761 
4762 	switch (aer_notice_type) {
4763 	case NVME_AER_NOTICE_NS_CHANGED:
4764 		set_bit(NVME_AER_NOTICE_NS_CHANGED, &ctrl->events);
4765 		nvme_queue_scan(ctrl);
4766 		break;
4767 	case NVME_AER_NOTICE_FW_ACT_STARTING:
4768 		/*
4769 		 * We are (ab)using the RESETTING state to prevent subsequent
4770 		 * recovery actions from interfering with the controller's
4771 		 * firmware activation.
4772 		 */
4773 		if (nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING)) {
4774 			nvme_auth_stop(ctrl);
4775 			requeue = false;
4776 			queue_work(nvme_wq, &ctrl->fw_act_work);
4777 		}
4778 		break;
4779 #ifdef CONFIG_NVME_MULTIPATH
4780 	case NVME_AER_NOTICE_ANA:
4781 		if (!ctrl->ana_log_buf)
4782 			break;
4783 		queue_work(nvme_wq, &ctrl->ana_work);
4784 		break;
4785 #endif
4786 	case NVME_AER_NOTICE_DISC_CHANGED:
4787 		ctrl->aen_result = result;
4788 		break;
4789 	default:
4790 		dev_warn(ctrl->device, "async event result %08x\n", result);
4791 	}
4792 	return requeue;
4793 }
4794 
nvme_handle_aer_persistent_error(struct nvme_ctrl * ctrl)4795 static void nvme_handle_aer_persistent_error(struct nvme_ctrl *ctrl)
4796 {
4797 	trace_nvme_async_event(ctrl, NVME_AER_ERROR);
4798 	dev_warn(ctrl->device, "resetting controller due to AER\n");
4799 	nvme_reset_ctrl(ctrl);
4800 }
4801 
nvme_complete_async_event(struct nvme_ctrl * ctrl,__le16 status,volatile union nvme_result * res)4802 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
4803 		volatile union nvme_result *res)
4804 {
4805 	u32 result = le32_to_cpu(res->u32);
4806 	u32 aer_type = nvme_aer_type(result);
4807 	u32 aer_subtype = nvme_aer_subtype(result);
4808 	bool requeue = true;
4809 
4810 	if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
4811 		return;
4812 
4813 	switch (aer_type) {
4814 	case NVME_AER_NOTICE:
4815 		requeue = nvme_handle_aen_notice(ctrl, result);
4816 		break;
4817 	case NVME_AER_ERROR:
4818 		/*
4819 		 * For a persistent internal error, don't run async_event_work
4820 		 * to submit a new AER. The controller reset will do it.
4821 		 */
4822 		if (aer_subtype == NVME_AER_ERROR_PERSIST_INT_ERR) {
4823 			nvme_handle_aer_persistent_error(ctrl);
4824 			return;
4825 		}
4826 		fallthrough;
4827 	case NVME_AER_SMART:
4828 	case NVME_AER_CSS:
4829 	case NVME_AER_VS:
4830 		trace_nvme_async_event(ctrl, aer_type);
4831 		ctrl->aen_result = result;
4832 		break;
4833 	default:
4834 		break;
4835 	}
4836 
4837 	if (requeue)
4838 		queue_work(nvme_wq, &ctrl->async_event_work);
4839 }
4840 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
4841 
nvme_alloc_admin_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int cmd_size)4842 int nvme_alloc_admin_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4843 		const struct blk_mq_ops *ops, unsigned int cmd_size)
4844 {
4845 	int ret;
4846 
4847 	memset(set, 0, sizeof(*set));
4848 	set->ops = ops;
4849 	set->queue_depth = NVME_AQ_MQ_TAG_DEPTH;
4850 	if (ctrl->ops->flags & NVME_F_FABRICS)
4851 		set->reserved_tags = NVMF_RESERVED_TAGS;
4852 	set->numa_node = ctrl->numa_node;
4853 	set->flags = BLK_MQ_F_NO_SCHED;
4854 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4855 		set->flags |= BLK_MQ_F_BLOCKING;
4856 	set->cmd_size = cmd_size;
4857 	set->driver_data = ctrl;
4858 	set->nr_hw_queues = 1;
4859 	set->timeout = NVME_ADMIN_TIMEOUT;
4860 	ret = blk_mq_alloc_tag_set(set);
4861 	if (ret)
4862 		return ret;
4863 
4864 	ctrl->admin_q = blk_mq_init_queue(set);
4865 	if (IS_ERR(ctrl->admin_q)) {
4866 		ret = PTR_ERR(ctrl->admin_q);
4867 		goto out_free_tagset;
4868 	}
4869 
4870 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4871 		ctrl->fabrics_q = blk_mq_init_queue(set);
4872 		if (IS_ERR(ctrl->fabrics_q)) {
4873 			ret = PTR_ERR(ctrl->fabrics_q);
4874 			goto out_cleanup_admin_q;
4875 		}
4876 	}
4877 
4878 	ctrl->admin_tagset = set;
4879 	return 0;
4880 
4881 out_cleanup_admin_q:
4882 	blk_mq_destroy_queue(ctrl->admin_q);
4883 out_free_tagset:
4884 	blk_mq_free_tag_set(ctrl->admin_tagset);
4885 	return ret;
4886 }
4887 EXPORT_SYMBOL_GPL(nvme_alloc_admin_tag_set);
4888 
nvme_remove_admin_tag_set(struct nvme_ctrl * ctrl)4889 void nvme_remove_admin_tag_set(struct nvme_ctrl *ctrl)
4890 {
4891 	blk_mq_destroy_queue(ctrl->admin_q);
4892 	if (ctrl->ops->flags & NVME_F_FABRICS)
4893 		blk_mq_destroy_queue(ctrl->fabrics_q);
4894 	blk_mq_free_tag_set(ctrl->admin_tagset);
4895 }
4896 EXPORT_SYMBOL_GPL(nvme_remove_admin_tag_set);
4897 
nvme_alloc_io_tag_set(struct nvme_ctrl * ctrl,struct blk_mq_tag_set * set,const struct blk_mq_ops * ops,unsigned int nr_maps,unsigned int cmd_size)4898 int nvme_alloc_io_tag_set(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set,
4899 		const struct blk_mq_ops *ops, unsigned int nr_maps,
4900 		unsigned int cmd_size)
4901 {
4902 	int ret;
4903 
4904 	memset(set, 0, sizeof(*set));
4905 	set->ops = ops;
4906 	set->queue_depth = ctrl->sqsize + 1;
4907 	set->reserved_tags = NVMF_RESERVED_TAGS;
4908 	set->numa_node = ctrl->numa_node;
4909 	set->flags = BLK_MQ_F_SHOULD_MERGE;
4910 	if (ctrl->ops->flags & NVME_F_BLOCKING)
4911 		set->flags |= BLK_MQ_F_BLOCKING;
4912 	set->cmd_size = cmd_size,
4913 	set->driver_data = ctrl;
4914 	set->nr_hw_queues = ctrl->queue_count - 1;
4915 	set->timeout = NVME_IO_TIMEOUT;
4916 	set->nr_maps = nr_maps;
4917 	ret = blk_mq_alloc_tag_set(set);
4918 	if (ret)
4919 		return ret;
4920 
4921 	if (ctrl->ops->flags & NVME_F_FABRICS) {
4922 		ctrl->connect_q = blk_mq_init_queue(set);
4923         	if (IS_ERR(ctrl->connect_q)) {
4924 			ret = PTR_ERR(ctrl->connect_q);
4925 			goto out_free_tag_set;
4926 		}
4927 	}
4928 
4929 	ctrl->tagset = set;
4930 	return 0;
4931 
4932 out_free_tag_set:
4933 	blk_mq_free_tag_set(set);
4934 	return ret;
4935 }
4936 EXPORT_SYMBOL_GPL(nvme_alloc_io_tag_set);
4937 
nvme_remove_io_tag_set(struct nvme_ctrl * ctrl)4938 void nvme_remove_io_tag_set(struct nvme_ctrl *ctrl)
4939 {
4940 	if (ctrl->ops->flags & NVME_F_FABRICS)
4941 		blk_mq_destroy_queue(ctrl->connect_q);
4942 	blk_mq_free_tag_set(ctrl->tagset);
4943 }
4944 EXPORT_SYMBOL_GPL(nvme_remove_io_tag_set);
4945 
nvme_stop_ctrl(struct nvme_ctrl * ctrl)4946 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
4947 {
4948 	nvme_mpath_stop(ctrl);
4949 	nvme_auth_stop(ctrl);
4950 	nvme_stop_keep_alive(ctrl);
4951 	nvme_stop_failfast_work(ctrl);
4952 	flush_work(&ctrl->async_event_work);
4953 	cancel_work_sync(&ctrl->fw_act_work);
4954 	if (ctrl->ops->stop_ctrl)
4955 		ctrl->ops->stop_ctrl(ctrl);
4956 }
4957 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
4958 
nvme_start_ctrl(struct nvme_ctrl * ctrl)4959 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
4960 {
4961 	nvme_start_keep_alive(ctrl);
4962 
4963 	nvme_enable_aen(ctrl);
4964 
4965 	/*
4966 	 * persistent discovery controllers need to send indication to userspace
4967 	 * to re-read the discovery log page to learn about possible changes
4968 	 * that were missed. We identify persistent discovery controllers by
4969 	 * checking that they started once before, hence are reconnecting back.
4970 	 */
4971 	if (test_and_set_bit(NVME_CTRL_STARTED_ONCE, &ctrl->flags) &&
4972 	    nvme_discovery_ctrl(ctrl))
4973 		nvme_change_uevent(ctrl, "NVME_EVENT=rediscover");
4974 
4975 	if (ctrl->queue_count > 1) {
4976 		nvme_queue_scan(ctrl);
4977 		nvme_start_queues(ctrl);
4978 		nvme_mpath_update(ctrl);
4979 	}
4980 
4981 	nvme_change_uevent(ctrl, "NVME_EVENT=connected");
4982 }
4983 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
4984 
nvme_uninit_ctrl(struct nvme_ctrl * ctrl)4985 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
4986 {
4987 	nvme_hwmon_exit(ctrl);
4988 	nvme_fault_inject_fini(&ctrl->fault_inject);
4989 	dev_pm_qos_hide_latency_tolerance(ctrl->device);
4990 	cdev_device_del(&ctrl->cdev, ctrl->device);
4991 	nvme_put_ctrl(ctrl);
4992 }
4993 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
4994 
nvme_free_cels(struct nvme_ctrl * ctrl)4995 static void nvme_free_cels(struct nvme_ctrl *ctrl)
4996 {
4997 	struct nvme_effects_log	*cel;
4998 	unsigned long i;
4999 
5000 	xa_for_each(&ctrl->cels, i, cel) {
5001 		xa_erase(&ctrl->cels, i);
5002 		kfree(cel);
5003 	}
5004 
5005 	xa_destroy(&ctrl->cels);
5006 }
5007 
nvme_free_ctrl(struct device * dev)5008 static void nvme_free_ctrl(struct device *dev)
5009 {
5010 	struct nvme_ctrl *ctrl =
5011 		container_of(dev, struct nvme_ctrl, ctrl_device);
5012 	struct nvme_subsystem *subsys = ctrl->subsys;
5013 
5014 	if (!subsys || ctrl->instance != subsys->instance)
5015 		ida_free(&nvme_instance_ida, ctrl->instance);
5016 
5017 	nvme_free_cels(ctrl);
5018 	nvme_mpath_uninit(ctrl);
5019 	nvme_auth_stop(ctrl);
5020 	nvme_auth_free(ctrl);
5021 	__free_page(ctrl->discard_page);
5022 
5023 	if (subsys) {
5024 		mutex_lock(&nvme_subsystems_lock);
5025 		list_del(&ctrl->subsys_entry);
5026 		sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
5027 		mutex_unlock(&nvme_subsystems_lock);
5028 	}
5029 
5030 	ctrl->ops->free_ctrl(ctrl);
5031 
5032 	if (subsys)
5033 		nvme_put_subsystem(subsys);
5034 }
5035 
5036 /*
5037  * Initialize a NVMe controller structures.  This needs to be called during
5038  * earliest initialization so that we have the initialized structured around
5039  * during probing.
5040  */
nvme_init_ctrl(struct nvme_ctrl * ctrl,struct device * dev,const struct nvme_ctrl_ops * ops,unsigned long quirks)5041 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
5042 		const struct nvme_ctrl_ops *ops, unsigned long quirks)
5043 {
5044 	int ret;
5045 
5046 	ctrl->state = NVME_CTRL_NEW;
5047 	clear_bit(NVME_CTRL_FAILFAST_EXPIRED, &ctrl->flags);
5048 	spin_lock_init(&ctrl->lock);
5049 	mutex_init(&ctrl->scan_lock);
5050 	INIT_LIST_HEAD(&ctrl->namespaces);
5051 	xa_init(&ctrl->cels);
5052 	init_rwsem(&ctrl->namespaces_rwsem);
5053 	ctrl->dev = dev;
5054 	ctrl->ops = ops;
5055 	ctrl->quirks = quirks;
5056 	ctrl->numa_node = NUMA_NO_NODE;
5057 	INIT_WORK(&ctrl->scan_work, nvme_scan_work);
5058 	INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
5059 	INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
5060 	INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
5061 	init_waitqueue_head(&ctrl->state_wq);
5062 
5063 	INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
5064 	INIT_DELAYED_WORK(&ctrl->failfast_work, nvme_failfast_work);
5065 	memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
5066 	ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
5067 
5068 	BUILD_BUG_ON(NVME_DSM_MAX_RANGES * sizeof(struct nvme_dsm_range) >
5069 			PAGE_SIZE);
5070 	ctrl->discard_page = alloc_page(GFP_KERNEL);
5071 	if (!ctrl->discard_page) {
5072 		ret = -ENOMEM;
5073 		goto out;
5074 	}
5075 
5076 	ret = ida_alloc(&nvme_instance_ida, GFP_KERNEL);
5077 	if (ret < 0)
5078 		goto out;
5079 	ctrl->instance = ret;
5080 
5081 	device_initialize(&ctrl->ctrl_device);
5082 	ctrl->device = &ctrl->ctrl_device;
5083 	ctrl->device->devt = MKDEV(MAJOR(nvme_ctrl_base_chr_devt),
5084 			ctrl->instance);
5085 	ctrl->device->class = nvme_class;
5086 	ctrl->device->parent = ctrl->dev;
5087 	if (ops->dev_attr_groups)
5088 		ctrl->device->groups = ops->dev_attr_groups;
5089 	else
5090 		ctrl->device->groups = nvme_dev_attr_groups;
5091 	ctrl->device->release = nvme_free_ctrl;
5092 	dev_set_drvdata(ctrl->device, ctrl);
5093 	ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
5094 	if (ret)
5095 		goto out_release_instance;
5096 
5097 	nvme_get_ctrl(ctrl);
5098 	cdev_init(&ctrl->cdev, &nvme_dev_fops);
5099 	ctrl->cdev.owner = ops->module;
5100 	ret = cdev_device_add(&ctrl->cdev, ctrl->device);
5101 	if (ret)
5102 		goto out_free_name;
5103 
5104 	/*
5105 	 * Initialize latency tolerance controls.  The sysfs files won't
5106 	 * be visible to userspace unless the device actually supports APST.
5107 	 */
5108 	ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
5109 	dev_pm_qos_update_user_latency_tolerance(ctrl->device,
5110 		min(default_ps_max_latency_us, (unsigned long)S32_MAX));
5111 
5112 	nvme_fault_inject_init(&ctrl->fault_inject, dev_name(ctrl->device));
5113 	nvme_mpath_init_ctrl(ctrl);
5114 	nvme_auth_init_ctrl(ctrl);
5115 
5116 	return 0;
5117 out_free_name:
5118 	nvme_put_ctrl(ctrl);
5119 	kfree_const(ctrl->device->kobj.name);
5120 out_release_instance:
5121 	ida_free(&nvme_instance_ida, ctrl->instance);
5122 out:
5123 	if (ctrl->discard_page)
5124 		__free_page(ctrl->discard_page);
5125 	return ret;
5126 }
5127 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
5128 
nvme_start_ns_queue(struct nvme_ns * ns)5129 static void nvme_start_ns_queue(struct nvme_ns *ns)
5130 {
5131 	if (test_and_clear_bit(NVME_NS_STOPPED, &ns->flags))
5132 		blk_mq_unquiesce_queue(ns->queue);
5133 }
5134 
nvme_stop_ns_queue(struct nvme_ns * ns)5135 static void nvme_stop_ns_queue(struct nvme_ns *ns)
5136 {
5137 	if (!test_and_set_bit(NVME_NS_STOPPED, &ns->flags))
5138 		blk_mq_quiesce_queue(ns->queue);
5139 	else
5140 		blk_mq_wait_quiesce_done(ns->queue);
5141 }
5142 
5143 /*
5144  * Prepare a queue for teardown.
5145  *
5146  * This must forcibly unquiesce queues to avoid blocking dispatch, and only set
5147  * the capacity to 0 after that to avoid blocking dispatchers that may be
5148  * holding bd_butex.  This will end buffered writers dirtying pages that can't
5149  * be synced.
5150  */
nvme_set_queue_dying(struct nvme_ns * ns)5151 static void nvme_set_queue_dying(struct nvme_ns *ns)
5152 {
5153 	if (test_and_set_bit(NVME_NS_DEAD, &ns->flags))
5154 		return;
5155 
5156 	blk_mark_disk_dead(ns->disk);
5157 	nvme_start_ns_queue(ns);
5158 
5159 	set_capacity_and_notify(ns->disk, 0);
5160 }
5161 
5162 /**
5163  * nvme_kill_queues(): Ends all namespace queues
5164  * @ctrl: the dead controller that needs to end
5165  *
5166  * Call this function when the driver determines it is unable to get the
5167  * controller in a state capable of servicing IO.
5168  */
nvme_kill_queues(struct nvme_ctrl * ctrl)5169 void nvme_kill_queues(struct nvme_ctrl *ctrl)
5170 {
5171 	struct nvme_ns *ns;
5172 
5173 	down_read(&ctrl->namespaces_rwsem);
5174 
5175 	/* Forcibly unquiesce queues to avoid blocking dispatch */
5176 	if (ctrl->admin_q && !blk_queue_dying(ctrl->admin_q))
5177 		nvme_start_admin_queue(ctrl);
5178 
5179 	list_for_each_entry(ns, &ctrl->namespaces, list)
5180 		nvme_set_queue_dying(ns);
5181 
5182 	up_read(&ctrl->namespaces_rwsem);
5183 }
5184 EXPORT_SYMBOL_GPL(nvme_kill_queues);
5185 
nvme_unfreeze(struct nvme_ctrl * ctrl)5186 void nvme_unfreeze(struct nvme_ctrl *ctrl)
5187 {
5188 	struct nvme_ns *ns;
5189 
5190 	down_read(&ctrl->namespaces_rwsem);
5191 	list_for_each_entry(ns, &ctrl->namespaces, list)
5192 		blk_mq_unfreeze_queue(ns->queue);
5193 	up_read(&ctrl->namespaces_rwsem);
5194 }
5195 EXPORT_SYMBOL_GPL(nvme_unfreeze);
5196 
nvme_wait_freeze_timeout(struct nvme_ctrl * ctrl,long timeout)5197 int nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
5198 {
5199 	struct nvme_ns *ns;
5200 
5201 	down_read(&ctrl->namespaces_rwsem);
5202 	list_for_each_entry(ns, &ctrl->namespaces, list) {
5203 		timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
5204 		if (timeout <= 0)
5205 			break;
5206 	}
5207 	up_read(&ctrl->namespaces_rwsem);
5208 	return timeout;
5209 }
5210 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
5211 
nvme_wait_freeze(struct nvme_ctrl * ctrl)5212 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
5213 {
5214 	struct nvme_ns *ns;
5215 
5216 	down_read(&ctrl->namespaces_rwsem);
5217 	list_for_each_entry(ns, &ctrl->namespaces, list)
5218 		blk_mq_freeze_queue_wait(ns->queue);
5219 	up_read(&ctrl->namespaces_rwsem);
5220 }
5221 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
5222 
nvme_start_freeze(struct nvme_ctrl * ctrl)5223 void nvme_start_freeze(struct nvme_ctrl *ctrl)
5224 {
5225 	struct nvme_ns *ns;
5226 
5227 	down_read(&ctrl->namespaces_rwsem);
5228 	list_for_each_entry(ns, &ctrl->namespaces, list)
5229 		blk_freeze_queue_start(ns->queue);
5230 	up_read(&ctrl->namespaces_rwsem);
5231 }
5232 EXPORT_SYMBOL_GPL(nvme_start_freeze);
5233 
nvme_stop_queues(struct nvme_ctrl * ctrl)5234 void nvme_stop_queues(struct nvme_ctrl *ctrl)
5235 {
5236 	struct nvme_ns *ns;
5237 
5238 	down_read(&ctrl->namespaces_rwsem);
5239 	list_for_each_entry(ns, &ctrl->namespaces, list)
5240 		nvme_stop_ns_queue(ns);
5241 	up_read(&ctrl->namespaces_rwsem);
5242 }
5243 EXPORT_SYMBOL_GPL(nvme_stop_queues);
5244 
nvme_start_queues(struct nvme_ctrl * ctrl)5245 void nvme_start_queues(struct nvme_ctrl *ctrl)
5246 {
5247 	struct nvme_ns *ns;
5248 
5249 	down_read(&ctrl->namespaces_rwsem);
5250 	list_for_each_entry(ns, &ctrl->namespaces, list)
5251 		nvme_start_ns_queue(ns);
5252 	up_read(&ctrl->namespaces_rwsem);
5253 }
5254 EXPORT_SYMBOL_GPL(nvme_start_queues);
5255 
nvme_stop_admin_queue(struct nvme_ctrl * ctrl)5256 void nvme_stop_admin_queue(struct nvme_ctrl *ctrl)
5257 {
5258 	if (!test_and_set_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5259 		blk_mq_quiesce_queue(ctrl->admin_q);
5260 	else
5261 		blk_mq_wait_quiesce_done(ctrl->admin_q);
5262 }
5263 EXPORT_SYMBOL_GPL(nvme_stop_admin_queue);
5264 
nvme_start_admin_queue(struct nvme_ctrl * ctrl)5265 void nvme_start_admin_queue(struct nvme_ctrl *ctrl)
5266 {
5267 	if (test_and_clear_bit(NVME_CTRL_ADMIN_Q_STOPPED, &ctrl->flags))
5268 		blk_mq_unquiesce_queue(ctrl->admin_q);
5269 }
5270 EXPORT_SYMBOL_GPL(nvme_start_admin_queue);
5271 
nvme_sync_io_queues(struct nvme_ctrl * ctrl)5272 void nvme_sync_io_queues(struct nvme_ctrl *ctrl)
5273 {
5274 	struct nvme_ns *ns;
5275 
5276 	down_read(&ctrl->namespaces_rwsem);
5277 	list_for_each_entry(ns, &ctrl->namespaces, list)
5278 		blk_sync_queue(ns->queue);
5279 	up_read(&ctrl->namespaces_rwsem);
5280 }
5281 EXPORT_SYMBOL_GPL(nvme_sync_io_queues);
5282 
nvme_sync_queues(struct nvme_ctrl * ctrl)5283 void nvme_sync_queues(struct nvme_ctrl *ctrl)
5284 {
5285 	nvme_sync_io_queues(ctrl);
5286 	if (ctrl->admin_q)
5287 		blk_sync_queue(ctrl->admin_q);
5288 }
5289 EXPORT_SYMBOL_GPL(nvme_sync_queues);
5290 
nvme_ctrl_from_file(struct file * file)5291 struct nvme_ctrl *nvme_ctrl_from_file(struct file *file)
5292 {
5293 	if (file->f_op != &nvme_dev_fops)
5294 		return NULL;
5295 	return file->private_data;
5296 }
5297 EXPORT_SYMBOL_NS_GPL(nvme_ctrl_from_file, NVME_TARGET_PASSTHRU);
5298 
5299 /*
5300  * Check we didn't inadvertently grow the command structure sizes:
5301  */
_nvme_check_size(void)5302 static inline void _nvme_check_size(void)
5303 {
5304 	BUILD_BUG_ON(sizeof(struct nvme_common_command) != 64);
5305 	BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
5306 	BUILD_BUG_ON(sizeof(struct nvme_identify) != 64);
5307 	BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
5308 	BUILD_BUG_ON(sizeof(struct nvme_download_firmware) != 64);
5309 	BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
5310 	BUILD_BUG_ON(sizeof(struct nvme_dsm_cmd) != 64);
5311 	BUILD_BUG_ON(sizeof(struct nvme_write_zeroes_cmd) != 64);
5312 	BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
5313 	BUILD_BUG_ON(sizeof(struct nvme_get_log_page_command) != 64);
5314 	BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
5315 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != NVME_IDENTIFY_DATA_SIZE);
5316 	BUILD_BUG_ON(sizeof(struct nvme_id_ns) != NVME_IDENTIFY_DATA_SIZE);
5317 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_cs_indep) !=
5318 			NVME_IDENTIFY_DATA_SIZE);
5319 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_zns) != NVME_IDENTIFY_DATA_SIZE);
5320 	BUILD_BUG_ON(sizeof(struct nvme_id_ns_nvm) != NVME_IDENTIFY_DATA_SIZE);
5321 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_zns) != NVME_IDENTIFY_DATA_SIZE);
5322 	BUILD_BUG_ON(sizeof(struct nvme_id_ctrl_nvm) != NVME_IDENTIFY_DATA_SIZE);
5323 	BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
5324 	BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
5325 	BUILD_BUG_ON(sizeof(struct nvme_dbbuf) != 64);
5326 	BUILD_BUG_ON(sizeof(struct nvme_directive_cmd) != 64);
5327 	BUILD_BUG_ON(sizeof(struct nvme_feat_host_behavior) != 512);
5328 }
5329 
5330 
nvme_core_init(void)5331 static int __init nvme_core_init(void)
5332 {
5333 	int result = -ENOMEM;
5334 
5335 	_nvme_check_size();
5336 
5337 	nvme_wq = alloc_workqueue("nvme-wq",
5338 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5339 	if (!nvme_wq)
5340 		goto out;
5341 
5342 	nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
5343 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5344 	if (!nvme_reset_wq)
5345 		goto destroy_wq;
5346 
5347 	nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
5348 			WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
5349 	if (!nvme_delete_wq)
5350 		goto destroy_reset_wq;
5351 
5352 	result = alloc_chrdev_region(&nvme_ctrl_base_chr_devt, 0,
5353 			NVME_MINORS, "nvme");
5354 	if (result < 0)
5355 		goto destroy_delete_wq;
5356 
5357 	nvme_class = class_create(THIS_MODULE, "nvme");
5358 	if (IS_ERR(nvme_class)) {
5359 		result = PTR_ERR(nvme_class);
5360 		goto unregister_chrdev;
5361 	}
5362 	nvme_class->dev_uevent = nvme_class_uevent;
5363 
5364 	nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
5365 	if (IS_ERR(nvme_subsys_class)) {
5366 		result = PTR_ERR(nvme_subsys_class);
5367 		goto destroy_class;
5368 	}
5369 
5370 	result = alloc_chrdev_region(&nvme_ns_chr_devt, 0, NVME_MINORS,
5371 				     "nvme-generic");
5372 	if (result < 0)
5373 		goto destroy_subsys_class;
5374 
5375 	nvme_ns_chr_class = class_create(THIS_MODULE, "nvme-generic");
5376 	if (IS_ERR(nvme_ns_chr_class)) {
5377 		result = PTR_ERR(nvme_ns_chr_class);
5378 		goto unregister_generic_ns;
5379 	}
5380 
5381 	return 0;
5382 
5383 unregister_generic_ns:
5384 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5385 destroy_subsys_class:
5386 	class_destroy(nvme_subsys_class);
5387 destroy_class:
5388 	class_destroy(nvme_class);
5389 unregister_chrdev:
5390 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5391 destroy_delete_wq:
5392 	destroy_workqueue(nvme_delete_wq);
5393 destroy_reset_wq:
5394 	destroy_workqueue(nvme_reset_wq);
5395 destroy_wq:
5396 	destroy_workqueue(nvme_wq);
5397 out:
5398 	return result;
5399 }
5400 
nvme_core_exit(void)5401 static void __exit nvme_core_exit(void)
5402 {
5403 	class_destroy(nvme_ns_chr_class);
5404 	class_destroy(nvme_subsys_class);
5405 	class_destroy(nvme_class);
5406 	unregister_chrdev_region(nvme_ns_chr_devt, NVME_MINORS);
5407 	unregister_chrdev_region(nvme_ctrl_base_chr_devt, NVME_MINORS);
5408 	destroy_workqueue(nvme_delete_wq);
5409 	destroy_workqueue(nvme_reset_wq);
5410 	destroy_workqueue(nvme_wq);
5411 	ida_destroy(&nvme_ns_chr_minor_ida);
5412 	ida_destroy(&nvme_instance_ida);
5413 }
5414 
5415 MODULE_LICENSE("GPL");
5416 MODULE_VERSION("1.0");
5417 module_init(nvme_core_init);
5418 module_exit(nvme_core_exit);
5419