1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Core registration and callback routines for MTD
4  * drivers and users.
5  *
6  * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7  * Copyright © 2006      Red Hat UK Limited
8  */
9 
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/slab.h>
27 #include <linux/reboot.h>
28 #include <linux/leds.h>
29 #include <linux/debugfs.h>
30 #include <linux/nvmem-provider.h>
31 
32 #include <linux/mtd/mtd.h>
33 #include <linux/mtd/partitions.h>
34 
35 #include "mtdcore.h"
36 
37 struct backing_dev_info *mtd_bdi;
38 
39 #ifdef CONFIG_PM_SLEEP
40 
mtd_cls_suspend(struct device * dev)41 static int mtd_cls_suspend(struct device *dev)
42 {
43 	struct mtd_info *mtd = dev_get_drvdata(dev);
44 
45 	return mtd ? mtd_suspend(mtd) : 0;
46 }
47 
mtd_cls_resume(struct device * dev)48 static int mtd_cls_resume(struct device *dev)
49 {
50 	struct mtd_info *mtd = dev_get_drvdata(dev);
51 
52 	if (mtd)
53 		mtd_resume(mtd);
54 	return 0;
55 }
56 
57 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
58 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
59 #else
60 #define MTD_CLS_PM_OPS NULL
61 #endif
62 
63 static struct class mtd_class = {
64 	.name = "mtd",
65 	.owner = THIS_MODULE,
66 	.pm = MTD_CLS_PM_OPS,
67 };
68 
69 static DEFINE_IDR(mtd_idr);
70 
71 /* These are exported solely for the purpose of mtd_blkdevs.c. You
72    should not use them for _anything_ else */
73 DEFINE_MUTEX(mtd_table_mutex);
74 EXPORT_SYMBOL_GPL(mtd_table_mutex);
75 
__mtd_next_device(int i)76 struct mtd_info *__mtd_next_device(int i)
77 {
78 	return idr_get_next(&mtd_idr, &i);
79 }
80 EXPORT_SYMBOL_GPL(__mtd_next_device);
81 
82 static LIST_HEAD(mtd_notifiers);
83 
84 
85 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86 
87 /* REVISIT once MTD uses the driver model better, whoever allocates
88  * the mtd_info will probably want to use the release() hook...
89  */
mtd_release(struct device * dev)90 static void mtd_release(struct device *dev)
91 {
92 	struct mtd_info *mtd = dev_get_drvdata(dev);
93 	dev_t index = MTD_DEVT(mtd->index);
94 
95 	/* remove /dev/mtdXro node */
96 	device_destroy(&mtd_class, index + 1);
97 }
98 
99 #define MTD_DEVICE_ATTR_RO(name) \
100 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
101 
102 #define MTD_DEVICE_ATTR_RW(name) \
103 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
104 
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)105 static ssize_t mtd_type_show(struct device *dev,
106 		struct device_attribute *attr, char *buf)
107 {
108 	struct mtd_info *mtd = dev_get_drvdata(dev);
109 	char *type;
110 
111 	switch (mtd->type) {
112 	case MTD_ABSENT:
113 		type = "absent";
114 		break;
115 	case MTD_RAM:
116 		type = "ram";
117 		break;
118 	case MTD_ROM:
119 		type = "rom";
120 		break;
121 	case MTD_NORFLASH:
122 		type = "nor";
123 		break;
124 	case MTD_NANDFLASH:
125 		type = "nand";
126 		break;
127 	case MTD_DATAFLASH:
128 		type = "dataflash";
129 		break;
130 	case MTD_UBIVOLUME:
131 		type = "ubi";
132 		break;
133 	case MTD_MLCNANDFLASH:
134 		type = "mlc-nand";
135 		break;
136 	default:
137 		type = "unknown";
138 	}
139 
140 	return sysfs_emit(buf, "%s\n", type);
141 }
142 MTD_DEVICE_ATTR_RO(type);
143 
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)144 static ssize_t mtd_flags_show(struct device *dev,
145 		struct device_attribute *attr, char *buf)
146 {
147 	struct mtd_info *mtd = dev_get_drvdata(dev);
148 
149 	return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
150 }
151 MTD_DEVICE_ATTR_RO(flags);
152 
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)153 static ssize_t mtd_size_show(struct device *dev,
154 		struct device_attribute *attr, char *buf)
155 {
156 	struct mtd_info *mtd = dev_get_drvdata(dev);
157 
158 	return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
159 }
160 MTD_DEVICE_ATTR_RO(size);
161 
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)162 static ssize_t mtd_erasesize_show(struct device *dev,
163 		struct device_attribute *attr, char *buf)
164 {
165 	struct mtd_info *mtd = dev_get_drvdata(dev);
166 
167 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
168 }
169 MTD_DEVICE_ATTR_RO(erasesize);
170 
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)171 static ssize_t mtd_writesize_show(struct device *dev,
172 		struct device_attribute *attr, char *buf)
173 {
174 	struct mtd_info *mtd = dev_get_drvdata(dev);
175 
176 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
177 }
178 MTD_DEVICE_ATTR_RO(writesize);
179 
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)180 static ssize_t mtd_subpagesize_show(struct device *dev,
181 		struct device_attribute *attr, char *buf)
182 {
183 	struct mtd_info *mtd = dev_get_drvdata(dev);
184 	unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
185 
186 	return sysfs_emit(buf, "%u\n", subpagesize);
187 }
188 MTD_DEVICE_ATTR_RO(subpagesize);
189 
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)190 static ssize_t mtd_oobsize_show(struct device *dev,
191 		struct device_attribute *attr, char *buf)
192 {
193 	struct mtd_info *mtd = dev_get_drvdata(dev);
194 
195 	return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
196 }
197 MTD_DEVICE_ATTR_RO(oobsize);
198 
mtd_oobavail_show(struct device * dev,struct device_attribute * attr,char * buf)199 static ssize_t mtd_oobavail_show(struct device *dev,
200 				 struct device_attribute *attr, char *buf)
201 {
202 	struct mtd_info *mtd = dev_get_drvdata(dev);
203 
204 	return sysfs_emit(buf, "%u\n", mtd->oobavail);
205 }
206 MTD_DEVICE_ATTR_RO(oobavail);
207 
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)208 static ssize_t mtd_numeraseregions_show(struct device *dev,
209 		struct device_attribute *attr, char *buf)
210 {
211 	struct mtd_info *mtd = dev_get_drvdata(dev);
212 
213 	return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
214 }
215 MTD_DEVICE_ATTR_RO(numeraseregions);
216 
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)217 static ssize_t mtd_name_show(struct device *dev,
218 		struct device_attribute *attr, char *buf)
219 {
220 	struct mtd_info *mtd = dev_get_drvdata(dev);
221 
222 	return sysfs_emit(buf, "%s\n", mtd->name);
223 }
224 MTD_DEVICE_ATTR_RO(name);
225 
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)226 static ssize_t mtd_ecc_strength_show(struct device *dev,
227 				     struct device_attribute *attr, char *buf)
228 {
229 	struct mtd_info *mtd = dev_get_drvdata(dev);
230 
231 	return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
232 }
233 MTD_DEVICE_ATTR_RO(ecc_strength);
234 
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)235 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
236 					  struct device_attribute *attr,
237 					  char *buf)
238 {
239 	struct mtd_info *mtd = dev_get_drvdata(dev);
240 
241 	return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
242 }
243 
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)244 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
245 					   struct device_attribute *attr,
246 					   const char *buf, size_t count)
247 {
248 	struct mtd_info *mtd = dev_get_drvdata(dev);
249 	unsigned int bitflip_threshold;
250 	int retval;
251 
252 	retval = kstrtouint(buf, 0, &bitflip_threshold);
253 	if (retval)
254 		return retval;
255 
256 	mtd->bitflip_threshold = bitflip_threshold;
257 	return count;
258 }
259 MTD_DEVICE_ATTR_RW(bitflip_threshold);
260 
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)261 static ssize_t mtd_ecc_step_size_show(struct device *dev,
262 		struct device_attribute *attr, char *buf)
263 {
264 	struct mtd_info *mtd = dev_get_drvdata(dev);
265 
266 	return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
267 
268 }
269 MTD_DEVICE_ATTR_RO(ecc_step_size);
270 
mtd_corrected_bits_show(struct device * dev,struct device_attribute * attr,char * buf)271 static ssize_t mtd_corrected_bits_show(struct device *dev,
272 		struct device_attribute *attr, char *buf)
273 {
274 	struct mtd_info *mtd = dev_get_drvdata(dev);
275 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
276 
277 	return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
278 }
279 MTD_DEVICE_ATTR_RO(corrected_bits);	/* ecc stats corrected */
280 
mtd_ecc_failures_show(struct device * dev,struct device_attribute * attr,char * buf)281 static ssize_t mtd_ecc_failures_show(struct device *dev,
282 		struct device_attribute *attr, char *buf)
283 {
284 	struct mtd_info *mtd = dev_get_drvdata(dev);
285 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286 
287 	return sysfs_emit(buf, "%u\n", ecc_stats->failed);
288 }
289 MTD_DEVICE_ATTR_RO(ecc_failures);	/* ecc stats errors */
290 
mtd_bad_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)291 static ssize_t mtd_bad_blocks_show(struct device *dev,
292 		struct device_attribute *attr, char *buf)
293 {
294 	struct mtd_info *mtd = dev_get_drvdata(dev);
295 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296 
297 	return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
298 }
299 MTD_DEVICE_ATTR_RO(bad_blocks);
300 
mtd_bbt_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)301 static ssize_t mtd_bbt_blocks_show(struct device *dev,
302 		struct device_attribute *attr, char *buf)
303 {
304 	struct mtd_info *mtd = dev_get_drvdata(dev);
305 	struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306 
307 	return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
308 }
309 MTD_DEVICE_ATTR_RO(bbt_blocks);
310 
311 static struct attribute *mtd_attrs[] = {
312 	&dev_attr_type.attr,
313 	&dev_attr_flags.attr,
314 	&dev_attr_size.attr,
315 	&dev_attr_erasesize.attr,
316 	&dev_attr_writesize.attr,
317 	&dev_attr_subpagesize.attr,
318 	&dev_attr_oobsize.attr,
319 	&dev_attr_oobavail.attr,
320 	&dev_attr_numeraseregions.attr,
321 	&dev_attr_name.attr,
322 	&dev_attr_ecc_strength.attr,
323 	&dev_attr_ecc_step_size.attr,
324 	&dev_attr_corrected_bits.attr,
325 	&dev_attr_ecc_failures.attr,
326 	&dev_attr_bad_blocks.attr,
327 	&dev_attr_bbt_blocks.attr,
328 	&dev_attr_bitflip_threshold.attr,
329 	NULL,
330 };
331 ATTRIBUTE_GROUPS(mtd);
332 
333 static const struct device_type mtd_devtype = {
334 	.name		= "mtd",
335 	.groups		= mtd_groups,
336 	.release	= mtd_release,
337 };
338 
339 static bool mtd_expert_analysis_mode;
340 
341 #ifdef CONFIG_DEBUG_FS
mtd_check_expert_analysis_mode(void)342 bool mtd_check_expert_analysis_mode(void)
343 {
344 	const char *mtd_expert_analysis_warning =
345 		"Bad block checks have been entirely disabled.\n"
346 		"This is only reserved for post-mortem forensics and debug purposes.\n"
347 		"Never enable this mode if you do not know what you are doing!\n";
348 
349 	return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
350 }
351 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
352 #endif
353 
354 static struct dentry *dfs_dir_mtd;
355 
mtd_debugfs_populate(struct mtd_info * mtd)356 static void mtd_debugfs_populate(struct mtd_info *mtd)
357 {
358 	struct device *dev = &mtd->dev;
359 
360 	if (IS_ERR_OR_NULL(dfs_dir_mtd))
361 		return;
362 
363 	mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
364 }
365 
366 #ifndef CONFIG_MMU
mtd_mmap_capabilities(struct mtd_info * mtd)367 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
368 {
369 	switch (mtd->type) {
370 	case MTD_RAM:
371 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
372 			NOMMU_MAP_READ | NOMMU_MAP_WRITE;
373 	case MTD_ROM:
374 		return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
375 			NOMMU_MAP_READ;
376 	default:
377 		return NOMMU_MAP_COPY;
378 	}
379 }
380 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
381 #endif
382 
mtd_reboot_notifier(struct notifier_block * n,unsigned long state,void * cmd)383 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
384 			       void *cmd)
385 {
386 	struct mtd_info *mtd;
387 
388 	mtd = container_of(n, struct mtd_info, reboot_notifier);
389 	mtd->_reboot(mtd);
390 
391 	return NOTIFY_DONE;
392 }
393 
394 /**
395  * mtd_wunit_to_pairing_info - get pairing information of a wunit
396  * @mtd: pointer to new MTD device info structure
397  * @wunit: write unit we are interested in
398  * @info: returned pairing information
399  *
400  * Retrieve pairing information associated to the wunit.
401  * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
402  * paired together, and where programming a page may influence the page it is
403  * paired with.
404  * The notion of page is replaced by the term wunit (write-unit) to stay
405  * consistent with the ->writesize field.
406  *
407  * The @wunit argument can be extracted from an absolute offset using
408  * mtd_offset_to_wunit(). @info is filled with the pairing information attached
409  * to @wunit.
410  *
411  * From the pairing info the MTD user can find all the wunits paired with
412  * @wunit using the following loop:
413  *
414  * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
415  *	info.pair = i;
416  *	mtd_pairing_info_to_wunit(mtd, &info);
417  *	...
418  * }
419  */
mtd_wunit_to_pairing_info(struct mtd_info * mtd,int wunit,struct mtd_pairing_info * info)420 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
421 			      struct mtd_pairing_info *info)
422 {
423 	struct mtd_info *master = mtd_get_master(mtd);
424 	int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
425 
426 	if (wunit < 0 || wunit >= npairs)
427 		return -EINVAL;
428 
429 	if (master->pairing && master->pairing->get_info)
430 		return master->pairing->get_info(master, wunit, info);
431 
432 	info->group = 0;
433 	info->pair = wunit;
434 
435 	return 0;
436 }
437 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
438 
439 /**
440  * mtd_pairing_info_to_wunit - get wunit from pairing information
441  * @mtd: pointer to new MTD device info structure
442  * @info: pairing information struct
443  *
444  * Returns a positive number representing the wunit associated to the info
445  * struct, or a negative error code.
446  *
447  * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
448  * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
449  * doc).
450  *
451  * It can also be used to only program the first page of each pair (i.e.
452  * page attached to group 0), which allows one to use an MLC NAND in
453  * software-emulated SLC mode:
454  *
455  * info.group = 0;
456  * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
457  * for (info.pair = 0; info.pair < npairs; info.pair++) {
458  *	wunit = mtd_pairing_info_to_wunit(mtd, &info);
459  *	mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
460  *		  mtd->writesize, &retlen, buf + (i * mtd->writesize));
461  * }
462  */
mtd_pairing_info_to_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)463 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
464 			      const struct mtd_pairing_info *info)
465 {
466 	struct mtd_info *master = mtd_get_master(mtd);
467 	int ngroups = mtd_pairing_groups(master);
468 	int npairs = mtd_wunit_per_eb(master) / ngroups;
469 
470 	if (!info || info->pair < 0 || info->pair >= npairs ||
471 	    info->group < 0 || info->group >= ngroups)
472 		return -EINVAL;
473 
474 	if (master->pairing && master->pairing->get_wunit)
475 		return mtd->pairing->get_wunit(master, info);
476 
477 	return info->pair;
478 }
479 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
480 
481 /**
482  * mtd_pairing_groups - get the number of pairing groups
483  * @mtd: pointer to new MTD device info structure
484  *
485  * Returns the number of pairing groups.
486  *
487  * This number is usually equal to the number of bits exposed by a single
488  * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
489  * to iterate over all pages of a given pair.
490  */
mtd_pairing_groups(struct mtd_info * mtd)491 int mtd_pairing_groups(struct mtd_info *mtd)
492 {
493 	struct mtd_info *master = mtd_get_master(mtd);
494 
495 	if (!master->pairing || !master->pairing->ngroups)
496 		return 1;
497 
498 	return master->pairing->ngroups;
499 }
500 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
501 
mtd_nvmem_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)502 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
503 			      void *val, size_t bytes)
504 {
505 	struct mtd_info *mtd = priv;
506 	size_t retlen;
507 	int err;
508 
509 	err = mtd_read(mtd, offset, bytes, &retlen, val);
510 	if (err && err != -EUCLEAN)
511 		return err;
512 
513 	return retlen == bytes ? 0 : -EIO;
514 }
515 
mtd_nvmem_add(struct mtd_info * mtd)516 static int mtd_nvmem_add(struct mtd_info *mtd)
517 {
518 	struct device_node *node = mtd_get_of_node(mtd);
519 	struct nvmem_config config = {};
520 
521 	config.id = -1;
522 	config.dev = &mtd->dev;
523 	config.name = dev_name(&mtd->dev);
524 	config.owner = THIS_MODULE;
525 	config.reg_read = mtd_nvmem_reg_read;
526 	config.size = mtd->size;
527 	config.word_size = 1;
528 	config.stride = 1;
529 	config.read_only = true;
530 	config.root_only = true;
531 	config.ignore_wp = true;
532 	config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
533 	config.priv = mtd;
534 
535 	mtd->nvmem = nvmem_register(&config);
536 	if (IS_ERR(mtd->nvmem)) {
537 		/* Just ignore if there is no NVMEM support in the kernel */
538 		if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP) {
539 			mtd->nvmem = NULL;
540 		} else {
541 			dev_err(&mtd->dev, "Failed to register NVMEM device\n");
542 			return PTR_ERR(mtd->nvmem);
543 		}
544 	}
545 
546 	return 0;
547 }
548 
mtd_check_of_node(struct mtd_info * mtd)549 static void mtd_check_of_node(struct mtd_info *mtd)
550 {
551 	struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
552 	const char *pname, *prefix = "partition-";
553 	int plen, mtd_name_len, offset, prefix_len;
554 	struct mtd_info *parent;
555 	bool found = false;
556 
557 	/* Check if MTD already has a device node */
558 	if (dev_of_node(&mtd->dev))
559 		return;
560 
561 	/* Check if a partitions node exist */
562 	if (!mtd_is_partition(mtd))
563 		return;
564 	parent = mtd->parent;
565 	parent_dn = of_node_get(dev_of_node(&parent->dev));
566 	if (!parent_dn)
567 		return;
568 
569 	partitions = of_get_child_by_name(parent_dn, "partitions");
570 	if (!partitions)
571 		goto exit_parent;
572 
573 	prefix_len = strlen(prefix);
574 	mtd_name_len = strlen(mtd->name);
575 
576 	/* Search if a partition is defined with the same name */
577 	for_each_child_of_node(partitions, mtd_dn) {
578 		offset = 0;
579 
580 		/* Skip partition with no/wrong prefix */
581 		if (!of_node_name_prefix(mtd_dn, "partition-"))
582 			continue;
583 
584 		/* Label have priority. Check that first */
585 		if (of_property_read_string(mtd_dn, "label", &pname)) {
586 			of_property_read_string(mtd_dn, "name", &pname);
587 			offset = prefix_len;
588 		}
589 
590 		plen = strlen(pname) - offset;
591 		if (plen == mtd_name_len &&
592 		    !strncmp(mtd->name, pname + offset, plen)) {
593 			found = true;
594 			break;
595 		}
596 	}
597 
598 	if (!found)
599 		goto exit_partitions;
600 
601 	/* Set of_node only for nvmem */
602 	if (of_device_is_compatible(mtd_dn, "nvmem-cells"))
603 		mtd_set_of_node(mtd, mtd_dn);
604 
605 exit_partitions:
606 	of_node_put(partitions);
607 exit_parent:
608 	of_node_put(parent_dn);
609 }
610 
611 /**
612  *	add_mtd_device - register an MTD device
613  *	@mtd: pointer to new MTD device info structure
614  *
615  *	Add a device to the list of MTD devices present in the system, and
616  *	notify each currently active MTD 'user' of its arrival. Returns
617  *	zero on success or non-zero on failure.
618  */
619 
add_mtd_device(struct mtd_info * mtd)620 int add_mtd_device(struct mtd_info *mtd)
621 {
622 	struct device_node *np = mtd_get_of_node(mtd);
623 	struct mtd_info *master = mtd_get_master(mtd);
624 	struct mtd_notifier *not;
625 	int i, error, ofidx;
626 
627 	/*
628 	 * May occur, for instance, on buggy drivers which call
629 	 * mtd_device_parse_register() multiple times on the same master MTD,
630 	 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
631 	 */
632 	if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
633 		return -EEXIST;
634 
635 	BUG_ON(mtd->writesize == 0);
636 
637 	/*
638 	 * MTD drivers should implement ->_{write,read}() or
639 	 * ->_{write,read}_oob(), but not both.
640 	 */
641 	if (WARN_ON((mtd->_write && mtd->_write_oob) ||
642 		    (mtd->_read && mtd->_read_oob)))
643 		return -EINVAL;
644 
645 	if (WARN_ON((!mtd->erasesize || !master->_erase) &&
646 		    !(mtd->flags & MTD_NO_ERASE)))
647 		return -EINVAL;
648 
649 	/*
650 	 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
651 	 * master is an MLC NAND and has a proper pairing scheme defined.
652 	 * We also reject masters that implement ->_writev() for now, because
653 	 * NAND controller drivers don't implement this hook, and adding the
654 	 * SLC -> MLC address/length conversion to this path is useless if we
655 	 * don't have a user.
656 	 */
657 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
658 	    (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
659 	     !master->pairing || master->_writev))
660 		return -EINVAL;
661 
662 	mutex_lock(&mtd_table_mutex);
663 
664 	ofidx = -1;
665 	if (np)
666 		ofidx = of_alias_get_id(np, "mtd");
667 	if (ofidx >= 0)
668 		i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
669 	else
670 		i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
671 	if (i < 0) {
672 		error = i;
673 		goto fail_locked;
674 	}
675 
676 	mtd->index = i;
677 	mtd->usecount = 0;
678 
679 	/* default value if not set by driver */
680 	if (mtd->bitflip_threshold == 0)
681 		mtd->bitflip_threshold = mtd->ecc_strength;
682 
683 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
684 		int ngroups = mtd_pairing_groups(master);
685 
686 		mtd->erasesize /= ngroups;
687 		mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
688 			    mtd->erasesize;
689 	}
690 
691 	if (is_power_of_2(mtd->erasesize))
692 		mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
693 	else
694 		mtd->erasesize_shift = 0;
695 
696 	if (is_power_of_2(mtd->writesize))
697 		mtd->writesize_shift = ffs(mtd->writesize) - 1;
698 	else
699 		mtd->writesize_shift = 0;
700 
701 	mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
702 	mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
703 
704 	/* Some chips always power up locked. Unlock them now */
705 	if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
706 		error = mtd_unlock(mtd, 0, mtd->size);
707 		if (error && error != -EOPNOTSUPP)
708 			printk(KERN_WARNING
709 			       "%s: unlock failed, writes may not work\n",
710 			       mtd->name);
711 		/* Ignore unlock failures? */
712 		error = 0;
713 	}
714 
715 	/* Caller should have set dev.parent to match the
716 	 * physical device, if appropriate.
717 	 */
718 	mtd->dev.type = &mtd_devtype;
719 	mtd->dev.class = &mtd_class;
720 	mtd->dev.devt = MTD_DEVT(i);
721 	dev_set_name(&mtd->dev, "mtd%d", i);
722 	dev_set_drvdata(&mtd->dev, mtd);
723 	mtd_check_of_node(mtd);
724 	of_node_get(mtd_get_of_node(mtd));
725 	error = device_register(&mtd->dev);
726 	if (error) {
727 		put_device(&mtd->dev);
728 		goto fail_added;
729 	}
730 
731 	/* Add the nvmem provider */
732 	error = mtd_nvmem_add(mtd);
733 	if (error)
734 		goto fail_nvmem_add;
735 
736 	mtd_debugfs_populate(mtd);
737 
738 	device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
739 		      "mtd%dro", i);
740 
741 	pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
742 	/* No need to get a refcount on the module containing
743 	   the notifier, since we hold the mtd_table_mutex */
744 	list_for_each_entry(not, &mtd_notifiers, list)
745 		not->add(mtd);
746 
747 	mutex_unlock(&mtd_table_mutex);
748 	/* We _know_ we aren't being removed, because
749 	   our caller is still holding us here. So none
750 	   of this try_ nonsense, and no bitching about it
751 	   either. :) */
752 	__module_get(THIS_MODULE);
753 	return 0;
754 
755 fail_nvmem_add:
756 	device_unregister(&mtd->dev);
757 fail_added:
758 	of_node_put(mtd_get_of_node(mtd));
759 	idr_remove(&mtd_idr, i);
760 fail_locked:
761 	mutex_unlock(&mtd_table_mutex);
762 	return error;
763 }
764 
765 /**
766  *	del_mtd_device - unregister an MTD device
767  *	@mtd: pointer to MTD device info structure
768  *
769  *	Remove a device from the list of MTD devices present in the system,
770  *	and notify each currently active MTD 'user' of its departure.
771  *	Returns zero on success or 1 on failure, which currently will happen
772  *	if the requested device does not appear to be present in the list.
773  */
774 
del_mtd_device(struct mtd_info * mtd)775 int del_mtd_device(struct mtd_info *mtd)
776 {
777 	int ret;
778 	struct mtd_notifier *not;
779 	struct device_node *mtd_of_node;
780 
781 	mutex_lock(&mtd_table_mutex);
782 
783 	if (idr_find(&mtd_idr, mtd->index) != mtd) {
784 		ret = -ENODEV;
785 		goto out_error;
786 	}
787 
788 	/* No need to get a refcount on the module containing
789 		the notifier, since we hold the mtd_table_mutex */
790 	list_for_each_entry(not, &mtd_notifiers, list)
791 		not->remove(mtd);
792 
793 	if (mtd->usecount) {
794 		printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
795 		       mtd->index, mtd->name, mtd->usecount);
796 		ret = -EBUSY;
797 	} else {
798 		mtd_of_node = mtd_get_of_node(mtd);
799 		debugfs_remove_recursive(mtd->dbg.dfs_dir);
800 
801 		/* Try to remove the NVMEM provider */
802 		nvmem_unregister(mtd->nvmem);
803 
804 		device_unregister(&mtd->dev);
805 
806 		/* Clear dev so mtd can be safely re-registered later if desired */
807 		memset(&mtd->dev, 0, sizeof(mtd->dev));
808 
809 		idr_remove(&mtd_idr, mtd->index);
810 		of_node_put(mtd_of_node);
811 
812 		module_put(THIS_MODULE);
813 		ret = 0;
814 	}
815 
816 out_error:
817 	mutex_unlock(&mtd_table_mutex);
818 	return ret;
819 }
820 
821 /*
822  * Set a few defaults based on the parent devices, if not provided by the
823  * driver
824  */
mtd_set_dev_defaults(struct mtd_info * mtd)825 static void mtd_set_dev_defaults(struct mtd_info *mtd)
826 {
827 	if (mtd->dev.parent) {
828 		if (!mtd->owner && mtd->dev.parent->driver)
829 			mtd->owner = mtd->dev.parent->driver->owner;
830 		if (!mtd->name)
831 			mtd->name = dev_name(mtd->dev.parent);
832 	} else {
833 		pr_debug("mtd device won't show a device symlink in sysfs\n");
834 	}
835 
836 	INIT_LIST_HEAD(&mtd->partitions);
837 	mutex_init(&mtd->master.partitions_lock);
838 	mutex_init(&mtd->master.chrdev_lock);
839 }
840 
mtd_otp_size(struct mtd_info * mtd,bool is_user)841 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
842 {
843 	struct otp_info *info;
844 	ssize_t size = 0;
845 	unsigned int i;
846 	size_t retlen;
847 	int ret;
848 
849 	info = kmalloc(PAGE_SIZE, GFP_KERNEL);
850 	if (!info)
851 		return -ENOMEM;
852 
853 	if (is_user)
854 		ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
855 	else
856 		ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
857 	if (ret)
858 		goto err;
859 
860 	for (i = 0; i < retlen / sizeof(*info); i++)
861 		size += info[i].length;
862 
863 	kfree(info);
864 	return size;
865 
866 err:
867 	kfree(info);
868 
869 	/* ENODATA means there is no OTP region. */
870 	return ret == -ENODATA ? 0 : ret;
871 }
872 
mtd_otp_nvmem_register(struct mtd_info * mtd,const char * compatible,int size,nvmem_reg_read_t reg_read)873 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
874 						   const char *compatible,
875 						   int size,
876 						   nvmem_reg_read_t reg_read)
877 {
878 	struct nvmem_device *nvmem = NULL;
879 	struct nvmem_config config = {};
880 	struct device_node *np;
881 
882 	/* DT binding is optional */
883 	np = of_get_compatible_child(mtd->dev.of_node, compatible);
884 
885 	/* OTP nvmem will be registered on the physical device */
886 	config.dev = mtd->dev.parent;
887 	config.name = kasprintf(GFP_KERNEL, "%s-%s", dev_name(&mtd->dev), compatible);
888 	config.id = NVMEM_DEVID_NONE;
889 	config.owner = THIS_MODULE;
890 	config.type = NVMEM_TYPE_OTP;
891 	config.root_only = true;
892 	config.ignore_wp = true;
893 	config.reg_read = reg_read;
894 	config.size = size;
895 	config.of_node = np;
896 	config.priv = mtd;
897 
898 	nvmem = nvmem_register(&config);
899 	/* Just ignore if there is no NVMEM support in the kernel */
900 	if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
901 		nvmem = NULL;
902 
903 	of_node_put(np);
904 	kfree(config.name);
905 
906 	return nvmem;
907 }
908 
mtd_nvmem_user_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)909 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
910 				       void *val, size_t bytes)
911 {
912 	struct mtd_info *mtd = priv;
913 	size_t retlen;
914 	int ret;
915 
916 	ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
917 	if (ret)
918 		return ret;
919 
920 	return retlen == bytes ? 0 : -EIO;
921 }
922 
mtd_nvmem_fact_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)923 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
924 				       void *val, size_t bytes)
925 {
926 	struct mtd_info *mtd = priv;
927 	size_t retlen;
928 	int ret;
929 
930 	ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
931 	if (ret)
932 		return ret;
933 
934 	return retlen == bytes ? 0 : -EIO;
935 }
936 
mtd_otp_nvmem_add(struct mtd_info * mtd)937 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
938 {
939 	struct nvmem_device *nvmem;
940 	ssize_t size;
941 	int err;
942 
943 	if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
944 		size = mtd_otp_size(mtd, true);
945 		if (size < 0)
946 			return size;
947 
948 		if (size > 0) {
949 			nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
950 						       mtd_nvmem_user_otp_reg_read);
951 			if (IS_ERR(nvmem)) {
952 				dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
953 				return PTR_ERR(nvmem);
954 			}
955 			mtd->otp_user_nvmem = nvmem;
956 		}
957 	}
958 
959 	if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
960 		size = mtd_otp_size(mtd, false);
961 		if (size < 0) {
962 			err = size;
963 			goto err;
964 		}
965 
966 		if (size > 0) {
967 			nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
968 						       mtd_nvmem_fact_otp_reg_read);
969 			if (IS_ERR(nvmem)) {
970 				dev_err(&mtd->dev, "Failed to register OTP NVMEM device\n");
971 				err = PTR_ERR(nvmem);
972 				goto err;
973 			}
974 			mtd->otp_factory_nvmem = nvmem;
975 		}
976 	}
977 
978 	return 0;
979 
980 err:
981 	nvmem_unregister(mtd->otp_user_nvmem);
982 	return err;
983 }
984 
985 /**
986  * mtd_device_parse_register - parse partitions and register an MTD device.
987  *
988  * @mtd: the MTD device to register
989  * @types: the list of MTD partition probes to try, see
990  *         'parse_mtd_partitions()' for more information
991  * @parser_data: MTD partition parser-specific data
992  * @parts: fallback partition information to register, if parsing fails;
993  *         only valid if %nr_parts > %0
994  * @nr_parts: the number of partitions in parts, if zero then the full
995  *            MTD device is registered if no partition info is found
996  *
997  * This function aggregates MTD partitions parsing (done by
998  * 'parse_mtd_partitions()') and MTD device and partitions registering. It
999  * basically follows the most common pattern found in many MTD drivers:
1000  *
1001  * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1002  *   registered first.
1003  * * Then It tries to probe partitions on MTD device @mtd using parsers
1004  *   specified in @types (if @types is %NULL, then the default list of parsers
1005  *   is used, see 'parse_mtd_partitions()' for more information). If none are
1006  *   found this functions tries to fallback to information specified in
1007  *   @parts/@nr_parts.
1008  * * If no partitions were found this function just registers the MTD device
1009  *   @mtd and exits.
1010  *
1011  * Returns zero in case of success and a negative error code in case of failure.
1012  */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)1013 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1014 			      struct mtd_part_parser_data *parser_data,
1015 			      const struct mtd_partition *parts,
1016 			      int nr_parts)
1017 {
1018 	int ret;
1019 
1020 	mtd_set_dev_defaults(mtd);
1021 
1022 	if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1023 		ret = add_mtd_device(mtd);
1024 		if (ret)
1025 			return ret;
1026 	}
1027 
1028 	/* Prefer parsed partitions over driver-provided fallback */
1029 	ret = parse_mtd_partitions(mtd, types, parser_data);
1030 	if (ret == -EPROBE_DEFER)
1031 		goto out;
1032 
1033 	if (ret > 0)
1034 		ret = 0;
1035 	else if (nr_parts)
1036 		ret = add_mtd_partitions(mtd, parts, nr_parts);
1037 	else if (!device_is_registered(&mtd->dev))
1038 		ret = add_mtd_device(mtd);
1039 	else
1040 		ret = 0;
1041 
1042 	if (ret)
1043 		goto out;
1044 
1045 	/*
1046 	 * FIXME: some drivers unfortunately call this function more than once.
1047 	 * So we have to check if we've already assigned the reboot notifier.
1048 	 *
1049 	 * Generally, we can make multiple calls work for most cases, but it
1050 	 * does cause problems with parse_mtd_partitions() above (e.g.,
1051 	 * cmdlineparts will register partitions more than once).
1052 	 */
1053 	WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1054 		  "MTD already registered\n");
1055 	if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1056 		mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1057 		register_reboot_notifier(&mtd->reboot_notifier);
1058 	}
1059 
1060 	ret = mtd_otp_nvmem_add(mtd);
1061 
1062 out:
1063 	if (ret && device_is_registered(&mtd->dev))
1064 		del_mtd_device(mtd);
1065 
1066 	return ret;
1067 }
1068 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1069 
1070 /**
1071  * mtd_device_unregister - unregister an existing MTD device.
1072  *
1073  * @master: the MTD device to unregister.  This will unregister both the master
1074  *          and any partitions if registered.
1075  */
mtd_device_unregister(struct mtd_info * master)1076 int mtd_device_unregister(struct mtd_info *master)
1077 {
1078 	int err;
1079 
1080 	if (master->_reboot) {
1081 		unregister_reboot_notifier(&master->reboot_notifier);
1082 		memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1083 	}
1084 
1085 	nvmem_unregister(master->otp_user_nvmem);
1086 	nvmem_unregister(master->otp_factory_nvmem);
1087 
1088 	err = del_mtd_partitions(master);
1089 	if (err)
1090 		return err;
1091 
1092 	if (!device_is_registered(&master->dev))
1093 		return 0;
1094 
1095 	return del_mtd_device(master);
1096 }
1097 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1098 
1099 /**
1100  *	register_mtd_user - register a 'user' of MTD devices.
1101  *	@new: pointer to notifier info structure
1102  *
1103  *	Registers a pair of callbacks function to be called upon addition
1104  *	or removal of MTD devices. Causes the 'add' callback to be immediately
1105  *	invoked for each MTD device currently present in the system.
1106  */
register_mtd_user(struct mtd_notifier * new)1107 void register_mtd_user (struct mtd_notifier *new)
1108 {
1109 	struct mtd_info *mtd;
1110 
1111 	mutex_lock(&mtd_table_mutex);
1112 
1113 	list_add(&new->list, &mtd_notifiers);
1114 
1115 	__module_get(THIS_MODULE);
1116 
1117 	mtd_for_each_device(mtd)
1118 		new->add(mtd);
1119 
1120 	mutex_unlock(&mtd_table_mutex);
1121 }
1122 EXPORT_SYMBOL_GPL(register_mtd_user);
1123 
1124 /**
1125  *	unregister_mtd_user - unregister a 'user' of MTD devices.
1126  *	@old: pointer to notifier info structure
1127  *
1128  *	Removes a callback function pair from the list of 'users' to be
1129  *	notified upon addition or removal of MTD devices. Causes the
1130  *	'remove' callback to be immediately invoked for each MTD device
1131  *	currently present in the system.
1132  */
unregister_mtd_user(struct mtd_notifier * old)1133 int unregister_mtd_user (struct mtd_notifier *old)
1134 {
1135 	struct mtd_info *mtd;
1136 
1137 	mutex_lock(&mtd_table_mutex);
1138 
1139 	module_put(THIS_MODULE);
1140 
1141 	mtd_for_each_device(mtd)
1142 		old->remove(mtd);
1143 
1144 	list_del(&old->list);
1145 	mutex_unlock(&mtd_table_mutex);
1146 	return 0;
1147 }
1148 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1149 
1150 /**
1151  *	get_mtd_device - obtain a validated handle for an MTD device
1152  *	@mtd: last known address of the required MTD device
1153  *	@num: internal device number of the required MTD device
1154  *
1155  *	Given a number and NULL address, return the num'th entry in the device
1156  *	table, if any.	Given an address and num == -1, search the device table
1157  *	for a device with that address and return if it's still present. Given
1158  *	both, return the num'th driver only if its address matches. Return
1159  *	error code if not.
1160  */
get_mtd_device(struct mtd_info * mtd,int num)1161 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1162 {
1163 	struct mtd_info *ret = NULL, *other;
1164 	int err = -ENODEV;
1165 
1166 	mutex_lock(&mtd_table_mutex);
1167 
1168 	if (num == -1) {
1169 		mtd_for_each_device(other) {
1170 			if (other == mtd) {
1171 				ret = mtd;
1172 				break;
1173 			}
1174 		}
1175 	} else if (num >= 0) {
1176 		ret = idr_find(&mtd_idr, num);
1177 		if (mtd && mtd != ret)
1178 			ret = NULL;
1179 	}
1180 
1181 	if (!ret) {
1182 		ret = ERR_PTR(err);
1183 		goto out;
1184 	}
1185 
1186 	err = __get_mtd_device(ret);
1187 	if (err)
1188 		ret = ERR_PTR(err);
1189 out:
1190 	mutex_unlock(&mtd_table_mutex);
1191 	return ret;
1192 }
1193 EXPORT_SYMBOL_GPL(get_mtd_device);
1194 
1195 
__get_mtd_device(struct mtd_info * mtd)1196 int __get_mtd_device(struct mtd_info *mtd)
1197 {
1198 	struct mtd_info *master = mtd_get_master(mtd);
1199 	int err;
1200 
1201 	if (!try_module_get(master->owner))
1202 		return -ENODEV;
1203 
1204 	if (master->_get_device) {
1205 		err = master->_get_device(mtd);
1206 
1207 		if (err) {
1208 			module_put(master->owner);
1209 			return err;
1210 		}
1211 	}
1212 
1213 	master->usecount++;
1214 
1215 	while (mtd->parent) {
1216 		mtd->usecount++;
1217 		mtd = mtd->parent;
1218 	}
1219 
1220 	return 0;
1221 }
1222 EXPORT_SYMBOL_GPL(__get_mtd_device);
1223 
1224 /**
1225  * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1226  *
1227  * @np: device tree node
1228  */
of_get_mtd_device_by_node(struct device_node * np)1229 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1230 {
1231 	struct mtd_info *mtd = NULL;
1232 	struct mtd_info *tmp;
1233 	int err;
1234 
1235 	mutex_lock(&mtd_table_mutex);
1236 
1237 	err = -EPROBE_DEFER;
1238 	mtd_for_each_device(tmp) {
1239 		if (mtd_get_of_node(tmp) == np) {
1240 			mtd = tmp;
1241 			err = __get_mtd_device(mtd);
1242 			break;
1243 		}
1244 	}
1245 
1246 	mutex_unlock(&mtd_table_mutex);
1247 
1248 	return err ? ERR_PTR(err) : mtd;
1249 }
1250 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1251 
1252 /**
1253  *	get_mtd_device_nm - obtain a validated handle for an MTD device by
1254  *	device name
1255  *	@name: MTD device name to open
1256  *
1257  * 	This function returns MTD device description structure in case of
1258  * 	success and an error code in case of failure.
1259  */
get_mtd_device_nm(const char * name)1260 struct mtd_info *get_mtd_device_nm(const char *name)
1261 {
1262 	int err = -ENODEV;
1263 	struct mtd_info *mtd = NULL, *other;
1264 
1265 	mutex_lock(&mtd_table_mutex);
1266 
1267 	mtd_for_each_device(other) {
1268 		if (!strcmp(name, other->name)) {
1269 			mtd = other;
1270 			break;
1271 		}
1272 	}
1273 
1274 	if (!mtd)
1275 		goto out_unlock;
1276 
1277 	err = __get_mtd_device(mtd);
1278 	if (err)
1279 		goto out_unlock;
1280 
1281 	mutex_unlock(&mtd_table_mutex);
1282 	return mtd;
1283 
1284 out_unlock:
1285 	mutex_unlock(&mtd_table_mutex);
1286 	return ERR_PTR(err);
1287 }
1288 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1289 
put_mtd_device(struct mtd_info * mtd)1290 void put_mtd_device(struct mtd_info *mtd)
1291 {
1292 	mutex_lock(&mtd_table_mutex);
1293 	__put_mtd_device(mtd);
1294 	mutex_unlock(&mtd_table_mutex);
1295 
1296 }
1297 EXPORT_SYMBOL_GPL(put_mtd_device);
1298 
__put_mtd_device(struct mtd_info * mtd)1299 void __put_mtd_device(struct mtd_info *mtd)
1300 {
1301 	struct mtd_info *master = mtd_get_master(mtd);
1302 
1303 	while (mtd->parent) {
1304 		--mtd->usecount;
1305 		BUG_ON(mtd->usecount < 0);
1306 		mtd = mtd->parent;
1307 	}
1308 
1309 	master->usecount--;
1310 
1311 	if (master->_put_device)
1312 		master->_put_device(master);
1313 
1314 	module_put(master->owner);
1315 }
1316 EXPORT_SYMBOL_GPL(__put_mtd_device);
1317 
1318 /*
1319  * Erase is an synchronous operation. Device drivers are epected to return a
1320  * negative error code if the operation failed and update instr->fail_addr
1321  * to point the portion that was not properly erased.
1322  */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)1323 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1324 {
1325 	struct mtd_info *master = mtd_get_master(mtd);
1326 	u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1327 	struct erase_info adjinstr;
1328 	int ret;
1329 
1330 	instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1331 	adjinstr = *instr;
1332 
1333 	if (!mtd->erasesize || !master->_erase)
1334 		return -ENOTSUPP;
1335 
1336 	if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1337 		return -EINVAL;
1338 	if (!(mtd->flags & MTD_WRITEABLE))
1339 		return -EROFS;
1340 
1341 	if (!instr->len)
1342 		return 0;
1343 
1344 	ledtrig_mtd_activity();
1345 
1346 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1347 		adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1348 				master->erasesize;
1349 		adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1350 				master->erasesize) -
1351 			       adjinstr.addr;
1352 	}
1353 
1354 	adjinstr.addr += mst_ofs;
1355 
1356 	ret = master->_erase(master, &adjinstr);
1357 
1358 	if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1359 		instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1360 		if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1361 			instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1362 							 master);
1363 			instr->fail_addr *= mtd->erasesize;
1364 		}
1365 	}
1366 
1367 	return ret;
1368 }
1369 EXPORT_SYMBOL_GPL(mtd_erase);
1370 
1371 /*
1372  * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1373  */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)1374 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1375 	      void **virt, resource_size_t *phys)
1376 {
1377 	struct mtd_info *master = mtd_get_master(mtd);
1378 
1379 	*retlen = 0;
1380 	*virt = NULL;
1381 	if (phys)
1382 		*phys = 0;
1383 	if (!master->_point)
1384 		return -EOPNOTSUPP;
1385 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1386 		return -EINVAL;
1387 	if (!len)
1388 		return 0;
1389 
1390 	from = mtd_get_master_ofs(mtd, from);
1391 	return master->_point(master, from, len, retlen, virt, phys);
1392 }
1393 EXPORT_SYMBOL_GPL(mtd_point);
1394 
1395 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)1396 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1397 {
1398 	struct mtd_info *master = mtd_get_master(mtd);
1399 
1400 	if (!master->_unpoint)
1401 		return -EOPNOTSUPP;
1402 	if (from < 0 || from >= mtd->size || len > mtd->size - from)
1403 		return -EINVAL;
1404 	if (!len)
1405 		return 0;
1406 	return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1407 }
1408 EXPORT_SYMBOL_GPL(mtd_unpoint);
1409 
1410 /*
1411  * Allow NOMMU mmap() to directly map the device (if not NULL)
1412  * - return the address to which the offset maps
1413  * - return -ENOSYS to indicate refusal to do the mapping
1414  */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)1415 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1416 				    unsigned long offset, unsigned long flags)
1417 {
1418 	size_t retlen;
1419 	void *virt;
1420 	int ret;
1421 
1422 	ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1423 	if (ret)
1424 		return ret;
1425 	if (retlen != len) {
1426 		mtd_unpoint(mtd, offset, retlen);
1427 		return -ENOSYS;
1428 	}
1429 	return (unsigned long)virt;
1430 }
1431 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1432 
mtd_update_ecc_stats(struct mtd_info * mtd,struct mtd_info * master,const struct mtd_ecc_stats * old_stats)1433 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1434 				 const struct mtd_ecc_stats *old_stats)
1435 {
1436 	struct mtd_ecc_stats diff;
1437 
1438 	if (master == mtd)
1439 		return;
1440 
1441 	diff = master->ecc_stats;
1442 	diff.failed -= old_stats->failed;
1443 	diff.corrected -= old_stats->corrected;
1444 
1445 	while (mtd->parent) {
1446 		mtd->ecc_stats.failed += diff.failed;
1447 		mtd->ecc_stats.corrected += diff.corrected;
1448 		mtd = mtd->parent;
1449 	}
1450 }
1451 
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1452 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1453 	     u_char *buf)
1454 {
1455 	struct mtd_oob_ops ops = {
1456 		.len = len,
1457 		.datbuf = buf,
1458 	};
1459 	int ret;
1460 
1461 	ret = mtd_read_oob(mtd, from, &ops);
1462 	*retlen = ops.retlen;
1463 
1464 	return ret;
1465 }
1466 EXPORT_SYMBOL_GPL(mtd_read);
1467 
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1468 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1469 	      const u_char *buf)
1470 {
1471 	struct mtd_oob_ops ops = {
1472 		.len = len,
1473 		.datbuf = (u8 *)buf,
1474 	};
1475 	int ret;
1476 
1477 	ret = mtd_write_oob(mtd, to, &ops);
1478 	*retlen = ops.retlen;
1479 
1480 	return ret;
1481 }
1482 EXPORT_SYMBOL_GPL(mtd_write);
1483 
1484 /*
1485  * In blackbox flight recorder like scenarios we want to make successful writes
1486  * in interrupt context. panic_write() is only intended to be called when its
1487  * known the kernel is about to panic and we need the write to succeed. Since
1488  * the kernel is not going to be running for much longer, this function can
1489  * break locks and delay to ensure the write succeeds (but not sleep).
1490  */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1491 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1492 		    const u_char *buf)
1493 {
1494 	struct mtd_info *master = mtd_get_master(mtd);
1495 
1496 	*retlen = 0;
1497 	if (!master->_panic_write)
1498 		return -EOPNOTSUPP;
1499 	if (to < 0 || to >= mtd->size || len > mtd->size - to)
1500 		return -EINVAL;
1501 	if (!(mtd->flags & MTD_WRITEABLE))
1502 		return -EROFS;
1503 	if (!len)
1504 		return 0;
1505 	if (!master->oops_panic_write)
1506 		master->oops_panic_write = true;
1507 
1508 	return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1509 				    retlen, buf);
1510 }
1511 EXPORT_SYMBOL_GPL(mtd_panic_write);
1512 
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1513 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1514 			     struct mtd_oob_ops *ops)
1515 {
1516 	/*
1517 	 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1518 	 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1519 	 *  this case.
1520 	 */
1521 	if (!ops->datbuf)
1522 		ops->len = 0;
1523 
1524 	if (!ops->oobbuf)
1525 		ops->ooblen = 0;
1526 
1527 	if (offs < 0 || offs + ops->len > mtd->size)
1528 		return -EINVAL;
1529 
1530 	if (ops->ooblen) {
1531 		size_t maxooblen;
1532 
1533 		if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1534 			return -EINVAL;
1535 
1536 		maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1537 				      mtd_div_by_ws(offs, mtd)) *
1538 			     mtd_oobavail(mtd, ops)) - ops->ooboffs;
1539 		if (ops->ooblen > maxooblen)
1540 			return -EINVAL;
1541 	}
1542 
1543 	return 0;
1544 }
1545 
mtd_read_oob_std(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1546 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1547 			    struct mtd_oob_ops *ops)
1548 {
1549 	struct mtd_info *master = mtd_get_master(mtd);
1550 	int ret;
1551 
1552 	from = mtd_get_master_ofs(mtd, from);
1553 	if (master->_read_oob)
1554 		ret = master->_read_oob(master, from, ops);
1555 	else
1556 		ret = master->_read(master, from, ops->len, &ops->retlen,
1557 				    ops->datbuf);
1558 
1559 	return ret;
1560 }
1561 
mtd_write_oob_std(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1562 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1563 			     struct mtd_oob_ops *ops)
1564 {
1565 	struct mtd_info *master = mtd_get_master(mtd);
1566 	int ret;
1567 
1568 	to = mtd_get_master_ofs(mtd, to);
1569 	if (master->_write_oob)
1570 		ret = master->_write_oob(master, to, ops);
1571 	else
1572 		ret = master->_write(master, to, ops->len, &ops->retlen,
1573 				     ops->datbuf);
1574 
1575 	return ret;
1576 }
1577 
mtd_io_emulated_slc(struct mtd_info * mtd,loff_t start,bool read,struct mtd_oob_ops * ops)1578 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1579 			       struct mtd_oob_ops *ops)
1580 {
1581 	struct mtd_info *master = mtd_get_master(mtd);
1582 	int ngroups = mtd_pairing_groups(master);
1583 	int npairs = mtd_wunit_per_eb(master) / ngroups;
1584 	struct mtd_oob_ops adjops = *ops;
1585 	unsigned int wunit, oobavail;
1586 	struct mtd_pairing_info info;
1587 	int max_bitflips = 0;
1588 	u32 ebofs, pageofs;
1589 	loff_t base, pos;
1590 
1591 	ebofs = mtd_mod_by_eb(start, mtd);
1592 	base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1593 	info.group = 0;
1594 	info.pair = mtd_div_by_ws(ebofs, mtd);
1595 	pageofs = mtd_mod_by_ws(ebofs, mtd);
1596 	oobavail = mtd_oobavail(mtd, ops);
1597 
1598 	while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1599 		int ret;
1600 
1601 		if (info.pair >= npairs) {
1602 			info.pair = 0;
1603 			base += master->erasesize;
1604 		}
1605 
1606 		wunit = mtd_pairing_info_to_wunit(master, &info);
1607 		pos = mtd_wunit_to_offset(mtd, base, wunit);
1608 
1609 		adjops.len = ops->len - ops->retlen;
1610 		if (adjops.len > mtd->writesize - pageofs)
1611 			adjops.len = mtd->writesize - pageofs;
1612 
1613 		adjops.ooblen = ops->ooblen - ops->oobretlen;
1614 		if (adjops.ooblen > oobavail - adjops.ooboffs)
1615 			adjops.ooblen = oobavail - adjops.ooboffs;
1616 
1617 		if (read) {
1618 			ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1619 			if (ret > 0)
1620 				max_bitflips = max(max_bitflips, ret);
1621 		} else {
1622 			ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1623 		}
1624 
1625 		if (ret < 0)
1626 			return ret;
1627 
1628 		max_bitflips = max(max_bitflips, ret);
1629 		ops->retlen += adjops.retlen;
1630 		ops->oobretlen += adjops.oobretlen;
1631 		adjops.datbuf += adjops.retlen;
1632 		adjops.oobbuf += adjops.oobretlen;
1633 		adjops.ooboffs = 0;
1634 		pageofs = 0;
1635 		info.pair++;
1636 	}
1637 
1638 	return max_bitflips;
1639 }
1640 
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1641 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1642 {
1643 	struct mtd_info *master = mtd_get_master(mtd);
1644 	struct mtd_ecc_stats old_stats = master->ecc_stats;
1645 	int ret_code;
1646 
1647 	ops->retlen = ops->oobretlen = 0;
1648 
1649 	ret_code = mtd_check_oob_ops(mtd, from, ops);
1650 	if (ret_code)
1651 		return ret_code;
1652 
1653 	ledtrig_mtd_activity();
1654 
1655 	/* Check the validity of a potential fallback on mtd->_read */
1656 	if (!master->_read_oob && (!master->_read || ops->oobbuf))
1657 		return -EOPNOTSUPP;
1658 
1659 	if (ops->stats)
1660 		memset(ops->stats, 0, sizeof(*ops->stats));
1661 
1662 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1663 		ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1664 	else
1665 		ret_code = mtd_read_oob_std(mtd, from, ops);
1666 
1667 	mtd_update_ecc_stats(mtd, master, &old_stats);
1668 
1669 	/*
1670 	 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1671 	 * similar to mtd->_read(), returning a non-negative integer
1672 	 * representing max bitflips. In other cases, mtd->_read_oob() may
1673 	 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1674 	 */
1675 	if (unlikely(ret_code < 0))
1676 		return ret_code;
1677 	if (mtd->ecc_strength == 0)
1678 		return 0;	/* device lacks ecc */
1679 	if (ops->stats)
1680 		ops->stats->max_bitflips = ret_code;
1681 	return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1682 }
1683 EXPORT_SYMBOL_GPL(mtd_read_oob);
1684 
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1685 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1686 				struct mtd_oob_ops *ops)
1687 {
1688 	struct mtd_info *master = mtd_get_master(mtd);
1689 	int ret;
1690 
1691 	ops->retlen = ops->oobretlen = 0;
1692 
1693 	if (!(mtd->flags & MTD_WRITEABLE))
1694 		return -EROFS;
1695 
1696 	ret = mtd_check_oob_ops(mtd, to, ops);
1697 	if (ret)
1698 		return ret;
1699 
1700 	ledtrig_mtd_activity();
1701 
1702 	/* Check the validity of a potential fallback on mtd->_write */
1703 	if (!master->_write_oob && (!master->_write || ops->oobbuf))
1704 		return -EOPNOTSUPP;
1705 
1706 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1707 		return mtd_io_emulated_slc(mtd, to, false, ops);
1708 
1709 	return mtd_write_oob_std(mtd, to, ops);
1710 }
1711 EXPORT_SYMBOL_GPL(mtd_write_oob);
1712 
1713 /**
1714  * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1715  * @mtd: MTD device structure
1716  * @section: ECC section. Depending on the layout you may have all the ECC
1717  *	     bytes stored in a single contiguous section, or one section
1718  *	     per ECC chunk (and sometime several sections for a single ECC
1719  *	     ECC chunk)
1720  * @oobecc: OOB region struct filled with the appropriate ECC position
1721  *	    information
1722  *
1723  * This function returns ECC section information in the OOB area. If you want
1724  * to get all the ECC bytes information, then you should call
1725  * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1726  *
1727  * Returns zero on success, a negative error code otherwise.
1728  */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1729 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1730 		      struct mtd_oob_region *oobecc)
1731 {
1732 	struct mtd_info *master = mtd_get_master(mtd);
1733 
1734 	memset(oobecc, 0, sizeof(*oobecc));
1735 
1736 	if (!master || section < 0)
1737 		return -EINVAL;
1738 
1739 	if (!master->ooblayout || !master->ooblayout->ecc)
1740 		return -ENOTSUPP;
1741 
1742 	return master->ooblayout->ecc(master, section, oobecc);
1743 }
1744 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1745 
1746 /**
1747  * mtd_ooblayout_free - Get the OOB region definition of a specific free
1748  *			section
1749  * @mtd: MTD device structure
1750  * @section: Free section you are interested in. Depending on the layout
1751  *	     you may have all the free bytes stored in a single contiguous
1752  *	     section, or one section per ECC chunk plus an extra section
1753  *	     for the remaining bytes (or other funky layout).
1754  * @oobfree: OOB region struct filled with the appropriate free position
1755  *	     information
1756  *
1757  * This function returns free bytes position in the OOB area. If you want
1758  * to get all the free bytes information, then you should call
1759  * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1760  *
1761  * Returns zero on success, a negative error code otherwise.
1762  */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1763 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1764 		       struct mtd_oob_region *oobfree)
1765 {
1766 	struct mtd_info *master = mtd_get_master(mtd);
1767 
1768 	memset(oobfree, 0, sizeof(*oobfree));
1769 
1770 	if (!master || section < 0)
1771 		return -EINVAL;
1772 
1773 	if (!master->ooblayout || !master->ooblayout->free)
1774 		return -ENOTSUPP;
1775 
1776 	return master->ooblayout->free(master, section, oobfree);
1777 }
1778 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1779 
1780 /**
1781  * mtd_ooblayout_find_region - Find the region attached to a specific byte
1782  * @mtd: mtd info structure
1783  * @byte: the byte we are searching for
1784  * @sectionp: pointer where the section id will be stored
1785  * @oobregion: used to retrieve the ECC position
1786  * @iter: iterator function. Should be either mtd_ooblayout_free or
1787  *	  mtd_ooblayout_ecc depending on the region type you're searching for
1788  *
1789  * This function returns the section id and oobregion information of a
1790  * specific byte. For example, say you want to know where the 4th ECC byte is
1791  * stored, you'll use:
1792  *
1793  * mtd_ooblayout_find_region(mtd, 3, &section, &oobregion, mtd_ooblayout_ecc);
1794  *
1795  * Returns zero on success, a negative error code otherwise.
1796  */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1797 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1798 				int *sectionp, struct mtd_oob_region *oobregion,
1799 				int (*iter)(struct mtd_info *,
1800 					    int section,
1801 					    struct mtd_oob_region *oobregion))
1802 {
1803 	int pos = 0, ret, section = 0;
1804 
1805 	memset(oobregion, 0, sizeof(*oobregion));
1806 
1807 	while (1) {
1808 		ret = iter(mtd, section, oobregion);
1809 		if (ret)
1810 			return ret;
1811 
1812 		if (pos + oobregion->length > byte)
1813 			break;
1814 
1815 		pos += oobregion->length;
1816 		section++;
1817 	}
1818 
1819 	/*
1820 	 * Adjust region info to make it start at the beginning at the
1821 	 * 'start' ECC byte.
1822 	 */
1823 	oobregion->offset += byte - pos;
1824 	oobregion->length -= byte - pos;
1825 	*sectionp = section;
1826 
1827 	return 0;
1828 }
1829 
1830 /**
1831  * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1832  *				  ECC byte
1833  * @mtd: mtd info structure
1834  * @eccbyte: the byte we are searching for
1835  * @section: pointer where the section id will be stored
1836  * @oobregion: OOB region information
1837  *
1838  * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1839  * byte.
1840  *
1841  * Returns zero on success, a negative error code otherwise.
1842  */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1843 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1844 				 int *section,
1845 				 struct mtd_oob_region *oobregion)
1846 {
1847 	return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1848 					 mtd_ooblayout_ecc);
1849 }
1850 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1851 
1852 /**
1853  * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1854  * @mtd: mtd info structure
1855  * @buf: destination buffer to store OOB bytes
1856  * @oobbuf: OOB buffer
1857  * @start: first byte to retrieve
1858  * @nbytes: number of bytes to retrieve
1859  * @iter: section iterator
1860  *
1861  * Extract bytes attached to a specific category (ECC or free)
1862  * from the OOB buffer and copy them into buf.
1863  *
1864  * Returns zero on success, a negative error code otherwise.
1865  */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1866 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1867 				const u8 *oobbuf, int start, int nbytes,
1868 				int (*iter)(struct mtd_info *,
1869 					    int section,
1870 					    struct mtd_oob_region *oobregion))
1871 {
1872 	struct mtd_oob_region oobregion;
1873 	int section, ret;
1874 
1875 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1876 					&oobregion, iter);
1877 
1878 	while (!ret) {
1879 		int cnt;
1880 
1881 		cnt = min_t(int, nbytes, oobregion.length);
1882 		memcpy(buf, oobbuf + oobregion.offset, cnt);
1883 		buf += cnt;
1884 		nbytes -= cnt;
1885 
1886 		if (!nbytes)
1887 			break;
1888 
1889 		ret = iter(mtd, ++section, &oobregion);
1890 	}
1891 
1892 	return ret;
1893 }
1894 
1895 /**
1896  * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1897  * @mtd: mtd info structure
1898  * @buf: source buffer to get OOB bytes from
1899  * @oobbuf: OOB buffer
1900  * @start: first OOB byte to set
1901  * @nbytes: number of OOB bytes to set
1902  * @iter: section iterator
1903  *
1904  * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1905  * is selected by passing the appropriate iterator.
1906  *
1907  * Returns zero on success, a negative error code otherwise.
1908  */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1909 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1910 				u8 *oobbuf, int start, int nbytes,
1911 				int (*iter)(struct mtd_info *,
1912 					    int section,
1913 					    struct mtd_oob_region *oobregion))
1914 {
1915 	struct mtd_oob_region oobregion;
1916 	int section, ret;
1917 
1918 	ret = mtd_ooblayout_find_region(mtd, start, &section,
1919 					&oobregion, iter);
1920 
1921 	while (!ret) {
1922 		int cnt;
1923 
1924 		cnt = min_t(int, nbytes, oobregion.length);
1925 		memcpy(oobbuf + oobregion.offset, buf, cnt);
1926 		buf += cnt;
1927 		nbytes -= cnt;
1928 
1929 		if (!nbytes)
1930 			break;
1931 
1932 		ret = iter(mtd, ++section, &oobregion);
1933 	}
1934 
1935 	return ret;
1936 }
1937 
1938 /**
1939  * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1940  * @mtd: mtd info structure
1941  * @iter: category iterator
1942  *
1943  * Count the number of bytes in a given category.
1944  *
1945  * Returns a positive value on success, a negative error code otherwise.
1946  */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1947 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1948 				int (*iter)(struct mtd_info *,
1949 					    int section,
1950 					    struct mtd_oob_region *oobregion))
1951 {
1952 	struct mtd_oob_region oobregion;
1953 	int section = 0, ret, nbytes = 0;
1954 
1955 	while (1) {
1956 		ret = iter(mtd, section++, &oobregion);
1957 		if (ret) {
1958 			if (ret == -ERANGE)
1959 				ret = nbytes;
1960 			break;
1961 		}
1962 
1963 		nbytes += oobregion.length;
1964 	}
1965 
1966 	return ret;
1967 }
1968 
1969 /**
1970  * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1971  * @mtd: mtd info structure
1972  * @eccbuf: destination buffer to store ECC bytes
1973  * @oobbuf: OOB buffer
1974  * @start: first ECC byte to retrieve
1975  * @nbytes: number of ECC bytes to retrieve
1976  *
1977  * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1978  *
1979  * Returns zero on success, a negative error code otherwise.
1980  */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)1981 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1982 			       const u8 *oobbuf, int start, int nbytes)
1983 {
1984 	return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1985 				       mtd_ooblayout_ecc);
1986 }
1987 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1988 
1989 /**
1990  * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1991  * @mtd: mtd info structure
1992  * @eccbuf: source buffer to get ECC bytes from
1993  * @oobbuf: OOB buffer
1994  * @start: first ECC byte to set
1995  * @nbytes: number of ECC bytes to set
1996  *
1997  * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
1998  *
1999  * Returns zero on success, a negative error code otherwise.
2000  */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)2001 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2002 			       u8 *oobbuf, int start, int nbytes)
2003 {
2004 	return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2005 				       mtd_ooblayout_ecc);
2006 }
2007 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2008 
2009 /**
2010  * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2011  * @mtd: mtd info structure
2012  * @databuf: destination buffer to store ECC bytes
2013  * @oobbuf: OOB buffer
2014  * @start: first ECC byte to retrieve
2015  * @nbytes: number of ECC bytes to retrieve
2016  *
2017  * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2018  *
2019  * Returns zero on success, a negative error code otherwise.
2020  */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)2021 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2022 				const u8 *oobbuf, int start, int nbytes)
2023 {
2024 	return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2025 				       mtd_ooblayout_free);
2026 }
2027 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2028 
2029 /**
2030  * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2031  * @mtd: mtd info structure
2032  * @databuf: source buffer to get data bytes from
2033  * @oobbuf: OOB buffer
2034  * @start: first ECC byte to set
2035  * @nbytes: number of ECC bytes to set
2036  *
2037  * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2038  *
2039  * Returns zero on success, a negative error code otherwise.
2040  */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)2041 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2042 				u8 *oobbuf, int start, int nbytes)
2043 {
2044 	return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2045 				       mtd_ooblayout_free);
2046 }
2047 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2048 
2049 /**
2050  * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2051  * @mtd: mtd info structure
2052  *
2053  * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2054  *
2055  * Returns zero on success, a negative error code otherwise.
2056  */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)2057 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2058 {
2059 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2060 }
2061 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2062 
2063 /**
2064  * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2065  * @mtd: mtd info structure
2066  *
2067  * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2068  *
2069  * Returns zero on success, a negative error code otherwise.
2070  */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)2071 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2072 {
2073 	return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2074 }
2075 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2076 
2077 /*
2078  * Method to access the protection register area, present in some flash
2079  * devices. The user data is one time programmable but the factory data is read
2080  * only.
2081  */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)2082 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2083 			   struct otp_info *buf)
2084 {
2085 	struct mtd_info *master = mtd_get_master(mtd);
2086 
2087 	if (!master->_get_fact_prot_info)
2088 		return -EOPNOTSUPP;
2089 	if (!len)
2090 		return 0;
2091 	return master->_get_fact_prot_info(master, len, retlen, buf);
2092 }
2093 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2094 
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2095 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2096 			   size_t *retlen, u_char *buf)
2097 {
2098 	struct mtd_info *master = mtd_get_master(mtd);
2099 
2100 	*retlen = 0;
2101 	if (!master->_read_fact_prot_reg)
2102 		return -EOPNOTSUPP;
2103 	if (!len)
2104 		return 0;
2105 	return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2106 }
2107 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2108 
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)2109 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2110 			   struct otp_info *buf)
2111 {
2112 	struct mtd_info *master = mtd_get_master(mtd);
2113 
2114 	if (!master->_get_user_prot_info)
2115 		return -EOPNOTSUPP;
2116 	if (!len)
2117 		return 0;
2118 	return master->_get_user_prot_info(master, len, retlen, buf);
2119 }
2120 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2121 
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2122 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2123 			   size_t *retlen, u_char *buf)
2124 {
2125 	struct mtd_info *master = mtd_get_master(mtd);
2126 
2127 	*retlen = 0;
2128 	if (!master->_read_user_prot_reg)
2129 		return -EOPNOTSUPP;
2130 	if (!len)
2131 		return 0;
2132 	return master->_read_user_prot_reg(master, from, len, retlen, buf);
2133 }
2134 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2135 
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2136 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2137 			    size_t *retlen, const u_char *buf)
2138 {
2139 	struct mtd_info *master = mtd_get_master(mtd);
2140 	int ret;
2141 
2142 	*retlen = 0;
2143 	if (!master->_write_user_prot_reg)
2144 		return -EOPNOTSUPP;
2145 	if (!len)
2146 		return 0;
2147 	ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2148 	if (ret)
2149 		return ret;
2150 
2151 	/*
2152 	 * If no data could be written at all, we are out of memory and
2153 	 * must return -ENOSPC.
2154 	 */
2155 	return (*retlen) ? 0 : -ENOSPC;
2156 }
2157 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2158 
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2159 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2160 {
2161 	struct mtd_info *master = mtd_get_master(mtd);
2162 
2163 	if (!master->_lock_user_prot_reg)
2164 		return -EOPNOTSUPP;
2165 	if (!len)
2166 		return 0;
2167 	return master->_lock_user_prot_reg(master, from, len);
2168 }
2169 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2170 
mtd_erase_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2171 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2172 {
2173 	struct mtd_info *master = mtd_get_master(mtd);
2174 
2175 	if (!master->_erase_user_prot_reg)
2176 		return -EOPNOTSUPP;
2177 	if (!len)
2178 		return 0;
2179 	return master->_erase_user_prot_reg(master, from, len);
2180 }
2181 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2182 
2183 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2184 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2185 {
2186 	struct mtd_info *master = mtd_get_master(mtd);
2187 
2188 	if (!master->_lock)
2189 		return -EOPNOTSUPP;
2190 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2191 		return -EINVAL;
2192 	if (!len)
2193 		return 0;
2194 
2195 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2196 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2197 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2198 	}
2199 
2200 	return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2201 }
2202 EXPORT_SYMBOL_GPL(mtd_lock);
2203 
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2204 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2205 {
2206 	struct mtd_info *master = mtd_get_master(mtd);
2207 
2208 	if (!master->_unlock)
2209 		return -EOPNOTSUPP;
2210 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2211 		return -EINVAL;
2212 	if (!len)
2213 		return 0;
2214 
2215 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2216 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2217 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2218 	}
2219 
2220 	return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2221 }
2222 EXPORT_SYMBOL_GPL(mtd_unlock);
2223 
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2224 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2225 {
2226 	struct mtd_info *master = mtd_get_master(mtd);
2227 
2228 	if (!master->_is_locked)
2229 		return -EOPNOTSUPP;
2230 	if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2231 		return -EINVAL;
2232 	if (!len)
2233 		return 0;
2234 
2235 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2236 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2237 		len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2238 	}
2239 
2240 	return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2241 }
2242 EXPORT_SYMBOL_GPL(mtd_is_locked);
2243 
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)2244 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2245 {
2246 	struct mtd_info *master = mtd_get_master(mtd);
2247 
2248 	if (ofs < 0 || ofs >= mtd->size)
2249 		return -EINVAL;
2250 	if (!master->_block_isreserved)
2251 		return 0;
2252 
2253 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2254 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2255 
2256 	return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2257 }
2258 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2259 
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)2260 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2261 {
2262 	struct mtd_info *master = mtd_get_master(mtd);
2263 
2264 	if (ofs < 0 || ofs >= mtd->size)
2265 		return -EINVAL;
2266 	if (!master->_block_isbad)
2267 		return 0;
2268 
2269 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2270 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2271 
2272 	return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2273 }
2274 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2275 
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)2276 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2277 {
2278 	struct mtd_info *master = mtd_get_master(mtd);
2279 	int ret;
2280 
2281 	if (!master->_block_markbad)
2282 		return -EOPNOTSUPP;
2283 	if (ofs < 0 || ofs >= mtd->size)
2284 		return -EINVAL;
2285 	if (!(mtd->flags & MTD_WRITEABLE))
2286 		return -EROFS;
2287 
2288 	if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2289 		ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2290 
2291 	ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2292 	if (ret)
2293 		return ret;
2294 
2295 	while (mtd->parent) {
2296 		mtd->ecc_stats.badblocks++;
2297 		mtd = mtd->parent;
2298 	}
2299 
2300 	return 0;
2301 }
2302 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2303 
2304 /*
2305  * default_mtd_writev - the default writev method
2306  * @mtd: mtd device description object pointer
2307  * @vecs: the vectors to write
2308  * @count: count of vectors in @vecs
2309  * @to: the MTD device offset to write to
2310  * @retlen: on exit contains the count of bytes written to the MTD device.
2311  *
2312  * This function returns zero in case of success and a negative error code in
2313  * case of failure.
2314  */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2315 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2316 			      unsigned long count, loff_t to, size_t *retlen)
2317 {
2318 	unsigned long i;
2319 	size_t totlen = 0, thislen;
2320 	int ret = 0;
2321 
2322 	for (i = 0; i < count; i++) {
2323 		if (!vecs[i].iov_len)
2324 			continue;
2325 		ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2326 				vecs[i].iov_base);
2327 		totlen += thislen;
2328 		if (ret || thislen != vecs[i].iov_len)
2329 			break;
2330 		to += vecs[i].iov_len;
2331 	}
2332 	*retlen = totlen;
2333 	return ret;
2334 }
2335 
2336 /*
2337  * mtd_writev - the vector-based MTD write method
2338  * @mtd: mtd device description object pointer
2339  * @vecs: the vectors to write
2340  * @count: count of vectors in @vecs
2341  * @to: the MTD device offset to write to
2342  * @retlen: on exit contains the count of bytes written to the MTD device.
2343  *
2344  * This function returns zero in case of success and a negative error code in
2345  * case of failure.
2346  */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2347 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2348 	       unsigned long count, loff_t to, size_t *retlen)
2349 {
2350 	struct mtd_info *master = mtd_get_master(mtd);
2351 
2352 	*retlen = 0;
2353 	if (!(mtd->flags & MTD_WRITEABLE))
2354 		return -EROFS;
2355 
2356 	if (!master->_writev)
2357 		return default_mtd_writev(mtd, vecs, count, to, retlen);
2358 
2359 	return master->_writev(master, vecs, count,
2360 			       mtd_get_master_ofs(mtd, to), retlen);
2361 }
2362 EXPORT_SYMBOL_GPL(mtd_writev);
2363 
2364 /**
2365  * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2366  * @mtd: mtd device description object pointer
2367  * @size: a pointer to the ideal or maximum size of the allocation, points
2368  *        to the actual allocation size on success.
2369  *
2370  * This routine attempts to allocate a contiguous kernel buffer up to
2371  * the specified size, backing off the size of the request exponentially
2372  * until the request succeeds or until the allocation size falls below
2373  * the system page size. This attempts to make sure it does not adversely
2374  * impact system performance, so when allocating more than one page, we
2375  * ask the memory allocator to avoid re-trying, swapping, writing back
2376  * or performing I/O.
2377  *
2378  * Note, this function also makes sure that the allocated buffer is aligned to
2379  * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2380  *
2381  * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2382  * to handle smaller (i.e. degraded) buffer allocations under low- or
2383  * fragmented-memory situations where such reduced allocations, from a
2384  * requested ideal, are allowed.
2385  *
2386  * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2387  */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)2388 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2389 {
2390 	gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2391 	size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2392 	void *kbuf;
2393 
2394 	*size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2395 
2396 	while (*size > min_alloc) {
2397 		kbuf = kmalloc(*size, flags);
2398 		if (kbuf)
2399 			return kbuf;
2400 
2401 		*size >>= 1;
2402 		*size = ALIGN(*size, mtd->writesize);
2403 	}
2404 
2405 	/*
2406 	 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2407 	 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2408 	 */
2409 	return kmalloc(*size, GFP_KERNEL);
2410 }
2411 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2412 
2413 #ifdef CONFIG_PROC_FS
2414 
2415 /*====================================================================*/
2416 /* Support for /proc/mtd */
2417 
mtd_proc_show(struct seq_file * m,void * v)2418 static int mtd_proc_show(struct seq_file *m, void *v)
2419 {
2420 	struct mtd_info *mtd;
2421 
2422 	seq_puts(m, "dev:    size   erasesize  name\n");
2423 	mutex_lock(&mtd_table_mutex);
2424 	mtd_for_each_device(mtd) {
2425 		seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2426 			   mtd->index, (unsigned long long)mtd->size,
2427 			   mtd->erasesize, mtd->name);
2428 	}
2429 	mutex_unlock(&mtd_table_mutex);
2430 	return 0;
2431 }
2432 #endif /* CONFIG_PROC_FS */
2433 
2434 /*====================================================================*/
2435 /* Init code */
2436 
mtd_bdi_init(const char * name)2437 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2438 {
2439 	struct backing_dev_info *bdi;
2440 	int ret;
2441 
2442 	bdi = bdi_alloc(NUMA_NO_NODE);
2443 	if (!bdi)
2444 		return ERR_PTR(-ENOMEM);
2445 	bdi->ra_pages = 0;
2446 	bdi->io_pages = 0;
2447 
2448 	/*
2449 	 * We put '-0' suffix to the name to get the same name format as we
2450 	 * used to get. Since this is called only once, we get a unique name.
2451 	 */
2452 	ret = bdi_register(bdi, "%.28s-0", name);
2453 	if (ret)
2454 		bdi_put(bdi);
2455 
2456 	return ret ? ERR_PTR(ret) : bdi;
2457 }
2458 
2459 static struct proc_dir_entry *proc_mtd;
2460 
init_mtd(void)2461 static int __init init_mtd(void)
2462 {
2463 	int ret;
2464 
2465 	ret = class_register(&mtd_class);
2466 	if (ret)
2467 		goto err_reg;
2468 
2469 	mtd_bdi = mtd_bdi_init("mtd");
2470 	if (IS_ERR(mtd_bdi)) {
2471 		ret = PTR_ERR(mtd_bdi);
2472 		goto err_bdi;
2473 	}
2474 
2475 	proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2476 
2477 	ret = init_mtdchar();
2478 	if (ret)
2479 		goto out_procfs;
2480 
2481 	dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2482 	debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2483 			    &mtd_expert_analysis_mode);
2484 
2485 	return 0;
2486 
2487 out_procfs:
2488 	if (proc_mtd)
2489 		remove_proc_entry("mtd", NULL);
2490 	bdi_unregister(mtd_bdi);
2491 	bdi_put(mtd_bdi);
2492 err_bdi:
2493 	class_unregister(&mtd_class);
2494 err_reg:
2495 	pr_err("Error registering mtd class or bdi: %d\n", ret);
2496 	return ret;
2497 }
2498 
cleanup_mtd(void)2499 static void __exit cleanup_mtd(void)
2500 {
2501 	debugfs_remove_recursive(dfs_dir_mtd);
2502 	cleanup_mtdchar();
2503 	if (proc_mtd)
2504 		remove_proc_entry("mtd", NULL);
2505 	class_unregister(&mtd_class);
2506 	bdi_unregister(mtd_bdi);
2507 	bdi_put(mtd_bdi);
2508 	idr_destroy(&mtd_idr);
2509 }
2510 
2511 module_init(init_mtd);
2512 module_exit(cleanup_mtd);
2513 
2514 MODULE_LICENSE("GPL");
2515 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2516 MODULE_DESCRIPTION("Core MTD registration and access routines");
2517