1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
17 */
18
19 #include <linux/kvm_host.h>
20 #include "irq.h"
21 #include "ioapic.h"
22 #include "mmu.h"
23 #include "i8254.h"
24 #include "tss.h"
25 #include "kvm_cache_regs.h"
26 #include "kvm_emulate.h"
27 #include "x86.h"
28 #include "cpuid.h"
29 #include "pmu.h"
30 #include "hyperv.h"
31 #include "lapic.h"
32 #include "xen.h"
33
34 #include <linux/clocksource.h>
35 #include <linux/interrupt.h>
36 #include <linux/kvm.h>
37 #include <linux/fs.h>
38 #include <linux/vmalloc.h>
39 #include <linux/export.h>
40 #include <linux/moduleparam.h>
41 #include <linux/mman.h>
42 #include <linux/highmem.h>
43 #include <linux/iommu.h>
44 #include <linux/cpufreq.h>
45 #include <linux/user-return-notifier.h>
46 #include <linux/srcu.h>
47 #include <linux/slab.h>
48 #include <linux/perf_event.h>
49 #include <linux/uaccess.h>
50 #include <linux/hash.h>
51 #include <linux/pci.h>
52 #include <linux/timekeeper_internal.h>
53 #include <linux/pvclock_gtod.h>
54 #include <linux/kvm_irqfd.h>
55 #include <linux/irqbypass.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/isolation.h>
58 #include <linux/mem_encrypt.h>
59 #include <linux/entry-kvm.h>
60 #include <linux/suspend.h>
61
62 #include <trace/events/kvm.h>
63
64 #include <asm/debugreg.h>
65 #include <asm/msr.h>
66 #include <asm/desc.h>
67 #include <asm/mce.h>
68 #include <asm/pkru.h>
69 #include <linux/kernel_stat.h>
70 #include <asm/fpu/api.h>
71 #include <asm/fpu/xcr.h>
72 #include <asm/fpu/xstate.h>
73 #include <asm/pvclock.h>
74 #include <asm/div64.h>
75 #include <asm/irq_remapping.h>
76 #include <asm/mshyperv.h>
77 #include <asm/hypervisor.h>
78 #include <asm/tlbflush.h>
79 #include <asm/intel_pt.h>
80 #include <asm/emulate_prefix.h>
81 #include <asm/sgx.h>
82 #include <clocksource/hyperv_timer.h>
83
84 #define CREATE_TRACE_POINTS
85 #include "trace.h"
86
87 #define MAX_IO_MSRS 256
88 #define KVM_MAX_MCE_BANKS 32
89
90 struct kvm_caps kvm_caps __read_mostly = {
91 .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
92 };
93 EXPORT_SYMBOL_GPL(kvm_caps);
94
95 #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
96
97 #define emul_to_vcpu(ctxt) \
98 ((struct kvm_vcpu *)(ctxt)->vcpu)
99
100 /* EFER defaults:
101 * - enable syscall per default because its emulated by KVM
102 * - enable LME and LMA per default on 64 bit KVM
103 */
104 #ifdef CONFIG_X86_64
105 static
106 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
107 #else
108 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
109 #endif
110
111 static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
112
113 #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
114
115 #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
116
117 #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
118 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
119
120 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
121 static void process_nmi(struct kvm_vcpu *vcpu);
122 static void process_smi(struct kvm_vcpu *vcpu);
123 static void enter_smm(struct kvm_vcpu *vcpu);
124 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
125 static void store_regs(struct kvm_vcpu *vcpu);
126 static int sync_regs(struct kvm_vcpu *vcpu);
127 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
128
129 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
130 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
131
132 struct kvm_x86_ops kvm_x86_ops __read_mostly;
133
134 #define KVM_X86_OP(func) \
135 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
136 *(((struct kvm_x86_ops *)0)->func));
137 #define KVM_X86_OP_OPTIONAL KVM_X86_OP
138 #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
139 #include <asm/kvm-x86-ops.h>
140 EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
141 EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
142
143 static bool __read_mostly ignore_msrs = 0;
144 module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
145
146 bool __read_mostly report_ignored_msrs = true;
147 module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
148 EXPORT_SYMBOL_GPL(report_ignored_msrs);
149
150 unsigned int min_timer_period_us = 200;
151 module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
152
153 static bool __read_mostly kvmclock_periodic_sync = true;
154 module_param(kvmclock_periodic_sync, bool, S_IRUGO);
155
156 /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
157 static u32 __read_mostly tsc_tolerance_ppm = 250;
158 module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
159
160 /*
161 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
162 * adaptive tuning starting from default advancement of 1000ns. '0' disables
163 * advancement entirely. Any other value is used as-is and disables adaptive
164 * tuning, i.e. allows privileged userspace to set an exact advancement time.
165 */
166 static int __read_mostly lapic_timer_advance_ns = -1;
167 module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
168
169 static bool __read_mostly vector_hashing = true;
170 module_param(vector_hashing, bool, S_IRUGO);
171
172 bool __read_mostly enable_vmware_backdoor = false;
173 module_param(enable_vmware_backdoor, bool, S_IRUGO);
174 EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
175
176 /*
177 * Flags to manipulate forced emulation behavior (any non-zero value will
178 * enable forced emulation).
179 */
180 #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
181 static int __read_mostly force_emulation_prefix;
182 module_param(force_emulation_prefix, int, 0644);
183
184 int __read_mostly pi_inject_timer = -1;
185 module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
186
187 /* Enable/disable PMU virtualization */
188 bool __read_mostly enable_pmu = true;
189 EXPORT_SYMBOL_GPL(enable_pmu);
190 module_param(enable_pmu, bool, 0444);
191
192 bool __read_mostly eager_page_split = true;
193 module_param(eager_page_split, bool, 0644);
194
195 /*
196 * Restoring the host value for MSRs that are only consumed when running in
197 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
198 * returns to userspace, i.e. the kernel can run with the guest's value.
199 */
200 #define KVM_MAX_NR_USER_RETURN_MSRS 16
201
202 struct kvm_user_return_msrs {
203 struct user_return_notifier urn;
204 bool registered;
205 struct kvm_user_return_msr_values {
206 u64 host;
207 u64 curr;
208 } values[KVM_MAX_NR_USER_RETURN_MSRS];
209 };
210
211 u32 __read_mostly kvm_nr_uret_msrs;
212 EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
213 static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
214 static struct kvm_user_return_msrs __percpu *user_return_msrs;
215
216 #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
217 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
218 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
219 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
220
221 u64 __read_mostly host_efer;
222 EXPORT_SYMBOL_GPL(host_efer);
223
224 bool __read_mostly allow_smaller_maxphyaddr = 0;
225 EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
226
227 bool __read_mostly enable_apicv = true;
228 EXPORT_SYMBOL_GPL(enable_apicv);
229
230 u64 __read_mostly host_xss;
231 EXPORT_SYMBOL_GPL(host_xss);
232
233 const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
234 KVM_GENERIC_VM_STATS(),
235 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
236 STATS_DESC_COUNTER(VM, mmu_pte_write),
237 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
238 STATS_DESC_COUNTER(VM, mmu_flooded),
239 STATS_DESC_COUNTER(VM, mmu_recycled),
240 STATS_DESC_COUNTER(VM, mmu_cache_miss),
241 STATS_DESC_ICOUNTER(VM, mmu_unsync),
242 STATS_DESC_ICOUNTER(VM, pages_4k),
243 STATS_DESC_ICOUNTER(VM, pages_2m),
244 STATS_DESC_ICOUNTER(VM, pages_1g),
245 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
246 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
247 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
248 };
249
250 const struct kvm_stats_header kvm_vm_stats_header = {
251 .name_size = KVM_STATS_NAME_SIZE,
252 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
253 .id_offset = sizeof(struct kvm_stats_header),
254 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
255 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
256 sizeof(kvm_vm_stats_desc),
257 };
258
259 const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
260 KVM_GENERIC_VCPU_STATS(),
261 STATS_DESC_COUNTER(VCPU, pf_taken),
262 STATS_DESC_COUNTER(VCPU, pf_fixed),
263 STATS_DESC_COUNTER(VCPU, pf_emulate),
264 STATS_DESC_COUNTER(VCPU, pf_spurious),
265 STATS_DESC_COUNTER(VCPU, pf_fast),
266 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
267 STATS_DESC_COUNTER(VCPU, pf_guest),
268 STATS_DESC_COUNTER(VCPU, tlb_flush),
269 STATS_DESC_COUNTER(VCPU, invlpg),
270 STATS_DESC_COUNTER(VCPU, exits),
271 STATS_DESC_COUNTER(VCPU, io_exits),
272 STATS_DESC_COUNTER(VCPU, mmio_exits),
273 STATS_DESC_COUNTER(VCPU, signal_exits),
274 STATS_DESC_COUNTER(VCPU, irq_window_exits),
275 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
276 STATS_DESC_COUNTER(VCPU, l1d_flush),
277 STATS_DESC_COUNTER(VCPU, halt_exits),
278 STATS_DESC_COUNTER(VCPU, request_irq_exits),
279 STATS_DESC_COUNTER(VCPU, irq_exits),
280 STATS_DESC_COUNTER(VCPU, host_state_reload),
281 STATS_DESC_COUNTER(VCPU, fpu_reload),
282 STATS_DESC_COUNTER(VCPU, insn_emulation),
283 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
284 STATS_DESC_COUNTER(VCPU, hypercalls),
285 STATS_DESC_COUNTER(VCPU, irq_injections),
286 STATS_DESC_COUNTER(VCPU, nmi_injections),
287 STATS_DESC_COUNTER(VCPU, req_event),
288 STATS_DESC_COUNTER(VCPU, nested_run),
289 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
290 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
291 STATS_DESC_COUNTER(VCPU, preemption_reported),
292 STATS_DESC_COUNTER(VCPU, preemption_other),
293 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
294 STATS_DESC_COUNTER(VCPU, notify_window_exits),
295 };
296
297 const struct kvm_stats_header kvm_vcpu_stats_header = {
298 .name_size = KVM_STATS_NAME_SIZE,
299 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
300 .id_offset = sizeof(struct kvm_stats_header),
301 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
302 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
303 sizeof(kvm_vcpu_stats_desc),
304 };
305
306 u64 __read_mostly host_xcr0;
307
308 static struct kmem_cache *x86_emulator_cache;
309
310 /*
311 * When called, it means the previous get/set msr reached an invalid msr.
312 * Return true if we want to ignore/silent this failed msr access.
313 */
kvm_msr_ignored_check(u32 msr,u64 data,bool write)314 static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
315 {
316 const char *op = write ? "wrmsr" : "rdmsr";
317
318 if (ignore_msrs) {
319 if (report_ignored_msrs)
320 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
321 op, msr, data);
322 /* Mask the error */
323 return true;
324 } else {
325 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
326 op, msr, data);
327 return false;
328 }
329 }
330
kvm_alloc_emulator_cache(void)331 static struct kmem_cache *kvm_alloc_emulator_cache(void)
332 {
333 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
334 unsigned int size = sizeof(struct x86_emulate_ctxt);
335
336 return kmem_cache_create_usercopy("x86_emulator", size,
337 __alignof__(struct x86_emulate_ctxt),
338 SLAB_ACCOUNT, useroffset,
339 size - useroffset, NULL);
340 }
341
342 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
343
kvm_async_pf_hash_reset(struct kvm_vcpu * vcpu)344 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
345 {
346 int i;
347 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
348 vcpu->arch.apf.gfns[i] = ~0;
349 }
350
kvm_on_user_return(struct user_return_notifier * urn)351 static void kvm_on_user_return(struct user_return_notifier *urn)
352 {
353 unsigned slot;
354 struct kvm_user_return_msrs *msrs
355 = container_of(urn, struct kvm_user_return_msrs, urn);
356 struct kvm_user_return_msr_values *values;
357 unsigned long flags;
358
359 /*
360 * Disabling irqs at this point since the following code could be
361 * interrupted and executed through kvm_arch_hardware_disable()
362 */
363 local_irq_save(flags);
364 if (msrs->registered) {
365 msrs->registered = false;
366 user_return_notifier_unregister(urn);
367 }
368 local_irq_restore(flags);
369 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
370 values = &msrs->values[slot];
371 if (values->host != values->curr) {
372 wrmsrl(kvm_uret_msrs_list[slot], values->host);
373 values->curr = values->host;
374 }
375 }
376 }
377
kvm_probe_user_return_msr(u32 msr)378 static int kvm_probe_user_return_msr(u32 msr)
379 {
380 u64 val;
381 int ret;
382
383 preempt_disable();
384 ret = rdmsrl_safe(msr, &val);
385 if (ret)
386 goto out;
387 ret = wrmsrl_safe(msr, val);
388 out:
389 preempt_enable();
390 return ret;
391 }
392
kvm_add_user_return_msr(u32 msr)393 int kvm_add_user_return_msr(u32 msr)
394 {
395 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
396
397 if (kvm_probe_user_return_msr(msr))
398 return -1;
399
400 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
401 return kvm_nr_uret_msrs++;
402 }
403 EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
404
kvm_find_user_return_msr(u32 msr)405 int kvm_find_user_return_msr(u32 msr)
406 {
407 int i;
408
409 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
410 if (kvm_uret_msrs_list[i] == msr)
411 return i;
412 }
413 return -1;
414 }
415 EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
416
kvm_user_return_msr_cpu_online(void)417 static void kvm_user_return_msr_cpu_online(void)
418 {
419 unsigned int cpu = smp_processor_id();
420 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
421 u64 value;
422 int i;
423
424 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
425 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
426 msrs->values[i].host = value;
427 msrs->values[i].curr = value;
428 }
429 }
430
kvm_set_user_return_msr(unsigned slot,u64 value,u64 mask)431 int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
432 {
433 unsigned int cpu = smp_processor_id();
434 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
435 int err;
436
437 value = (value & mask) | (msrs->values[slot].host & ~mask);
438 if (value == msrs->values[slot].curr)
439 return 0;
440 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
441 if (err)
442 return 1;
443
444 msrs->values[slot].curr = value;
445 if (!msrs->registered) {
446 msrs->urn.on_user_return = kvm_on_user_return;
447 user_return_notifier_register(&msrs->urn);
448 msrs->registered = true;
449 }
450 return 0;
451 }
452 EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
453
drop_user_return_notifiers(void)454 static void drop_user_return_notifiers(void)
455 {
456 unsigned int cpu = smp_processor_id();
457 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
458
459 if (msrs->registered)
460 kvm_on_user_return(&msrs->urn);
461 }
462
kvm_get_apic_base(struct kvm_vcpu * vcpu)463 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
464 {
465 return vcpu->arch.apic_base;
466 }
467 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
468
kvm_get_apic_mode(struct kvm_vcpu * vcpu)469 enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
470 {
471 return kvm_apic_mode(kvm_get_apic_base(vcpu));
472 }
473 EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
474
kvm_set_apic_base(struct kvm_vcpu * vcpu,struct msr_data * msr_info)475 int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
476 {
477 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
478 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
479 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
480 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
481
482 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
483 return 1;
484 if (!msr_info->host_initiated) {
485 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
486 return 1;
487 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
488 return 1;
489 }
490
491 kvm_lapic_set_base(vcpu, msr_info->data);
492 kvm_recalculate_apic_map(vcpu->kvm);
493 return 0;
494 }
495 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
496
497 /*
498 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
499 *
500 * Hardware virtualization extension instructions may fault if a reboot turns
501 * off virtualization while processes are running. Usually after catching the
502 * fault we just panic; during reboot instead the instruction is ignored.
503 */
kvm_spurious_fault(void)504 noinstr void kvm_spurious_fault(void)
505 {
506 /* Fault while not rebooting. We want the trace. */
507 BUG_ON(!kvm_rebooting);
508 }
509 EXPORT_SYMBOL_GPL(kvm_spurious_fault);
510
511 #define EXCPT_BENIGN 0
512 #define EXCPT_CONTRIBUTORY 1
513 #define EXCPT_PF 2
514
exception_class(int vector)515 static int exception_class(int vector)
516 {
517 switch (vector) {
518 case PF_VECTOR:
519 return EXCPT_PF;
520 case DE_VECTOR:
521 case TS_VECTOR:
522 case NP_VECTOR:
523 case SS_VECTOR:
524 case GP_VECTOR:
525 return EXCPT_CONTRIBUTORY;
526 default:
527 break;
528 }
529 return EXCPT_BENIGN;
530 }
531
532 #define EXCPT_FAULT 0
533 #define EXCPT_TRAP 1
534 #define EXCPT_ABORT 2
535 #define EXCPT_INTERRUPT 3
536 #define EXCPT_DB 4
537
exception_type(int vector)538 static int exception_type(int vector)
539 {
540 unsigned int mask;
541
542 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
543 return EXCPT_INTERRUPT;
544
545 mask = 1 << vector;
546
547 /*
548 * #DBs can be trap-like or fault-like, the caller must check other CPU
549 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
550 */
551 if (mask & (1 << DB_VECTOR))
552 return EXCPT_DB;
553
554 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
555 return EXCPT_TRAP;
556
557 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
558 return EXCPT_ABORT;
559
560 /* Reserved exceptions will result in fault */
561 return EXCPT_FAULT;
562 }
563
kvm_deliver_exception_payload(struct kvm_vcpu * vcpu,struct kvm_queued_exception * ex)564 void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
565 struct kvm_queued_exception *ex)
566 {
567 if (!ex->has_payload)
568 return;
569
570 switch (ex->vector) {
571 case DB_VECTOR:
572 /*
573 * "Certain debug exceptions may clear bit 0-3. The
574 * remaining contents of the DR6 register are never
575 * cleared by the processor".
576 */
577 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
578 /*
579 * In order to reflect the #DB exception payload in guest
580 * dr6, three components need to be considered: active low
581 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
582 * DR6_BS and DR6_BT)
583 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
584 * In the target guest dr6:
585 * FIXED_1 bits should always be set.
586 * Active low bits should be cleared if 1-setting in payload.
587 * Active high bits should be set if 1-setting in payload.
588 *
589 * Note, the payload is compatible with the pending debug
590 * exceptions/exit qualification under VMX, that active_low bits
591 * are active high in payload.
592 * So they need to be flipped for DR6.
593 */
594 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
595 vcpu->arch.dr6 |= ex->payload;
596 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
597
598 /*
599 * The #DB payload is defined as compatible with the 'pending
600 * debug exceptions' field under VMX, not DR6. While bit 12 is
601 * defined in the 'pending debug exceptions' field (enabled
602 * breakpoint), it is reserved and must be zero in DR6.
603 */
604 vcpu->arch.dr6 &= ~BIT(12);
605 break;
606 case PF_VECTOR:
607 vcpu->arch.cr2 = ex->payload;
608 break;
609 }
610
611 ex->has_payload = false;
612 ex->payload = 0;
613 }
614 EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
615
kvm_queue_exception_vmexit(struct kvm_vcpu * vcpu,unsigned int vector,bool has_error_code,u32 error_code,bool has_payload,unsigned long payload)616 static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
617 bool has_error_code, u32 error_code,
618 bool has_payload, unsigned long payload)
619 {
620 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
621
622 ex->vector = vector;
623 ex->injected = false;
624 ex->pending = true;
625 ex->has_error_code = has_error_code;
626 ex->error_code = error_code;
627 ex->has_payload = has_payload;
628 ex->payload = payload;
629 }
630
631 /* Forcibly leave the nested mode in cases like a vCPU reset */
kvm_leave_nested(struct kvm_vcpu * vcpu)632 static void kvm_leave_nested(struct kvm_vcpu *vcpu)
633 {
634 kvm_x86_ops.nested_ops->leave_nested(vcpu);
635 }
636
kvm_multiple_exception(struct kvm_vcpu * vcpu,unsigned nr,bool has_error,u32 error_code,bool has_payload,unsigned long payload,bool reinject)637 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
638 unsigned nr, bool has_error, u32 error_code,
639 bool has_payload, unsigned long payload, bool reinject)
640 {
641 u32 prev_nr;
642 int class1, class2;
643
644 kvm_make_request(KVM_REQ_EVENT, vcpu);
645
646 /*
647 * If the exception is destined for L2 and isn't being reinjected,
648 * morph it to a VM-Exit if L1 wants to intercept the exception. A
649 * previously injected exception is not checked because it was checked
650 * when it was original queued, and re-checking is incorrect if _L1_
651 * injected the exception, in which case it's exempt from interception.
652 */
653 if (!reinject && is_guest_mode(vcpu) &&
654 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
655 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
656 has_payload, payload);
657 return;
658 }
659
660 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
661 queue:
662 if (reinject) {
663 /*
664 * On VM-Entry, an exception can be pending if and only
665 * if event injection was blocked by nested_run_pending.
666 * In that case, however, vcpu_enter_guest() requests an
667 * immediate exit, and the guest shouldn't proceed far
668 * enough to need reinjection.
669 */
670 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
671 vcpu->arch.exception.injected = true;
672 if (WARN_ON_ONCE(has_payload)) {
673 /*
674 * A reinjected event has already
675 * delivered its payload.
676 */
677 has_payload = false;
678 payload = 0;
679 }
680 } else {
681 vcpu->arch.exception.pending = true;
682 vcpu->arch.exception.injected = false;
683 }
684 vcpu->arch.exception.has_error_code = has_error;
685 vcpu->arch.exception.vector = nr;
686 vcpu->arch.exception.error_code = error_code;
687 vcpu->arch.exception.has_payload = has_payload;
688 vcpu->arch.exception.payload = payload;
689 if (!is_guest_mode(vcpu))
690 kvm_deliver_exception_payload(vcpu,
691 &vcpu->arch.exception);
692 return;
693 }
694
695 /* to check exception */
696 prev_nr = vcpu->arch.exception.vector;
697 if (prev_nr == DF_VECTOR) {
698 /* triple fault -> shutdown */
699 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
700 return;
701 }
702 class1 = exception_class(prev_nr);
703 class2 = exception_class(nr);
704 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
705 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
706 /*
707 * Synthesize #DF. Clear the previously injected or pending
708 * exception so as not to incorrectly trigger shutdown.
709 */
710 vcpu->arch.exception.injected = false;
711 vcpu->arch.exception.pending = false;
712
713 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
714 } else {
715 /* replace previous exception with a new one in a hope
716 that instruction re-execution will regenerate lost
717 exception */
718 goto queue;
719 }
720 }
721
kvm_queue_exception(struct kvm_vcpu * vcpu,unsigned nr)722 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
723 {
724 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
725 }
726 EXPORT_SYMBOL_GPL(kvm_queue_exception);
727
kvm_requeue_exception(struct kvm_vcpu * vcpu,unsigned nr)728 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
729 {
730 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
731 }
732 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
733
kvm_queue_exception_p(struct kvm_vcpu * vcpu,unsigned nr,unsigned long payload)734 void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
735 unsigned long payload)
736 {
737 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
738 }
739 EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
740
kvm_queue_exception_e_p(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code,unsigned long payload)741 static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
742 u32 error_code, unsigned long payload)
743 {
744 kvm_multiple_exception(vcpu, nr, true, error_code,
745 true, payload, false);
746 }
747
kvm_complete_insn_gp(struct kvm_vcpu * vcpu,int err)748 int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
749 {
750 if (err)
751 kvm_inject_gp(vcpu, 0);
752 else
753 return kvm_skip_emulated_instruction(vcpu);
754
755 return 1;
756 }
757 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
758
complete_emulated_insn_gp(struct kvm_vcpu * vcpu,int err)759 static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
760 {
761 if (err) {
762 kvm_inject_gp(vcpu, 0);
763 return 1;
764 }
765
766 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
767 EMULTYPE_COMPLETE_USER_EXIT);
768 }
769
kvm_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)770 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
771 {
772 ++vcpu->stat.pf_guest;
773
774 /*
775 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
776 * whether or not L1 wants to intercept "regular" #PF.
777 */
778 if (is_guest_mode(vcpu) && fault->async_page_fault)
779 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
780 true, fault->error_code,
781 true, fault->address);
782 else
783 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
784 fault->address);
785 }
786 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
787
kvm_inject_emulated_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)788 void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
789 struct x86_exception *fault)
790 {
791 struct kvm_mmu *fault_mmu;
792 WARN_ON_ONCE(fault->vector != PF_VECTOR);
793
794 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
795 vcpu->arch.walk_mmu;
796
797 /*
798 * Invalidate the TLB entry for the faulting address, if it exists,
799 * else the access will fault indefinitely (and to emulate hardware).
800 */
801 if ((fault->error_code & PFERR_PRESENT_MASK) &&
802 !(fault->error_code & PFERR_RSVD_MASK))
803 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
804 fault_mmu->root.hpa);
805
806 fault_mmu->inject_page_fault(vcpu, fault);
807 }
808 EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
809
kvm_inject_nmi(struct kvm_vcpu * vcpu)810 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
811 {
812 atomic_inc(&vcpu->arch.nmi_queued);
813 kvm_make_request(KVM_REQ_NMI, vcpu);
814 }
815 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
816
kvm_queue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)817 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
818 {
819 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
820 }
821 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
822
kvm_requeue_exception_e(struct kvm_vcpu * vcpu,unsigned nr,u32 error_code)823 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
824 {
825 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
826 }
827 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
828
829 /*
830 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
831 * a #GP and return false.
832 */
kvm_require_cpl(struct kvm_vcpu * vcpu,int required_cpl)833 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
834 {
835 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
836 return true;
837 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
838 return false;
839 }
840 EXPORT_SYMBOL_GPL(kvm_require_cpl);
841
kvm_require_dr(struct kvm_vcpu * vcpu,int dr)842 bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
843 {
844 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
845 return true;
846
847 kvm_queue_exception(vcpu, UD_VECTOR);
848 return false;
849 }
850 EXPORT_SYMBOL_GPL(kvm_require_dr);
851
pdptr_rsvd_bits(struct kvm_vcpu * vcpu)852 static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
853 {
854 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
855 }
856
857 /*
858 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
859 */
load_pdptrs(struct kvm_vcpu * vcpu,unsigned long cr3)860 int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
861 {
862 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
863 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
864 gpa_t real_gpa;
865 int i;
866 int ret;
867 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
868
869 /*
870 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
871 * to an L1 GPA.
872 */
873 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
874 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
875 if (real_gpa == INVALID_GPA)
876 return 0;
877
878 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
879 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
880 cr3 & GENMASK(11, 5), sizeof(pdpte));
881 if (ret < 0)
882 return 0;
883
884 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
885 if ((pdpte[i] & PT_PRESENT_MASK) &&
886 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
887 return 0;
888 }
889 }
890
891 /*
892 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
893 * Shadow page roots need to be reconstructed instead.
894 */
895 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
896 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
897
898 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
899 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
900 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
901 vcpu->arch.pdptrs_from_userspace = false;
902
903 return 1;
904 }
905 EXPORT_SYMBOL_GPL(load_pdptrs);
906
kvm_post_set_cr0(struct kvm_vcpu * vcpu,unsigned long old_cr0,unsigned long cr0)907 void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
908 {
909 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
910 kvm_clear_async_pf_completion_queue(vcpu);
911 kvm_async_pf_hash_reset(vcpu);
912
913 /*
914 * Clearing CR0.PG is defined to flush the TLB from the guest's
915 * perspective.
916 */
917 if (!(cr0 & X86_CR0_PG))
918 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
919 }
920
921 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
922 kvm_mmu_reset_context(vcpu);
923
924 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
925 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
926 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
927 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
928 }
929 EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
930
kvm_set_cr0(struct kvm_vcpu * vcpu,unsigned long cr0)931 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
932 {
933 unsigned long old_cr0 = kvm_read_cr0(vcpu);
934
935 cr0 |= X86_CR0_ET;
936
937 #ifdef CONFIG_X86_64
938 if (cr0 & 0xffffffff00000000UL)
939 return 1;
940 #endif
941
942 cr0 &= ~CR0_RESERVED_BITS;
943
944 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
945 return 1;
946
947 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
948 return 1;
949
950 #ifdef CONFIG_X86_64
951 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
952 (cr0 & X86_CR0_PG)) {
953 int cs_db, cs_l;
954
955 if (!is_pae(vcpu))
956 return 1;
957 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
958 if (cs_l)
959 return 1;
960 }
961 #endif
962 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
963 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
964 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
965 return 1;
966
967 if (!(cr0 & X86_CR0_PG) &&
968 (is_64_bit_mode(vcpu) || kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)))
969 return 1;
970
971 static_call(kvm_x86_set_cr0)(vcpu, cr0);
972
973 kvm_post_set_cr0(vcpu, old_cr0, cr0);
974
975 return 0;
976 }
977 EXPORT_SYMBOL_GPL(kvm_set_cr0);
978
kvm_lmsw(struct kvm_vcpu * vcpu,unsigned long msw)979 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
980 {
981 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
982 }
983 EXPORT_SYMBOL_GPL(kvm_lmsw);
984
kvm_load_guest_xsave_state(struct kvm_vcpu * vcpu)985 void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
986 {
987 if (vcpu->arch.guest_state_protected)
988 return;
989
990 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
991
992 if (vcpu->arch.xcr0 != host_xcr0)
993 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
994
995 if (vcpu->arch.xsaves_enabled &&
996 vcpu->arch.ia32_xss != host_xss)
997 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
998 }
999
1000 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1001 if (static_cpu_has(X86_FEATURE_PKU) &&
1002 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1003 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1004 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)))
1005 write_pkru(vcpu->arch.pkru);
1006 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1007 }
1008 EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
1009
kvm_load_host_xsave_state(struct kvm_vcpu * vcpu)1010 void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
1011 {
1012 if (vcpu->arch.guest_state_protected)
1013 return;
1014
1015 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
1016 if (static_cpu_has(X86_FEATURE_PKU) &&
1017 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
1018 kvm_read_cr4_bits(vcpu, X86_CR4_PKE))) {
1019 vcpu->arch.pkru = rdpkru();
1020 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
1021 write_pkru(vcpu->arch.host_pkru);
1022 }
1023 #endif /* CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS */
1024
1025 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
1026
1027 if (vcpu->arch.xcr0 != host_xcr0)
1028 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1029
1030 if (vcpu->arch.xsaves_enabled &&
1031 vcpu->arch.ia32_xss != host_xss)
1032 wrmsrl(MSR_IA32_XSS, host_xss);
1033 }
1034
1035 }
1036 EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
1037
1038 #ifdef CONFIG_X86_64
kvm_guest_supported_xfd(struct kvm_vcpu * vcpu)1039 static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1040 {
1041 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
1042 }
1043 #endif
1044
__kvm_set_xcr(struct kvm_vcpu * vcpu,u32 index,u64 xcr)1045 static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
1046 {
1047 u64 xcr0 = xcr;
1048 u64 old_xcr0 = vcpu->arch.xcr0;
1049 u64 valid_bits;
1050
1051 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1052 if (index != XCR_XFEATURE_ENABLED_MASK)
1053 return 1;
1054 if (!(xcr0 & XFEATURE_MASK_FP))
1055 return 1;
1056 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
1057 return 1;
1058
1059 /*
1060 * Do not allow the guest to set bits that we do not support
1061 * saving. However, xcr0 bit 0 is always set, even if the
1062 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
1063 */
1064 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
1065 if (xcr0 & ~valid_bits)
1066 return 1;
1067
1068 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1069 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
1070 return 1;
1071
1072 if (xcr0 & XFEATURE_MASK_AVX512) {
1073 if (!(xcr0 & XFEATURE_MASK_YMM))
1074 return 1;
1075 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
1076 return 1;
1077 }
1078
1079 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1080 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1081 return 1;
1082
1083 vcpu->arch.xcr0 = xcr0;
1084
1085 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
1086 kvm_update_cpuid_runtime(vcpu);
1087 return 0;
1088 }
1089
kvm_emulate_xsetbv(struct kvm_vcpu * vcpu)1090 int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
1091 {
1092 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
1093 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1094 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1095 kvm_inject_gp(vcpu, 0);
1096 return 1;
1097 }
1098
1099 return kvm_skip_emulated_instruction(vcpu);
1100 }
1101 EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
1102
__kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1103 bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1104 {
1105 if (cr4 & cr4_reserved_bits)
1106 return false;
1107
1108 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
1109 return false;
1110
1111 return true;
1112 }
1113 EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1114
kvm_is_valid_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1115 static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1116 {
1117 return __kvm_is_valid_cr4(vcpu, cr4) &&
1118 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
1119 }
1120
kvm_post_set_cr4(struct kvm_vcpu * vcpu,unsigned long old_cr4,unsigned long cr4)1121 void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1122 {
1123 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1124 kvm_mmu_reset_context(vcpu);
1125
1126 /*
1127 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1128 * according to the SDM; however, stale prev_roots could be reused
1129 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
1130 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1131 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1132 * so fall through.
1133 */
1134 if (!tdp_enabled &&
1135 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
1136 kvm_mmu_unload(vcpu);
1137
1138 /*
1139 * The TLB has to be flushed for all PCIDs if any of the following
1140 * (architecturally required) changes happen:
1141 * - CR4.PCIDE is changed from 1 to 0
1142 * - CR4.PGE is toggled
1143 *
1144 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
1145 */
1146 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1147 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
1148 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1149
1150 /*
1151 * The TLB has to be flushed for the current PCID if any of the
1152 * following (architecturally required) changes happen:
1153 * - CR4.SMEP is changed from 0 to 1
1154 * - CR4.PAE is toggled
1155 */
1156 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1157 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1158 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1159
1160 }
1161 EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
1162
kvm_set_cr4(struct kvm_vcpu * vcpu,unsigned long cr4)1163 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1164 {
1165 unsigned long old_cr4 = kvm_read_cr4(vcpu);
1166
1167 if (!kvm_is_valid_cr4(vcpu, cr4))
1168 return 1;
1169
1170 if (is_long_mode(vcpu)) {
1171 if (!(cr4 & X86_CR4_PAE))
1172 return 1;
1173 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1174 return 1;
1175 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
1176 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
1177 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
1178 return 1;
1179
1180 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
1181 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
1182 return 1;
1183
1184 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1185 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1186 return 1;
1187 }
1188
1189 static_call(kvm_x86_set_cr4)(vcpu, cr4);
1190
1191 kvm_post_set_cr4(vcpu, old_cr4, cr4);
1192
1193 return 0;
1194 }
1195 EXPORT_SYMBOL_GPL(kvm_set_cr4);
1196
kvm_invalidate_pcid(struct kvm_vcpu * vcpu,unsigned long pcid)1197 static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1198 {
1199 struct kvm_mmu *mmu = vcpu->arch.mmu;
1200 unsigned long roots_to_free = 0;
1201 int i;
1202
1203 /*
1204 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1205 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1206 * also via the emulator. KVM's TDP page tables are not in the scope of
1207 * the invalidation, but the guest's TLB entries need to be flushed as
1208 * the CPU may have cached entries in its TLB for the target PCID.
1209 */
1210 if (unlikely(tdp_enabled)) {
1211 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1212 return;
1213 }
1214
1215 /*
1216 * If neither the current CR3 nor any of the prev_roots use the given
1217 * PCID, then nothing needs to be done here because a resync will
1218 * happen anyway before switching to any other CR3.
1219 */
1220 if (kvm_get_active_pcid(vcpu) == pcid) {
1221 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1222 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1223 }
1224
1225 /*
1226 * If PCID is disabled, there is no need to free prev_roots even if the
1227 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1228 * with PCIDE=0.
1229 */
1230 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
1231 return;
1232
1233 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1234 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1235 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1236
1237 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
1238 }
1239
kvm_set_cr3(struct kvm_vcpu * vcpu,unsigned long cr3)1240 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1241 {
1242 bool skip_tlb_flush = false;
1243 unsigned long pcid = 0;
1244 #ifdef CONFIG_X86_64
1245 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1246
1247 if (pcid_enabled) {
1248 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1249 cr3 &= ~X86_CR3_PCID_NOFLUSH;
1250 pcid = cr3 & X86_CR3_PCID_MASK;
1251 }
1252 #endif
1253
1254 /* PDPTRs are always reloaded for PAE paging. */
1255 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1256 goto handle_tlb_flush;
1257
1258 /*
1259 * Do not condition the GPA check on long mode, this helper is used to
1260 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1261 * the current vCPU mode is accurate.
1262 */
1263 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
1264 return 1;
1265
1266 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
1267 return 1;
1268
1269 if (cr3 != kvm_read_cr3(vcpu))
1270 kvm_mmu_new_pgd(vcpu, cr3);
1271
1272 vcpu->arch.cr3 = cr3;
1273 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1274 /* Do not call post_set_cr3, we do not get here for confidential guests. */
1275
1276 handle_tlb_flush:
1277 /*
1278 * A load of CR3 that flushes the TLB flushes only the current PCID,
1279 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1280 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1281 * and it's impossible to use a non-zero PCID when PCID is disabled,
1282 * i.e. only PCID=0 can be relevant.
1283 */
1284 if (!skip_tlb_flush)
1285 kvm_invalidate_pcid(vcpu, pcid);
1286
1287 return 0;
1288 }
1289 EXPORT_SYMBOL_GPL(kvm_set_cr3);
1290
kvm_set_cr8(struct kvm_vcpu * vcpu,unsigned long cr8)1291 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
1292 {
1293 if (cr8 & CR8_RESERVED_BITS)
1294 return 1;
1295 if (lapic_in_kernel(vcpu))
1296 kvm_lapic_set_tpr(vcpu, cr8);
1297 else
1298 vcpu->arch.cr8 = cr8;
1299 return 0;
1300 }
1301 EXPORT_SYMBOL_GPL(kvm_set_cr8);
1302
kvm_get_cr8(struct kvm_vcpu * vcpu)1303 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
1304 {
1305 if (lapic_in_kernel(vcpu))
1306 return kvm_lapic_get_cr8(vcpu);
1307 else
1308 return vcpu->arch.cr8;
1309 }
1310 EXPORT_SYMBOL_GPL(kvm_get_cr8);
1311
kvm_update_dr0123(struct kvm_vcpu * vcpu)1312 static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1313 {
1314 int i;
1315
1316 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1317 for (i = 0; i < KVM_NR_DB_REGS; i++)
1318 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1319 }
1320 }
1321
kvm_update_dr7(struct kvm_vcpu * vcpu)1322 void kvm_update_dr7(struct kvm_vcpu *vcpu)
1323 {
1324 unsigned long dr7;
1325
1326 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1327 dr7 = vcpu->arch.guest_debug_dr7;
1328 else
1329 dr7 = vcpu->arch.dr7;
1330 static_call(kvm_x86_set_dr7)(vcpu, dr7);
1331 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1332 if (dr7 & DR7_BP_EN_MASK)
1333 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
1334 }
1335 EXPORT_SYMBOL_GPL(kvm_update_dr7);
1336
kvm_dr6_fixed(struct kvm_vcpu * vcpu)1337 static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1338 {
1339 u64 fixed = DR6_FIXED_1;
1340
1341 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
1342 fixed |= DR6_RTM;
1343
1344 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1345 fixed |= DR6_BUS_LOCK;
1346 return fixed;
1347 }
1348
kvm_set_dr(struct kvm_vcpu * vcpu,int dr,unsigned long val)1349 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1350 {
1351 size_t size = ARRAY_SIZE(vcpu->arch.db);
1352
1353 switch (dr) {
1354 case 0 ... 3:
1355 vcpu->arch.db[array_index_nospec(dr, size)] = val;
1356 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1357 vcpu->arch.eff_db[dr] = val;
1358 break;
1359 case 4:
1360 case 6:
1361 if (!kvm_dr6_valid(val))
1362 return 1; /* #GP */
1363 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
1364 break;
1365 case 5:
1366 default: /* 7 */
1367 if (!kvm_dr7_valid(val))
1368 return 1; /* #GP */
1369 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
1370 kvm_update_dr7(vcpu);
1371 break;
1372 }
1373
1374 return 0;
1375 }
1376 EXPORT_SYMBOL_GPL(kvm_set_dr);
1377
kvm_get_dr(struct kvm_vcpu * vcpu,int dr,unsigned long * val)1378 void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
1379 {
1380 size_t size = ARRAY_SIZE(vcpu->arch.db);
1381
1382 switch (dr) {
1383 case 0 ... 3:
1384 *val = vcpu->arch.db[array_index_nospec(dr, size)];
1385 break;
1386 case 4:
1387 case 6:
1388 *val = vcpu->arch.dr6;
1389 break;
1390 case 5:
1391 default: /* 7 */
1392 *val = vcpu->arch.dr7;
1393 break;
1394 }
1395 }
1396 EXPORT_SYMBOL_GPL(kvm_get_dr);
1397
kvm_emulate_rdpmc(struct kvm_vcpu * vcpu)1398 int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
1399 {
1400 u32 ecx = kvm_rcx_read(vcpu);
1401 u64 data;
1402
1403 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1404 kvm_inject_gp(vcpu, 0);
1405 return 1;
1406 }
1407
1408 kvm_rax_write(vcpu, (u32)data);
1409 kvm_rdx_write(vcpu, data >> 32);
1410 return kvm_skip_emulated_instruction(vcpu);
1411 }
1412 EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
1413
1414 /*
1415 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1416 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1417 *
1418 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1419 * extract the supported MSRs from the related const lists.
1420 * msrs_to_save is selected from the msrs_to_save_all to reflect the
1421 * capabilities of the host cpu. This capabilities test skips MSRs that are
1422 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
1423 * may depend on host virtualization features rather than host cpu features.
1424 */
1425
1426 static const u32 msrs_to_save_all[] = {
1427 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
1428 MSR_STAR,
1429 #ifdef CONFIG_X86_64
1430 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1431 #endif
1432 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
1433 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
1434 MSR_IA32_SPEC_CTRL,
1435 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1436 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1437 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1438 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1439 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1440 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
1441 MSR_IA32_UMWAIT_CONTROL,
1442
1443 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1444 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
1445 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1446 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1447 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1448
1449 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
1450 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1451 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1452 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1453 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1454 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1455 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1456 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1457 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1458
1459 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1460 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
1461
1462 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
1463 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1464 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1465 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1466 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
1467
1468 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1469 };
1470
1471 static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
1472 static unsigned num_msrs_to_save;
1473
1474 static const u32 emulated_msrs_all[] = {
1475 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1476 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1477 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1478 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
1479 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
1480 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1481 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
1482 HV_X64_MSR_RESET,
1483 HV_X64_MSR_VP_INDEX,
1484 HV_X64_MSR_VP_RUNTIME,
1485 HV_X64_MSR_SCONTROL,
1486 HV_X64_MSR_STIMER0_CONFIG,
1487 HV_X64_MSR_VP_ASSIST_PAGE,
1488 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1489 HV_X64_MSR_TSC_EMULATION_STATUS,
1490 HV_X64_MSR_SYNDBG_OPTIONS,
1491 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1492 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1493 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
1494
1495 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
1496 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
1497
1498 MSR_IA32_TSC_ADJUST,
1499 MSR_IA32_TSC_DEADLINE,
1500 MSR_IA32_ARCH_CAPABILITIES,
1501 MSR_IA32_PERF_CAPABILITIES,
1502 MSR_IA32_MISC_ENABLE,
1503 MSR_IA32_MCG_STATUS,
1504 MSR_IA32_MCG_CTL,
1505 MSR_IA32_MCG_EXT_CTL,
1506 MSR_IA32_SMBASE,
1507 MSR_SMI_COUNT,
1508 MSR_PLATFORM_INFO,
1509 MSR_MISC_FEATURES_ENABLES,
1510 MSR_AMD64_VIRT_SPEC_CTRL,
1511 MSR_AMD64_TSC_RATIO,
1512 MSR_IA32_POWER_CTL,
1513 MSR_IA32_UCODE_REV,
1514
1515 /*
1516 * The following list leaves out MSRs whose values are determined
1517 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1518 * We always support the "true" VMX control MSRs, even if the host
1519 * processor does not, so I am putting these registers here rather
1520 * than in msrs_to_save_all.
1521 */
1522 MSR_IA32_VMX_BASIC,
1523 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1524 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1525 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1526 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1527 MSR_IA32_VMX_MISC,
1528 MSR_IA32_VMX_CR0_FIXED0,
1529 MSR_IA32_VMX_CR4_FIXED0,
1530 MSR_IA32_VMX_VMCS_ENUM,
1531 MSR_IA32_VMX_PROCBASED_CTLS2,
1532 MSR_IA32_VMX_EPT_VPID_CAP,
1533 MSR_IA32_VMX_VMFUNC,
1534
1535 MSR_K7_HWCR,
1536 MSR_KVM_POLL_CONTROL,
1537 };
1538
1539 static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
1540 static unsigned num_emulated_msrs;
1541
1542 /*
1543 * List of msr numbers which are used to expose MSR-based features that
1544 * can be used by a hypervisor to validate requested CPU features.
1545 */
1546 static const u32 msr_based_features_all[] = {
1547 MSR_IA32_VMX_BASIC,
1548 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1549 MSR_IA32_VMX_PINBASED_CTLS,
1550 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1551 MSR_IA32_VMX_PROCBASED_CTLS,
1552 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1553 MSR_IA32_VMX_EXIT_CTLS,
1554 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1555 MSR_IA32_VMX_ENTRY_CTLS,
1556 MSR_IA32_VMX_MISC,
1557 MSR_IA32_VMX_CR0_FIXED0,
1558 MSR_IA32_VMX_CR0_FIXED1,
1559 MSR_IA32_VMX_CR4_FIXED0,
1560 MSR_IA32_VMX_CR4_FIXED1,
1561 MSR_IA32_VMX_VMCS_ENUM,
1562 MSR_IA32_VMX_PROCBASED_CTLS2,
1563 MSR_IA32_VMX_EPT_VPID_CAP,
1564 MSR_IA32_VMX_VMFUNC,
1565
1566 MSR_AMD64_DE_CFG,
1567 MSR_IA32_UCODE_REV,
1568 MSR_IA32_ARCH_CAPABILITIES,
1569 MSR_IA32_PERF_CAPABILITIES,
1570 };
1571
1572 static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
1573 static unsigned int num_msr_based_features;
1574
1575 /*
1576 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1577 * does not yet virtualize. These include:
1578 * 10 - MISC_PACKAGE_CTRLS
1579 * 11 - ENERGY_FILTERING_CTL
1580 * 12 - DOITM
1581 * 18 - FB_CLEAR_CTRL
1582 * 21 - XAPIC_DISABLE_STATUS
1583 * 23 - OVERCLOCKING_STATUS
1584 */
1585
1586 #define KVM_SUPPORTED_ARCH_CAP \
1587 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1588 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1589 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1590 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
1591 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO)
1592
kvm_get_arch_capabilities(void)1593 static u64 kvm_get_arch_capabilities(void)
1594 {
1595 u64 data = 0;
1596
1597 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
1598 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
1599 data &= KVM_SUPPORTED_ARCH_CAP;
1600 }
1601
1602 /*
1603 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1604 * the nested hypervisor runs with NX huge pages. If it is not,
1605 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
1606 * L1 guests, so it need not worry about its own (L2) guests.
1607 */
1608 data |= ARCH_CAP_PSCHANGE_MC_NO;
1609
1610 /*
1611 * If we're doing cache flushes (either "always" or "cond")
1612 * we will do one whenever the guest does a vmlaunch/vmresume.
1613 * If an outer hypervisor is doing the cache flush for us
1614 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1615 * capability to the guest too, and if EPT is disabled we're not
1616 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1617 * require a nested hypervisor to do a flush of its own.
1618 */
1619 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1620 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1621
1622 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1623 data |= ARCH_CAP_RDCL_NO;
1624 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1625 data |= ARCH_CAP_SSB_NO;
1626 if (!boot_cpu_has_bug(X86_BUG_MDS))
1627 data |= ARCH_CAP_MDS_NO;
1628
1629 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1630 /*
1631 * If RTM=0 because the kernel has disabled TSX, the host might
1632 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1633 * and therefore knows that there cannot be TAA) but keep
1634 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1635 * and we want to allow migrating those guests to tsx=off hosts.
1636 */
1637 data &= ~ARCH_CAP_TAA_NO;
1638 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
1639 data |= ARCH_CAP_TAA_NO;
1640 } else {
1641 /*
1642 * Nothing to do here; we emulate TSX_CTRL if present on the
1643 * host so the guest can choose between disabling TSX or
1644 * using VERW to clear CPU buffers.
1645 */
1646 }
1647
1648 return data;
1649 }
1650
kvm_get_msr_feature(struct kvm_msr_entry * msr)1651 static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1652 {
1653 switch (msr->index) {
1654 case MSR_IA32_ARCH_CAPABILITIES:
1655 msr->data = kvm_get_arch_capabilities();
1656 break;
1657 case MSR_IA32_UCODE_REV:
1658 rdmsrl_safe(msr->index, &msr->data);
1659 break;
1660 default:
1661 return static_call(kvm_x86_get_msr_feature)(msr);
1662 }
1663 return 0;
1664 }
1665
do_get_msr_feature(struct kvm_vcpu * vcpu,unsigned index,u64 * data)1666 static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1667 {
1668 struct kvm_msr_entry msr;
1669 int r;
1670
1671 msr.index = index;
1672 r = kvm_get_msr_feature(&msr);
1673
1674 if (r == KVM_MSR_RET_INVALID) {
1675 /* Unconditionally clear the output for simplicity */
1676 *data = 0;
1677 if (kvm_msr_ignored_check(index, 0, false))
1678 r = 0;
1679 }
1680
1681 if (r)
1682 return r;
1683
1684 *data = msr.data;
1685
1686 return 0;
1687 }
1688
__kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1689 static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1690 {
1691 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
1692 return false;
1693
1694 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
1695 return false;
1696
1697 if (efer & (EFER_LME | EFER_LMA) &&
1698 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1699 return false;
1700
1701 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1702 return false;
1703
1704 return true;
1705
1706 }
kvm_valid_efer(struct kvm_vcpu * vcpu,u64 efer)1707 bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1708 {
1709 if (efer & efer_reserved_bits)
1710 return false;
1711
1712 return __kvm_valid_efer(vcpu, efer);
1713 }
1714 EXPORT_SYMBOL_GPL(kvm_valid_efer);
1715
set_efer(struct kvm_vcpu * vcpu,struct msr_data * msr_info)1716 static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
1717 {
1718 u64 old_efer = vcpu->arch.efer;
1719 u64 efer = msr_info->data;
1720 int r;
1721
1722 if (efer & efer_reserved_bits)
1723 return 1;
1724
1725 if (!msr_info->host_initiated) {
1726 if (!__kvm_valid_efer(vcpu, efer))
1727 return 1;
1728
1729 if (is_paging(vcpu) &&
1730 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1731 return 1;
1732 }
1733
1734 efer &= ~EFER_LMA;
1735 efer |= vcpu->arch.efer & EFER_LMA;
1736
1737 r = static_call(kvm_x86_set_efer)(vcpu, efer);
1738 if (r) {
1739 WARN_ON(r > 0);
1740 return r;
1741 }
1742
1743 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
1744 kvm_mmu_reset_context(vcpu);
1745
1746 return 0;
1747 }
1748
kvm_enable_efer_bits(u64 mask)1749 void kvm_enable_efer_bits(u64 mask)
1750 {
1751 efer_reserved_bits &= ~mask;
1752 }
1753 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1754
kvm_msr_allowed(struct kvm_vcpu * vcpu,u32 index,u32 type)1755 bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1756 {
1757 struct kvm_x86_msr_filter *msr_filter;
1758 struct msr_bitmap_range *ranges;
1759 struct kvm *kvm = vcpu->kvm;
1760 bool allowed;
1761 int idx;
1762 u32 i;
1763
1764 /* x2APIC MSRs do not support filtering. */
1765 if (index >= 0x800 && index <= 0x8ff)
1766 return true;
1767
1768 idx = srcu_read_lock(&kvm->srcu);
1769
1770 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1771 if (!msr_filter) {
1772 allowed = true;
1773 goto out;
1774 }
1775
1776 allowed = msr_filter->default_allow;
1777 ranges = msr_filter->ranges;
1778
1779 for (i = 0; i < msr_filter->count; i++) {
1780 u32 start = ranges[i].base;
1781 u32 end = start + ranges[i].nmsrs;
1782 u32 flags = ranges[i].flags;
1783 unsigned long *bitmap = ranges[i].bitmap;
1784
1785 if ((index >= start) && (index < end) && (flags & type)) {
1786 allowed = !!test_bit(index - start, bitmap);
1787 break;
1788 }
1789 }
1790
1791 out:
1792 srcu_read_unlock(&kvm->srcu, idx);
1793
1794 return allowed;
1795 }
1796 EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1797
1798 /*
1799 * Write @data into the MSR specified by @index. Select MSR specific fault
1800 * checks are bypassed if @host_initiated is %true.
1801 * Returns 0 on success, non-0 otherwise.
1802 * Assumes vcpu_load() was already called.
1803 */
__kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1804 static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1805 bool host_initiated)
1806 {
1807 struct msr_data msr;
1808
1809 switch (index) {
1810 case MSR_FS_BASE:
1811 case MSR_GS_BASE:
1812 case MSR_KERNEL_GS_BASE:
1813 case MSR_CSTAR:
1814 case MSR_LSTAR:
1815 if (is_noncanonical_address(data, vcpu))
1816 return 1;
1817 break;
1818 case MSR_IA32_SYSENTER_EIP:
1819 case MSR_IA32_SYSENTER_ESP:
1820 /*
1821 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1822 * non-canonical address is written on Intel but not on
1823 * AMD (which ignores the top 32-bits, because it does
1824 * not implement 64-bit SYSENTER).
1825 *
1826 * 64-bit code should hence be able to write a non-canonical
1827 * value on AMD. Making the address canonical ensures that
1828 * vmentry does not fail on Intel after writing a non-canonical
1829 * value, and that something deterministic happens if the guest
1830 * invokes 64-bit SYSENTER.
1831 */
1832 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
1833 break;
1834 case MSR_TSC_AUX:
1835 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1836 return 1;
1837
1838 if (!host_initiated &&
1839 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1840 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1841 return 1;
1842
1843 /*
1844 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1845 * incomplete and conflicting architectural behavior. Current
1846 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1847 * reserved and always read as zeros. Enforce Intel's reserved
1848 * bits check if and only if the guest CPU is Intel, and clear
1849 * the bits in all other cases. This ensures cross-vendor
1850 * migration will provide consistent behavior for the guest.
1851 */
1852 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1853 return 1;
1854
1855 data = (u32)data;
1856 break;
1857 }
1858
1859 msr.data = data;
1860 msr.index = index;
1861 msr.host_initiated = host_initiated;
1862
1863 return static_call(kvm_x86_set_msr)(vcpu, &msr);
1864 }
1865
kvm_set_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 data,bool host_initiated)1866 static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1867 u32 index, u64 data, bool host_initiated)
1868 {
1869 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1870
1871 if (ret == KVM_MSR_RET_INVALID)
1872 if (kvm_msr_ignored_check(index, data, true))
1873 ret = 0;
1874
1875 return ret;
1876 }
1877
1878 /*
1879 * Read the MSR specified by @index into @data. Select MSR specific fault
1880 * checks are bypassed if @host_initiated is %true.
1881 * Returns 0 on success, non-0 otherwise.
1882 * Assumes vcpu_load() was already called.
1883 */
__kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1884 int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1885 bool host_initiated)
1886 {
1887 struct msr_data msr;
1888 int ret;
1889
1890 switch (index) {
1891 case MSR_TSC_AUX:
1892 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1893 return 1;
1894
1895 if (!host_initiated &&
1896 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1897 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1898 return 1;
1899 break;
1900 }
1901
1902 msr.index = index;
1903 msr.host_initiated = host_initiated;
1904
1905 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
1906 if (!ret)
1907 *data = msr.data;
1908 return ret;
1909 }
1910
kvm_get_msr_ignored_check(struct kvm_vcpu * vcpu,u32 index,u64 * data,bool host_initiated)1911 static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1912 u32 index, u64 *data, bool host_initiated)
1913 {
1914 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1915
1916 if (ret == KVM_MSR_RET_INVALID) {
1917 /* Unconditionally clear *data for simplicity */
1918 *data = 0;
1919 if (kvm_msr_ignored_check(index, 0, false))
1920 ret = 0;
1921 }
1922
1923 return ret;
1924 }
1925
kvm_get_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 * data)1926 static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1927 {
1928 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1929 return KVM_MSR_RET_FILTERED;
1930 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1931 }
1932
kvm_set_msr_with_filter(struct kvm_vcpu * vcpu,u32 index,u64 data)1933 static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1934 {
1935 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1936 return KVM_MSR_RET_FILTERED;
1937 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1938 }
1939
kvm_get_msr(struct kvm_vcpu * vcpu,u32 index,u64 * data)1940 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1941 {
1942 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1943 }
1944 EXPORT_SYMBOL_GPL(kvm_get_msr);
1945
kvm_set_msr(struct kvm_vcpu * vcpu,u32 index,u64 data)1946 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1947 {
1948 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1949 }
1950 EXPORT_SYMBOL_GPL(kvm_set_msr);
1951
complete_userspace_rdmsr(struct kvm_vcpu * vcpu)1952 static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1953 {
1954 if (!vcpu->run->msr.error) {
1955 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1956 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1957 }
1958 }
1959
complete_emulated_msr_access(struct kvm_vcpu * vcpu)1960 static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1961 {
1962 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1963 }
1964
complete_emulated_rdmsr(struct kvm_vcpu * vcpu)1965 static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1966 {
1967 complete_userspace_rdmsr(vcpu);
1968 return complete_emulated_msr_access(vcpu);
1969 }
1970
complete_fast_msr_access(struct kvm_vcpu * vcpu)1971 static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1972 {
1973 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1974 }
1975
complete_fast_rdmsr(struct kvm_vcpu * vcpu)1976 static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
1977 {
1978 complete_userspace_rdmsr(vcpu);
1979 return complete_fast_msr_access(vcpu);
1980 }
1981
kvm_msr_reason(int r)1982 static u64 kvm_msr_reason(int r)
1983 {
1984 switch (r) {
1985 case KVM_MSR_RET_INVALID:
1986 return KVM_MSR_EXIT_REASON_UNKNOWN;
1987 case KVM_MSR_RET_FILTERED:
1988 return KVM_MSR_EXIT_REASON_FILTER;
1989 default:
1990 return KVM_MSR_EXIT_REASON_INVAL;
1991 }
1992 }
1993
kvm_msr_user_space(struct kvm_vcpu * vcpu,u32 index,u32 exit_reason,u64 data,int (* completion)(struct kvm_vcpu * vcpu),int r)1994 static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1995 u32 exit_reason, u64 data,
1996 int (*completion)(struct kvm_vcpu *vcpu),
1997 int r)
1998 {
1999 u64 msr_reason = kvm_msr_reason(r);
2000
2001 /* Check if the user wanted to know about this MSR fault */
2002 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2003 return 0;
2004
2005 vcpu->run->exit_reason = exit_reason;
2006 vcpu->run->msr.error = 0;
2007 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2008 vcpu->run->msr.reason = msr_reason;
2009 vcpu->run->msr.index = index;
2010 vcpu->run->msr.data = data;
2011 vcpu->arch.complete_userspace_io = completion;
2012
2013 return 1;
2014 }
2015
kvm_emulate_rdmsr(struct kvm_vcpu * vcpu)2016 int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2017 {
2018 u32 ecx = kvm_rcx_read(vcpu);
2019 u64 data;
2020 int r;
2021
2022 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
2023
2024 if (!r) {
2025 trace_kvm_msr_read(ecx, data);
2026
2027 kvm_rax_write(vcpu, data & -1u);
2028 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2029 } else {
2030 /* MSR read failed? See if we should ask user space */
2031 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2032 complete_fast_rdmsr, r))
2033 return 0;
2034 trace_kvm_msr_read_ex(ecx);
2035 }
2036
2037 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2038 }
2039 EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2040
kvm_emulate_wrmsr(struct kvm_vcpu * vcpu)2041 int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2042 {
2043 u32 ecx = kvm_rcx_read(vcpu);
2044 u64 data = kvm_read_edx_eax(vcpu);
2045 int r;
2046
2047 r = kvm_set_msr_with_filter(vcpu, ecx, data);
2048
2049 if (!r) {
2050 trace_kvm_msr_write(ecx, data);
2051 } else {
2052 /* MSR write failed? See if we should ask user space */
2053 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2054 complete_fast_msr_access, r))
2055 return 0;
2056 /* Signal all other negative errors to userspace */
2057 if (r < 0)
2058 return r;
2059 trace_kvm_msr_write_ex(ecx, data);
2060 }
2061
2062 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
2063 }
2064 EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2065
kvm_emulate_as_nop(struct kvm_vcpu * vcpu)2066 int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2067 {
2068 return kvm_skip_emulated_instruction(vcpu);
2069 }
2070 EXPORT_SYMBOL_GPL(kvm_emulate_as_nop);
2071
kvm_emulate_invd(struct kvm_vcpu * vcpu)2072 int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2073 {
2074 /* Treat an INVD instruction as a NOP and just skip it. */
2075 return kvm_emulate_as_nop(vcpu);
2076 }
2077 EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2078
kvm_handle_invalid_op(struct kvm_vcpu * vcpu)2079 int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2080 {
2081 kvm_queue_exception(vcpu, UD_VECTOR);
2082 return 1;
2083 }
2084 EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2085
2086
kvm_emulate_monitor_mwait(struct kvm_vcpu * vcpu,const char * insn)2087 static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
2088 {
2089 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
2090 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2091 return kvm_handle_invalid_op(vcpu);
2092
2093 pr_warn_once("kvm: %s instruction emulated as NOP!\n", insn);
2094 return kvm_emulate_as_nop(vcpu);
2095 }
kvm_emulate_mwait(struct kvm_vcpu * vcpu)2096 int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2097 {
2098 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2099 }
2100 EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2101
kvm_emulate_monitor(struct kvm_vcpu * vcpu)2102 int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2103 {
2104 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2105 }
2106 EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2107
kvm_vcpu_exit_request(struct kvm_vcpu * vcpu)2108 static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
2109 {
2110 xfer_to_guest_mode_prepare();
2111 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
2112 xfer_to_guest_mode_work_pending();
2113 }
2114
2115 /*
2116 * The fast path for frequent and performance sensitive wrmsr emulation,
2117 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2118 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2119 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2120 * other cases which must be called after interrupts are enabled on the host.
2121 */
handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu * vcpu,u64 data)2122 static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2123 {
2124 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2125 return 1;
2126
2127 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
2128 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2129 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
2130 ((u32)(data >> 32) != X2APIC_BROADCAST))
2131 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
2132
2133 return 1;
2134 }
2135
handle_fastpath_set_tscdeadline(struct kvm_vcpu * vcpu,u64 data)2136 static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2137 {
2138 if (!kvm_can_use_hv_timer(vcpu))
2139 return 1;
2140
2141 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2142 return 0;
2143 }
2144
handle_fastpath_set_msr_irqoff(struct kvm_vcpu * vcpu)2145 fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
2146 {
2147 u32 msr = kvm_rcx_read(vcpu);
2148 u64 data;
2149 fastpath_t ret = EXIT_FASTPATH_NONE;
2150
2151 switch (msr) {
2152 case APIC_BASE_MSR + (APIC_ICR >> 4):
2153 data = kvm_read_edx_eax(vcpu);
2154 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2155 kvm_skip_emulated_instruction(vcpu);
2156 ret = EXIT_FASTPATH_EXIT_HANDLED;
2157 }
2158 break;
2159 case MSR_IA32_TSC_DEADLINE:
2160 data = kvm_read_edx_eax(vcpu);
2161 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2162 kvm_skip_emulated_instruction(vcpu);
2163 ret = EXIT_FASTPATH_REENTER_GUEST;
2164 }
2165 break;
2166 default:
2167 break;
2168 }
2169
2170 if (ret != EXIT_FASTPATH_NONE)
2171 trace_kvm_msr_write(msr, data);
2172
2173 return ret;
2174 }
2175 EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2176
2177 /*
2178 * Adapt set_msr() to msr_io()'s calling convention
2179 */
do_get_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2180 static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2181 {
2182 return kvm_get_msr_ignored_check(vcpu, index, data, true);
2183 }
2184
do_set_msr(struct kvm_vcpu * vcpu,unsigned index,u64 * data)2185 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2186 {
2187 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
2188 }
2189
2190 #ifdef CONFIG_X86_64
2191 struct pvclock_clock {
2192 int vclock_mode;
2193 u64 cycle_last;
2194 u64 mask;
2195 u32 mult;
2196 u32 shift;
2197 u64 base_cycles;
2198 u64 offset;
2199 };
2200
2201 struct pvclock_gtod_data {
2202 seqcount_t seq;
2203
2204 struct pvclock_clock clock; /* extract of a clocksource struct */
2205 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
2206
2207 ktime_t offs_boot;
2208 u64 wall_time_sec;
2209 };
2210
2211 static struct pvclock_gtod_data pvclock_gtod_data;
2212
update_pvclock_gtod(struct timekeeper * tk)2213 static void update_pvclock_gtod(struct timekeeper *tk)
2214 {
2215 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2216
2217 write_seqcount_begin(&vdata->seq);
2218
2219 /* copy pvclock gtod data */
2220 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
2221 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2222 vdata->clock.mask = tk->tkr_mono.mask;
2223 vdata->clock.mult = tk->tkr_mono.mult;
2224 vdata->clock.shift = tk->tkr_mono.shift;
2225 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2226 vdata->clock.offset = tk->tkr_mono.base;
2227
2228 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
2229 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2230 vdata->raw_clock.mask = tk->tkr_raw.mask;
2231 vdata->raw_clock.mult = tk->tkr_raw.mult;
2232 vdata->raw_clock.shift = tk->tkr_raw.shift;
2233 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2234 vdata->raw_clock.offset = tk->tkr_raw.base;
2235
2236 vdata->wall_time_sec = tk->xtime_sec;
2237
2238 vdata->offs_boot = tk->offs_boot;
2239
2240 write_seqcount_end(&vdata->seq);
2241 }
2242
get_kvmclock_base_ns(void)2243 static s64 get_kvmclock_base_ns(void)
2244 {
2245 /* Count up from boot time, but with the frequency of the raw clock. */
2246 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2247 }
2248 #else
get_kvmclock_base_ns(void)2249 static s64 get_kvmclock_base_ns(void)
2250 {
2251 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2252 return ktime_get_boottime_ns();
2253 }
2254 #endif
2255
kvm_write_wall_clock(struct kvm * kvm,gpa_t wall_clock,int sec_hi_ofs)2256 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
2257 {
2258 int version;
2259 int r;
2260 struct pvclock_wall_clock wc;
2261 u32 wc_sec_hi;
2262 u64 wall_nsec;
2263
2264 if (!wall_clock)
2265 return;
2266
2267 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2268 if (r)
2269 return;
2270
2271 if (version & 1)
2272 ++version; /* first time write, random junk */
2273
2274 ++version;
2275
2276 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2277 return;
2278
2279 /*
2280 * The guest calculates current wall clock time by adding
2281 * system time (updated by kvm_guest_time_update below) to the
2282 * wall clock specified here. We do the reverse here.
2283 */
2284 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
2285
2286 wc.nsec = do_div(wall_nsec, 1000000000);
2287 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
2288 wc.version = version;
2289
2290 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2291
2292 if (sec_hi_ofs) {
2293 wc_sec_hi = wall_nsec >> 32;
2294 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2295 &wc_sec_hi, sizeof(wc_sec_hi));
2296 }
2297
2298 version++;
2299 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
2300 }
2301
kvm_write_system_time(struct kvm_vcpu * vcpu,gpa_t system_time,bool old_msr,bool host_initiated)2302 static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2303 bool old_msr, bool host_initiated)
2304 {
2305 struct kvm_arch *ka = &vcpu->kvm->arch;
2306
2307 if (vcpu->vcpu_id == 0 && !host_initiated) {
2308 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
2309 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2310
2311 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2312 }
2313
2314 vcpu->arch.time = system_time;
2315 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2316
2317 /* we verify if the enable bit is set... */
2318 if (system_time & 1) {
2319 kvm_gpc_activate(vcpu->kvm, &vcpu->arch.pv_time, vcpu,
2320 KVM_HOST_USES_PFN, system_time & ~1ULL,
2321 sizeof(struct pvclock_vcpu_time_info));
2322 } else {
2323 kvm_gpc_deactivate(vcpu->kvm, &vcpu->arch.pv_time);
2324 }
2325
2326 return;
2327 }
2328
div_frac(uint32_t dividend,uint32_t divisor)2329 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2330 {
2331 do_shl32_div32(dividend, divisor);
2332 return dividend;
2333 }
2334
kvm_get_time_scale(uint64_t scaled_hz,uint64_t base_hz,s8 * pshift,u32 * pmultiplier)2335 static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
2336 s8 *pshift, u32 *pmultiplier)
2337 {
2338 uint64_t scaled64;
2339 int32_t shift = 0;
2340 uint64_t tps64;
2341 uint32_t tps32;
2342
2343 tps64 = base_hz;
2344 scaled64 = scaled_hz;
2345 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
2346 tps64 >>= 1;
2347 shift--;
2348 }
2349
2350 tps32 = (uint32_t)tps64;
2351 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2352 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
2353 scaled64 >>= 1;
2354 else
2355 tps32 <<= 1;
2356 shift++;
2357 }
2358
2359 *pshift = shift;
2360 *pmultiplier = div_frac(scaled64, tps32);
2361 }
2362
2363 #ifdef CONFIG_X86_64
2364 static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
2365 #endif
2366
2367 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
2368 static unsigned long max_tsc_khz;
2369
adjust_tsc_khz(u32 khz,s32 ppm)2370 static u32 adjust_tsc_khz(u32 khz, s32 ppm)
2371 {
2372 u64 v = (u64)khz * (1000000 + ppm);
2373 do_div(v, 1000000);
2374 return v;
2375 }
2376
2377 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2378
set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz,bool scale)2379 static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2380 {
2381 u64 ratio;
2382
2383 /* Guest TSC same frequency as host TSC? */
2384 if (!scale) {
2385 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2386 return 0;
2387 }
2388
2389 /* TSC scaling supported? */
2390 if (!kvm_caps.has_tsc_control) {
2391 if (user_tsc_khz > tsc_khz) {
2392 vcpu->arch.tsc_catchup = 1;
2393 vcpu->arch.tsc_always_catchup = 1;
2394 return 0;
2395 } else {
2396 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
2397 return -1;
2398 }
2399 }
2400
2401 /* TSC scaling required - calculate ratio */
2402 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
2403 user_tsc_khz, tsc_khz);
2404
2405 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
2406 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2407 user_tsc_khz);
2408 return -1;
2409 }
2410
2411 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
2412 return 0;
2413 }
2414
kvm_set_tsc_khz(struct kvm_vcpu * vcpu,u32 user_tsc_khz)2415 static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
2416 {
2417 u32 thresh_lo, thresh_hi;
2418 int use_scaling = 0;
2419
2420 /* tsc_khz can be zero if TSC calibration fails */
2421 if (user_tsc_khz == 0) {
2422 /* set tsc_scaling_ratio to a safe value */
2423 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
2424 return -1;
2425 }
2426
2427 /* Compute a scale to convert nanoseconds in TSC cycles */
2428 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
2429 &vcpu->arch.virtual_tsc_shift,
2430 &vcpu->arch.virtual_tsc_mult);
2431 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
2432
2433 /*
2434 * Compute the variation in TSC rate which is acceptable
2435 * within the range of tolerance and decide if the
2436 * rate being applied is within that bounds of the hardware
2437 * rate. If so, no scaling or compensation need be done.
2438 */
2439 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2440 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
2441 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2442 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
2443 use_scaling = 1;
2444 }
2445 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
2446 }
2447
compute_guest_tsc(struct kvm_vcpu * vcpu,s64 kernel_ns)2448 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2449 {
2450 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
2451 vcpu->arch.virtual_tsc_mult,
2452 vcpu->arch.virtual_tsc_shift);
2453 tsc += vcpu->arch.this_tsc_write;
2454 return tsc;
2455 }
2456
2457 #ifdef CONFIG_X86_64
gtod_is_based_on_tsc(int mode)2458 static inline int gtod_is_based_on_tsc(int mode)
2459 {
2460 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
2461 }
2462 #endif
2463
kvm_track_tsc_matching(struct kvm_vcpu * vcpu)2464 static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
2465 {
2466 #ifdef CONFIG_X86_64
2467 bool vcpus_matched;
2468 struct kvm_arch *ka = &vcpu->kvm->arch;
2469 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2470
2471 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2472 atomic_read(&vcpu->kvm->online_vcpus));
2473
2474 /*
2475 * Once the masterclock is enabled, always perform request in
2476 * order to update it.
2477 *
2478 * In order to enable masterclock, the host clocksource must be TSC
2479 * and the vcpus need to have matched TSCs. When that happens,
2480 * perform request to enable masterclock.
2481 */
2482 if (ka->use_master_clock ||
2483 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
2484 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2485
2486 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2487 atomic_read(&vcpu->kvm->online_vcpus),
2488 ka->use_master_clock, gtod->clock.vclock_mode);
2489 #endif
2490 }
2491
2492 /*
2493 * Multiply tsc by a fixed point number represented by ratio.
2494 *
2495 * The most significant 64-N bits (mult) of ratio represent the
2496 * integral part of the fixed point number; the remaining N bits
2497 * (frac) represent the fractional part, ie. ratio represents a fixed
2498 * point number (mult + frac * 2^(-N)).
2499 *
2500 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
2501 */
__scale_tsc(u64 ratio,u64 tsc)2502 static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2503 {
2504 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
2505 }
2506
kvm_scale_tsc(u64 tsc,u64 ratio)2507 u64 kvm_scale_tsc(u64 tsc, u64 ratio)
2508 {
2509 u64 _tsc = tsc;
2510
2511 if (ratio != kvm_caps.default_tsc_scaling_ratio)
2512 _tsc = __scale_tsc(ratio, tsc);
2513
2514 return _tsc;
2515 }
2516 EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2517
kvm_compute_l1_tsc_offset(struct kvm_vcpu * vcpu,u64 target_tsc)2518 static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2519 {
2520 u64 tsc;
2521
2522 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
2523
2524 return target_tsc - tsc;
2525 }
2526
kvm_read_l1_tsc(struct kvm_vcpu * vcpu,u64 host_tsc)2527 u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2528 {
2529 return vcpu->arch.l1_tsc_offset +
2530 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
2531 }
2532 EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2533
kvm_calc_nested_tsc_offset(u64 l1_offset,u64 l2_offset,u64 l2_multiplier)2534 u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2535 {
2536 u64 nested_offset;
2537
2538 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
2539 nested_offset = l1_offset;
2540 else
2541 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
2542 kvm_caps.tsc_scaling_ratio_frac_bits);
2543
2544 nested_offset += l2_offset;
2545 return nested_offset;
2546 }
2547 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2548
kvm_calc_nested_tsc_multiplier(u64 l1_multiplier,u64 l2_multiplier)2549 u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2550 {
2551 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
2552 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
2553 kvm_caps.tsc_scaling_ratio_frac_bits);
2554
2555 return l1_multiplier;
2556 }
2557 EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2558
kvm_vcpu_write_tsc_offset(struct kvm_vcpu * vcpu,u64 l1_offset)2559 static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
2560 {
2561 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2562 vcpu->arch.l1_tsc_offset,
2563 l1_offset);
2564
2565 vcpu->arch.l1_tsc_offset = l1_offset;
2566
2567 /*
2568 * If we are here because L1 chose not to trap WRMSR to TSC then
2569 * according to the spec this should set L1's TSC (as opposed to
2570 * setting L1's offset for L2).
2571 */
2572 if (is_guest_mode(vcpu))
2573 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2574 l1_offset,
2575 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2576 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2577 else
2578 vcpu->arch.tsc_offset = l1_offset;
2579
2580 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
2581 }
2582
kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu * vcpu,u64 l1_multiplier)2583 static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2584 {
2585 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2586
2587 /* Userspace is changing the multiplier while L2 is active */
2588 if (is_guest_mode(vcpu))
2589 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2590 l1_multiplier,
2591 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2592 else
2593 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2594
2595 if (kvm_caps.has_tsc_control)
2596 static_call(kvm_x86_write_tsc_multiplier)(
2597 vcpu, vcpu->arch.tsc_scaling_ratio);
2598 }
2599
kvm_check_tsc_unstable(void)2600 static inline bool kvm_check_tsc_unstable(void)
2601 {
2602 #ifdef CONFIG_X86_64
2603 /*
2604 * TSC is marked unstable when we're running on Hyper-V,
2605 * 'TSC page' clocksource is good.
2606 */
2607 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
2608 return false;
2609 #endif
2610 return check_tsc_unstable();
2611 }
2612
2613 /*
2614 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2615 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2616 * participates in.
2617 */
__kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 offset,u64 tsc,u64 ns,bool matched)2618 static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2619 u64 ns, bool matched)
2620 {
2621 struct kvm *kvm = vcpu->kvm;
2622
2623 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2624
2625 /*
2626 * We also track th most recent recorded KHZ, write and time to
2627 * allow the matching interval to be extended at each write.
2628 */
2629 kvm->arch.last_tsc_nsec = ns;
2630 kvm->arch.last_tsc_write = tsc;
2631 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
2632 kvm->arch.last_tsc_offset = offset;
2633
2634 vcpu->arch.last_guest_tsc = tsc;
2635
2636 kvm_vcpu_write_tsc_offset(vcpu, offset);
2637
2638 if (!matched) {
2639 /*
2640 * We split periods of matched TSC writes into generations.
2641 * For each generation, we track the original measured
2642 * nanosecond time, offset, and write, so if TSCs are in
2643 * sync, we can match exact offset, and if not, we can match
2644 * exact software computation in compute_guest_tsc()
2645 *
2646 * These values are tracked in kvm->arch.cur_xxx variables.
2647 */
2648 kvm->arch.cur_tsc_generation++;
2649 kvm->arch.cur_tsc_nsec = ns;
2650 kvm->arch.cur_tsc_write = tsc;
2651 kvm->arch.cur_tsc_offset = offset;
2652 kvm->arch.nr_vcpus_matched_tsc = 0;
2653 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2654 kvm->arch.nr_vcpus_matched_tsc++;
2655 }
2656
2657 /* Keep track of which generation this VCPU has synchronized to */
2658 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2659 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2660 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2661
2662 kvm_track_tsc_matching(vcpu);
2663 }
2664
kvm_synchronize_tsc(struct kvm_vcpu * vcpu,u64 data)2665 static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
2666 {
2667 struct kvm *kvm = vcpu->kvm;
2668 u64 offset, ns, elapsed;
2669 unsigned long flags;
2670 bool matched = false;
2671 bool synchronizing = false;
2672
2673 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
2674 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2675 ns = get_kvmclock_base_ns();
2676 elapsed = ns - kvm->arch.last_tsc_nsec;
2677
2678 if (vcpu->arch.virtual_tsc_khz) {
2679 if (data == 0) {
2680 /*
2681 * detection of vcpu initialization -- need to sync
2682 * with other vCPUs. This particularly helps to keep
2683 * kvm_clock stable after CPU hotplug
2684 */
2685 synchronizing = true;
2686 } else {
2687 u64 tsc_exp = kvm->arch.last_tsc_write +
2688 nsec_to_cycles(vcpu, elapsed);
2689 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2690 /*
2691 * Special case: TSC write with a small delta (1 second)
2692 * of virtual cycle time against real time is
2693 * interpreted as an attempt to synchronize the CPU.
2694 */
2695 synchronizing = data < tsc_exp + tsc_hz &&
2696 data + tsc_hz > tsc_exp;
2697 }
2698 }
2699
2700 /*
2701 * For a reliable TSC, we can match TSC offsets, and for an unstable
2702 * TSC, we add elapsed time in this computation. We could let the
2703 * compensation code attempt to catch up if we fall behind, but
2704 * it's better to try to match offsets from the beginning.
2705 */
2706 if (synchronizing &&
2707 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
2708 if (!kvm_check_tsc_unstable()) {
2709 offset = kvm->arch.cur_tsc_offset;
2710 } else {
2711 u64 delta = nsec_to_cycles(vcpu, elapsed);
2712 data += delta;
2713 offset = kvm_compute_l1_tsc_offset(vcpu, data);
2714 }
2715 matched = true;
2716 }
2717
2718 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
2719 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
2720 }
2721
adjust_tsc_offset_guest(struct kvm_vcpu * vcpu,s64 adjustment)2722 static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2723 s64 adjustment)
2724 {
2725 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
2726 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
2727 }
2728
adjust_tsc_offset_host(struct kvm_vcpu * vcpu,s64 adjustment)2729 static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2730 {
2731 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
2732 WARN_ON(adjustment < 0);
2733 adjustment = kvm_scale_tsc((u64) adjustment,
2734 vcpu->arch.l1_tsc_scaling_ratio);
2735 adjust_tsc_offset_guest(vcpu, adjustment);
2736 }
2737
2738 #ifdef CONFIG_X86_64
2739
read_tsc(void)2740 static u64 read_tsc(void)
2741 {
2742 u64 ret = (u64)rdtsc_ordered();
2743 u64 last = pvclock_gtod_data.clock.cycle_last;
2744
2745 if (likely(ret >= last))
2746 return ret;
2747
2748 /*
2749 * GCC likes to generate cmov here, but this branch is extremely
2750 * predictable (it's just a function of time and the likely is
2751 * very likely) and there's a data dependence, so force GCC
2752 * to generate a branch instead. I don't barrier() because
2753 * we don't actually need a barrier, and if this function
2754 * ever gets inlined it will generate worse code.
2755 */
2756 asm volatile ("");
2757 return last;
2758 }
2759
vgettsc(struct pvclock_clock * clock,u64 * tsc_timestamp,int * mode)2760 static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2761 int *mode)
2762 {
2763 long v;
2764 u64 tsc_pg_val;
2765
2766 switch (clock->vclock_mode) {
2767 case VDSO_CLOCKMODE_HVCLOCK:
2768 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2769 tsc_timestamp);
2770 if (tsc_pg_val != U64_MAX) {
2771 /* TSC page valid */
2772 *mode = VDSO_CLOCKMODE_HVCLOCK;
2773 v = (tsc_pg_val - clock->cycle_last) &
2774 clock->mask;
2775 } else {
2776 /* TSC page invalid */
2777 *mode = VDSO_CLOCKMODE_NONE;
2778 }
2779 break;
2780 case VDSO_CLOCKMODE_TSC:
2781 *mode = VDSO_CLOCKMODE_TSC;
2782 *tsc_timestamp = read_tsc();
2783 v = (*tsc_timestamp - clock->cycle_last) &
2784 clock->mask;
2785 break;
2786 default:
2787 *mode = VDSO_CLOCKMODE_NONE;
2788 }
2789
2790 if (*mode == VDSO_CLOCKMODE_NONE)
2791 *tsc_timestamp = v = 0;
2792
2793 return v * clock->mult;
2794 }
2795
do_monotonic_raw(s64 * t,u64 * tsc_timestamp)2796 static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
2797 {
2798 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2799 unsigned long seq;
2800 int mode;
2801 u64 ns;
2802
2803 do {
2804 seq = read_seqcount_begin(>od->seq);
2805 ns = gtod->raw_clock.base_cycles;
2806 ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode);
2807 ns >>= gtod->raw_clock.shift;
2808 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
2809 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2810 *t = ns;
2811
2812 return mode;
2813 }
2814
do_realtime(struct timespec64 * ts,u64 * tsc_timestamp)2815 static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
2816 {
2817 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2818 unsigned long seq;
2819 int mode;
2820 u64 ns;
2821
2822 do {
2823 seq = read_seqcount_begin(>od->seq);
2824 ts->tv_sec = gtod->wall_time_sec;
2825 ns = gtod->clock.base_cycles;
2826 ns += vgettsc(>od->clock, tsc_timestamp, &mode);
2827 ns >>= gtod->clock.shift;
2828 } while (unlikely(read_seqcount_retry(>od->seq, seq)));
2829
2830 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2831 ts->tv_nsec = ns;
2832
2833 return mode;
2834 }
2835
2836 /* returns true if host is using TSC based clocksource */
kvm_get_time_and_clockread(s64 * kernel_ns,u64 * tsc_timestamp)2837 static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
2838 {
2839 /* checked again under seqlock below */
2840 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2841 return false;
2842
2843 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
2844 tsc_timestamp));
2845 }
2846
2847 /* returns true if host is using TSC based clocksource */
kvm_get_walltime_and_clockread(struct timespec64 * ts,u64 * tsc_timestamp)2848 static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
2849 u64 *tsc_timestamp)
2850 {
2851 /* checked again under seqlock below */
2852 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
2853 return false;
2854
2855 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
2856 }
2857 #endif
2858
2859 /*
2860 *
2861 * Assuming a stable TSC across physical CPUS, and a stable TSC
2862 * across virtual CPUs, the following condition is possible.
2863 * Each numbered line represents an event visible to both
2864 * CPUs at the next numbered event.
2865 *
2866 * "timespecX" represents host monotonic time. "tscX" represents
2867 * RDTSC value.
2868 *
2869 * VCPU0 on CPU0 | VCPU1 on CPU1
2870 *
2871 * 1. read timespec0,tsc0
2872 * 2. | timespec1 = timespec0 + N
2873 * | tsc1 = tsc0 + M
2874 * 3. transition to guest | transition to guest
2875 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2876 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2877 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2878 *
2879 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2880 *
2881 * - ret0 < ret1
2882 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2883 * ...
2884 * - 0 < N - M => M < N
2885 *
2886 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2887 * always the case (the difference between two distinct xtime instances
2888 * might be smaller then the difference between corresponding TSC reads,
2889 * when updating guest vcpus pvclock areas).
2890 *
2891 * To avoid that problem, do not allow visibility of distinct
2892 * system_timestamp/tsc_timestamp values simultaneously: use a master
2893 * copy of host monotonic time values. Update that master copy
2894 * in lockstep.
2895 *
2896 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
2897 *
2898 */
2899
pvclock_update_vm_gtod_copy(struct kvm * kvm)2900 static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2901 {
2902 #ifdef CONFIG_X86_64
2903 struct kvm_arch *ka = &kvm->arch;
2904 int vclock_mode;
2905 bool host_tsc_clocksource, vcpus_matched;
2906
2907 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2908 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2909 atomic_read(&kvm->online_vcpus));
2910
2911 /*
2912 * If the host uses TSC clock, then passthrough TSC as stable
2913 * to the guest.
2914 */
2915 host_tsc_clocksource = kvm_get_time_and_clockread(
2916 &ka->master_kernel_ns,
2917 &ka->master_cycle_now);
2918
2919 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
2920 && !ka->backwards_tsc_observed
2921 && !ka->boot_vcpu_runs_old_kvmclock;
2922
2923 if (ka->use_master_clock)
2924 atomic_set(&kvm_guest_has_master_clock, 1);
2925
2926 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
2927 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2928 vcpus_matched);
2929 #endif
2930 }
2931
kvm_make_mclock_inprogress_request(struct kvm * kvm)2932 static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2933 {
2934 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2935 }
2936
__kvm_start_pvclock_update(struct kvm * kvm)2937 static void __kvm_start_pvclock_update(struct kvm *kvm)
2938 {
2939 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2940 write_seqcount_begin(&kvm->arch.pvclock_sc);
2941 }
2942
kvm_start_pvclock_update(struct kvm * kvm)2943 static void kvm_start_pvclock_update(struct kvm *kvm)
2944 {
2945 kvm_make_mclock_inprogress_request(kvm);
2946
2947 /* no guest entries from this point */
2948 __kvm_start_pvclock_update(kvm);
2949 }
2950
kvm_end_pvclock_update(struct kvm * kvm)2951 static void kvm_end_pvclock_update(struct kvm *kvm)
2952 {
2953 struct kvm_arch *ka = &kvm->arch;
2954 struct kvm_vcpu *vcpu;
2955 unsigned long i;
2956
2957 write_seqcount_end(&ka->pvclock_sc);
2958 raw_spin_unlock_irq(&ka->tsc_write_lock);
2959 kvm_for_each_vcpu(i, vcpu, kvm)
2960 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2961
2962 /* guest entries allowed */
2963 kvm_for_each_vcpu(i, vcpu, kvm)
2964 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2965 }
2966
kvm_update_masterclock(struct kvm * kvm)2967 static void kvm_update_masterclock(struct kvm *kvm)
2968 {
2969 kvm_hv_request_tsc_page_update(kvm);
2970 kvm_start_pvclock_update(kvm);
2971 pvclock_update_vm_gtod_copy(kvm);
2972 kvm_end_pvclock_update(kvm);
2973 }
2974
2975 /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
__get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)2976 static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
2977 {
2978 struct kvm_arch *ka = &kvm->arch;
2979 struct pvclock_vcpu_time_info hv_clock;
2980
2981 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2982 get_cpu();
2983
2984 data->flags = 0;
2985 if (ka->use_master_clock && __this_cpu_read(cpu_tsc_khz)) {
2986 #ifdef CONFIG_X86_64
2987 struct timespec64 ts;
2988
2989 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
2990 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
2991 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
2992 } else
2993 #endif
2994 data->host_tsc = rdtsc();
2995
2996 data->flags |= KVM_CLOCK_TSC_STABLE;
2997 hv_clock.tsc_timestamp = ka->master_cycle_now;
2998 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2999 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
3000 &hv_clock.tsc_shift,
3001 &hv_clock.tsc_to_system_mul);
3002 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
3003 } else {
3004 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3005 }
3006
3007 put_cpu();
3008 }
3009
get_kvmclock(struct kvm * kvm,struct kvm_clock_data * data)3010 static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3011 {
3012 struct kvm_arch *ka = &kvm->arch;
3013 unsigned seq;
3014
3015 do {
3016 seq = read_seqcount_begin(&ka->pvclock_sc);
3017 __get_kvmclock(kvm, data);
3018 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3019 }
3020
get_kvmclock_ns(struct kvm * kvm)3021 u64 get_kvmclock_ns(struct kvm *kvm)
3022 {
3023 struct kvm_clock_data data;
3024
3025 get_kvmclock(kvm, &data);
3026 return data.clock;
3027 }
3028
kvm_setup_guest_pvclock(struct kvm_vcpu * v,struct gfn_to_pfn_cache * gpc,unsigned int offset)3029 static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3030 struct gfn_to_pfn_cache *gpc,
3031 unsigned int offset)
3032 {
3033 struct kvm_vcpu_arch *vcpu = &v->arch;
3034 struct pvclock_vcpu_time_info *guest_hv_clock;
3035 unsigned long flags;
3036
3037 read_lock_irqsave(&gpc->lock, flags);
3038 while (!kvm_gfn_to_pfn_cache_check(v->kvm, gpc, gpc->gpa,
3039 offset + sizeof(*guest_hv_clock))) {
3040 read_unlock_irqrestore(&gpc->lock, flags);
3041
3042 if (kvm_gfn_to_pfn_cache_refresh(v->kvm, gpc, gpc->gpa,
3043 offset + sizeof(*guest_hv_clock)))
3044 return;
3045
3046 read_lock_irqsave(&gpc->lock, flags);
3047 }
3048
3049 guest_hv_clock = (void *)(gpc->khva + offset);
3050
3051 /*
3052 * This VCPU is paused, but it's legal for a guest to read another
3053 * VCPU's kvmclock, so we really have to follow the specification where
3054 * it says that version is odd if data is being modified, and even after
3055 * it is consistent.
3056 */
3057
3058 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
3059 smp_wmb();
3060
3061 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
3062 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
3063
3064 if (vcpu->pvclock_set_guest_stopped_request) {
3065 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3066 vcpu->pvclock_set_guest_stopped_request = false;
3067 }
3068
3069 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3070 smp_wmb();
3071
3072 guest_hv_clock->version = ++vcpu->hv_clock.version;
3073
3074 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3075 read_unlock_irqrestore(&gpc->lock, flags);
3076
3077 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
3078 }
3079
kvm_guest_time_update(struct kvm_vcpu * v)3080 static int kvm_guest_time_update(struct kvm_vcpu *v)
3081 {
3082 unsigned long flags, tgt_tsc_khz;
3083 unsigned seq;
3084 struct kvm_vcpu_arch *vcpu = &v->arch;
3085 struct kvm_arch *ka = &v->kvm->arch;
3086 s64 kernel_ns;
3087 u64 tsc_timestamp, host_tsc;
3088 u8 pvclock_flags;
3089 bool use_master_clock;
3090
3091 kernel_ns = 0;
3092 host_tsc = 0;
3093
3094 /*
3095 * If the host uses TSC clock, then passthrough TSC as stable
3096 * to the guest.
3097 */
3098 do {
3099 seq = read_seqcount_begin(&ka->pvclock_sc);
3100 use_master_clock = ka->use_master_clock;
3101 if (use_master_clock) {
3102 host_tsc = ka->master_cycle_now;
3103 kernel_ns = ka->master_kernel_ns;
3104 }
3105 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3106
3107 /* Keep irq disabled to prevent changes to the clock */
3108 local_irq_save(flags);
3109 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
3110 if (unlikely(tgt_tsc_khz == 0)) {
3111 local_irq_restore(flags);
3112 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3113 return 1;
3114 }
3115 if (!use_master_clock) {
3116 host_tsc = rdtsc();
3117 kernel_ns = get_kvmclock_base_ns();
3118 }
3119
3120 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
3121
3122 /*
3123 * We may have to catch up the TSC to match elapsed wall clock
3124 * time for two reasons, even if kvmclock is used.
3125 * 1) CPU could have been running below the maximum TSC rate
3126 * 2) Broken TSC compensation resets the base at each VCPU
3127 * entry to avoid unknown leaps of TSC even when running
3128 * again on the same CPU. This may cause apparent elapsed
3129 * time to disappear, and the guest to stand still or run
3130 * very slowly.
3131 */
3132 if (vcpu->tsc_catchup) {
3133 u64 tsc = compute_guest_tsc(v, kernel_ns);
3134 if (tsc > tsc_timestamp) {
3135 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
3136 tsc_timestamp = tsc;
3137 }
3138 }
3139
3140 local_irq_restore(flags);
3141
3142 /* With all the info we got, fill in the values */
3143
3144 if (kvm_caps.has_tsc_control)
3145 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
3146 v->arch.l1_tsc_scaling_ratio);
3147
3148 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3149 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
3150 &vcpu->hv_clock.tsc_shift,
3151 &vcpu->hv_clock.tsc_to_system_mul);
3152 vcpu->hw_tsc_khz = tgt_tsc_khz;
3153 }
3154
3155 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
3156 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
3157 vcpu->last_guest_tsc = tsc_timestamp;
3158
3159 /* If the host uses TSC clocksource, then it is stable */
3160 pvclock_flags = 0;
3161 if (use_master_clock)
3162 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3163
3164 vcpu->hv_clock.flags = pvclock_flags;
3165
3166 if (vcpu->pv_time.active)
3167 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
3168 if (vcpu->xen.vcpu_info_cache.active)
3169 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3170 offsetof(struct compat_vcpu_info, time));
3171 if (vcpu->xen.vcpu_time_info_cache.active)
3172 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
3173 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
3174 return 0;
3175 }
3176
3177 /*
3178 * kvmclock updates which are isolated to a given vcpu, such as
3179 * vcpu->cpu migration, should not allow system_timestamp from
3180 * the rest of the vcpus to remain static. Otherwise ntp frequency
3181 * correction applies to one vcpu's system_timestamp but not
3182 * the others.
3183 *
3184 * So in those cases, request a kvmclock update for all vcpus.
3185 * We need to rate-limit these requests though, as they can
3186 * considerably slow guests that have a large number of vcpus.
3187 * The time for a remote vcpu to update its kvmclock is bound
3188 * by the delay we use to rate-limit the updates.
3189 */
3190
3191 #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3192
kvmclock_update_fn(struct work_struct * work)3193 static void kvmclock_update_fn(struct work_struct *work)
3194 {
3195 unsigned long i;
3196 struct delayed_work *dwork = to_delayed_work(work);
3197 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3198 kvmclock_update_work);
3199 struct kvm *kvm = container_of(ka, struct kvm, arch);
3200 struct kvm_vcpu *vcpu;
3201
3202 kvm_for_each_vcpu(i, vcpu, kvm) {
3203 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3204 kvm_vcpu_kick(vcpu);
3205 }
3206 }
3207
kvm_gen_kvmclock_update(struct kvm_vcpu * v)3208 static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3209 {
3210 struct kvm *kvm = v->kvm;
3211
3212 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3213 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3214 KVMCLOCK_UPDATE_DELAY);
3215 }
3216
3217 #define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3218
kvmclock_sync_fn(struct work_struct * work)3219 static void kvmclock_sync_fn(struct work_struct *work)
3220 {
3221 struct delayed_work *dwork = to_delayed_work(work);
3222 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3223 kvmclock_sync_work);
3224 struct kvm *kvm = container_of(ka, struct kvm, arch);
3225
3226 if (!kvmclock_periodic_sync)
3227 return;
3228
3229 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3230 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3231 KVMCLOCK_SYNC_PERIOD);
3232 }
3233
3234 /* These helpers are safe iff @msr is known to be an MCx bank MSR. */
is_mci_control_msr(u32 msr)3235 static bool is_mci_control_msr(u32 msr)
3236 {
3237 return (msr & 3) == 0;
3238 }
is_mci_status_msr(u32 msr)3239 static bool is_mci_status_msr(u32 msr)
3240 {
3241 return (msr & 3) == 1;
3242 }
3243
3244 /*
3245 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3246 */
can_set_mci_status(struct kvm_vcpu * vcpu)3247 static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3248 {
3249 /* McStatusWrEn enabled? */
3250 if (guest_cpuid_is_amd_or_hygon(vcpu))
3251 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3252
3253 return false;
3254 }
3255
set_msr_mce(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3256 static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3257 {
3258 u64 mcg_cap = vcpu->arch.mcg_cap;
3259 unsigned bank_num = mcg_cap & 0xff;
3260 u32 msr = msr_info->index;
3261 u64 data = msr_info->data;
3262 u32 offset, last_msr;
3263
3264 switch (msr) {
3265 case MSR_IA32_MCG_STATUS:
3266 vcpu->arch.mcg_status = data;
3267 break;
3268 case MSR_IA32_MCG_CTL:
3269 if (!(mcg_cap & MCG_CTL_P) &&
3270 (data || !msr_info->host_initiated))
3271 return 1;
3272 if (data != 0 && data != ~(u64)0)
3273 return 1;
3274 vcpu->arch.mcg_ctl = data;
3275 break;
3276 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3277 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3278 if (msr > last_msr)
3279 return 1;
3280
3281 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3282 return 1;
3283 /* An attempt to write a 1 to a reserved bit raises #GP */
3284 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3285 return 1;
3286 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3287 last_msr + 1 - MSR_IA32_MC0_CTL2);
3288 vcpu->arch.mci_ctl2_banks[offset] = data;
3289 break;
3290 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3291 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3292 if (msr > last_msr)
3293 return 1;
3294
3295 /*
3296 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3297 * values are architecturally undefined. But, some Linux
3298 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3299 * issue on AMD K8s, allow bit 10 to be clear when setting all
3300 * other bits in order to avoid an uncaught #GP in the guest.
3301 *
3302 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3303 * single-bit ECC data errors.
3304 */
3305 if (is_mci_control_msr(msr) &&
3306 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3307 return 1;
3308
3309 /*
3310 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3311 * AMD-based CPUs allow non-zero values, but if and only if
3312 * HWCR[McStatusWrEn] is set.
3313 */
3314 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3315 data != 0 && !can_set_mci_status(vcpu))
3316 return 1;
3317
3318 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3319 last_msr + 1 - MSR_IA32_MC0_CTL);
3320 vcpu->arch.mce_banks[offset] = data;
3321 break;
3322 default:
3323 return 1;
3324 }
3325 return 0;
3326 }
3327
kvm_pv_async_pf_enabled(struct kvm_vcpu * vcpu)3328 static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3329 {
3330 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3331
3332 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3333 }
3334
kvm_pv_enable_async_pf(struct kvm_vcpu * vcpu,u64 data)3335 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3336 {
3337 gpa_t gpa = data & ~0x3f;
3338
3339 /* Bits 4:5 are reserved, Should be zero */
3340 if (data & 0x30)
3341 return 1;
3342
3343 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3344 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3345 return 1;
3346
3347 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3348 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3349 return 1;
3350
3351 if (!lapic_in_kernel(vcpu))
3352 return data ? 1 : 0;
3353
3354 vcpu->arch.apf.msr_en_val = data;
3355
3356 if (!kvm_pv_async_pf_enabled(vcpu)) {
3357 kvm_clear_async_pf_completion_queue(vcpu);
3358 kvm_async_pf_hash_reset(vcpu);
3359 return 0;
3360 }
3361
3362 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
3363 sizeof(u64)))
3364 return 1;
3365
3366 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
3367 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
3368
3369 kvm_async_pf_wakeup_all(vcpu);
3370
3371 return 0;
3372 }
3373
kvm_pv_enable_async_pf_int(struct kvm_vcpu * vcpu,u64 data)3374 static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3375 {
3376 /* Bits 8-63 are reserved */
3377 if (data >> 8)
3378 return 1;
3379
3380 if (!lapic_in_kernel(vcpu))
3381 return 1;
3382
3383 vcpu->arch.apf.msr_int_val = data;
3384
3385 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3386
3387 return 0;
3388 }
3389
kvmclock_reset(struct kvm_vcpu * vcpu)3390 static void kvmclock_reset(struct kvm_vcpu *vcpu)
3391 {
3392 kvm_gpc_deactivate(vcpu->kvm, &vcpu->arch.pv_time);
3393 vcpu->arch.time = 0;
3394 }
3395
kvm_vcpu_flush_tlb_all(struct kvm_vcpu * vcpu)3396 static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
3397 {
3398 ++vcpu->stat.tlb_flush;
3399 static_call(kvm_x86_flush_tlb_all)(vcpu);
3400 }
3401
kvm_vcpu_flush_tlb_guest(struct kvm_vcpu * vcpu)3402 static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3403 {
3404 ++vcpu->stat.tlb_flush;
3405
3406 if (!tdp_enabled) {
3407 /*
3408 * A TLB flush on behalf of the guest is equivalent to
3409 * INVPCID(all), toggling CR4.PGE, etc., which requires
3410 * a forced sync of the shadow page tables. Ensure all the
3411 * roots are synced and the guest TLB in hardware is clean.
3412 */
3413 kvm_mmu_sync_roots(vcpu);
3414 kvm_mmu_sync_prev_roots(vcpu);
3415 }
3416
3417 static_call(kvm_x86_flush_tlb_guest)(vcpu);
3418 }
3419
3420
kvm_vcpu_flush_tlb_current(struct kvm_vcpu * vcpu)3421 static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3422 {
3423 ++vcpu->stat.tlb_flush;
3424 static_call(kvm_x86_flush_tlb_current)(vcpu);
3425 }
3426
3427 /*
3428 * Service "local" TLB flush requests, which are specific to the current MMU
3429 * context. In addition to the generic event handling in vcpu_enter_guest(),
3430 * TLB flushes that are targeted at an MMU context also need to be serviced
3431 * prior before nested VM-Enter/VM-Exit.
3432 */
kvm_service_local_tlb_flush_requests(struct kvm_vcpu * vcpu)3433 void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3434 {
3435 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3436 kvm_vcpu_flush_tlb_current(vcpu);
3437
3438 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3439 kvm_vcpu_flush_tlb_guest(vcpu);
3440 }
3441 EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3442
record_steal_time(struct kvm_vcpu * vcpu)3443 static void record_steal_time(struct kvm_vcpu *vcpu)
3444 {
3445 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3446 struct kvm_steal_time __user *st;
3447 struct kvm_memslots *slots;
3448 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
3449 u64 steal;
3450 u32 version;
3451
3452 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3453 kvm_xen_runstate_set_running(vcpu);
3454 return;
3455 }
3456
3457 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3458 return;
3459
3460 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
3461 return;
3462
3463 slots = kvm_memslots(vcpu->kvm);
3464
3465 if (unlikely(slots->generation != ghc->generation ||
3466 gpa != ghc->gpa ||
3467 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
3468 /* We rely on the fact that it fits in a single page. */
3469 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3470
3471 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
3472 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3473 return;
3474 }
3475
3476 st = (struct kvm_steal_time __user *)ghc->hva;
3477 /*
3478 * Doing a TLB flush here, on the guest's behalf, can avoid
3479 * expensive IPIs.
3480 */
3481 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
3482 u8 st_preempted = 0;
3483 int err = -EFAULT;
3484
3485 if (!user_access_begin(st, sizeof(*st)))
3486 return;
3487
3488 asm volatile("1: xchgb %0, %2\n"
3489 "xor %1, %1\n"
3490 "2:\n"
3491 _ASM_EXTABLE_UA(1b, 2b)
3492 : "+q" (st_preempted),
3493 "+&r" (err),
3494 "+m" (st->preempted));
3495 if (err)
3496 goto out;
3497
3498 user_access_end();
3499
3500 vcpu->arch.st.preempted = 0;
3501
3502 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
3503 st_preempted & KVM_VCPU_FLUSH_TLB);
3504 if (st_preempted & KVM_VCPU_FLUSH_TLB)
3505 kvm_vcpu_flush_tlb_guest(vcpu);
3506
3507 if (!user_access_begin(st, sizeof(*st)))
3508 goto dirty;
3509 } else {
3510 if (!user_access_begin(st, sizeof(*st)))
3511 return;
3512
3513 unsafe_put_user(0, &st->preempted, out);
3514 vcpu->arch.st.preempted = 0;
3515 }
3516
3517 unsafe_get_user(version, &st->version, out);
3518 if (version & 1)
3519 version += 1; /* first time write, random junk */
3520
3521 version += 1;
3522 unsafe_put_user(version, &st->version, out);
3523
3524 smp_wmb();
3525
3526 unsafe_get_user(steal, &st->steal, out);
3527 steal += current->sched_info.run_delay -
3528 vcpu->arch.st.last_steal;
3529 vcpu->arch.st.last_steal = current->sched_info.run_delay;
3530 unsafe_put_user(steal, &st->steal, out);
3531
3532 version += 1;
3533 unsafe_put_user(version, &st->version, out);
3534
3535 out:
3536 user_access_end();
3537 dirty:
3538 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
3539 }
3540
kvm_set_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3541 int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3542 {
3543 bool pr = false;
3544 u32 msr = msr_info->index;
3545 u64 data = msr_info->data;
3546
3547 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
3548 return kvm_xen_write_hypercall_page(vcpu, data);
3549
3550 switch (msr) {
3551 case MSR_AMD64_NB_CFG:
3552 case MSR_IA32_UCODE_WRITE:
3553 case MSR_VM_HSAVE_PA:
3554 case MSR_AMD64_PATCH_LOADER:
3555 case MSR_AMD64_BU_CFG2:
3556 case MSR_AMD64_DC_CFG:
3557 case MSR_F15H_EX_CFG:
3558 break;
3559
3560 case MSR_IA32_UCODE_REV:
3561 if (msr_info->host_initiated)
3562 vcpu->arch.microcode_version = data;
3563 break;
3564 case MSR_IA32_ARCH_CAPABILITIES:
3565 if (!msr_info->host_initiated)
3566 return 1;
3567 vcpu->arch.arch_capabilities = data;
3568 break;
3569 case MSR_IA32_PERF_CAPABILITIES: {
3570 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3571
3572 if (!msr_info->host_initiated)
3573 return 1;
3574 if (kvm_get_msr_feature(&msr_ent))
3575 return 1;
3576 if (data & ~msr_ent.data)
3577 return 1;
3578
3579 vcpu->arch.perf_capabilities = data;
3580 kvm_pmu_refresh(vcpu);
3581 return 0;
3582 }
3583 case MSR_EFER:
3584 return set_efer(vcpu, msr_info);
3585 case MSR_K7_HWCR:
3586 data &= ~(u64)0x40; /* ignore flush filter disable */
3587 data &= ~(u64)0x100; /* ignore ignne emulation enable */
3588 data &= ~(u64)0x8; /* ignore TLB cache disable */
3589
3590 /* Handle McStatusWrEn */
3591 if (data == BIT_ULL(18)) {
3592 vcpu->arch.msr_hwcr = data;
3593 } else if (data != 0) {
3594 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3595 data);
3596 return 1;
3597 }
3598 break;
3599 case MSR_FAM10H_MMIO_CONF_BASE:
3600 if (data != 0) {
3601 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3602 "0x%llx\n", data);
3603 return 1;
3604 }
3605 break;
3606 case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
3607 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
3608 return kvm_mtrr_set_msr(vcpu, msr, data);
3609 case MSR_IA32_APICBASE:
3610 return kvm_set_apic_base(vcpu, msr_info);
3611 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
3612 return kvm_x2apic_msr_write(vcpu, msr, data);
3613 case MSR_IA32_TSC_DEADLINE:
3614 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3615 break;
3616 case MSR_IA32_TSC_ADJUST:
3617 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
3618 if (!msr_info->host_initiated) {
3619 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
3620 adjust_tsc_offset_guest(vcpu, adj);
3621 /* Before back to guest, tsc_timestamp must be adjusted
3622 * as well, otherwise guest's percpu pvclock time could jump.
3623 */
3624 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
3625 }
3626 vcpu->arch.ia32_tsc_adjust_msr = data;
3627 }
3628 break;
3629 case MSR_IA32_MISC_ENABLE: {
3630 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
3631
3632 if (!msr_info->host_initiated) {
3633 /* RO bits */
3634 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3635 return 1;
3636
3637 /* R bits, i.e. writes are ignored, but don't fault. */
3638 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3639 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3640 }
3641
3642 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3643 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3644 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3645 return 1;
3646 vcpu->arch.ia32_misc_enable_msr = data;
3647 kvm_update_cpuid_runtime(vcpu);
3648 } else {
3649 vcpu->arch.ia32_misc_enable_msr = data;
3650 }
3651 break;
3652 }
3653 case MSR_IA32_SMBASE:
3654 if (!msr_info->host_initiated)
3655 return 1;
3656 vcpu->arch.smbase = data;
3657 break;
3658 case MSR_IA32_POWER_CTL:
3659 vcpu->arch.msr_ia32_power_ctl = data;
3660 break;
3661 case MSR_IA32_TSC:
3662 if (msr_info->host_initiated) {
3663 kvm_synchronize_tsc(vcpu, data);
3664 } else {
3665 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3666 adjust_tsc_offset_guest(vcpu, adj);
3667 vcpu->arch.ia32_tsc_adjust_msr += adj;
3668 }
3669 break;
3670 case MSR_IA32_XSS:
3671 if (!msr_info->host_initiated &&
3672 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3673 return 1;
3674 /*
3675 * KVM supports exposing PT to the guest, but does not support
3676 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3677 * XSAVES/XRSTORS to save/restore PT MSRs.
3678 */
3679 if (data & ~kvm_caps.supported_xss)
3680 return 1;
3681 vcpu->arch.ia32_xss = data;
3682 kvm_update_cpuid_runtime(vcpu);
3683 break;
3684 case MSR_SMI_COUNT:
3685 if (!msr_info->host_initiated)
3686 return 1;
3687 vcpu->arch.smi_count = data;
3688 break;
3689 case MSR_KVM_WALL_CLOCK_NEW:
3690 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3691 return 1;
3692
3693 vcpu->kvm->arch.wall_clock = data;
3694 kvm_write_wall_clock(vcpu->kvm, data, 0);
3695 break;
3696 case MSR_KVM_WALL_CLOCK:
3697 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3698 return 1;
3699
3700 vcpu->kvm->arch.wall_clock = data;
3701 kvm_write_wall_clock(vcpu->kvm, data, 0);
3702 break;
3703 case MSR_KVM_SYSTEM_TIME_NEW:
3704 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3705 return 1;
3706
3707 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3708 break;
3709 case MSR_KVM_SYSTEM_TIME:
3710 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3711 return 1;
3712
3713 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
3714 break;
3715 case MSR_KVM_ASYNC_PF_EN:
3716 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3717 return 1;
3718
3719 if (kvm_pv_enable_async_pf(vcpu, data))
3720 return 1;
3721 break;
3722 case MSR_KVM_ASYNC_PF_INT:
3723 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3724 return 1;
3725
3726 if (kvm_pv_enable_async_pf_int(vcpu, data))
3727 return 1;
3728 break;
3729 case MSR_KVM_ASYNC_PF_ACK:
3730 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3731 return 1;
3732 if (data & 0x1) {
3733 vcpu->arch.apf.pageready_pending = false;
3734 kvm_check_async_pf_completion(vcpu);
3735 }
3736 break;
3737 case MSR_KVM_STEAL_TIME:
3738 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3739 return 1;
3740
3741 if (unlikely(!sched_info_on()))
3742 return 1;
3743
3744 if (data & KVM_STEAL_RESERVED_MASK)
3745 return 1;
3746
3747 vcpu->arch.st.msr_val = data;
3748
3749 if (!(data & KVM_MSR_ENABLED))
3750 break;
3751
3752 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3753
3754 break;
3755 case MSR_KVM_PV_EOI_EN:
3756 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3757 return 1;
3758
3759 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
3760 return 1;
3761 break;
3762
3763 case MSR_KVM_POLL_CONTROL:
3764 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3765 return 1;
3766
3767 /* only enable bit supported */
3768 if (data & (-1ULL << 1))
3769 return 1;
3770
3771 vcpu->arch.msr_kvm_poll_control = data;
3772 break;
3773
3774 case MSR_IA32_MCG_CTL:
3775 case MSR_IA32_MCG_STATUS:
3776 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3777 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3778 return set_msr_mce(vcpu, msr_info);
3779
3780 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3781 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3782 pr = true;
3783 fallthrough;
3784 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3785 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3786 if (kvm_pmu_is_valid_msr(vcpu, msr))
3787 return kvm_pmu_set_msr(vcpu, msr_info);
3788
3789 if (pr || data != 0)
3790 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3791 "0x%x data 0x%llx\n", msr, data);
3792 break;
3793 case MSR_K7_CLK_CTL:
3794 /*
3795 * Ignore all writes to this no longer documented MSR.
3796 * Writes are only relevant for old K7 processors,
3797 * all pre-dating SVM, but a recommended workaround from
3798 * AMD for these chips. It is possible to specify the
3799 * affected processor models on the command line, hence
3800 * the need to ignore the workaround.
3801 */
3802 break;
3803 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
3804 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3805 case HV_X64_MSR_SYNDBG_OPTIONS:
3806 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3807 case HV_X64_MSR_CRASH_CTL:
3808 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
3809 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3810 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3811 case HV_X64_MSR_TSC_EMULATION_STATUS:
3812 return kvm_hv_set_msr_common(vcpu, msr, data,
3813 msr_info->host_initiated);
3814 case MSR_IA32_BBL_CR_CTL3:
3815 /* Drop writes to this legacy MSR -- see rdmsr
3816 * counterpart for further detail.
3817 */
3818 if (report_ignored_msrs)
3819 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3820 msr, data);
3821 break;
3822 case MSR_AMD64_OSVW_ID_LENGTH:
3823 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3824 return 1;
3825 vcpu->arch.osvw.length = data;
3826 break;
3827 case MSR_AMD64_OSVW_STATUS:
3828 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
3829 return 1;
3830 vcpu->arch.osvw.status = data;
3831 break;
3832 case MSR_PLATFORM_INFO:
3833 if (!msr_info->host_initiated ||
3834 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3835 cpuid_fault_enabled(vcpu)))
3836 return 1;
3837 vcpu->arch.msr_platform_info = data;
3838 break;
3839 case MSR_MISC_FEATURES_ENABLES:
3840 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3841 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3842 !supports_cpuid_fault(vcpu)))
3843 return 1;
3844 vcpu->arch.msr_misc_features_enables = data;
3845 break;
3846 #ifdef CONFIG_X86_64
3847 case MSR_IA32_XFD:
3848 if (!msr_info->host_initiated &&
3849 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3850 return 1;
3851
3852 if (data & ~kvm_guest_supported_xfd(vcpu))
3853 return 1;
3854
3855 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3856 break;
3857 case MSR_IA32_XFD_ERR:
3858 if (!msr_info->host_initiated &&
3859 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3860 return 1;
3861
3862 if (data & ~kvm_guest_supported_xfd(vcpu))
3863 return 1;
3864
3865 vcpu->arch.guest_fpu.xfd_err = data;
3866 break;
3867 #endif
3868 case MSR_IA32_PEBS_ENABLE:
3869 case MSR_IA32_DS_AREA:
3870 case MSR_PEBS_DATA_CFG:
3871 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3872 if (kvm_pmu_is_valid_msr(vcpu, msr))
3873 return kvm_pmu_set_msr(vcpu, msr_info);
3874 /*
3875 * Userspace is allowed to write '0' to MSRs that KVM reports
3876 * as to-be-saved, even if an MSRs isn't fully supported.
3877 */
3878 return !msr_info->host_initiated || data;
3879 default:
3880 if (kvm_pmu_is_valid_msr(vcpu, msr))
3881 return kvm_pmu_set_msr(vcpu, msr_info);
3882 return KVM_MSR_RET_INVALID;
3883 }
3884 return 0;
3885 }
3886 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3887
get_msr_mce(struct kvm_vcpu * vcpu,u32 msr,u64 * pdata,bool host)3888 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
3889 {
3890 u64 data;
3891 u64 mcg_cap = vcpu->arch.mcg_cap;
3892 unsigned bank_num = mcg_cap & 0xff;
3893 u32 offset, last_msr;
3894
3895 switch (msr) {
3896 case MSR_IA32_P5_MC_ADDR:
3897 case MSR_IA32_P5_MC_TYPE:
3898 data = 0;
3899 break;
3900 case MSR_IA32_MCG_CAP:
3901 data = vcpu->arch.mcg_cap;
3902 break;
3903 case MSR_IA32_MCG_CTL:
3904 if (!(mcg_cap & MCG_CTL_P) && !host)
3905 return 1;
3906 data = vcpu->arch.mcg_ctl;
3907 break;
3908 case MSR_IA32_MCG_STATUS:
3909 data = vcpu->arch.mcg_status;
3910 break;
3911 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3912 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3913 if (msr > last_msr)
3914 return 1;
3915
3916 if (!(mcg_cap & MCG_CMCI_P) && !host)
3917 return 1;
3918 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3919 last_msr + 1 - MSR_IA32_MC0_CTL2);
3920 data = vcpu->arch.mci_ctl2_banks[offset];
3921 break;
3922 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3923 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3924 if (msr > last_msr)
3925 return 1;
3926
3927 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3928 last_msr + 1 - MSR_IA32_MC0_CTL);
3929 data = vcpu->arch.mce_banks[offset];
3930 break;
3931 default:
3932 return 1;
3933 }
3934 *pdata = data;
3935 return 0;
3936 }
3937
kvm_get_msr_common(struct kvm_vcpu * vcpu,struct msr_data * msr_info)3938 int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
3939 {
3940 switch (msr_info->index) {
3941 case MSR_IA32_PLATFORM_ID:
3942 case MSR_IA32_EBL_CR_POWERON:
3943 case MSR_IA32_LASTBRANCHFROMIP:
3944 case MSR_IA32_LASTBRANCHTOIP:
3945 case MSR_IA32_LASTINTFROMIP:
3946 case MSR_IA32_LASTINTTOIP:
3947 case MSR_AMD64_SYSCFG:
3948 case MSR_K8_TSEG_ADDR:
3949 case MSR_K8_TSEG_MASK:
3950 case MSR_VM_HSAVE_PA:
3951 case MSR_K8_INT_PENDING_MSG:
3952 case MSR_AMD64_NB_CFG:
3953 case MSR_FAM10H_MMIO_CONF_BASE:
3954 case MSR_AMD64_BU_CFG2:
3955 case MSR_IA32_PERF_CTL:
3956 case MSR_AMD64_DC_CFG:
3957 case MSR_F15H_EX_CFG:
3958 /*
3959 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3960 * limit) MSRs. Just return 0, as we do not want to expose the host
3961 * data here. Do not conditionalize this on CPUID, as KVM does not do
3962 * so for existing CPU-specific MSRs.
3963 */
3964 case MSR_RAPL_POWER_UNIT:
3965 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3966 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3967 case MSR_PKG_ENERGY_STATUS: /* Total package */
3968 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
3969 msr_info->data = 0;
3970 break;
3971 case MSR_IA32_PEBS_ENABLE:
3972 case MSR_IA32_DS_AREA:
3973 case MSR_PEBS_DATA_CFG:
3974 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
3975 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3976 return kvm_pmu_get_msr(vcpu, msr_info);
3977 /*
3978 * Userspace is allowed to read MSRs that KVM reports as
3979 * to-be-saved, even if an MSR isn't fully supported.
3980 */
3981 if (!msr_info->host_initiated)
3982 return 1;
3983 msr_info->data = 0;
3984 break;
3985 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3986 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3987 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3988 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
3989 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
3990 return kvm_pmu_get_msr(vcpu, msr_info);
3991 msr_info->data = 0;
3992 break;
3993 case MSR_IA32_UCODE_REV:
3994 msr_info->data = vcpu->arch.microcode_version;
3995 break;
3996 case MSR_IA32_ARCH_CAPABILITIES:
3997 if (!msr_info->host_initiated &&
3998 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3999 return 1;
4000 msr_info->data = vcpu->arch.arch_capabilities;
4001 break;
4002 case MSR_IA32_PERF_CAPABILITIES:
4003 if (!msr_info->host_initiated &&
4004 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4005 return 1;
4006 msr_info->data = vcpu->arch.perf_capabilities;
4007 break;
4008 case MSR_IA32_POWER_CTL:
4009 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4010 break;
4011 case MSR_IA32_TSC: {
4012 /*
4013 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4014 * even when not intercepted. AMD manual doesn't explicitly
4015 * state this but appears to behave the same.
4016 *
4017 * On userspace reads and writes, however, we unconditionally
4018 * return L1's TSC value to ensure backwards-compatible
4019 * behavior for migration.
4020 */
4021 u64 offset, ratio;
4022
4023 if (msr_info->host_initiated) {
4024 offset = vcpu->arch.l1_tsc_offset;
4025 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4026 } else {
4027 offset = vcpu->arch.tsc_offset;
4028 ratio = vcpu->arch.tsc_scaling_ratio;
4029 }
4030
4031 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
4032 break;
4033 }
4034 case MSR_MTRRcap:
4035 case 0x200 ... MSR_IA32_MC0_CTL2 - 1:
4036 case MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) ... 0x2ff:
4037 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
4038 case 0xcd: /* fsb frequency */
4039 msr_info->data = 3;
4040 break;
4041 /*
4042 * MSR_EBC_FREQUENCY_ID
4043 * Conservative value valid for even the basic CPU models.
4044 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4045 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4046 * and 266MHz for model 3, or 4. Set Core Clock
4047 * Frequency to System Bus Frequency Ratio to 1 (bits
4048 * 31:24) even though these are only valid for CPU
4049 * models > 2, however guests may end up dividing or
4050 * multiplying by zero otherwise.
4051 */
4052 case MSR_EBC_FREQUENCY_ID:
4053 msr_info->data = 1 << 24;
4054 break;
4055 case MSR_IA32_APICBASE:
4056 msr_info->data = kvm_get_apic_base(vcpu);
4057 break;
4058 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
4059 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
4060 case MSR_IA32_TSC_DEADLINE:
4061 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
4062 break;
4063 case MSR_IA32_TSC_ADJUST:
4064 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
4065 break;
4066 case MSR_IA32_MISC_ENABLE:
4067 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
4068 break;
4069 case MSR_IA32_SMBASE:
4070 if (!msr_info->host_initiated)
4071 return 1;
4072 msr_info->data = vcpu->arch.smbase;
4073 break;
4074 case MSR_SMI_COUNT:
4075 msr_info->data = vcpu->arch.smi_count;
4076 break;
4077 case MSR_IA32_PERF_STATUS:
4078 /* TSC increment by tick */
4079 msr_info->data = 1000ULL;
4080 /* CPU multiplier */
4081 msr_info->data |= (((uint64_t)4ULL) << 40);
4082 break;
4083 case MSR_EFER:
4084 msr_info->data = vcpu->arch.efer;
4085 break;
4086 case MSR_KVM_WALL_CLOCK:
4087 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4088 return 1;
4089
4090 msr_info->data = vcpu->kvm->arch.wall_clock;
4091 break;
4092 case MSR_KVM_WALL_CLOCK_NEW:
4093 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4094 return 1;
4095
4096 msr_info->data = vcpu->kvm->arch.wall_clock;
4097 break;
4098 case MSR_KVM_SYSTEM_TIME:
4099 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4100 return 1;
4101
4102 msr_info->data = vcpu->arch.time;
4103 break;
4104 case MSR_KVM_SYSTEM_TIME_NEW:
4105 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4106 return 1;
4107
4108 msr_info->data = vcpu->arch.time;
4109 break;
4110 case MSR_KVM_ASYNC_PF_EN:
4111 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4112 return 1;
4113
4114 msr_info->data = vcpu->arch.apf.msr_en_val;
4115 break;
4116 case MSR_KVM_ASYNC_PF_INT:
4117 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4118 return 1;
4119
4120 msr_info->data = vcpu->arch.apf.msr_int_val;
4121 break;
4122 case MSR_KVM_ASYNC_PF_ACK:
4123 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4124 return 1;
4125
4126 msr_info->data = 0;
4127 break;
4128 case MSR_KVM_STEAL_TIME:
4129 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4130 return 1;
4131
4132 msr_info->data = vcpu->arch.st.msr_val;
4133 break;
4134 case MSR_KVM_PV_EOI_EN:
4135 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4136 return 1;
4137
4138 msr_info->data = vcpu->arch.pv_eoi.msr_val;
4139 break;
4140 case MSR_KVM_POLL_CONTROL:
4141 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4142 return 1;
4143
4144 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4145 break;
4146 case MSR_IA32_P5_MC_ADDR:
4147 case MSR_IA32_P5_MC_TYPE:
4148 case MSR_IA32_MCG_CAP:
4149 case MSR_IA32_MCG_CTL:
4150 case MSR_IA32_MCG_STATUS:
4151 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4152 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4153 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4154 msr_info->host_initiated);
4155 case MSR_IA32_XSS:
4156 if (!msr_info->host_initiated &&
4157 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4158 return 1;
4159 msr_info->data = vcpu->arch.ia32_xss;
4160 break;
4161 case MSR_K7_CLK_CTL:
4162 /*
4163 * Provide expected ramp-up count for K7. All other
4164 * are set to zero, indicating minimum divisors for
4165 * every field.
4166 *
4167 * This prevents guest kernels on AMD host with CPU
4168 * type 6, model 8 and higher from exploding due to
4169 * the rdmsr failing.
4170 */
4171 msr_info->data = 0x20000000;
4172 break;
4173 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
4174 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4175 case HV_X64_MSR_SYNDBG_OPTIONS:
4176 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4177 case HV_X64_MSR_CRASH_CTL:
4178 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
4179 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4180 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4181 case HV_X64_MSR_TSC_EMULATION_STATUS:
4182 return kvm_hv_get_msr_common(vcpu,
4183 msr_info->index, &msr_info->data,
4184 msr_info->host_initiated);
4185 case MSR_IA32_BBL_CR_CTL3:
4186 /* This legacy MSR exists but isn't fully documented in current
4187 * silicon. It is however accessed by winxp in very narrow
4188 * scenarios where it sets bit #19, itself documented as
4189 * a "reserved" bit. Best effort attempt to source coherent
4190 * read data here should the balance of the register be
4191 * interpreted by the guest:
4192 *
4193 * L2 cache control register 3: 64GB range, 256KB size,
4194 * enabled, latency 0x1, configured
4195 */
4196 msr_info->data = 0xbe702111;
4197 break;
4198 case MSR_AMD64_OSVW_ID_LENGTH:
4199 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4200 return 1;
4201 msr_info->data = vcpu->arch.osvw.length;
4202 break;
4203 case MSR_AMD64_OSVW_STATUS:
4204 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
4205 return 1;
4206 msr_info->data = vcpu->arch.osvw.status;
4207 break;
4208 case MSR_PLATFORM_INFO:
4209 if (!msr_info->host_initiated &&
4210 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4211 return 1;
4212 msr_info->data = vcpu->arch.msr_platform_info;
4213 break;
4214 case MSR_MISC_FEATURES_ENABLES:
4215 msr_info->data = vcpu->arch.msr_misc_features_enables;
4216 break;
4217 case MSR_K7_HWCR:
4218 msr_info->data = vcpu->arch.msr_hwcr;
4219 break;
4220 #ifdef CONFIG_X86_64
4221 case MSR_IA32_XFD:
4222 if (!msr_info->host_initiated &&
4223 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4224 return 1;
4225
4226 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4227 break;
4228 case MSR_IA32_XFD_ERR:
4229 if (!msr_info->host_initiated &&
4230 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4231 return 1;
4232
4233 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4234 break;
4235 #endif
4236 default:
4237 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
4238 return kvm_pmu_get_msr(vcpu, msr_info);
4239 return KVM_MSR_RET_INVALID;
4240 }
4241 return 0;
4242 }
4243 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4244
4245 /*
4246 * Read or write a bunch of msrs. All parameters are kernel addresses.
4247 *
4248 * @return number of msrs set successfully.
4249 */
__msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs * msrs,struct kvm_msr_entry * entries,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data))4250 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4251 struct kvm_msr_entry *entries,
4252 int (*do_msr)(struct kvm_vcpu *vcpu,
4253 unsigned index, u64 *data))
4254 {
4255 int i;
4256
4257 for (i = 0; i < msrs->nmsrs; ++i)
4258 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4259 break;
4260
4261 return i;
4262 }
4263
4264 /*
4265 * Read or write a bunch of msrs. Parameters are user addresses.
4266 *
4267 * @return number of msrs set successfully.
4268 */
msr_io(struct kvm_vcpu * vcpu,struct kvm_msrs __user * user_msrs,int (* do_msr)(struct kvm_vcpu * vcpu,unsigned index,u64 * data),int writeback)4269 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4270 int (*do_msr)(struct kvm_vcpu *vcpu,
4271 unsigned index, u64 *data),
4272 int writeback)
4273 {
4274 struct kvm_msrs msrs;
4275 struct kvm_msr_entry *entries;
4276 int r, n;
4277 unsigned size;
4278
4279 r = -EFAULT;
4280 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
4281 goto out;
4282
4283 r = -E2BIG;
4284 if (msrs.nmsrs >= MAX_IO_MSRS)
4285 goto out;
4286
4287 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
4288 entries = memdup_user(user_msrs->entries, size);
4289 if (IS_ERR(entries)) {
4290 r = PTR_ERR(entries);
4291 goto out;
4292 }
4293
4294 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
4295 if (r < 0)
4296 goto out_free;
4297
4298 r = -EFAULT;
4299 if (writeback && copy_to_user(user_msrs->entries, entries, size))
4300 goto out_free;
4301
4302 r = n;
4303
4304 out_free:
4305 kfree(entries);
4306 out:
4307 return r;
4308 }
4309
kvm_can_mwait_in_guest(void)4310 static inline bool kvm_can_mwait_in_guest(void)
4311 {
4312 return boot_cpu_has(X86_FEATURE_MWAIT) &&
4313 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4314 boot_cpu_has(X86_FEATURE_ARAT);
4315 }
4316
kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu * vcpu,struct kvm_cpuid2 __user * cpuid_arg)4317 static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4318 struct kvm_cpuid2 __user *cpuid_arg)
4319 {
4320 struct kvm_cpuid2 cpuid;
4321 int r;
4322
4323 r = -EFAULT;
4324 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4325 return r;
4326
4327 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4328 if (r)
4329 return r;
4330
4331 r = -EFAULT;
4332 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4333 return r;
4334
4335 return 0;
4336 }
4337
kvm_vm_ioctl_check_extension(struct kvm * kvm,long ext)4338 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
4339 {
4340 int r = 0;
4341
4342 switch (ext) {
4343 case KVM_CAP_IRQCHIP:
4344 case KVM_CAP_HLT:
4345 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
4346 case KVM_CAP_SET_TSS_ADDR:
4347 case KVM_CAP_EXT_CPUID:
4348 case KVM_CAP_EXT_EMUL_CPUID:
4349 case KVM_CAP_CLOCKSOURCE:
4350 case KVM_CAP_PIT:
4351 case KVM_CAP_NOP_IO_DELAY:
4352 case KVM_CAP_MP_STATE:
4353 case KVM_CAP_SYNC_MMU:
4354 case KVM_CAP_USER_NMI:
4355 case KVM_CAP_REINJECT_CONTROL:
4356 case KVM_CAP_IRQ_INJECT_STATUS:
4357 case KVM_CAP_IOEVENTFD:
4358 case KVM_CAP_IOEVENTFD_NO_LENGTH:
4359 case KVM_CAP_PIT2:
4360 case KVM_CAP_PIT_STATE2:
4361 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
4362 case KVM_CAP_VCPU_EVENTS:
4363 case KVM_CAP_HYPERV:
4364 case KVM_CAP_HYPERV_VAPIC:
4365 case KVM_CAP_HYPERV_SPIN:
4366 case KVM_CAP_HYPERV_SYNIC:
4367 case KVM_CAP_HYPERV_SYNIC2:
4368 case KVM_CAP_HYPERV_VP_INDEX:
4369 case KVM_CAP_HYPERV_EVENTFD:
4370 case KVM_CAP_HYPERV_TLBFLUSH:
4371 case KVM_CAP_HYPERV_SEND_IPI:
4372 case KVM_CAP_HYPERV_CPUID:
4373 case KVM_CAP_HYPERV_ENFORCE_CPUID:
4374 case KVM_CAP_SYS_HYPERV_CPUID:
4375 case KVM_CAP_PCI_SEGMENT:
4376 case KVM_CAP_DEBUGREGS:
4377 case KVM_CAP_X86_ROBUST_SINGLESTEP:
4378 case KVM_CAP_XSAVE:
4379 case KVM_CAP_ASYNC_PF:
4380 case KVM_CAP_ASYNC_PF_INT:
4381 case KVM_CAP_GET_TSC_KHZ:
4382 case KVM_CAP_KVMCLOCK_CTRL:
4383 case KVM_CAP_READONLY_MEM:
4384 case KVM_CAP_HYPERV_TIME:
4385 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
4386 case KVM_CAP_TSC_DEADLINE_TIMER:
4387 case KVM_CAP_DISABLE_QUIRKS:
4388 case KVM_CAP_SET_BOOT_CPU_ID:
4389 case KVM_CAP_SPLIT_IRQCHIP:
4390 case KVM_CAP_IMMEDIATE_EXIT:
4391 case KVM_CAP_PMU_EVENT_FILTER:
4392 case KVM_CAP_GET_MSR_FEATURES:
4393 case KVM_CAP_MSR_PLATFORM_INFO:
4394 case KVM_CAP_EXCEPTION_PAYLOAD:
4395 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
4396 case KVM_CAP_SET_GUEST_DEBUG:
4397 case KVM_CAP_LAST_CPU:
4398 case KVM_CAP_X86_USER_SPACE_MSR:
4399 case KVM_CAP_X86_MSR_FILTER:
4400 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4401 #ifdef CONFIG_X86_SGX_KVM
4402 case KVM_CAP_SGX_ATTRIBUTE:
4403 #endif
4404 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
4405 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
4406 case KVM_CAP_SREGS2:
4407 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
4408 case KVM_CAP_VCPU_ATTRIBUTES:
4409 case KVM_CAP_SYS_ATTRIBUTES:
4410 case KVM_CAP_VAPIC:
4411 case KVM_CAP_ENABLE_CAP:
4412 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
4413 r = 1;
4414 break;
4415 case KVM_CAP_EXIT_HYPERCALL:
4416 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4417 break;
4418 case KVM_CAP_SET_GUEST_DEBUG2:
4419 return KVM_GUESTDBG_VALID_MASK;
4420 #ifdef CONFIG_KVM_XEN
4421 case KVM_CAP_XEN_HVM:
4422 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
4423 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
4424 KVM_XEN_HVM_CONFIG_SHARED_INFO |
4425 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4426 KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
4427 if (sched_info_on())
4428 r |= KVM_XEN_HVM_CONFIG_RUNSTATE;
4429 break;
4430 #endif
4431 case KVM_CAP_SYNC_REGS:
4432 r = KVM_SYNC_X86_VALID_FIELDS;
4433 break;
4434 case KVM_CAP_ADJUST_CLOCK:
4435 r = KVM_CLOCK_VALID_FLAGS;
4436 break;
4437 case KVM_CAP_X86_DISABLE_EXITS:
4438 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
4439 KVM_X86_DISABLE_EXITS_CSTATE;
4440 if(kvm_can_mwait_in_guest())
4441 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4442 break;
4443 case KVM_CAP_X86_SMM:
4444 /* SMBASE is usually relocated above 1M on modern chipsets,
4445 * and SMM handlers might indeed rely on 4G segment limits,
4446 * so do not report SMM to be available if real mode is
4447 * emulated via vm86 mode. Still, do not go to great lengths
4448 * to avoid userspace's usage of the feature, because it is a
4449 * fringe case that is not enabled except via specific settings
4450 * of the module parameters.
4451 */
4452 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
4453 break;
4454 case KVM_CAP_NR_VCPUS:
4455 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
4456 break;
4457 case KVM_CAP_MAX_VCPUS:
4458 r = KVM_MAX_VCPUS;
4459 break;
4460 case KVM_CAP_MAX_VCPU_ID:
4461 r = KVM_MAX_VCPU_IDS;
4462 break;
4463 case KVM_CAP_PV_MMU: /* obsolete */
4464 r = 0;
4465 break;
4466 case KVM_CAP_MCE:
4467 r = KVM_MAX_MCE_BANKS;
4468 break;
4469 case KVM_CAP_XCRS:
4470 r = boot_cpu_has(X86_FEATURE_XSAVE);
4471 break;
4472 case KVM_CAP_TSC_CONTROL:
4473 case KVM_CAP_VM_TSC_CONTROL:
4474 r = kvm_caps.has_tsc_control;
4475 break;
4476 case KVM_CAP_X2APIC_API:
4477 r = KVM_X2APIC_API_VALID_FLAGS;
4478 break;
4479 case KVM_CAP_NESTED_STATE:
4480 r = kvm_x86_ops.nested_ops->get_state ?
4481 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
4482 break;
4483 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
4484 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
4485 break;
4486 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
4487 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
4488 break;
4489 case KVM_CAP_SMALLER_MAXPHYADDR:
4490 r = (int) allow_smaller_maxphyaddr;
4491 break;
4492 case KVM_CAP_STEAL_TIME:
4493 r = sched_info_on();
4494 break;
4495 case KVM_CAP_X86_BUS_LOCK_EXIT:
4496 if (kvm_caps.has_bus_lock_exit)
4497 r = KVM_BUS_LOCK_DETECTION_OFF |
4498 KVM_BUS_LOCK_DETECTION_EXIT;
4499 else
4500 r = 0;
4501 break;
4502 case KVM_CAP_XSAVE2: {
4503 u64 guest_perm = xstate_get_guest_group_perm();
4504
4505 r = xstate_required_size(kvm_caps.supported_xcr0 & guest_perm, false);
4506 if (r < sizeof(struct kvm_xsave))
4507 r = sizeof(struct kvm_xsave);
4508 break;
4509 }
4510 case KVM_CAP_PMU_CAPABILITY:
4511 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4512 break;
4513 case KVM_CAP_DISABLE_QUIRKS2:
4514 r = KVM_X86_VALID_QUIRKS;
4515 break;
4516 case KVM_CAP_X86_NOTIFY_VMEXIT:
4517 r = kvm_caps.has_notify_vmexit;
4518 break;
4519 default:
4520 break;
4521 }
4522 return r;
4523 }
4524
kvm_get_attr_addr(struct kvm_device_attr * attr)4525 static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4526 {
4527 void __user *uaddr = (void __user*)(unsigned long)attr->addr;
4528
4529 if ((u64)(unsigned long)uaddr != attr->addr)
4530 return ERR_PTR_USR(-EFAULT);
4531 return uaddr;
4532 }
4533
kvm_x86_dev_get_attr(struct kvm_device_attr * attr)4534 static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4535 {
4536 u64 __user *uaddr = kvm_get_attr_addr(attr);
4537
4538 if (attr->group)
4539 return -ENXIO;
4540
4541 if (IS_ERR(uaddr))
4542 return PTR_ERR(uaddr);
4543
4544 switch (attr->attr) {
4545 case KVM_X86_XCOMP_GUEST_SUPP:
4546 if (put_user(kvm_caps.supported_xcr0, uaddr))
4547 return -EFAULT;
4548 return 0;
4549 default:
4550 return -ENXIO;
4551 break;
4552 }
4553 }
4554
kvm_x86_dev_has_attr(struct kvm_device_attr * attr)4555 static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4556 {
4557 if (attr->group)
4558 return -ENXIO;
4559
4560 switch (attr->attr) {
4561 case KVM_X86_XCOMP_GUEST_SUPP:
4562 return 0;
4563 default:
4564 return -ENXIO;
4565 }
4566 }
4567
kvm_arch_dev_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)4568 long kvm_arch_dev_ioctl(struct file *filp,
4569 unsigned int ioctl, unsigned long arg)
4570 {
4571 void __user *argp = (void __user *)arg;
4572 long r;
4573
4574 switch (ioctl) {
4575 case KVM_GET_MSR_INDEX_LIST: {
4576 struct kvm_msr_list __user *user_msr_list = argp;
4577 struct kvm_msr_list msr_list;
4578 unsigned n;
4579
4580 r = -EFAULT;
4581 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4582 goto out;
4583 n = msr_list.nmsrs;
4584 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
4585 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4586 goto out;
4587 r = -E2BIG;
4588 if (n < msr_list.nmsrs)
4589 goto out;
4590 r = -EFAULT;
4591 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4592 num_msrs_to_save * sizeof(u32)))
4593 goto out;
4594 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
4595 &emulated_msrs,
4596 num_emulated_msrs * sizeof(u32)))
4597 goto out;
4598 r = 0;
4599 break;
4600 }
4601 case KVM_GET_SUPPORTED_CPUID:
4602 case KVM_GET_EMULATED_CPUID: {
4603 struct kvm_cpuid2 __user *cpuid_arg = argp;
4604 struct kvm_cpuid2 cpuid;
4605
4606 r = -EFAULT;
4607 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4608 goto out;
4609
4610 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4611 ioctl);
4612 if (r)
4613 goto out;
4614
4615 r = -EFAULT;
4616 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4617 goto out;
4618 r = 0;
4619 break;
4620 }
4621 case KVM_X86_GET_MCE_CAP_SUPPORTED:
4622 r = -EFAULT;
4623 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4624 sizeof(kvm_caps.supported_mce_cap)))
4625 goto out;
4626 r = 0;
4627 break;
4628 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4629 struct kvm_msr_list __user *user_msr_list = argp;
4630 struct kvm_msr_list msr_list;
4631 unsigned int n;
4632
4633 r = -EFAULT;
4634 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4635 goto out;
4636 n = msr_list.nmsrs;
4637 msr_list.nmsrs = num_msr_based_features;
4638 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4639 goto out;
4640 r = -E2BIG;
4641 if (n < msr_list.nmsrs)
4642 goto out;
4643 r = -EFAULT;
4644 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4645 num_msr_based_features * sizeof(u32)))
4646 goto out;
4647 r = 0;
4648 break;
4649 }
4650 case KVM_GET_MSRS:
4651 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4652 break;
4653 case KVM_GET_SUPPORTED_HV_CPUID:
4654 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4655 break;
4656 case KVM_GET_DEVICE_ATTR: {
4657 struct kvm_device_attr attr;
4658 r = -EFAULT;
4659 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4660 break;
4661 r = kvm_x86_dev_get_attr(&attr);
4662 break;
4663 }
4664 case KVM_HAS_DEVICE_ATTR: {
4665 struct kvm_device_attr attr;
4666 r = -EFAULT;
4667 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4668 break;
4669 r = kvm_x86_dev_has_attr(&attr);
4670 break;
4671 }
4672 default:
4673 r = -EINVAL;
4674 break;
4675 }
4676 out:
4677 return r;
4678 }
4679
wbinvd_ipi(void * garbage)4680 static void wbinvd_ipi(void *garbage)
4681 {
4682 wbinvd();
4683 }
4684
need_emulate_wbinvd(struct kvm_vcpu * vcpu)4685 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4686 {
4687 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
4688 }
4689
kvm_arch_vcpu_load(struct kvm_vcpu * vcpu,int cpu)4690 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4691 {
4692 /* Address WBINVD may be executed by guest */
4693 if (need_emulate_wbinvd(vcpu)) {
4694 if (static_call(kvm_x86_has_wbinvd_exit)())
4695 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4696 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4697 smp_call_function_single(vcpu->cpu,
4698 wbinvd_ipi, NULL, 1);
4699 }
4700
4701 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
4702
4703 /* Save host pkru register if supported */
4704 vcpu->arch.host_pkru = read_pkru();
4705
4706 /* Apply any externally detected TSC adjustments (due to suspend) */
4707 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4708 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4709 vcpu->arch.tsc_offset_adjustment = 0;
4710 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4711 }
4712
4713 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
4714 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4715 rdtsc() - vcpu->arch.last_host_tsc;
4716 if (tsc_delta < 0)
4717 mark_tsc_unstable("KVM discovered backwards TSC");
4718
4719 if (kvm_check_tsc_unstable()) {
4720 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
4721 vcpu->arch.last_guest_tsc);
4722 kvm_vcpu_write_tsc_offset(vcpu, offset);
4723 vcpu->arch.tsc_catchup = 1;
4724 }
4725
4726 if (kvm_lapic_hv_timer_in_use(vcpu))
4727 kvm_lapic_restart_hv_timer(vcpu);
4728
4729 /*
4730 * On a host with synchronized TSC, there is no need to update
4731 * kvmclock on vcpu->cpu migration
4732 */
4733 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
4734 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
4735 if (vcpu->cpu != cpu)
4736 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
4737 vcpu->cpu = cpu;
4738 }
4739
4740 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
4741 }
4742
kvm_steal_time_set_preempted(struct kvm_vcpu * vcpu)4743 static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4744 {
4745 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4746 struct kvm_steal_time __user *st;
4747 struct kvm_memslots *slots;
4748 static const u8 preempted = KVM_VCPU_PREEMPTED;
4749 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
4750
4751 /*
4752 * The vCPU can be marked preempted if and only if the VM-Exit was on
4753 * an instruction boundary and will not trigger guest emulation of any
4754 * kind (see vcpu_run). Vendor specific code controls (conservatively)
4755 * when this is true, for example allowing the vCPU to be marked
4756 * preempted if and only if the VM-Exit was due to a host interrupt.
4757 */
4758 if (!vcpu->arch.at_instruction_boundary) {
4759 vcpu->stat.preemption_other++;
4760 return;
4761 }
4762
4763 vcpu->stat.preemption_reported++;
4764 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4765 return;
4766
4767 if (vcpu->arch.st.preempted)
4768 return;
4769
4770 /* This happens on process exit */
4771 if (unlikely(current->mm != vcpu->kvm->mm))
4772 return;
4773
4774 slots = kvm_memslots(vcpu->kvm);
4775
4776 if (unlikely(slots->generation != ghc->generation ||
4777 gpa != ghc->gpa ||
4778 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
4779 return;
4780
4781 st = (struct kvm_steal_time __user *)ghc->hva;
4782 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
4783
4784 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4785 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
4786
4787 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
4788 }
4789
kvm_arch_vcpu_put(struct kvm_vcpu * vcpu)4790 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4791 {
4792 int idx;
4793
4794 if (vcpu->preempted) {
4795 if (!vcpu->arch.guest_state_protected)
4796 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
4797
4798 /*
4799 * Take the srcu lock as memslots will be accessed to check the gfn
4800 * cache generation against the memslots generation.
4801 */
4802 idx = srcu_read_lock(&vcpu->kvm->srcu);
4803 if (kvm_xen_msr_enabled(vcpu->kvm))
4804 kvm_xen_runstate_set_preempted(vcpu);
4805 else
4806 kvm_steal_time_set_preempted(vcpu);
4807 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4808 }
4809
4810 static_call(kvm_x86_vcpu_put)(vcpu);
4811 vcpu->arch.last_host_tsc = rdtsc();
4812 }
4813
kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4814 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4815 struct kvm_lapic_state *s)
4816 {
4817 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
4818
4819 return kvm_apic_get_state(vcpu, s);
4820 }
4821
kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu * vcpu,struct kvm_lapic_state * s)4822 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4823 struct kvm_lapic_state *s)
4824 {
4825 int r;
4826
4827 r = kvm_apic_set_state(vcpu, s);
4828 if (r)
4829 return r;
4830 update_cr8_intercept(vcpu);
4831
4832 return 0;
4833 }
4834
kvm_cpu_accept_dm_intr(struct kvm_vcpu * vcpu)4835 static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4836 {
4837 /*
4838 * We can accept userspace's request for interrupt injection
4839 * as long as we have a place to store the interrupt number.
4840 * The actual injection will happen when the CPU is able to
4841 * deliver the interrupt.
4842 */
4843 if (kvm_cpu_has_extint(vcpu))
4844 return false;
4845
4846 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
4847 return (!lapic_in_kernel(vcpu) ||
4848 kvm_apic_accept_pic_intr(vcpu));
4849 }
4850
kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu * vcpu)4851 static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4852 {
4853 /*
4854 * Do not cause an interrupt window exit if an exception
4855 * is pending or an event needs reinjection; userspace
4856 * might want to inject the interrupt manually using KVM_SET_REGS
4857 * or KVM_SET_SREGS. For that to work, we must be at an
4858 * instruction boundary and with no events half-injected.
4859 */
4860 return (kvm_arch_interrupt_allowed(vcpu) &&
4861 kvm_cpu_accept_dm_intr(vcpu) &&
4862 !kvm_event_needs_reinjection(vcpu) &&
4863 !kvm_is_exception_pending(vcpu));
4864 }
4865
kvm_vcpu_ioctl_interrupt(struct kvm_vcpu * vcpu,struct kvm_interrupt * irq)4866 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4867 struct kvm_interrupt *irq)
4868 {
4869 if (irq->irq >= KVM_NR_INTERRUPTS)
4870 return -EINVAL;
4871
4872 if (!irqchip_in_kernel(vcpu->kvm)) {
4873 kvm_queue_interrupt(vcpu, irq->irq, false);
4874 kvm_make_request(KVM_REQ_EVENT, vcpu);
4875 return 0;
4876 }
4877
4878 /*
4879 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4880 * fail for in-kernel 8259.
4881 */
4882 if (pic_in_kernel(vcpu->kvm))
4883 return -ENXIO;
4884
4885 if (vcpu->arch.pending_external_vector != -1)
4886 return -EEXIST;
4887
4888 vcpu->arch.pending_external_vector = irq->irq;
4889 kvm_make_request(KVM_REQ_EVENT, vcpu);
4890 return 0;
4891 }
4892
kvm_vcpu_ioctl_nmi(struct kvm_vcpu * vcpu)4893 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4894 {
4895 kvm_inject_nmi(vcpu);
4896
4897 return 0;
4898 }
4899
kvm_vcpu_ioctl_smi(struct kvm_vcpu * vcpu)4900 static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4901 {
4902 kvm_make_request(KVM_REQ_SMI, vcpu);
4903
4904 return 0;
4905 }
4906
vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu * vcpu,struct kvm_tpr_access_ctl * tac)4907 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4908 struct kvm_tpr_access_ctl *tac)
4909 {
4910 if (tac->flags)
4911 return -EINVAL;
4912 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4913 return 0;
4914 }
4915
kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu * vcpu,u64 mcg_cap)4916 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4917 u64 mcg_cap)
4918 {
4919 int r;
4920 unsigned bank_num = mcg_cap & 0xff, bank;
4921
4922 r = -EINVAL;
4923 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
4924 goto out;
4925 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
4926 goto out;
4927 r = 0;
4928 vcpu->arch.mcg_cap = mcg_cap;
4929 /* Init IA32_MCG_CTL to all 1s */
4930 if (mcg_cap & MCG_CTL_P)
4931 vcpu->arch.mcg_ctl = ~(u64)0;
4932 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
4933 for (bank = 0; bank < bank_num; bank++) {
4934 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
4935 if (mcg_cap & MCG_CMCI_P)
4936 vcpu->arch.mci_ctl2_banks[bank] = 0;
4937 }
4938
4939 kvm_apic_after_set_mcg_cap(vcpu);
4940
4941 static_call(kvm_x86_setup_mce)(vcpu);
4942 out:
4943 return r;
4944 }
4945
4946 /*
4947 * Validate this is an UCNA (uncorrectable no action) error by checking the
4948 * MCG_STATUS and MCi_STATUS registers:
4949 * - none of the bits for Machine Check Exceptions are set
4950 * - both the VAL (valid) and UC (uncorrectable) bits are set
4951 * MCI_STATUS_PCC - Processor Context Corrupted
4952 * MCI_STATUS_S - Signaled as a Machine Check Exception
4953 * MCI_STATUS_AR - Software recoverable Action Required
4954 */
is_ucna(struct kvm_x86_mce * mce)4955 static bool is_ucna(struct kvm_x86_mce *mce)
4956 {
4957 return !mce->mcg_status &&
4958 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
4959 (mce->status & MCI_STATUS_VAL) &&
4960 (mce->status & MCI_STATUS_UC);
4961 }
4962
kvm_vcpu_x86_set_ucna(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce,u64 * banks)4963 static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
4964 {
4965 u64 mcg_cap = vcpu->arch.mcg_cap;
4966
4967 banks[1] = mce->status;
4968 banks[2] = mce->addr;
4969 banks[3] = mce->misc;
4970 vcpu->arch.mcg_status = mce->mcg_status;
4971
4972 if (!(mcg_cap & MCG_CMCI_P) ||
4973 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
4974 return 0;
4975
4976 if (lapic_in_kernel(vcpu))
4977 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
4978
4979 return 0;
4980 }
4981
kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu * vcpu,struct kvm_x86_mce * mce)4982 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4983 struct kvm_x86_mce *mce)
4984 {
4985 u64 mcg_cap = vcpu->arch.mcg_cap;
4986 unsigned bank_num = mcg_cap & 0xff;
4987 u64 *banks = vcpu->arch.mce_banks;
4988
4989 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4990 return -EINVAL;
4991
4992 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
4993
4994 if (is_ucna(mce))
4995 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
4996
4997 /*
4998 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4999 * reporting is disabled
5000 */
5001 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5002 vcpu->arch.mcg_ctl != ~(u64)0)
5003 return 0;
5004 /*
5005 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5006 * reporting is disabled for the bank
5007 */
5008 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5009 return 0;
5010 if (mce->status & MCI_STATUS_UC) {
5011 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
5012 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
5013 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5014 return 0;
5015 }
5016 if (banks[1] & MCI_STATUS_VAL)
5017 mce->status |= MCI_STATUS_OVER;
5018 banks[2] = mce->addr;
5019 banks[3] = mce->misc;
5020 vcpu->arch.mcg_status = mce->mcg_status;
5021 banks[1] = mce->status;
5022 kvm_queue_exception(vcpu, MC_VECTOR);
5023 } else if (!(banks[1] & MCI_STATUS_VAL)
5024 || !(banks[1] & MCI_STATUS_UC)) {
5025 if (banks[1] & MCI_STATUS_VAL)
5026 mce->status |= MCI_STATUS_OVER;
5027 banks[2] = mce->addr;
5028 banks[3] = mce->misc;
5029 banks[1] = mce->status;
5030 } else
5031 banks[1] |= MCI_STATUS_OVER;
5032 return 0;
5033 }
5034
kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5035 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5036 struct kvm_vcpu_events *events)
5037 {
5038 struct kvm_queued_exception *ex;
5039
5040 process_nmi(vcpu);
5041
5042 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5043 process_smi(vcpu);
5044
5045 /*
5046 * KVM's ABI only allows for one exception to be migrated. Luckily,
5047 * the only time there can be two queued exceptions is if there's a
5048 * non-exiting _injected_ exception, and a pending exiting exception.
5049 * In that case, ignore the VM-Exiting exception as it's an extension
5050 * of the injected exception.
5051 */
5052 if (vcpu->arch.exception_vmexit.pending &&
5053 !vcpu->arch.exception.pending &&
5054 !vcpu->arch.exception.injected)
5055 ex = &vcpu->arch.exception_vmexit;
5056 else
5057 ex = &vcpu->arch.exception;
5058
5059 /*
5060 * In guest mode, payload delivery should be deferred if the exception
5061 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5062 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5063 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5064 * propagate the payload and so it cannot be safely deferred. Deliver
5065 * the payload if the capability hasn't been requested.
5066 */
5067 if (!vcpu->kvm->arch.exception_payload_enabled &&
5068 ex->pending && ex->has_payload)
5069 kvm_deliver_exception_payload(vcpu, ex);
5070
5071 /*
5072 * The API doesn't provide the instruction length for software
5073 * exceptions, so don't report them. As long as the guest RIP
5074 * isn't advanced, we should expect to encounter the exception
5075 * again.
5076 */
5077 if (kvm_exception_is_soft(ex->vector)) {
5078 events->exception.injected = 0;
5079 events->exception.pending = 0;
5080 } else {
5081 events->exception.injected = ex->injected;
5082 events->exception.pending = ex->pending;
5083 /*
5084 * For ABI compatibility, deliberately conflate
5085 * pending and injected exceptions when
5086 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5087 */
5088 if (!vcpu->kvm->arch.exception_payload_enabled)
5089 events->exception.injected |= ex->pending;
5090 }
5091 events->exception.nr = ex->vector;
5092 events->exception.has_error_code = ex->has_error_code;
5093 events->exception.error_code = ex->error_code;
5094 events->exception_has_payload = ex->has_payload;
5095 events->exception_payload = ex->payload;
5096
5097 events->interrupt.injected =
5098 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
5099 events->interrupt.nr = vcpu->arch.interrupt.nr;
5100 events->interrupt.soft = 0;
5101 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
5102
5103 events->nmi.injected = vcpu->arch.nmi_injected;
5104 events->nmi.pending = vcpu->arch.nmi_pending != 0;
5105 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
5106 events->nmi.pad = 0;
5107
5108 events->sipi_vector = 0; /* never valid when reporting to user space */
5109
5110 events->smi.smm = is_smm(vcpu);
5111 events->smi.pending = vcpu->arch.smi_pending;
5112 events->smi.smm_inside_nmi =
5113 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
5114 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5115
5116 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
5117 | KVM_VCPUEVENT_VALID_SHADOW
5118 | KVM_VCPUEVENT_VALID_SMM);
5119 if (vcpu->kvm->arch.exception_payload_enabled)
5120 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
5121 if (vcpu->kvm->arch.triple_fault_event) {
5122 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5123 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5124 }
5125
5126 memset(&events->reserved, 0, sizeof(events->reserved));
5127 }
5128
5129 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm);
5130
kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu * vcpu,struct kvm_vcpu_events * events)5131 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5132 struct kvm_vcpu_events *events)
5133 {
5134 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
5135 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
5136 | KVM_VCPUEVENT_VALID_SHADOW
5137 | KVM_VCPUEVENT_VALID_SMM
5138 | KVM_VCPUEVENT_VALID_PAYLOAD
5139 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
5140 return -EINVAL;
5141
5142 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5143 if (!vcpu->kvm->arch.exception_payload_enabled)
5144 return -EINVAL;
5145 if (events->exception.pending)
5146 events->exception.injected = 0;
5147 else
5148 events->exception_has_payload = 0;
5149 } else {
5150 events->exception.pending = 0;
5151 events->exception_has_payload = 0;
5152 }
5153
5154 if ((events->exception.injected || events->exception.pending) &&
5155 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
5156 return -EINVAL;
5157
5158 /* INITs are latched while in SMM */
5159 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5160 (events->smi.smm || events->smi.pending) &&
5161 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5162 return -EINVAL;
5163
5164 process_nmi(vcpu);
5165
5166 /*
5167 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5168 * morph the exception to a VM-Exit if appropriate. Do this only for
5169 * pending exceptions, already-injected exceptions are not subject to
5170 * intercpetion. Note, userspace that conflates pending and injected
5171 * is hosed, and will incorrectly convert an injected exception into a
5172 * pending exception, which in turn may cause a spurious VM-Exit.
5173 */
5174 vcpu->arch.exception_from_userspace = events->exception.pending;
5175
5176 vcpu->arch.exception_vmexit.pending = false;
5177
5178 vcpu->arch.exception.injected = events->exception.injected;
5179 vcpu->arch.exception.pending = events->exception.pending;
5180 vcpu->arch.exception.vector = events->exception.nr;
5181 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5182 vcpu->arch.exception.error_code = events->exception.error_code;
5183 vcpu->arch.exception.has_payload = events->exception_has_payload;
5184 vcpu->arch.exception.payload = events->exception_payload;
5185
5186 vcpu->arch.interrupt.injected = events->interrupt.injected;
5187 vcpu->arch.interrupt.nr = events->interrupt.nr;
5188 vcpu->arch.interrupt.soft = events->interrupt.soft;
5189 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
5190 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5191 events->interrupt.shadow);
5192
5193 vcpu->arch.nmi_injected = events->nmi.injected;
5194 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
5195 vcpu->arch.nmi_pending = events->nmi.pending;
5196 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
5197
5198 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
5199 lapic_in_kernel(vcpu))
5200 vcpu->arch.apic->sipi_vector = events->sipi_vector;
5201
5202 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
5203 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
5204 kvm_leave_nested(vcpu);
5205 kvm_smm_changed(vcpu, events->smi.smm);
5206 }
5207
5208 vcpu->arch.smi_pending = events->smi.pending;
5209
5210 if (events->smi.smm) {
5211 if (events->smi.smm_inside_nmi)
5212 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
5213 else
5214 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
5215 }
5216
5217 if (lapic_in_kernel(vcpu)) {
5218 if (events->smi.latched_init)
5219 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5220 else
5221 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5222 }
5223 }
5224
5225 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5226 if (!vcpu->kvm->arch.triple_fault_event)
5227 return -EINVAL;
5228 if (events->triple_fault.pending)
5229 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5230 else
5231 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5232 }
5233
5234 kvm_make_request(KVM_REQ_EVENT, vcpu);
5235
5236 return 0;
5237 }
5238
kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5239 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5240 struct kvm_debugregs *dbgregs)
5241 {
5242 unsigned long val;
5243
5244 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
5245 kvm_get_dr(vcpu, 6, &val);
5246 dbgregs->dr6 = val;
5247 dbgregs->dr7 = vcpu->arch.dr7;
5248 dbgregs->flags = 0;
5249 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
5250 }
5251
kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu * vcpu,struct kvm_debugregs * dbgregs)5252 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5253 struct kvm_debugregs *dbgregs)
5254 {
5255 if (dbgregs->flags)
5256 return -EINVAL;
5257
5258 if (!kvm_dr6_valid(dbgregs->dr6))
5259 return -EINVAL;
5260 if (!kvm_dr7_valid(dbgregs->dr7))
5261 return -EINVAL;
5262
5263 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
5264 kvm_update_dr0123(vcpu);
5265 vcpu->arch.dr6 = dbgregs->dr6;
5266 vcpu->arch.dr7 = dbgregs->dr7;
5267 kvm_update_dr7(vcpu);
5268
5269 return 0;
5270 }
5271
kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5272 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5273 struct kvm_xsave *guest_xsave)
5274 {
5275 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5276 return;
5277
5278 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5279 guest_xsave->region,
5280 sizeof(guest_xsave->region),
5281 vcpu->arch.pkru);
5282 }
5283
kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu * vcpu,u8 * state,unsigned int size)5284 static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5285 u8 *state, unsigned int size)
5286 {
5287 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5288 return;
5289
5290 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5291 state, size, vcpu->arch.pkru);
5292 }
5293
kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu * vcpu,struct kvm_xsave * guest_xsave)5294 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5295 struct kvm_xsave *guest_xsave)
5296 {
5297 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5298 return 0;
5299
5300 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5301 guest_xsave->region,
5302 kvm_caps.supported_xcr0,
5303 &vcpu->arch.pkru);
5304 }
5305
kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5306 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5307 struct kvm_xcrs *guest_xcrs)
5308 {
5309 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
5310 guest_xcrs->nr_xcrs = 0;
5311 return;
5312 }
5313
5314 guest_xcrs->nr_xcrs = 1;
5315 guest_xcrs->flags = 0;
5316 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5317 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5318 }
5319
kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu * vcpu,struct kvm_xcrs * guest_xcrs)5320 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5321 struct kvm_xcrs *guest_xcrs)
5322 {
5323 int i, r = 0;
5324
5325 if (!boot_cpu_has(X86_FEATURE_XSAVE))
5326 return -EINVAL;
5327
5328 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5329 return -EINVAL;
5330
5331 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5332 /* Only support XCR0 currently */
5333 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
5334 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
5335 guest_xcrs->xcrs[i].value);
5336 break;
5337 }
5338 if (r)
5339 r = -EINVAL;
5340 return r;
5341 }
5342
5343 /*
5344 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5345 * stopped by the hypervisor. This function will be called from the host only.
5346 * EINVAL is returned when the host attempts to set the flag for a guest that
5347 * does not support pv clocks.
5348 */
kvm_set_guest_paused(struct kvm_vcpu * vcpu)5349 static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5350 {
5351 if (!vcpu->arch.pv_time.active)
5352 return -EINVAL;
5353 vcpu->arch.pvclock_set_guest_stopped_request = true;
5354 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5355 return 0;
5356 }
5357
kvm_arch_tsc_has_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5358 static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5359 struct kvm_device_attr *attr)
5360 {
5361 int r;
5362
5363 switch (attr->attr) {
5364 case KVM_VCPU_TSC_OFFSET:
5365 r = 0;
5366 break;
5367 default:
5368 r = -ENXIO;
5369 }
5370
5371 return r;
5372 }
5373
kvm_arch_tsc_get_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5374 static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5375 struct kvm_device_attr *attr)
5376 {
5377 u64 __user *uaddr = kvm_get_attr_addr(attr);
5378 int r;
5379
5380 if (IS_ERR(uaddr))
5381 return PTR_ERR(uaddr);
5382
5383 switch (attr->attr) {
5384 case KVM_VCPU_TSC_OFFSET:
5385 r = -EFAULT;
5386 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5387 break;
5388 r = 0;
5389 break;
5390 default:
5391 r = -ENXIO;
5392 }
5393
5394 return r;
5395 }
5396
kvm_arch_tsc_set_attr(struct kvm_vcpu * vcpu,struct kvm_device_attr * attr)5397 static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5398 struct kvm_device_attr *attr)
5399 {
5400 u64 __user *uaddr = kvm_get_attr_addr(attr);
5401 struct kvm *kvm = vcpu->kvm;
5402 int r;
5403
5404 if (IS_ERR(uaddr))
5405 return PTR_ERR(uaddr);
5406
5407 switch (attr->attr) {
5408 case KVM_VCPU_TSC_OFFSET: {
5409 u64 offset, tsc, ns;
5410 unsigned long flags;
5411 bool matched;
5412
5413 r = -EFAULT;
5414 if (get_user(offset, uaddr))
5415 break;
5416
5417 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5418
5419 matched = (vcpu->arch.virtual_tsc_khz &&
5420 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5421 kvm->arch.last_tsc_offset == offset);
5422
5423 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
5424 ns = get_kvmclock_base_ns();
5425
5426 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5427 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5428
5429 r = 0;
5430 break;
5431 }
5432 default:
5433 r = -ENXIO;
5434 }
5435
5436 return r;
5437 }
5438
kvm_vcpu_ioctl_device_attr(struct kvm_vcpu * vcpu,unsigned int ioctl,void __user * argp)5439 static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5440 unsigned int ioctl,
5441 void __user *argp)
5442 {
5443 struct kvm_device_attr attr;
5444 int r;
5445
5446 if (copy_from_user(&attr, argp, sizeof(attr)))
5447 return -EFAULT;
5448
5449 if (attr.group != KVM_VCPU_TSC_CTRL)
5450 return -ENXIO;
5451
5452 switch (ioctl) {
5453 case KVM_HAS_DEVICE_ATTR:
5454 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5455 break;
5456 case KVM_GET_DEVICE_ATTR:
5457 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5458 break;
5459 case KVM_SET_DEVICE_ATTR:
5460 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5461 break;
5462 }
5463
5464 return r;
5465 }
5466
kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu * vcpu,struct kvm_enable_cap * cap)5467 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5468 struct kvm_enable_cap *cap)
5469 {
5470 int r;
5471 uint16_t vmcs_version;
5472 void __user *user_ptr;
5473
5474 if (cap->flags)
5475 return -EINVAL;
5476
5477 switch (cap->cap) {
5478 case KVM_CAP_HYPERV_SYNIC2:
5479 if (cap->args[0])
5480 return -EINVAL;
5481 fallthrough;
5482
5483 case KVM_CAP_HYPERV_SYNIC:
5484 if (!irqchip_in_kernel(vcpu->kvm))
5485 return -EINVAL;
5486 return kvm_hv_activate_synic(vcpu, cap->cap ==
5487 KVM_CAP_HYPERV_SYNIC2);
5488 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
5489 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5490 return -ENOTTY;
5491 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
5492 if (!r) {
5493 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5494 if (copy_to_user(user_ptr, &vmcs_version,
5495 sizeof(vmcs_version)))
5496 r = -EFAULT;
5497 }
5498 return r;
5499 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
5500 if (!kvm_x86_ops.enable_direct_tlbflush)
5501 return -ENOTTY;
5502
5503 return static_call(kvm_x86_enable_direct_tlbflush)(vcpu);
5504
5505 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5506 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5507
5508 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5509 vcpu->arch.pv_cpuid.enforce = cap->args[0];
5510 if (vcpu->arch.pv_cpuid.enforce)
5511 kvm_update_pv_runtime(vcpu);
5512
5513 return 0;
5514 default:
5515 return -EINVAL;
5516 }
5517 }
5518
kvm_arch_vcpu_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)5519 long kvm_arch_vcpu_ioctl(struct file *filp,
5520 unsigned int ioctl, unsigned long arg)
5521 {
5522 struct kvm_vcpu *vcpu = filp->private_data;
5523 void __user *argp = (void __user *)arg;
5524 int r;
5525 union {
5526 struct kvm_sregs2 *sregs2;
5527 struct kvm_lapic_state *lapic;
5528 struct kvm_xsave *xsave;
5529 struct kvm_xcrs *xcrs;
5530 void *buffer;
5531 } u;
5532
5533 vcpu_load(vcpu);
5534
5535 u.buffer = NULL;
5536 switch (ioctl) {
5537 case KVM_GET_LAPIC: {
5538 r = -EINVAL;
5539 if (!lapic_in_kernel(vcpu))
5540 goto out;
5541 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5542 GFP_KERNEL_ACCOUNT);
5543
5544 r = -ENOMEM;
5545 if (!u.lapic)
5546 goto out;
5547 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
5548 if (r)
5549 goto out;
5550 r = -EFAULT;
5551 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
5552 goto out;
5553 r = 0;
5554 break;
5555 }
5556 case KVM_SET_LAPIC: {
5557 r = -EINVAL;
5558 if (!lapic_in_kernel(vcpu))
5559 goto out;
5560 u.lapic = memdup_user(argp, sizeof(*u.lapic));
5561 if (IS_ERR(u.lapic)) {
5562 r = PTR_ERR(u.lapic);
5563 goto out_nofree;
5564 }
5565
5566 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
5567 break;
5568 }
5569 case KVM_INTERRUPT: {
5570 struct kvm_interrupt irq;
5571
5572 r = -EFAULT;
5573 if (copy_from_user(&irq, argp, sizeof(irq)))
5574 goto out;
5575 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
5576 break;
5577 }
5578 case KVM_NMI: {
5579 r = kvm_vcpu_ioctl_nmi(vcpu);
5580 break;
5581 }
5582 case KVM_SMI: {
5583 r = kvm_vcpu_ioctl_smi(vcpu);
5584 break;
5585 }
5586 case KVM_SET_CPUID: {
5587 struct kvm_cpuid __user *cpuid_arg = argp;
5588 struct kvm_cpuid cpuid;
5589
5590 r = -EFAULT;
5591 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5592 goto out;
5593 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
5594 break;
5595 }
5596 case KVM_SET_CPUID2: {
5597 struct kvm_cpuid2 __user *cpuid_arg = argp;
5598 struct kvm_cpuid2 cpuid;
5599
5600 r = -EFAULT;
5601 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5602 goto out;
5603 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
5604 cpuid_arg->entries);
5605 break;
5606 }
5607 case KVM_GET_CPUID2: {
5608 struct kvm_cpuid2 __user *cpuid_arg = argp;
5609 struct kvm_cpuid2 cpuid;
5610
5611 r = -EFAULT;
5612 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
5613 goto out;
5614 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
5615 cpuid_arg->entries);
5616 if (r)
5617 goto out;
5618 r = -EFAULT;
5619 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
5620 goto out;
5621 r = 0;
5622 break;
5623 }
5624 case KVM_GET_MSRS: {
5625 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5626 r = msr_io(vcpu, argp, do_get_msr, 1);
5627 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5628 break;
5629 }
5630 case KVM_SET_MSRS: {
5631 int idx = srcu_read_lock(&vcpu->kvm->srcu);
5632 r = msr_io(vcpu, argp, do_set_msr, 0);
5633 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5634 break;
5635 }
5636 case KVM_TPR_ACCESS_REPORTING: {
5637 struct kvm_tpr_access_ctl tac;
5638
5639 r = -EFAULT;
5640 if (copy_from_user(&tac, argp, sizeof(tac)))
5641 goto out;
5642 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5643 if (r)
5644 goto out;
5645 r = -EFAULT;
5646 if (copy_to_user(argp, &tac, sizeof(tac)))
5647 goto out;
5648 r = 0;
5649 break;
5650 };
5651 case KVM_SET_VAPIC_ADDR: {
5652 struct kvm_vapic_addr va;
5653 int idx;
5654
5655 r = -EINVAL;
5656 if (!lapic_in_kernel(vcpu))
5657 goto out;
5658 r = -EFAULT;
5659 if (copy_from_user(&va, argp, sizeof(va)))
5660 goto out;
5661 idx = srcu_read_lock(&vcpu->kvm->srcu);
5662 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
5663 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5664 break;
5665 }
5666 case KVM_X86_SETUP_MCE: {
5667 u64 mcg_cap;
5668
5669 r = -EFAULT;
5670 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
5671 goto out;
5672 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5673 break;
5674 }
5675 case KVM_X86_SET_MCE: {
5676 struct kvm_x86_mce mce;
5677
5678 r = -EFAULT;
5679 if (copy_from_user(&mce, argp, sizeof(mce)))
5680 goto out;
5681 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5682 break;
5683 }
5684 case KVM_GET_VCPU_EVENTS: {
5685 struct kvm_vcpu_events events;
5686
5687 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5688
5689 r = -EFAULT;
5690 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5691 break;
5692 r = 0;
5693 break;
5694 }
5695 case KVM_SET_VCPU_EVENTS: {
5696 struct kvm_vcpu_events events;
5697
5698 r = -EFAULT;
5699 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5700 break;
5701
5702 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5703 break;
5704 }
5705 case KVM_GET_DEBUGREGS: {
5706 struct kvm_debugregs dbgregs;
5707
5708 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5709
5710 r = -EFAULT;
5711 if (copy_to_user(argp, &dbgregs,
5712 sizeof(struct kvm_debugregs)))
5713 break;
5714 r = 0;
5715 break;
5716 }
5717 case KVM_SET_DEBUGREGS: {
5718 struct kvm_debugregs dbgregs;
5719
5720 r = -EFAULT;
5721 if (copy_from_user(&dbgregs, argp,
5722 sizeof(struct kvm_debugregs)))
5723 break;
5724
5725 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5726 break;
5727 }
5728 case KVM_GET_XSAVE: {
5729 r = -EINVAL;
5730 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5731 break;
5732
5733 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
5734 r = -ENOMEM;
5735 if (!u.xsave)
5736 break;
5737
5738 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
5739
5740 r = -EFAULT;
5741 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
5742 break;
5743 r = 0;
5744 break;
5745 }
5746 case KVM_SET_XSAVE: {
5747 int size = vcpu->arch.guest_fpu.uabi_size;
5748
5749 u.xsave = memdup_user(argp, size);
5750 if (IS_ERR(u.xsave)) {
5751 r = PTR_ERR(u.xsave);
5752 goto out_nofree;
5753 }
5754
5755 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
5756 break;
5757 }
5758
5759 case KVM_GET_XSAVE2: {
5760 int size = vcpu->arch.guest_fpu.uabi_size;
5761
5762 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5763 r = -ENOMEM;
5764 if (!u.xsave)
5765 break;
5766
5767 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5768
5769 r = -EFAULT;
5770 if (copy_to_user(argp, u.xsave, size))
5771 break;
5772
5773 r = 0;
5774 break;
5775 }
5776
5777 case KVM_GET_XCRS: {
5778 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
5779 r = -ENOMEM;
5780 if (!u.xcrs)
5781 break;
5782
5783 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
5784
5785 r = -EFAULT;
5786 if (copy_to_user(argp, u.xcrs,
5787 sizeof(struct kvm_xcrs)))
5788 break;
5789 r = 0;
5790 break;
5791 }
5792 case KVM_SET_XCRS: {
5793 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
5794 if (IS_ERR(u.xcrs)) {
5795 r = PTR_ERR(u.xcrs);
5796 goto out_nofree;
5797 }
5798
5799 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
5800 break;
5801 }
5802 case KVM_SET_TSC_KHZ: {
5803 u32 user_tsc_khz;
5804
5805 r = -EINVAL;
5806 user_tsc_khz = (u32)arg;
5807
5808 if (kvm_caps.has_tsc_control &&
5809 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
5810 goto out;
5811
5812 if (user_tsc_khz == 0)
5813 user_tsc_khz = tsc_khz;
5814
5815 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5816 r = 0;
5817
5818 goto out;
5819 }
5820 case KVM_GET_TSC_KHZ: {
5821 r = vcpu->arch.virtual_tsc_khz;
5822 goto out;
5823 }
5824 case KVM_KVMCLOCK_CTRL: {
5825 r = kvm_set_guest_paused(vcpu);
5826 goto out;
5827 }
5828 case KVM_ENABLE_CAP: {
5829 struct kvm_enable_cap cap;
5830
5831 r = -EFAULT;
5832 if (copy_from_user(&cap, argp, sizeof(cap)))
5833 goto out;
5834 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5835 break;
5836 }
5837 case KVM_GET_NESTED_STATE: {
5838 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5839 u32 user_data_size;
5840
5841 r = -EINVAL;
5842 if (!kvm_x86_ops.nested_ops->get_state)
5843 break;
5844
5845 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
5846 r = -EFAULT;
5847 if (get_user(user_data_size, &user_kvm_nested_state->size))
5848 break;
5849
5850 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5851 user_data_size);
5852 if (r < 0)
5853 break;
5854
5855 if (r > user_data_size) {
5856 if (put_user(r, &user_kvm_nested_state->size))
5857 r = -EFAULT;
5858 else
5859 r = -E2BIG;
5860 break;
5861 }
5862
5863 r = 0;
5864 break;
5865 }
5866 case KVM_SET_NESTED_STATE: {
5867 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5868 struct kvm_nested_state kvm_state;
5869 int idx;
5870
5871 r = -EINVAL;
5872 if (!kvm_x86_ops.nested_ops->set_state)
5873 break;
5874
5875 r = -EFAULT;
5876 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
5877 break;
5878
5879 r = -EINVAL;
5880 if (kvm_state.size < sizeof(kvm_state))
5881 break;
5882
5883 if (kvm_state.flags &
5884 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
5885 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
5886 | KVM_STATE_NESTED_GIF_SET))
5887 break;
5888
5889 /* nested_run_pending implies guest_mode. */
5890 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
5891 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
5892 break;
5893
5894 idx = srcu_read_lock(&vcpu->kvm->srcu);
5895 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
5896 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5897 break;
5898 }
5899 case KVM_GET_SUPPORTED_HV_CPUID:
5900 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
5901 break;
5902 #ifdef CONFIG_KVM_XEN
5903 case KVM_XEN_VCPU_GET_ATTR: {
5904 struct kvm_xen_vcpu_attr xva;
5905
5906 r = -EFAULT;
5907 if (copy_from_user(&xva, argp, sizeof(xva)))
5908 goto out;
5909 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
5910 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
5911 r = -EFAULT;
5912 break;
5913 }
5914 case KVM_XEN_VCPU_SET_ATTR: {
5915 struct kvm_xen_vcpu_attr xva;
5916
5917 r = -EFAULT;
5918 if (copy_from_user(&xva, argp, sizeof(xva)))
5919 goto out;
5920 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
5921 break;
5922 }
5923 #endif
5924 case KVM_GET_SREGS2: {
5925 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
5926 r = -ENOMEM;
5927 if (!u.sregs2)
5928 goto out;
5929 __get_sregs2(vcpu, u.sregs2);
5930 r = -EFAULT;
5931 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
5932 goto out;
5933 r = 0;
5934 break;
5935 }
5936 case KVM_SET_SREGS2: {
5937 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
5938 if (IS_ERR(u.sregs2)) {
5939 r = PTR_ERR(u.sregs2);
5940 u.sregs2 = NULL;
5941 goto out;
5942 }
5943 r = __set_sregs2(vcpu, u.sregs2);
5944 break;
5945 }
5946 case KVM_HAS_DEVICE_ATTR:
5947 case KVM_GET_DEVICE_ATTR:
5948 case KVM_SET_DEVICE_ATTR:
5949 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
5950 break;
5951 default:
5952 r = -EINVAL;
5953 }
5954 out:
5955 kfree(u.buffer);
5956 out_nofree:
5957 vcpu_put(vcpu);
5958 return r;
5959 }
5960
kvm_arch_vcpu_fault(struct kvm_vcpu * vcpu,struct vm_fault * vmf)5961 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5962 {
5963 return VM_FAULT_SIGBUS;
5964 }
5965
kvm_vm_ioctl_set_tss_addr(struct kvm * kvm,unsigned long addr)5966 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5967 {
5968 int ret;
5969
5970 if (addr > (unsigned int)(-3 * PAGE_SIZE))
5971 return -EINVAL;
5972 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
5973 return ret;
5974 }
5975
kvm_vm_ioctl_set_identity_map_addr(struct kvm * kvm,u64 ident_addr)5976 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5977 u64 ident_addr)
5978 {
5979 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
5980 }
5981
kvm_vm_ioctl_set_nr_mmu_pages(struct kvm * kvm,unsigned long kvm_nr_mmu_pages)5982 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
5983 unsigned long kvm_nr_mmu_pages)
5984 {
5985 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5986 return -EINVAL;
5987
5988 mutex_lock(&kvm->slots_lock);
5989
5990 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
5991 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
5992
5993 mutex_unlock(&kvm->slots_lock);
5994 return 0;
5995 }
5996
kvm_vm_ioctl_get_nr_mmu_pages(struct kvm * kvm)5997 static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
5998 {
5999 return kvm->arch.n_max_mmu_pages;
6000 }
6001
kvm_vm_ioctl_get_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6002 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6003 {
6004 struct kvm_pic *pic = kvm->arch.vpic;
6005 int r;
6006
6007 r = 0;
6008 switch (chip->chip_id) {
6009 case KVM_IRQCHIP_PIC_MASTER:
6010 memcpy(&chip->chip.pic, &pic->pics[0],
6011 sizeof(struct kvm_pic_state));
6012 break;
6013 case KVM_IRQCHIP_PIC_SLAVE:
6014 memcpy(&chip->chip.pic, &pic->pics[1],
6015 sizeof(struct kvm_pic_state));
6016 break;
6017 case KVM_IRQCHIP_IOAPIC:
6018 kvm_get_ioapic(kvm, &chip->chip.ioapic);
6019 break;
6020 default:
6021 r = -EINVAL;
6022 break;
6023 }
6024 return r;
6025 }
6026
kvm_vm_ioctl_set_irqchip(struct kvm * kvm,struct kvm_irqchip * chip)6027 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6028 {
6029 struct kvm_pic *pic = kvm->arch.vpic;
6030 int r;
6031
6032 r = 0;
6033 switch (chip->chip_id) {
6034 case KVM_IRQCHIP_PIC_MASTER:
6035 spin_lock(&pic->lock);
6036 memcpy(&pic->pics[0], &chip->chip.pic,
6037 sizeof(struct kvm_pic_state));
6038 spin_unlock(&pic->lock);
6039 break;
6040 case KVM_IRQCHIP_PIC_SLAVE:
6041 spin_lock(&pic->lock);
6042 memcpy(&pic->pics[1], &chip->chip.pic,
6043 sizeof(struct kvm_pic_state));
6044 spin_unlock(&pic->lock);
6045 break;
6046 case KVM_IRQCHIP_IOAPIC:
6047 kvm_set_ioapic(kvm, &chip->chip.ioapic);
6048 break;
6049 default:
6050 r = -EINVAL;
6051 break;
6052 }
6053 kvm_pic_update_irq(pic);
6054 return r;
6055 }
6056
kvm_vm_ioctl_get_pit(struct kvm * kvm,struct kvm_pit_state * ps)6057 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6058 {
6059 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6060
6061 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6062
6063 mutex_lock(&kps->lock);
6064 memcpy(ps, &kps->channels, sizeof(*ps));
6065 mutex_unlock(&kps->lock);
6066 return 0;
6067 }
6068
kvm_vm_ioctl_set_pit(struct kvm * kvm,struct kvm_pit_state * ps)6069 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6070 {
6071 int i;
6072 struct kvm_pit *pit = kvm->arch.vpit;
6073
6074 mutex_lock(&pit->pit_state.lock);
6075 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
6076 for (i = 0; i < 3; i++)
6077 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6078 mutex_unlock(&pit->pit_state.lock);
6079 return 0;
6080 }
6081
kvm_vm_ioctl_get_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6082 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6083 {
6084 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6085 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6086 sizeof(ps->channels));
6087 ps->flags = kvm->arch.vpit->pit_state.flags;
6088 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
6089 memset(&ps->reserved, 0, sizeof(ps->reserved));
6090 return 0;
6091 }
6092
kvm_vm_ioctl_set_pit2(struct kvm * kvm,struct kvm_pit_state2 * ps)6093 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6094 {
6095 int start = 0;
6096 int i;
6097 u32 prev_legacy, cur_legacy;
6098 struct kvm_pit *pit = kvm->arch.vpit;
6099
6100 mutex_lock(&pit->pit_state.lock);
6101 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
6102 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6103 if (!prev_legacy && cur_legacy)
6104 start = 1;
6105 memcpy(&pit->pit_state.channels, &ps->channels,
6106 sizeof(pit->pit_state.channels));
6107 pit->pit_state.flags = ps->flags;
6108 for (i = 0; i < 3; i++)
6109 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
6110 start && i == 0);
6111 mutex_unlock(&pit->pit_state.lock);
6112 return 0;
6113 }
6114
kvm_vm_ioctl_reinject(struct kvm * kvm,struct kvm_reinject_control * control)6115 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6116 struct kvm_reinject_control *control)
6117 {
6118 struct kvm_pit *pit = kvm->arch.vpit;
6119
6120 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6121 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6122 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6123 */
6124 mutex_lock(&pit->pit_state.lock);
6125 kvm_pit_set_reinject(pit, control->pit_reinject);
6126 mutex_unlock(&pit->pit_state.lock);
6127
6128 return 0;
6129 }
6130
kvm_arch_sync_dirty_log(struct kvm * kvm,struct kvm_memory_slot * memslot)6131 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
6132 {
6133
6134 /*
6135 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6136 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6137 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6138 * VM-Exit.
6139 */
6140 struct kvm_vcpu *vcpu;
6141 unsigned long i;
6142
6143 kvm_for_each_vcpu(i, vcpu, kvm)
6144 kvm_vcpu_kick(vcpu);
6145 }
6146
kvm_vm_ioctl_irq_line(struct kvm * kvm,struct kvm_irq_level * irq_event,bool line_status)6147 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6148 bool line_status)
6149 {
6150 if (!irqchip_in_kernel(kvm))
6151 return -ENXIO;
6152
6153 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
6154 irq_event->irq, irq_event->level,
6155 line_status);
6156 return 0;
6157 }
6158
kvm_vm_ioctl_enable_cap(struct kvm * kvm,struct kvm_enable_cap * cap)6159 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6160 struct kvm_enable_cap *cap)
6161 {
6162 int r;
6163
6164 if (cap->flags)
6165 return -EINVAL;
6166
6167 switch (cap->cap) {
6168 case KVM_CAP_DISABLE_QUIRKS2:
6169 r = -EINVAL;
6170 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6171 break;
6172 fallthrough;
6173 case KVM_CAP_DISABLE_QUIRKS:
6174 kvm->arch.disabled_quirks = cap->args[0];
6175 r = 0;
6176 break;
6177 case KVM_CAP_SPLIT_IRQCHIP: {
6178 mutex_lock(&kvm->lock);
6179 r = -EINVAL;
6180 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6181 goto split_irqchip_unlock;
6182 r = -EEXIST;
6183 if (irqchip_in_kernel(kvm))
6184 goto split_irqchip_unlock;
6185 if (kvm->created_vcpus)
6186 goto split_irqchip_unlock;
6187 r = kvm_setup_empty_irq_routing(kvm);
6188 if (r)
6189 goto split_irqchip_unlock;
6190 /* Pairs with irqchip_in_kernel. */
6191 smp_wmb();
6192 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
6193 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
6194 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6195 r = 0;
6196 split_irqchip_unlock:
6197 mutex_unlock(&kvm->lock);
6198 break;
6199 }
6200 case KVM_CAP_X2APIC_API:
6201 r = -EINVAL;
6202 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6203 break;
6204
6205 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6206 kvm->arch.x2apic_format = true;
6207 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6208 kvm->arch.x2apic_broadcast_quirk_disabled = true;
6209
6210 r = 0;
6211 break;
6212 case KVM_CAP_X86_DISABLE_EXITS:
6213 r = -EINVAL;
6214 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6215 break;
6216
6217 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6218 kvm_can_mwait_in_guest())
6219 kvm->arch.mwait_in_guest = true;
6220 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6221 kvm->arch.hlt_in_guest = true;
6222 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6223 kvm->arch.pause_in_guest = true;
6224 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6225 kvm->arch.cstate_in_guest = true;
6226 r = 0;
6227 break;
6228 case KVM_CAP_MSR_PLATFORM_INFO:
6229 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6230 r = 0;
6231 break;
6232 case KVM_CAP_EXCEPTION_PAYLOAD:
6233 kvm->arch.exception_payload_enabled = cap->args[0];
6234 r = 0;
6235 break;
6236 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6237 kvm->arch.triple_fault_event = cap->args[0];
6238 r = 0;
6239 break;
6240 case KVM_CAP_X86_USER_SPACE_MSR:
6241 r = -EINVAL;
6242 if (cap->args[0] & ~(KVM_MSR_EXIT_REASON_INVAL |
6243 KVM_MSR_EXIT_REASON_UNKNOWN |
6244 KVM_MSR_EXIT_REASON_FILTER))
6245 break;
6246 kvm->arch.user_space_msr_mask = cap->args[0];
6247 r = 0;
6248 break;
6249 case KVM_CAP_X86_BUS_LOCK_EXIT:
6250 r = -EINVAL;
6251 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6252 break;
6253
6254 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6255 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6256 break;
6257
6258 if (kvm_caps.has_bus_lock_exit &&
6259 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6260 kvm->arch.bus_lock_detection_enabled = true;
6261 r = 0;
6262 break;
6263 #ifdef CONFIG_X86_SGX_KVM
6264 case KVM_CAP_SGX_ATTRIBUTE: {
6265 unsigned long allowed_attributes = 0;
6266
6267 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6268 if (r)
6269 break;
6270
6271 /* KVM only supports the PROVISIONKEY privileged attribute. */
6272 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6273 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6274 kvm->arch.sgx_provisioning_allowed = true;
6275 else
6276 r = -EINVAL;
6277 break;
6278 }
6279 #endif
6280 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6281 r = -EINVAL;
6282 if (!kvm_x86_ops.vm_copy_enc_context_from)
6283 break;
6284
6285 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6286 break;
6287 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6288 r = -EINVAL;
6289 if (!kvm_x86_ops.vm_move_enc_context_from)
6290 break;
6291
6292 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6293 break;
6294 case KVM_CAP_EXIT_HYPERCALL:
6295 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6296 r = -EINVAL;
6297 break;
6298 }
6299 kvm->arch.hypercall_exit_enabled = cap->args[0];
6300 r = 0;
6301 break;
6302 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6303 r = -EINVAL;
6304 if (cap->args[0] & ~1)
6305 break;
6306 kvm->arch.exit_on_emulation_error = cap->args[0];
6307 r = 0;
6308 break;
6309 case KVM_CAP_PMU_CAPABILITY:
6310 r = -EINVAL;
6311 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6312 break;
6313
6314 mutex_lock(&kvm->lock);
6315 if (!kvm->created_vcpus) {
6316 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6317 r = 0;
6318 }
6319 mutex_unlock(&kvm->lock);
6320 break;
6321 case KVM_CAP_MAX_VCPU_ID:
6322 r = -EINVAL;
6323 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6324 break;
6325
6326 mutex_lock(&kvm->lock);
6327 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6328 r = 0;
6329 } else if (!kvm->arch.max_vcpu_ids) {
6330 kvm->arch.max_vcpu_ids = cap->args[0];
6331 r = 0;
6332 }
6333 mutex_unlock(&kvm->lock);
6334 break;
6335 case KVM_CAP_X86_NOTIFY_VMEXIT:
6336 r = -EINVAL;
6337 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6338 break;
6339 if (!kvm_caps.has_notify_vmexit)
6340 break;
6341 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6342 break;
6343 mutex_lock(&kvm->lock);
6344 if (!kvm->created_vcpus) {
6345 kvm->arch.notify_window = cap->args[0] >> 32;
6346 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6347 r = 0;
6348 }
6349 mutex_unlock(&kvm->lock);
6350 break;
6351 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6352 r = -EINVAL;
6353
6354 /*
6355 * Since the risk of disabling NX hugepages is a guest crashing
6356 * the system, ensure the userspace process has permission to
6357 * reboot the system.
6358 *
6359 * Note that unlike the reboot() syscall, the process must have
6360 * this capability in the root namespace because exposing
6361 * /dev/kvm into a container does not limit the scope of the
6362 * iTLB multihit bug to that container. In other words,
6363 * this must use capable(), not ns_capable().
6364 */
6365 if (!capable(CAP_SYS_BOOT)) {
6366 r = -EPERM;
6367 break;
6368 }
6369
6370 if (cap->args[0])
6371 break;
6372
6373 mutex_lock(&kvm->lock);
6374 if (!kvm->created_vcpus) {
6375 kvm->arch.disable_nx_huge_pages = true;
6376 r = 0;
6377 }
6378 mutex_unlock(&kvm->lock);
6379 break;
6380 default:
6381 r = -EINVAL;
6382 break;
6383 }
6384 return r;
6385 }
6386
kvm_alloc_msr_filter(bool default_allow)6387 static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6388 {
6389 struct kvm_x86_msr_filter *msr_filter;
6390
6391 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6392 if (!msr_filter)
6393 return NULL;
6394
6395 msr_filter->default_allow = default_allow;
6396 return msr_filter;
6397 }
6398
kvm_free_msr_filter(struct kvm_x86_msr_filter * msr_filter)6399 static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
6400 {
6401 u32 i;
6402
6403 if (!msr_filter)
6404 return;
6405
6406 for (i = 0; i < msr_filter->count; i++)
6407 kfree(msr_filter->ranges[i].bitmap);
6408
6409 kfree(msr_filter);
6410 }
6411
kvm_add_msr_filter(struct kvm_x86_msr_filter * msr_filter,struct kvm_msr_filter_range * user_range)6412 static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6413 struct kvm_msr_filter_range *user_range)
6414 {
6415 unsigned long *bitmap = NULL;
6416 size_t bitmap_size;
6417
6418 if (!user_range->nmsrs)
6419 return 0;
6420
6421 if (user_range->flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE))
6422 return -EINVAL;
6423
6424 if (!user_range->flags)
6425 return -EINVAL;
6426
6427 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6428 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6429 return -EINVAL;
6430
6431 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6432 if (IS_ERR(bitmap))
6433 return PTR_ERR(bitmap);
6434
6435 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
6436 .flags = user_range->flags,
6437 .base = user_range->base,
6438 .nmsrs = user_range->nmsrs,
6439 .bitmap = bitmap,
6440 };
6441
6442 msr_filter->count++;
6443 return 0;
6444 }
6445
kvm_vm_ioctl_set_msr_filter(struct kvm * kvm,struct kvm_msr_filter * filter)6446 static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6447 struct kvm_msr_filter *filter)
6448 {
6449 struct kvm_x86_msr_filter *new_filter, *old_filter;
6450 bool default_allow;
6451 bool empty = true;
6452 int r = 0;
6453 u32 i;
6454
6455 if (filter->flags & ~KVM_MSR_FILTER_DEFAULT_DENY)
6456 return -EINVAL;
6457
6458 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6459 empty &= !filter->ranges[i].nmsrs;
6460
6461 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
6462 if (empty && !default_allow)
6463 return -EINVAL;
6464
6465 new_filter = kvm_alloc_msr_filter(default_allow);
6466 if (!new_filter)
6467 return -ENOMEM;
6468
6469 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6470 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
6471 if (r) {
6472 kvm_free_msr_filter(new_filter);
6473 return r;
6474 }
6475 }
6476
6477 mutex_lock(&kvm->lock);
6478
6479 /* The per-VM filter is protected by kvm->lock... */
6480 old_filter = srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1);
6481
6482 rcu_assign_pointer(kvm->arch.msr_filter, new_filter);
6483 synchronize_srcu(&kvm->srcu);
6484
6485 kvm_free_msr_filter(old_filter);
6486
6487 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
6488 mutex_unlock(&kvm->lock);
6489
6490 return 0;
6491 }
6492
6493 #ifdef CONFIG_KVM_COMPAT
6494 /* for KVM_X86_SET_MSR_FILTER */
6495 struct kvm_msr_filter_range_compat {
6496 __u32 flags;
6497 __u32 nmsrs;
6498 __u32 base;
6499 __u32 bitmap;
6500 };
6501
6502 struct kvm_msr_filter_compat {
6503 __u32 flags;
6504 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6505 };
6506
6507 #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6508
kvm_arch_vm_compat_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6509 long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6510 unsigned long arg)
6511 {
6512 void __user *argp = (void __user *)arg;
6513 struct kvm *kvm = filp->private_data;
6514 long r = -ENOTTY;
6515
6516 switch (ioctl) {
6517 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6518 struct kvm_msr_filter __user *user_msr_filter = argp;
6519 struct kvm_msr_filter_compat filter_compat;
6520 struct kvm_msr_filter filter;
6521 int i;
6522
6523 if (copy_from_user(&filter_compat, user_msr_filter,
6524 sizeof(filter_compat)))
6525 return -EFAULT;
6526
6527 filter.flags = filter_compat.flags;
6528 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6529 struct kvm_msr_filter_range_compat *cr;
6530
6531 cr = &filter_compat.ranges[i];
6532 filter.ranges[i] = (struct kvm_msr_filter_range) {
6533 .flags = cr->flags,
6534 .nmsrs = cr->nmsrs,
6535 .base = cr->base,
6536 .bitmap = (__u8 *)(ulong)cr->bitmap,
6537 };
6538 }
6539
6540 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6541 break;
6542 }
6543 }
6544
6545 return r;
6546 }
6547 #endif
6548
6549 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
kvm_arch_suspend_notifier(struct kvm * kvm)6550 static int kvm_arch_suspend_notifier(struct kvm *kvm)
6551 {
6552 struct kvm_vcpu *vcpu;
6553 unsigned long i;
6554 int ret = 0;
6555
6556 mutex_lock(&kvm->lock);
6557 kvm_for_each_vcpu(i, vcpu, kvm) {
6558 if (!vcpu->arch.pv_time.active)
6559 continue;
6560
6561 ret = kvm_set_guest_paused(vcpu);
6562 if (ret) {
6563 kvm_err("Failed to pause guest VCPU%d: %d\n",
6564 vcpu->vcpu_id, ret);
6565 break;
6566 }
6567 }
6568 mutex_unlock(&kvm->lock);
6569
6570 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6571 }
6572
kvm_arch_pm_notifier(struct kvm * kvm,unsigned long state)6573 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6574 {
6575 switch (state) {
6576 case PM_HIBERNATION_PREPARE:
6577 case PM_SUSPEND_PREPARE:
6578 return kvm_arch_suspend_notifier(kvm);
6579 }
6580
6581 return NOTIFY_DONE;
6582 }
6583 #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6584
kvm_vm_ioctl_get_clock(struct kvm * kvm,void __user * argp)6585 static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6586 {
6587 struct kvm_clock_data data = { 0 };
6588
6589 get_kvmclock(kvm, &data);
6590 if (copy_to_user(argp, &data, sizeof(data)))
6591 return -EFAULT;
6592
6593 return 0;
6594 }
6595
kvm_vm_ioctl_set_clock(struct kvm * kvm,void __user * argp)6596 static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6597 {
6598 struct kvm_arch *ka = &kvm->arch;
6599 struct kvm_clock_data data;
6600 u64 now_raw_ns;
6601
6602 if (copy_from_user(&data, argp, sizeof(data)))
6603 return -EFAULT;
6604
6605 /*
6606 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6607 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6608 */
6609 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
6610 return -EINVAL;
6611
6612 kvm_hv_request_tsc_page_update(kvm);
6613 kvm_start_pvclock_update(kvm);
6614 pvclock_update_vm_gtod_copy(kvm);
6615
6616 /*
6617 * This pairs with kvm_guest_time_update(): when masterclock is
6618 * in use, we use master_kernel_ns + kvmclock_offset to set
6619 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6620 * is slightly ahead) here we risk going negative on unsigned
6621 * 'system_time' when 'data.clock' is very small.
6622 */
6623 if (data.flags & KVM_CLOCK_REALTIME) {
6624 u64 now_real_ns = ktime_get_real_ns();
6625
6626 /*
6627 * Avoid stepping the kvmclock backwards.
6628 */
6629 if (now_real_ns > data.realtime)
6630 data.clock += now_real_ns - data.realtime;
6631 }
6632
6633 if (ka->use_master_clock)
6634 now_raw_ns = ka->master_kernel_ns;
6635 else
6636 now_raw_ns = get_kvmclock_base_ns();
6637 ka->kvmclock_offset = data.clock - now_raw_ns;
6638 kvm_end_pvclock_update(kvm);
6639 return 0;
6640 }
6641
kvm_arch_vm_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)6642 long kvm_arch_vm_ioctl(struct file *filp,
6643 unsigned int ioctl, unsigned long arg)
6644 {
6645 struct kvm *kvm = filp->private_data;
6646 void __user *argp = (void __user *)arg;
6647 int r = -ENOTTY;
6648 /*
6649 * This union makes it completely explicit to gcc-3.x
6650 * that these two variables' stack usage should be
6651 * combined, not added together.
6652 */
6653 union {
6654 struct kvm_pit_state ps;
6655 struct kvm_pit_state2 ps2;
6656 struct kvm_pit_config pit_config;
6657 } u;
6658
6659 switch (ioctl) {
6660 case KVM_SET_TSS_ADDR:
6661 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
6662 break;
6663 case KVM_SET_IDENTITY_MAP_ADDR: {
6664 u64 ident_addr;
6665
6666 mutex_lock(&kvm->lock);
6667 r = -EINVAL;
6668 if (kvm->created_vcpus)
6669 goto set_identity_unlock;
6670 r = -EFAULT;
6671 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
6672 goto set_identity_unlock;
6673 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
6674 set_identity_unlock:
6675 mutex_unlock(&kvm->lock);
6676 break;
6677 }
6678 case KVM_SET_NR_MMU_PAGES:
6679 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
6680 break;
6681 case KVM_GET_NR_MMU_PAGES:
6682 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
6683 break;
6684 case KVM_CREATE_IRQCHIP: {
6685 mutex_lock(&kvm->lock);
6686
6687 r = -EEXIST;
6688 if (irqchip_in_kernel(kvm))
6689 goto create_irqchip_unlock;
6690
6691 r = -EINVAL;
6692 if (kvm->created_vcpus)
6693 goto create_irqchip_unlock;
6694
6695 r = kvm_pic_init(kvm);
6696 if (r)
6697 goto create_irqchip_unlock;
6698
6699 r = kvm_ioapic_init(kvm);
6700 if (r) {
6701 kvm_pic_destroy(kvm);
6702 goto create_irqchip_unlock;
6703 }
6704
6705 r = kvm_setup_default_irq_routing(kvm);
6706 if (r) {
6707 kvm_ioapic_destroy(kvm);
6708 kvm_pic_destroy(kvm);
6709 goto create_irqchip_unlock;
6710 }
6711 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
6712 smp_wmb();
6713 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
6714 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
6715 create_irqchip_unlock:
6716 mutex_unlock(&kvm->lock);
6717 break;
6718 }
6719 case KVM_CREATE_PIT:
6720 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6721 goto create_pit;
6722 case KVM_CREATE_PIT2:
6723 r = -EFAULT;
6724 if (copy_from_user(&u.pit_config, argp,
6725 sizeof(struct kvm_pit_config)))
6726 goto out;
6727 create_pit:
6728 mutex_lock(&kvm->lock);
6729 r = -EEXIST;
6730 if (kvm->arch.vpit)
6731 goto create_pit_unlock;
6732 r = -ENOMEM;
6733 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
6734 if (kvm->arch.vpit)
6735 r = 0;
6736 create_pit_unlock:
6737 mutex_unlock(&kvm->lock);
6738 break;
6739 case KVM_GET_IRQCHIP: {
6740 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6741 struct kvm_irqchip *chip;
6742
6743 chip = memdup_user(argp, sizeof(*chip));
6744 if (IS_ERR(chip)) {
6745 r = PTR_ERR(chip);
6746 goto out;
6747 }
6748
6749 r = -ENXIO;
6750 if (!irqchip_kernel(kvm))
6751 goto get_irqchip_out;
6752 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
6753 if (r)
6754 goto get_irqchip_out;
6755 r = -EFAULT;
6756 if (copy_to_user(argp, chip, sizeof(*chip)))
6757 goto get_irqchip_out;
6758 r = 0;
6759 get_irqchip_out:
6760 kfree(chip);
6761 break;
6762 }
6763 case KVM_SET_IRQCHIP: {
6764 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
6765 struct kvm_irqchip *chip;
6766
6767 chip = memdup_user(argp, sizeof(*chip));
6768 if (IS_ERR(chip)) {
6769 r = PTR_ERR(chip);
6770 goto out;
6771 }
6772
6773 r = -ENXIO;
6774 if (!irqchip_kernel(kvm))
6775 goto set_irqchip_out;
6776 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
6777 set_irqchip_out:
6778 kfree(chip);
6779 break;
6780 }
6781 case KVM_GET_PIT: {
6782 r = -EFAULT;
6783 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
6784 goto out;
6785 r = -ENXIO;
6786 if (!kvm->arch.vpit)
6787 goto out;
6788 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
6789 if (r)
6790 goto out;
6791 r = -EFAULT;
6792 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
6793 goto out;
6794 r = 0;
6795 break;
6796 }
6797 case KVM_SET_PIT: {
6798 r = -EFAULT;
6799 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
6800 goto out;
6801 mutex_lock(&kvm->lock);
6802 r = -ENXIO;
6803 if (!kvm->arch.vpit)
6804 goto set_pit_out;
6805 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
6806 set_pit_out:
6807 mutex_unlock(&kvm->lock);
6808 break;
6809 }
6810 case KVM_GET_PIT2: {
6811 r = -ENXIO;
6812 if (!kvm->arch.vpit)
6813 goto out;
6814 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6815 if (r)
6816 goto out;
6817 r = -EFAULT;
6818 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6819 goto out;
6820 r = 0;
6821 break;
6822 }
6823 case KVM_SET_PIT2: {
6824 r = -EFAULT;
6825 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6826 goto out;
6827 mutex_lock(&kvm->lock);
6828 r = -ENXIO;
6829 if (!kvm->arch.vpit)
6830 goto set_pit2_out;
6831 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
6832 set_pit2_out:
6833 mutex_unlock(&kvm->lock);
6834 break;
6835 }
6836 case KVM_REINJECT_CONTROL: {
6837 struct kvm_reinject_control control;
6838 r = -EFAULT;
6839 if (copy_from_user(&control, argp, sizeof(control)))
6840 goto out;
6841 r = -ENXIO;
6842 if (!kvm->arch.vpit)
6843 goto out;
6844 r = kvm_vm_ioctl_reinject(kvm, &control);
6845 break;
6846 }
6847 case KVM_SET_BOOT_CPU_ID:
6848 r = 0;
6849 mutex_lock(&kvm->lock);
6850 if (kvm->created_vcpus)
6851 r = -EBUSY;
6852 else
6853 kvm->arch.bsp_vcpu_id = arg;
6854 mutex_unlock(&kvm->lock);
6855 break;
6856 #ifdef CONFIG_KVM_XEN
6857 case KVM_XEN_HVM_CONFIG: {
6858 struct kvm_xen_hvm_config xhc;
6859 r = -EFAULT;
6860 if (copy_from_user(&xhc, argp, sizeof(xhc)))
6861 goto out;
6862 r = kvm_xen_hvm_config(kvm, &xhc);
6863 break;
6864 }
6865 case KVM_XEN_HVM_GET_ATTR: {
6866 struct kvm_xen_hvm_attr xha;
6867
6868 r = -EFAULT;
6869 if (copy_from_user(&xha, argp, sizeof(xha)))
6870 goto out;
6871 r = kvm_xen_hvm_get_attr(kvm, &xha);
6872 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6873 r = -EFAULT;
6874 break;
6875 }
6876 case KVM_XEN_HVM_SET_ATTR: {
6877 struct kvm_xen_hvm_attr xha;
6878
6879 r = -EFAULT;
6880 if (copy_from_user(&xha, argp, sizeof(xha)))
6881 goto out;
6882 r = kvm_xen_hvm_set_attr(kvm, &xha);
6883 break;
6884 }
6885 case KVM_XEN_HVM_EVTCHN_SEND: {
6886 struct kvm_irq_routing_xen_evtchn uxe;
6887
6888 r = -EFAULT;
6889 if (copy_from_user(&uxe, argp, sizeof(uxe)))
6890 goto out;
6891 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
6892 break;
6893 }
6894 #endif
6895 case KVM_SET_CLOCK:
6896 r = kvm_vm_ioctl_set_clock(kvm, argp);
6897 break;
6898 case KVM_GET_CLOCK:
6899 r = kvm_vm_ioctl_get_clock(kvm, argp);
6900 break;
6901 case KVM_SET_TSC_KHZ: {
6902 u32 user_tsc_khz;
6903
6904 r = -EINVAL;
6905 user_tsc_khz = (u32)arg;
6906
6907 if (kvm_caps.has_tsc_control &&
6908 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
6909 goto out;
6910
6911 if (user_tsc_khz == 0)
6912 user_tsc_khz = tsc_khz;
6913
6914 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
6915 r = 0;
6916
6917 goto out;
6918 }
6919 case KVM_GET_TSC_KHZ: {
6920 r = READ_ONCE(kvm->arch.default_tsc_khz);
6921 goto out;
6922 }
6923 case KVM_MEMORY_ENCRYPT_OP: {
6924 r = -ENOTTY;
6925 if (!kvm_x86_ops.mem_enc_ioctl)
6926 goto out;
6927
6928 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
6929 break;
6930 }
6931 case KVM_MEMORY_ENCRYPT_REG_REGION: {
6932 struct kvm_enc_region region;
6933
6934 r = -EFAULT;
6935 if (copy_from_user(®ion, argp, sizeof(region)))
6936 goto out;
6937
6938 r = -ENOTTY;
6939 if (!kvm_x86_ops.mem_enc_register_region)
6940 goto out;
6941
6942 r = static_call(kvm_x86_mem_enc_register_region)(kvm, ®ion);
6943 break;
6944 }
6945 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
6946 struct kvm_enc_region region;
6947
6948 r = -EFAULT;
6949 if (copy_from_user(®ion, argp, sizeof(region)))
6950 goto out;
6951
6952 r = -ENOTTY;
6953 if (!kvm_x86_ops.mem_enc_unregister_region)
6954 goto out;
6955
6956 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, ®ion);
6957 break;
6958 }
6959 case KVM_HYPERV_EVENTFD: {
6960 struct kvm_hyperv_eventfd hvevfd;
6961
6962 r = -EFAULT;
6963 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
6964 goto out;
6965 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
6966 break;
6967 }
6968 case KVM_SET_PMU_EVENT_FILTER:
6969 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
6970 break;
6971 case KVM_X86_SET_MSR_FILTER: {
6972 struct kvm_msr_filter __user *user_msr_filter = argp;
6973 struct kvm_msr_filter filter;
6974
6975 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
6976 return -EFAULT;
6977
6978 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6979 break;
6980 }
6981 default:
6982 r = -ENOTTY;
6983 }
6984 out:
6985 return r;
6986 }
6987
kvm_init_msr_list(void)6988 static void kvm_init_msr_list(void)
6989 {
6990 u32 dummy[2];
6991 unsigned i;
6992
6993 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
6994 "Please update the fixed PMCs in msrs_to_saved_all[]");
6995
6996 num_msrs_to_save = 0;
6997 num_emulated_msrs = 0;
6998 num_msr_based_features = 0;
6999
7000 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
7001 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
7002 continue;
7003
7004 /*
7005 * Even MSRs that are valid in the host may not be exposed
7006 * to the guests in some cases.
7007 */
7008 switch (msrs_to_save_all[i]) {
7009 case MSR_IA32_BNDCFGS:
7010 if (!kvm_mpx_supported())
7011 continue;
7012 break;
7013 case MSR_TSC_AUX:
7014 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7015 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7016 continue;
7017 break;
7018 case MSR_IA32_UMWAIT_CONTROL:
7019 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7020 continue;
7021 break;
7022 case MSR_IA32_RTIT_CTL:
7023 case MSR_IA32_RTIT_STATUS:
7024 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7025 continue;
7026 break;
7027 case MSR_IA32_RTIT_CR3_MATCH:
7028 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7029 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7030 continue;
7031 break;
7032 case MSR_IA32_RTIT_OUTPUT_BASE:
7033 case MSR_IA32_RTIT_OUTPUT_MASK:
7034 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7035 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7036 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7037 continue;
7038 break;
7039 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7040 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7041 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
7042 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
7043 continue;
7044 break;
7045 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7046 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
7047 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7048 continue;
7049 break;
7050 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7051 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
7052 min(KVM_INTEL_PMC_MAX_GENERIC, kvm_pmu_cap.num_counters_gp))
7053 continue;
7054 break;
7055 case MSR_IA32_XFD:
7056 case MSR_IA32_XFD_ERR:
7057 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7058 continue;
7059 break;
7060 default:
7061 break;
7062 }
7063
7064 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
7065 }
7066
7067 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
7068 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
7069 continue;
7070
7071 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
7072 }
7073
7074 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
7075 struct kvm_msr_entry msr;
7076
7077 msr.index = msr_based_features_all[i];
7078 if (kvm_get_msr_feature(&msr))
7079 continue;
7080
7081 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
7082 }
7083 }
7084
vcpu_mmio_write(struct kvm_vcpu * vcpu,gpa_t addr,int len,const void * v)7085 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7086 const void *v)
7087 {
7088 int handled = 0;
7089 int n;
7090
7091 do {
7092 n = min(len, 8);
7093 if (!(lapic_in_kernel(vcpu) &&
7094 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7095 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
7096 break;
7097 handled += n;
7098 addr += n;
7099 len -= n;
7100 v += n;
7101 } while (len);
7102
7103 return handled;
7104 }
7105
vcpu_mmio_read(struct kvm_vcpu * vcpu,gpa_t addr,int len,void * v)7106 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
7107 {
7108 int handled = 0;
7109 int n;
7110
7111 do {
7112 n = min(len, 8);
7113 if (!(lapic_in_kernel(vcpu) &&
7114 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7115 addr, n, v))
7116 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
7117 break;
7118 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
7119 handled += n;
7120 addr += n;
7121 len -= n;
7122 v += n;
7123 } while (len);
7124
7125 return handled;
7126 }
7127
kvm_set_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7128 static void kvm_set_segment(struct kvm_vcpu *vcpu,
7129 struct kvm_segment *var, int seg)
7130 {
7131 static_call(kvm_x86_set_segment)(vcpu, var, seg);
7132 }
7133
kvm_get_segment(struct kvm_vcpu * vcpu,struct kvm_segment * var,int seg)7134 void kvm_get_segment(struct kvm_vcpu *vcpu,
7135 struct kvm_segment *var, int seg)
7136 {
7137 static_call(kvm_x86_get_segment)(vcpu, var, seg);
7138 }
7139
translate_nested_gpa(struct kvm_vcpu * vcpu,gpa_t gpa,u64 access,struct x86_exception * exception)7140 gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
7141 struct x86_exception *exception)
7142 {
7143 struct kvm_mmu *mmu = vcpu->arch.mmu;
7144 gpa_t t_gpa;
7145
7146 BUG_ON(!mmu_is_nested(vcpu));
7147
7148 /* NPT walks are always user-walks */
7149 access |= PFERR_USER_MASK;
7150 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
7151
7152 return t_gpa;
7153 }
7154
kvm_mmu_gva_to_gpa_read(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7155 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7156 struct x86_exception *exception)
7157 {
7158 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7159
7160 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7161 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7162 }
7163 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
7164
kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7165 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
7166 struct x86_exception *exception)
7167 {
7168 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7169
7170 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7171 access |= PFERR_FETCH_MASK;
7172 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7173 }
7174
kvm_mmu_gva_to_gpa_write(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7175 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7176 struct x86_exception *exception)
7177 {
7178 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7179
7180 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7181 access |= PFERR_WRITE_MASK;
7182 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7183 }
7184 EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
7185
7186 /* uses this to access any guest's mapped memory without checking CPL */
kvm_mmu_gva_to_gpa_system(struct kvm_vcpu * vcpu,gva_t gva,struct x86_exception * exception)7187 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7188 struct x86_exception *exception)
7189 {
7190 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7191
7192 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
7193 }
7194
kvm_read_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7195 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7196 struct kvm_vcpu *vcpu, u64 access,
7197 struct x86_exception *exception)
7198 {
7199 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7200 void *data = val;
7201 int r = X86EMUL_CONTINUE;
7202
7203 while (bytes) {
7204 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7205 unsigned offset = addr & (PAGE_SIZE-1);
7206 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
7207 int ret;
7208
7209 if (gpa == INVALID_GPA)
7210 return X86EMUL_PROPAGATE_FAULT;
7211 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7212 offset, toread);
7213 if (ret < 0) {
7214 r = X86EMUL_IO_NEEDED;
7215 goto out;
7216 }
7217
7218 bytes -= toread;
7219 data += toread;
7220 addr += toread;
7221 }
7222 out:
7223 return r;
7224 }
7225
7226 /* used for instruction fetching */
kvm_fetch_guest_virt(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7227 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7228 gva_t addr, void *val, unsigned int bytes,
7229 struct x86_exception *exception)
7230 {
7231 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7232 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7233 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7234 unsigned offset;
7235 int ret;
7236
7237 /* Inline kvm_read_guest_virt_helper for speed. */
7238 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7239 exception);
7240 if (unlikely(gpa == INVALID_GPA))
7241 return X86EMUL_PROPAGATE_FAULT;
7242
7243 offset = addr & (PAGE_SIZE-1);
7244 if (WARN_ON(offset + bytes > PAGE_SIZE))
7245 bytes = (unsigned)PAGE_SIZE - offset;
7246 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7247 offset, bytes);
7248 if (unlikely(ret < 0))
7249 return X86EMUL_IO_NEEDED;
7250
7251 return X86EMUL_CONTINUE;
7252 }
7253
kvm_read_guest_virt(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7254 int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
7255 gva_t addr, void *val, unsigned int bytes,
7256 struct x86_exception *exception)
7257 {
7258 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
7259
7260 /*
7261 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7262 * is returned, but our callers are not ready for that and they blindly
7263 * call kvm_inject_page_fault. Ensure that they at least do not leak
7264 * uninitialized kernel stack memory into cr2 and error code.
7265 */
7266 memset(exception, 0, sizeof(*exception));
7267 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
7268 exception);
7269 }
7270 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
7271
emulator_read_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7272 static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7273 gva_t addr, void *val, unsigned int bytes,
7274 struct x86_exception *exception, bool system)
7275 {
7276 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7277 u64 access = 0;
7278
7279 if (system)
7280 access |= PFERR_IMPLICIT_ACCESS;
7281 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7282 access |= PFERR_USER_MASK;
7283
7284 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
7285 }
7286
kvm_read_guest_phys_system(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes)7287 static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
7288 unsigned long addr, void *val, unsigned int bytes)
7289 {
7290 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7291 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
7292
7293 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
7294 }
7295
kvm_write_guest_virt_helper(gva_t addr,void * val,unsigned int bytes,struct kvm_vcpu * vcpu,u64 access,struct x86_exception * exception)7296 static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
7297 struct kvm_vcpu *vcpu, u64 access,
7298 struct x86_exception *exception)
7299 {
7300 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7301 void *data = val;
7302 int r = X86EMUL_CONTINUE;
7303
7304 while (bytes) {
7305 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
7306 unsigned offset = addr & (PAGE_SIZE-1);
7307 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7308 int ret;
7309
7310 if (gpa == INVALID_GPA)
7311 return X86EMUL_PROPAGATE_FAULT;
7312 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
7313 if (ret < 0) {
7314 r = X86EMUL_IO_NEEDED;
7315 goto out;
7316 }
7317
7318 bytes -= towrite;
7319 data += towrite;
7320 addr += towrite;
7321 }
7322 out:
7323 return r;
7324 }
7325
emulator_write_std(struct x86_emulate_ctxt * ctxt,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception,bool system)7326 static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
7327 unsigned int bytes, struct x86_exception *exception,
7328 bool system)
7329 {
7330 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7331 u64 access = PFERR_WRITE_MASK;
7332
7333 if (system)
7334 access |= PFERR_IMPLICIT_ACCESS;
7335 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
7336 access |= PFERR_USER_MASK;
7337
7338 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7339 access, exception);
7340 }
7341
kvm_write_guest_virt_system(struct kvm_vcpu * vcpu,gva_t addr,void * val,unsigned int bytes,struct x86_exception * exception)7342 int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7343 unsigned int bytes, struct x86_exception *exception)
7344 {
7345 /* kvm_write_guest_virt_system can pull in tons of pages. */
7346 vcpu->arch.l1tf_flush_l1d = true;
7347
7348 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7349 PFERR_WRITE_MASK, exception);
7350 }
7351 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
7352
kvm_can_emulate_insn(struct kvm_vcpu * vcpu,int emul_type,void * insn,int insn_len)7353 static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7354 void *insn, int insn_len)
7355 {
7356 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7357 insn, insn_len);
7358 }
7359
handle_ud(struct kvm_vcpu * vcpu)7360 int handle_ud(struct kvm_vcpu *vcpu)
7361 {
7362 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
7363 int fep_flags = READ_ONCE(force_emulation_prefix);
7364 int emul_type = EMULTYPE_TRAP_UD;
7365 char sig[5]; /* ud2; .ascii "kvm" */
7366 struct x86_exception e;
7367
7368 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
7369 return 1;
7370
7371 if (fep_flags &&
7372 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7373 sig, sizeof(sig), &e) == 0 &&
7374 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
7375 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
7376 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
7377 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
7378 emul_type = EMULTYPE_TRAP_UD_FORCED;
7379 }
7380
7381 return kvm_emulate_instruction(vcpu, emul_type);
7382 }
7383 EXPORT_SYMBOL_GPL(handle_ud);
7384
vcpu_is_mmio_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t gpa,bool write)7385 static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7386 gpa_t gpa, bool write)
7387 {
7388 /* For APIC access vmexit */
7389 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7390 return 1;
7391
7392 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7393 trace_vcpu_match_mmio(gva, gpa, write, true);
7394 return 1;
7395 }
7396
7397 return 0;
7398 }
7399
vcpu_mmio_gva_to_gpa(struct kvm_vcpu * vcpu,unsigned long gva,gpa_t * gpa,struct x86_exception * exception,bool write)7400 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7401 gpa_t *gpa, struct x86_exception *exception,
7402 bool write)
7403 {
7404 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7405 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
7406 | (write ? PFERR_WRITE_MASK : 0);
7407
7408 /*
7409 * currently PKRU is only applied to ept enabled guest so
7410 * there is no pkey in EPT page table for L1 guest or EPT
7411 * shadow page table for L2 guest.
7412 */
7413 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7414 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7415 vcpu->arch.mmio_access, 0, access))) {
7416 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7417 (gva & (PAGE_SIZE - 1));
7418 trace_vcpu_match_mmio(gva, *gpa, write, false);
7419 return 1;
7420 }
7421
7422 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
7423
7424 if (*gpa == INVALID_GPA)
7425 return -1;
7426
7427 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
7428 }
7429
emulator_write_phys(struct kvm_vcpu * vcpu,gpa_t gpa,const void * val,int bytes)7430 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
7431 const void *val, int bytes)
7432 {
7433 int ret;
7434
7435 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
7436 if (ret < 0)
7437 return 0;
7438 kvm_page_track_write(vcpu, gpa, val, bytes);
7439 return 1;
7440 }
7441
7442 struct read_write_emulator_ops {
7443 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7444 int bytes);
7445 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7446 void *val, int bytes);
7447 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7448 int bytes, void *val);
7449 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7450 void *val, int bytes);
7451 bool write;
7452 };
7453
read_prepare(struct kvm_vcpu * vcpu,void * val,int bytes)7454 static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7455 {
7456 if (vcpu->mmio_read_completed) {
7457 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
7458 vcpu->mmio_fragments[0].gpa, val);
7459 vcpu->mmio_read_completed = 0;
7460 return 1;
7461 }
7462
7463 return 0;
7464 }
7465
read_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7466 static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7467 void *val, int bytes)
7468 {
7469 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
7470 }
7471
write_emulate(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7472 static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7473 void *val, int bytes)
7474 {
7475 return emulator_write_phys(vcpu, gpa, val, bytes);
7476 }
7477
write_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,int bytes,void * val)7478 static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7479 {
7480 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
7481 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7482 }
7483
read_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7484 static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7485 void *val, int bytes)
7486 {
7487 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
7488 return X86EMUL_IO_NEEDED;
7489 }
7490
write_exit_mmio(struct kvm_vcpu * vcpu,gpa_t gpa,void * val,int bytes)7491 static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7492 void *val, int bytes)
7493 {
7494 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7495
7496 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
7497 return X86EMUL_CONTINUE;
7498 }
7499
7500 static const struct read_write_emulator_ops read_emultor = {
7501 .read_write_prepare = read_prepare,
7502 .read_write_emulate = read_emulate,
7503 .read_write_mmio = vcpu_mmio_read,
7504 .read_write_exit_mmio = read_exit_mmio,
7505 };
7506
7507 static const struct read_write_emulator_ops write_emultor = {
7508 .read_write_emulate = write_emulate,
7509 .read_write_mmio = write_mmio,
7510 .read_write_exit_mmio = write_exit_mmio,
7511 .write = true,
7512 };
7513
emulator_read_write_onepage(unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,struct kvm_vcpu * vcpu,const struct read_write_emulator_ops * ops)7514 static int emulator_read_write_onepage(unsigned long addr, void *val,
7515 unsigned int bytes,
7516 struct x86_exception *exception,
7517 struct kvm_vcpu *vcpu,
7518 const struct read_write_emulator_ops *ops)
7519 {
7520 gpa_t gpa;
7521 int handled, ret;
7522 bool write = ops->write;
7523 struct kvm_mmio_fragment *frag;
7524 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7525
7526 /*
7527 * If the exit was due to a NPF we may already have a GPA.
7528 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7529 * Note, this cannot be used on string operations since string
7530 * operation using rep will only have the initial GPA from the NPF
7531 * occurred.
7532 */
7533 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7534 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7535 gpa = ctxt->gpa_val;
7536 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7537 } else {
7538 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7539 if (ret < 0)
7540 return X86EMUL_PROPAGATE_FAULT;
7541 }
7542
7543 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
7544 return X86EMUL_CONTINUE;
7545
7546 /*
7547 * Is this MMIO handled locally?
7548 */
7549 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
7550 if (handled == bytes)
7551 return X86EMUL_CONTINUE;
7552
7553 gpa += handled;
7554 bytes -= handled;
7555 val += handled;
7556
7557 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7558 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7559 frag->gpa = gpa;
7560 frag->data = val;
7561 frag->len = bytes;
7562 return X86EMUL_CONTINUE;
7563 }
7564
emulator_read_write(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception,const struct read_write_emulator_ops * ops)7565 static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7566 unsigned long addr,
7567 void *val, unsigned int bytes,
7568 struct x86_exception *exception,
7569 const struct read_write_emulator_ops *ops)
7570 {
7571 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7572 gpa_t gpa;
7573 int rc;
7574
7575 if (ops->read_write_prepare &&
7576 ops->read_write_prepare(vcpu, val, bytes))
7577 return X86EMUL_CONTINUE;
7578
7579 vcpu->mmio_nr_fragments = 0;
7580
7581 /* Crossing a page boundary? */
7582 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
7583 int now;
7584
7585 now = -addr & ~PAGE_MASK;
7586 rc = emulator_read_write_onepage(addr, val, now, exception,
7587 vcpu, ops);
7588
7589 if (rc != X86EMUL_CONTINUE)
7590 return rc;
7591 addr += now;
7592 if (ctxt->mode != X86EMUL_MODE_PROT64)
7593 addr = (u32)addr;
7594 val += now;
7595 bytes -= now;
7596 }
7597
7598 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7599 vcpu, ops);
7600 if (rc != X86EMUL_CONTINUE)
7601 return rc;
7602
7603 if (!vcpu->mmio_nr_fragments)
7604 return rc;
7605
7606 gpa = vcpu->mmio_fragments[0].gpa;
7607
7608 vcpu->mmio_needed = 1;
7609 vcpu->mmio_cur_fragment = 0;
7610
7611 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
7612 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7613 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7614 vcpu->run->mmio.phys_addr = gpa;
7615
7616 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
7617 }
7618
emulator_read_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,void * val,unsigned int bytes,struct x86_exception * exception)7619 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7620 unsigned long addr,
7621 void *val,
7622 unsigned int bytes,
7623 struct x86_exception *exception)
7624 {
7625 return emulator_read_write(ctxt, addr, val, bytes,
7626 exception, &read_emultor);
7627 }
7628
emulator_write_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * val,unsigned int bytes,struct x86_exception * exception)7629 static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
7630 unsigned long addr,
7631 const void *val,
7632 unsigned int bytes,
7633 struct x86_exception *exception)
7634 {
7635 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7636 exception, &write_emultor);
7637 }
7638
7639 #define emulator_try_cmpxchg_user(t, ptr, old, new) \
7640 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
7641
emulator_cmpxchg_emulated(struct x86_emulate_ctxt * ctxt,unsigned long addr,const void * old,const void * new,unsigned int bytes,struct x86_exception * exception)7642 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7643 unsigned long addr,
7644 const void *old,
7645 const void *new,
7646 unsigned int bytes,
7647 struct x86_exception *exception)
7648 {
7649 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7650 u64 page_line_mask;
7651 unsigned long hva;
7652 gpa_t gpa;
7653 int r;
7654
7655 /* guests cmpxchg8b have to be emulated atomically */
7656 if (bytes > 8 || (bytes & (bytes - 1)))
7657 goto emul_write;
7658
7659 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
7660
7661 if (gpa == INVALID_GPA ||
7662 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7663 goto emul_write;
7664
7665 /*
7666 * Emulate the atomic as a straight write to avoid #AC if SLD is
7667 * enabled in the host and the access splits a cache line.
7668 */
7669 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7670 page_line_mask = ~(cache_line_size() - 1);
7671 else
7672 page_line_mask = PAGE_MASK;
7673
7674 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
7675 goto emul_write;
7676
7677 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
7678 if (kvm_is_error_hva(hva))
7679 goto emul_write;
7680
7681 hva += offset_in_page(gpa);
7682
7683 switch (bytes) {
7684 case 1:
7685 r = emulator_try_cmpxchg_user(u8, hva, old, new);
7686 break;
7687 case 2:
7688 r = emulator_try_cmpxchg_user(u16, hva, old, new);
7689 break;
7690 case 4:
7691 r = emulator_try_cmpxchg_user(u32, hva, old, new);
7692 break;
7693 case 8:
7694 r = emulator_try_cmpxchg_user(u64, hva, old, new);
7695 break;
7696 default:
7697 BUG();
7698 }
7699
7700 if (r < 0)
7701 return X86EMUL_UNHANDLEABLE;
7702 if (r)
7703 return X86EMUL_CMPXCHG_FAILED;
7704
7705 kvm_page_track_write(vcpu, gpa, new, bytes);
7706
7707 return X86EMUL_CONTINUE;
7708
7709 emul_write:
7710 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
7711
7712 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
7713 }
7714
emulator_pio_in_out(struct kvm_vcpu * vcpu,int size,unsigned short port,void * data,unsigned int count,bool in)7715 static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
7716 unsigned short port, void *data,
7717 unsigned int count, bool in)
7718 {
7719 unsigned i;
7720 int r;
7721
7722 WARN_ON_ONCE(vcpu->arch.pio.count);
7723 for (i = 0; i < count; i++) {
7724 if (in)
7725 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
7726 else
7727 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
7728
7729 if (r) {
7730 if (i == 0)
7731 goto userspace_io;
7732
7733 /*
7734 * Userspace must have unregistered the device while PIO
7735 * was running. Drop writes / read as 0.
7736 */
7737 if (in)
7738 memset(data, 0, size * (count - i));
7739 break;
7740 }
7741
7742 data += size;
7743 }
7744 return 1;
7745
7746 userspace_io:
7747 vcpu->arch.pio.port = port;
7748 vcpu->arch.pio.in = in;
7749 vcpu->arch.pio.count = count;
7750 vcpu->arch.pio.size = size;
7751
7752 if (in)
7753 memset(vcpu->arch.pio_data, 0, size * count);
7754 else
7755 memcpy(vcpu->arch.pio_data, data, size * count);
7756
7757 vcpu->run->exit_reason = KVM_EXIT_IO;
7758 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
7759 vcpu->run->io.size = size;
7760 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7761 vcpu->run->io.count = count;
7762 vcpu->run->io.port = port;
7763 return 0;
7764 }
7765
emulator_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port,void * val,unsigned int count)7766 static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7767 unsigned short port, void *val, unsigned int count)
7768 {
7769 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7770 if (r)
7771 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7772
7773 return r;
7774 }
7775
complete_emulator_pio_in(struct kvm_vcpu * vcpu,void * val)7776 static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
7777 {
7778 int size = vcpu->arch.pio.size;
7779 unsigned int count = vcpu->arch.pio.count;
7780 memcpy(val, vcpu->arch.pio_data, size * count);
7781 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
7782 vcpu->arch.pio.count = 0;
7783 }
7784
emulator_pio_in_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,void * val,unsigned int count)7785 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7786 int size, unsigned short port, void *val,
7787 unsigned int count)
7788 {
7789 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7790 if (vcpu->arch.pio.count) {
7791 /*
7792 * Complete a previous iteration that required userspace I/O.
7793 * Note, @count isn't guaranteed to match pio.count as userspace
7794 * can modify ECX before rerunning the vCPU. Ignore any such
7795 * shenanigans as KVM doesn't support modifying the rep count,
7796 * and the emulator ensures @count doesn't overflow the buffer.
7797 */
7798 complete_emulator_pio_in(vcpu, val);
7799 return 1;
7800 }
7801
7802 return emulator_pio_in(vcpu, size, port, val, count);
7803 }
7804
emulator_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port,const void * val,unsigned int count)7805 static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7806 unsigned short port, const void *val,
7807 unsigned int count)
7808 {
7809 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
7810 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
7811 }
7812
emulator_pio_out_emulated(struct x86_emulate_ctxt * ctxt,int size,unsigned short port,const void * val,unsigned int count)7813 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7814 int size, unsigned short port,
7815 const void *val, unsigned int count)
7816 {
7817 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7818 }
7819
get_segment_base(struct kvm_vcpu * vcpu,int seg)7820 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7821 {
7822 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
7823 }
7824
emulator_invlpg(struct x86_emulate_ctxt * ctxt,ulong address)7825 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
7826 {
7827 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
7828 }
7829
kvm_emulate_wbinvd_noskip(struct kvm_vcpu * vcpu)7830 static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
7831 {
7832 if (!need_emulate_wbinvd(vcpu))
7833 return X86EMUL_CONTINUE;
7834
7835 if (static_call(kvm_x86_has_wbinvd_exit)()) {
7836 int cpu = get_cpu();
7837
7838 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
7839 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
7840 wbinvd_ipi, NULL, 1);
7841 put_cpu();
7842 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
7843 } else
7844 wbinvd();
7845 return X86EMUL_CONTINUE;
7846 }
7847
kvm_emulate_wbinvd(struct kvm_vcpu * vcpu)7848 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7849 {
7850 kvm_emulate_wbinvd_noskip(vcpu);
7851 return kvm_skip_emulated_instruction(vcpu);
7852 }
7853 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7854
7855
7856
emulator_wbinvd(struct x86_emulate_ctxt * ctxt)7857 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7858 {
7859 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
7860 }
7861
emulator_get_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long * dest)7862 static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7863 unsigned long *dest)
7864 {
7865 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
7866 }
7867
emulator_set_dr(struct x86_emulate_ctxt * ctxt,int dr,unsigned long value)7868 static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7869 unsigned long value)
7870 {
7871
7872 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
7873 }
7874
mk_cr_64(u64 curr_cr,u32 new_val)7875 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
7876 {
7877 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
7878 }
7879
emulator_get_cr(struct x86_emulate_ctxt * ctxt,int cr)7880 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
7881 {
7882 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7883 unsigned long value;
7884
7885 switch (cr) {
7886 case 0:
7887 value = kvm_read_cr0(vcpu);
7888 break;
7889 case 2:
7890 value = vcpu->arch.cr2;
7891 break;
7892 case 3:
7893 value = kvm_read_cr3(vcpu);
7894 break;
7895 case 4:
7896 value = kvm_read_cr4(vcpu);
7897 break;
7898 case 8:
7899 value = kvm_get_cr8(vcpu);
7900 break;
7901 default:
7902 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7903 return 0;
7904 }
7905
7906 return value;
7907 }
7908
emulator_set_cr(struct x86_emulate_ctxt * ctxt,int cr,ulong val)7909 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
7910 {
7911 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
7912 int res = 0;
7913
7914 switch (cr) {
7915 case 0:
7916 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
7917 break;
7918 case 2:
7919 vcpu->arch.cr2 = val;
7920 break;
7921 case 3:
7922 res = kvm_set_cr3(vcpu, val);
7923 break;
7924 case 4:
7925 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
7926 break;
7927 case 8:
7928 res = kvm_set_cr8(vcpu, val);
7929 break;
7930 default:
7931 kvm_err("%s: unexpected cr %u\n", __func__, cr);
7932 res = -1;
7933 }
7934
7935 return res;
7936 }
7937
emulator_get_cpl(struct x86_emulate_ctxt * ctxt)7938 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
7939 {
7940 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
7941 }
7942
emulator_get_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7943 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7944 {
7945 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
7946 }
7947
emulator_get_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7948 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7949 {
7950 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
7951 }
7952
emulator_set_gdt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7953 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7954 {
7955 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
7956 }
7957
emulator_set_idt(struct x86_emulate_ctxt * ctxt,struct desc_ptr * dt)7958 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
7959 {
7960 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
7961 }
7962
emulator_get_cached_segment_base(struct x86_emulate_ctxt * ctxt,int seg)7963 static unsigned long emulator_get_cached_segment_base(
7964 struct x86_emulate_ctxt *ctxt, int seg)
7965 {
7966 return get_segment_base(emul_to_vcpu(ctxt), seg);
7967 }
7968
emulator_get_segment(struct x86_emulate_ctxt * ctxt,u16 * selector,struct desc_struct * desc,u32 * base3,int seg)7969 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
7970 struct desc_struct *desc, u32 *base3,
7971 int seg)
7972 {
7973 struct kvm_segment var;
7974
7975 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
7976 *selector = var.selector;
7977
7978 if (var.unusable) {
7979 memset(desc, 0, sizeof(*desc));
7980 if (base3)
7981 *base3 = 0;
7982 return false;
7983 }
7984
7985 if (var.g)
7986 var.limit >>= 12;
7987 set_desc_limit(desc, var.limit);
7988 set_desc_base(desc, (unsigned long)var.base);
7989 #ifdef CONFIG_X86_64
7990 if (base3)
7991 *base3 = var.base >> 32;
7992 #endif
7993 desc->type = var.type;
7994 desc->s = var.s;
7995 desc->dpl = var.dpl;
7996 desc->p = var.present;
7997 desc->avl = var.avl;
7998 desc->l = var.l;
7999 desc->d = var.db;
8000 desc->g = var.g;
8001
8002 return true;
8003 }
8004
emulator_set_segment(struct x86_emulate_ctxt * ctxt,u16 selector,struct desc_struct * desc,u32 base3,int seg)8005 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8006 struct desc_struct *desc, u32 base3,
8007 int seg)
8008 {
8009 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8010 struct kvm_segment var;
8011
8012 var.selector = selector;
8013 var.base = get_desc_base(desc);
8014 #ifdef CONFIG_X86_64
8015 var.base |= ((u64)base3) << 32;
8016 #endif
8017 var.limit = get_desc_limit(desc);
8018 if (desc->g)
8019 var.limit = (var.limit << 12) | 0xfff;
8020 var.type = desc->type;
8021 var.dpl = desc->dpl;
8022 var.db = desc->d;
8023 var.s = desc->s;
8024 var.l = desc->l;
8025 var.g = desc->g;
8026 var.avl = desc->avl;
8027 var.present = desc->p;
8028 var.unusable = !var.present;
8029 var.padding = 0;
8030
8031 kvm_set_segment(vcpu, &var, seg);
8032 return;
8033 }
8034
emulator_get_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8035 static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8036 u32 msr_index, u64 *pdata)
8037 {
8038 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8039 int r;
8040
8041 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
8042 if (r < 0)
8043 return X86EMUL_UNHANDLEABLE;
8044
8045 if (r) {
8046 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8047 complete_emulated_rdmsr, r))
8048 return X86EMUL_IO_NEEDED;
8049
8050 trace_kvm_msr_read_ex(msr_index);
8051 return X86EMUL_PROPAGATE_FAULT;
8052 }
8053
8054 trace_kvm_msr_read(msr_index, *pdata);
8055 return X86EMUL_CONTINUE;
8056 }
8057
emulator_set_msr_with_filter(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8058 static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8059 u32 msr_index, u64 data)
8060 {
8061 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8062 int r;
8063
8064 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
8065 if (r < 0)
8066 return X86EMUL_UNHANDLEABLE;
8067
8068 if (r) {
8069 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8070 complete_emulated_msr_access, r))
8071 return X86EMUL_IO_NEEDED;
8072
8073 trace_kvm_msr_write_ex(msr_index, data);
8074 return X86EMUL_PROPAGATE_FAULT;
8075 }
8076
8077 trace_kvm_msr_write(msr_index, data);
8078 return X86EMUL_CONTINUE;
8079 }
8080
emulator_get_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 * pdata)8081 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8082 u32 msr_index, u64 *pdata)
8083 {
8084 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8085 }
8086
emulator_set_msr(struct x86_emulate_ctxt * ctxt,u32 msr_index,u64 data)8087 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
8088 u32 msr_index, u64 data)
8089 {
8090 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
8091 }
8092
emulator_get_smbase(struct x86_emulate_ctxt * ctxt)8093 static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
8094 {
8095 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8096
8097 return vcpu->arch.smbase;
8098 }
8099
emulator_set_smbase(struct x86_emulate_ctxt * ctxt,u64 smbase)8100 static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
8101 {
8102 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8103
8104 vcpu->arch.smbase = smbase;
8105 }
8106
emulator_check_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc)8107 static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8108 u32 pmc)
8109 {
8110 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8111 return 0;
8112 return -EINVAL;
8113 }
8114
emulator_read_pmc(struct x86_emulate_ctxt * ctxt,u32 pmc,u64 * pdata)8115 static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8116 u32 pmc, u64 *pdata)
8117 {
8118 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
8119 }
8120
emulator_halt(struct x86_emulate_ctxt * ctxt)8121 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8122 {
8123 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8124 }
8125
emulator_intercept(struct x86_emulate_ctxt * ctxt,struct x86_instruction_info * info,enum x86_intercept_stage stage)8126 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8127 struct x86_instruction_info *info,
8128 enum x86_intercept_stage stage)
8129 {
8130 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
8131 &ctxt->exception);
8132 }
8133
emulator_get_cpuid(struct x86_emulate_ctxt * ctxt,u32 * eax,u32 * ebx,u32 * ecx,u32 * edx,bool exact_only)8134 static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
8135 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8136 bool exact_only)
8137 {
8138 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
8139 }
8140
emulator_guest_has_long_mode(struct x86_emulate_ctxt * ctxt)8141 static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8142 {
8143 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8144 }
8145
emulator_guest_has_movbe(struct x86_emulate_ctxt * ctxt)8146 static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8147 {
8148 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8149 }
8150
emulator_guest_has_fxsr(struct x86_emulate_ctxt * ctxt)8151 static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8152 {
8153 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8154 }
8155
emulator_guest_has_rdpid(struct x86_emulate_ctxt * ctxt)8156 static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8157 {
8158 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8159 }
8160
emulator_read_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg)8161 static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8162 {
8163 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
8164 }
8165
emulator_write_gpr(struct x86_emulate_ctxt * ctxt,unsigned reg,ulong val)8166 static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8167 {
8168 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
8169 }
8170
emulator_set_nmi_mask(struct x86_emulate_ctxt * ctxt,bool masked)8171 static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8172 {
8173 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
8174 }
8175
emulator_get_hflags(struct x86_emulate_ctxt * ctxt)8176 static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
8177 {
8178 return emul_to_vcpu(ctxt)->arch.hflags;
8179 }
8180
emulator_exiting_smm(struct x86_emulate_ctxt * ctxt)8181 static void emulator_exiting_smm(struct x86_emulate_ctxt *ctxt)
8182 {
8183 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8184
8185 kvm_smm_changed(vcpu, false);
8186 }
8187
emulator_leave_smm(struct x86_emulate_ctxt * ctxt,const char * smstate)8188 static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt,
8189 const char *smstate)
8190 {
8191 return static_call(kvm_x86_leave_smm)(emul_to_vcpu(ctxt), smstate);
8192 }
8193
emulator_triple_fault(struct x86_emulate_ctxt * ctxt)8194 static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8195 {
8196 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8197 }
8198
emulator_set_xcr(struct x86_emulate_ctxt * ctxt,u32 index,u64 xcr)8199 static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8200 {
8201 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8202 }
8203
emulator_vm_bugged(struct x86_emulate_ctxt * ctxt)8204 static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8205 {
8206 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8207
8208 if (!kvm->vm_bugged)
8209 kvm_vm_bugged(kvm);
8210 }
8211
8212 static const struct x86_emulate_ops emulate_ops = {
8213 .vm_bugged = emulator_vm_bugged,
8214 .read_gpr = emulator_read_gpr,
8215 .write_gpr = emulator_write_gpr,
8216 .read_std = emulator_read_std,
8217 .write_std = emulator_write_std,
8218 .read_phys = kvm_read_guest_phys_system,
8219 .fetch = kvm_fetch_guest_virt,
8220 .read_emulated = emulator_read_emulated,
8221 .write_emulated = emulator_write_emulated,
8222 .cmpxchg_emulated = emulator_cmpxchg_emulated,
8223 .invlpg = emulator_invlpg,
8224 .pio_in_emulated = emulator_pio_in_emulated,
8225 .pio_out_emulated = emulator_pio_out_emulated,
8226 .get_segment = emulator_get_segment,
8227 .set_segment = emulator_set_segment,
8228 .get_cached_segment_base = emulator_get_cached_segment_base,
8229 .get_gdt = emulator_get_gdt,
8230 .get_idt = emulator_get_idt,
8231 .set_gdt = emulator_set_gdt,
8232 .set_idt = emulator_set_idt,
8233 .get_cr = emulator_get_cr,
8234 .set_cr = emulator_set_cr,
8235 .cpl = emulator_get_cpl,
8236 .get_dr = emulator_get_dr,
8237 .set_dr = emulator_set_dr,
8238 .get_smbase = emulator_get_smbase,
8239 .set_smbase = emulator_set_smbase,
8240 .set_msr_with_filter = emulator_set_msr_with_filter,
8241 .get_msr_with_filter = emulator_get_msr_with_filter,
8242 .set_msr = emulator_set_msr,
8243 .get_msr = emulator_get_msr,
8244 .check_pmc = emulator_check_pmc,
8245 .read_pmc = emulator_read_pmc,
8246 .halt = emulator_halt,
8247 .wbinvd = emulator_wbinvd,
8248 .fix_hypercall = emulator_fix_hypercall,
8249 .intercept = emulator_intercept,
8250 .get_cpuid = emulator_get_cpuid,
8251 .guest_has_long_mode = emulator_guest_has_long_mode,
8252 .guest_has_movbe = emulator_guest_has_movbe,
8253 .guest_has_fxsr = emulator_guest_has_fxsr,
8254 .guest_has_rdpid = emulator_guest_has_rdpid,
8255 .set_nmi_mask = emulator_set_nmi_mask,
8256 .get_hflags = emulator_get_hflags,
8257 .exiting_smm = emulator_exiting_smm,
8258 .leave_smm = emulator_leave_smm,
8259 .triple_fault = emulator_triple_fault,
8260 .set_xcr = emulator_set_xcr,
8261 };
8262
toggle_interruptibility(struct kvm_vcpu * vcpu,u32 mask)8263 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8264 {
8265 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8266 /*
8267 * an sti; sti; sequence only disable interrupts for the first
8268 * instruction. So, if the last instruction, be it emulated or
8269 * not, left the system with the INT_STI flag enabled, it
8270 * means that the last instruction is an sti. We should not
8271 * leave the flag on in this case. The same goes for mov ss
8272 */
8273 if (int_shadow & mask)
8274 mask = 0;
8275 if (unlikely(int_shadow || mask)) {
8276 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
8277 if (!mask)
8278 kvm_make_request(KVM_REQ_EVENT, vcpu);
8279 }
8280 }
8281
inject_emulated_exception(struct kvm_vcpu * vcpu)8282 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
8283 {
8284 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8285
8286 if (ctxt->exception.vector == PF_VECTOR)
8287 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8288 else if (ctxt->exception.error_code_valid)
8289 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8290 ctxt->exception.error_code);
8291 else
8292 kvm_queue_exception(vcpu, ctxt->exception.vector);
8293 }
8294
alloc_emulate_ctxt(struct kvm_vcpu * vcpu)8295 static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8296 {
8297 struct x86_emulate_ctxt *ctxt;
8298
8299 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8300 if (!ctxt) {
8301 pr_err("kvm: failed to allocate vcpu's emulator\n");
8302 return NULL;
8303 }
8304
8305 ctxt->vcpu = vcpu;
8306 ctxt->ops = &emulate_ops;
8307 vcpu->arch.emulate_ctxt = ctxt;
8308
8309 return ctxt;
8310 }
8311
init_emulate_ctxt(struct kvm_vcpu * vcpu)8312 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8313 {
8314 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8315 int cs_db, cs_l;
8316
8317 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8318
8319 ctxt->gpa_available = false;
8320 ctxt->eflags = kvm_get_rflags(vcpu);
8321 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8322
8323 ctxt->eip = kvm_rip_read(vcpu);
8324 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8325 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
8326 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
8327 cs_db ? X86EMUL_MODE_PROT32 :
8328 X86EMUL_MODE_PROT16;
8329 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
8330 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
8331 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
8332
8333 ctxt->interruptibility = 0;
8334 ctxt->have_exception = false;
8335 ctxt->exception.vector = -1;
8336 ctxt->perm_ok = false;
8337
8338 init_decode_cache(ctxt);
8339 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8340 }
8341
kvm_inject_realmode_interrupt(struct kvm_vcpu * vcpu,int irq,int inc_eip)8342 void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
8343 {
8344 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8345 int ret;
8346
8347 init_emulate_ctxt(vcpu);
8348
8349 ctxt->op_bytes = 2;
8350 ctxt->ad_bytes = 2;
8351 ctxt->_eip = ctxt->eip + inc_eip;
8352 ret = emulate_int_real(ctxt, irq);
8353
8354 if (ret != X86EMUL_CONTINUE) {
8355 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8356 } else {
8357 ctxt->eip = ctxt->_eip;
8358 kvm_rip_write(vcpu, ctxt->eip);
8359 kvm_set_rflags(vcpu, ctxt->eflags);
8360 }
8361 }
8362 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8363
prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata,u8 * insn_bytes,u8 insn_size)8364 static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8365 u8 ndata, u8 *insn_bytes, u8 insn_size)
8366 {
8367 struct kvm_run *run = vcpu->run;
8368 u64 info[5];
8369 u8 info_start;
8370
8371 /*
8372 * Zero the whole array used to retrieve the exit info, as casting to
8373 * u32 for select entries will leave some chunks uninitialized.
8374 */
8375 memset(&info, 0, sizeof(info));
8376
8377 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8378 &info[2], (u32 *)&info[3],
8379 (u32 *)&info[4]);
8380
8381 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8382 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
8383
8384 /*
8385 * There's currently space for 13 entries, but 5 are used for the exit
8386 * reason and info. Restrict to 4 to reduce the maintenance burden
8387 * when expanding kvm_run.emulation_failure in the future.
8388 */
8389 if (WARN_ON_ONCE(ndata > 4))
8390 ndata = 4;
8391
8392 /* Always include the flags as a 'data' entry. */
8393 info_start = 1;
8394 run->emulation_failure.flags = 0;
8395
8396 if (insn_size) {
8397 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8398 sizeof(run->emulation_failure.insn_bytes) != 16));
8399 info_start += 2;
8400 run->emulation_failure.flags |=
8401 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8402 run->emulation_failure.insn_size = insn_size;
8403 memset(run->emulation_failure.insn_bytes, 0x90,
8404 sizeof(run->emulation_failure.insn_bytes));
8405 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
8406 }
8407
8408 memcpy(&run->internal.data[info_start], info, sizeof(info));
8409 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8410 ndata * sizeof(data[0]));
8411
8412 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
8413 }
8414
prepare_emulation_ctxt_failure_exit(struct kvm_vcpu * vcpu)8415 static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8416 {
8417 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8418
8419 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8420 ctxt->fetch.end - ctxt->fetch.data);
8421 }
8422
__kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu,u64 * data,u8 ndata)8423 void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8424 u8 ndata)
8425 {
8426 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
8427 }
8428 EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8429
kvm_prepare_emulation_failure_exit(struct kvm_vcpu * vcpu)8430 void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8431 {
8432 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8433 }
8434 EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
8435
handle_emulation_failure(struct kvm_vcpu * vcpu,int emulation_type)8436 static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
8437 {
8438 struct kvm *kvm = vcpu->kvm;
8439
8440 ++vcpu->stat.insn_emulation_fail;
8441 trace_kvm_emulate_insn_failed(vcpu);
8442
8443 if (emulation_type & EMULTYPE_VMWARE_GP) {
8444 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8445 return 1;
8446 }
8447
8448 if (kvm->arch.exit_on_emulation_error ||
8449 (emulation_type & EMULTYPE_SKIP)) {
8450 prepare_emulation_ctxt_failure_exit(vcpu);
8451 return 0;
8452 }
8453
8454 kvm_queue_exception(vcpu, UD_VECTOR);
8455
8456 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
8457 prepare_emulation_ctxt_failure_exit(vcpu);
8458 return 0;
8459 }
8460
8461 return 1;
8462 }
8463
reexecute_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,bool write_fault_to_shadow_pgtable,int emulation_type)8464 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8465 bool write_fault_to_shadow_pgtable,
8466 int emulation_type)
8467 {
8468 gpa_t gpa = cr2_or_gpa;
8469 kvm_pfn_t pfn;
8470
8471 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8472 return false;
8473
8474 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8475 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8476 return false;
8477
8478 if (!vcpu->arch.mmu->root_role.direct) {
8479 /*
8480 * Write permission should be allowed since only
8481 * write access need to be emulated.
8482 */
8483 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8484
8485 /*
8486 * If the mapping is invalid in guest, let cpu retry
8487 * it to generate fault.
8488 */
8489 if (gpa == INVALID_GPA)
8490 return true;
8491 }
8492
8493 /*
8494 * Do not retry the unhandleable instruction if it faults on the
8495 * readonly host memory, otherwise it will goto a infinite loop:
8496 * retry instruction -> write #PF -> emulation fail -> retry
8497 * instruction -> ...
8498 */
8499 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
8500
8501 /*
8502 * If the instruction failed on the error pfn, it can not be fixed,
8503 * report the error to userspace.
8504 */
8505 if (is_error_noslot_pfn(pfn))
8506 return false;
8507
8508 kvm_release_pfn_clean(pfn);
8509
8510 /* The instructions are well-emulated on direct mmu. */
8511 if (vcpu->arch.mmu->root_role.direct) {
8512 unsigned int indirect_shadow_pages;
8513
8514 write_lock(&vcpu->kvm->mmu_lock);
8515 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
8516 write_unlock(&vcpu->kvm->mmu_lock);
8517
8518 if (indirect_shadow_pages)
8519 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8520
8521 return true;
8522 }
8523
8524 /*
8525 * if emulation was due to access to shadowed page table
8526 * and it failed try to unshadow page and re-enter the
8527 * guest to let CPU execute the instruction.
8528 */
8529 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8530
8531 /*
8532 * If the access faults on its page table, it can not
8533 * be fixed by unprotecting shadow page and it should
8534 * be reported to userspace.
8535 */
8536 return !write_fault_to_shadow_pgtable;
8537 }
8538
retry_instruction(struct x86_emulate_ctxt * ctxt,gpa_t cr2_or_gpa,int emulation_type)8539 static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
8540 gpa_t cr2_or_gpa, int emulation_type)
8541 {
8542 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8543 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
8544
8545 last_retry_eip = vcpu->arch.last_retry_eip;
8546 last_retry_addr = vcpu->arch.last_retry_addr;
8547
8548 /*
8549 * If the emulation is caused by #PF and it is non-page_table
8550 * writing instruction, it means the VM-EXIT is caused by shadow
8551 * page protected, we can zap the shadow page and retry this
8552 * instruction directly.
8553 *
8554 * Note: if the guest uses a non-page-table modifying instruction
8555 * on the PDE that points to the instruction, then we will unmap
8556 * the instruction and go to an infinite loop. So, we cache the
8557 * last retried eip and the last fault address, if we meet the eip
8558 * and the address again, we can break out of the potential infinite
8559 * loop.
8560 */
8561 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8562
8563 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
8564 return false;
8565
8566 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8567 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
8568 return false;
8569
8570 if (x86_page_table_writing_insn(ctxt))
8571 return false;
8572
8573 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
8574 return false;
8575
8576 vcpu->arch.last_retry_eip = ctxt->eip;
8577 vcpu->arch.last_retry_addr = cr2_or_gpa;
8578
8579 if (!vcpu->arch.mmu->root_role.direct)
8580 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
8581
8582 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8583
8584 return true;
8585 }
8586
8587 static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8588 static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8589
kvm_smm_changed(struct kvm_vcpu * vcpu,bool entering_smm)8590 static void kvm_smm_changed(struct kvm_vcpu *vcpu, bool entering_smm)
8591 {
8592 trace_kvm_smm_transition(vcpu->vcpu_id, vcpu->arch.smbase, entering_smm);
8593
8594 if (entering_smm) {
8595 vcpu->arch.hflags |= HF_SMM_MASK;
8596 } else {
8597 vcpu->arch.hflags &= ~(HF_SMM_MASK | HF_SMM_INSIDE_NMI_MASK);
8598
8599 /* Process a latched INIT or SMI, if any. */
8600 kvm_make_request(KVM_REQ_EVENT, vcpu);
8601
8602 /*
8603 * Even if KVM_SET_SREGS2 loaded PDPTRs out of band,
8604 * on SMM exit we still need to reload them from
8605 * guest memory
8606 */
8607 vcpu->arch.pdptrs_from_userspace = false;
8608 }
8609
8610 kvm_mmu_reset_context(vcpu);
8611 }
8612
kvm_vcpu_check_hw_bp(unsigned long addr,u32 type,u32 dr7,unsigned long * db)8613 static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8614 unsigned long *db)
8615 {
8616 u32 dr6 = 0;
8617 int i;
8618 u32 enable, rwlen;
8619
8620 enable = dr7;
8621 rwlen = dr7 >> 16;
8622 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8623 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8624 dr6 |= (1 << i);
8625 return dr6;
8626 }
8627
kvm_vcpu_do_singlestep(struct kvm_vcpu * vcpu)8628 static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
8629 {
8630 struct kvm_run *kvm_run = vcpu->run;
8631
8632 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
8633 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
8634 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
8635 kvm_run->debug.arch.exception = DB_VECTOR;
8636 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8637 return 0;
8638 }
8639 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
8640 return 1;
8641 }
8642
kvm_skip_emulated_instruction(struct kvm_vcpu * vcpu)8643 int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8644 {
8645 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8646 int r;
8647
8648 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
8649 if (unlikely(!r))
8650 return 0;
8651
8652 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8653
8654 /*
8655 * rflags is the old, "raw" value of the flags. The new value has
8656 * not been saved yet.
8657 *
8658 * This is correct even for TF set by the guest, because "the
8659 * processor will not generate this exception after the instruction
8660 * that sets the TF flag".
8661 */
8662 if (unlikely(rflags & X86_EFLAGS_TF))
8663 r = kvm_vcpu_do_singlestep(vcpu);
8664 return r;
8665 }
8666 EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8667
kvm_is_code_breakpoint_inhibited(struct kvm_vcpu * vcpu)8668 static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
8669 {
8670 u32 shadow;
8671
8672 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8673 return true;
8674
8675 /*
8676 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8677 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first
8678 * to avoid the relatively expensive CPUID lookup.
8679 */
8680 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8681 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8682 guest_cpuid_is_intel(vcpu);
8683 }
8684
kvm_vcpu_check_code_breakpoint(struct kvm_vcpu * vcpu,int emulation_type,int * r)8685 static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8686 int emulation_type, int *r)
8687 {
8688 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8689
8690 /*
8691 * Do not check for code breakpoints if hardware has already done the
8692 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8693 * the instruction has passed all exception checks, and all intercepted
8694 * exceptions that trigger emulation have lower priority than code
8695 * breakpoints, i.e. the fact that the intercepted exception occurred
8696 * means any code breakpoints have already been serviced.
8697 *
8698 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8699 * hardware has checked the RIP of the magic prefix, but not the RIP of
8700 * the instruction being emulated. The intent of forced emulation is
8701 * to behave as if KVM intercepted the instruction without an exception
8702 * and without a prefix.
8703 */
8704 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8705 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8706 return false;
8707
8708 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8709 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
8710 struct kvm_run *kvm_run = vcpu->run;
8711 unsigned long eip = kvm_get_linear_rip(vcpu);
8712 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8713 vcpu->arch.guest_debug_dr7,
8714 vcpu->arch.eff_db);
8715
8716 if (dr6 != 0) {
8717 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
8718 kvm_run->debug.arch.pc = eip;
8719 kvm_run->debug.arch.exception = DB_VECTOR;
8720 kvm_run->exit_reason = KVM_EXIT_DEBUG;
8721 *r = 0;
8722 return true;
8723 }
8724 }
8725
8726 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
8727 !kvm_is_code_breakpoint_inhibited(vcpu)) {
8728 unsigned long eip = kvm_get_linear_rip(vcpu);
8729 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
8730 vcpu->arch.dr7,
8731 vcpu->arch.db);
8732
8733 if (dr6 != 0) {
8734 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
8735 *r = 1;
8736 return true;
8737 }
8738 }
8739
8740 return false;
8741 }
8742
is_vmware_backdoor_opcode(struct x86_emulate_ctxt * ctxt)8743 static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8744 {
8745 switch (ctxt->opcode_len) {
8746 case 1:
8747 switch (ctxt->b) {
8748 case 0xe4: /* IN */
8749 case 0xe5:
8750 case 0xec:
8751 case 0xed:
8752 case 0xe6: /* OUT */
8753 case 0xe7:
8754 case 0xee:
8755 case 0xef:
8756 case 0x6c: /* INS */
8757 case 0x6d:
8758 case 0x6e: /* OUTS */
8759 case 0x6f:
8760 return true;
8761 }
8762 break;
8763 case 2:
8764 switch (ctxt->b) {
8765 case 0x33: /* RDPMC */
8766 return true;
8767 }
8768 break;
8769 }
8770
8771 return false;
8772 }
8773
8774 /*
8775 * Decode an instruction for emulation. The caller is responsible for handling
8776 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
8777 * (and wrong) when emulating on an intercepted fault-like exception[*], as
8778 * code breakpoints have higher priority and thus have already been done by
8779 * hardware.
8780 *
8781 * [*] Except #MC, which is higher priority, but KVM should never emulate in
8782 * response to a machine check.
8783 */
x86_decode_emulated_instruction(struct kvm_vcpu * vcpu,int emulation_type,void * insn,int insn_len)8784 int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8785 void *insn, int insn_len)
8786 {
8787 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8788 int r;
8789
8790 init_emulate_ctxt(vcpu);
8791
8792 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
8793
8794 trace_kvm_emulate_insn_start(vcpu);
8795 ++vcpu->stat.insn_emulation;
8796
8797 return r;
8798 }
8799 EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8800
x86_emulate_instruction(struct kvm_vcpu * vcpu,gpa_t cr2_or_gpa,int emulation_type,void * insn,int insn_len)8801 int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8802 int emulation_type, void *insn, int insn_len)
8803 {
8804 int r;
8805 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8806 bool writeback = true;
8807 bool write_fault_to_spt;
8808
8809 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
8810 return 1;
8811
8812 vcpu->arch.l1tf_flush_l1d = true;
8813
8814 /*
8815 * Clear write_fault_to_shadow_pgtable here to ensure it is
8816 * never reused.
8817 */
8818 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
8819 vcpu->arch.write_fault_to_shadow_pgtable = false;
8820
8821 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8822 kvm_clear_exception_queue(vcpu);
8823
8824 /*
8825 * Return immediately if RIP hits a code breakpoint, such #DBs
8826 * are fault-like and are higher priority than any faults on
8827 * the code fetch itself.
8828 */
8829 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
8830 return r;
8831
8832 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8833 insn, insn_len);
8834 if (r != EMULATION_OK) {
8835 if ((emulation_type & EMULTYPE_TRAP_UD) ||
8836 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8837 kvm_queue_exception(vcpu, UD_VECTOR);
8838 return 1;
8839 }
8840 if (reexecute_instruction(vcpu, cr2_or_gpa,
8841 write_fault_to_spt,
8842 emulation_type))
8843 return 1;
8844 if (ctxt->have_exception) {
8845 /*
8846 * #UD should result in just EMULATION_FAILED, and trap-like
8847 * exception should not be encountered during decode.
8848 */
8849 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8850 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8851 inject_emulated_exception(vcpu);
8852 return 1;
8853 }
8854 return handle_emulation_failure(vcpu, emulation_type);
8855 }
8856 }
8857
8858 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8859 !is_vmware_backdoor_opcode(ctxt)) {
8860 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
8861 return 1;
8862 }
8863
8864 /*
8865 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8866 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8867 * The caller is responsible for updating interruptibility state and
8868 * injecting single-step #DBs.
8869 */
8870 if (emulation_type & EMULTYPE_SKIP) {
8871 if (ctxt->mode != X86EMUL_MODE_PROT64)
8872 ctxt->eip = (u32)ctxt->_eip;
8873 else
8874 ctxt->eip = ctxt->_eip;
8875
8876 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8877 r = 1;
8878 goto writeback;
8879 }
8880
8881 kvm_rip_write(vcpu, ctxt->eip);
8882 if (ctxt->eflags & X86_EFLAGS_RF)
8883 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
8884 return 1;
8885 }
8886
8887 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
8888 return 1;
8889
8890 /* this is needed for vmware backdoor interface to work since it
8891 changes registers values during IO operation */
8892 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8893 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8894 emulator_invalidate_register_cache(ctxt);
8895 }
8896
8897 restart:
8898 if (emulation_type & EMULTYPE_PF) {
8899 /* Save the faulting GPA (cr2) in the address field */
8900 ctxt->exception.address = cr2_or_gpa;
8901
8902 /* With shadow page tables, cr2 contains a GVA or nGPA. */
8903 if (vcpu->arch.mmu->root_role.direct) {
8904 ctxt->gpa_available = true;
8905 ctxt->gpa_val = cr2_or_gpa;
8906 }
8907 } else {
8908 /* Sanitize the address out of an abundance of paranoia. */
8909 ctxt->exception.address = 0;
8910 }
8911
8912 r = x86_emulate_insn(ctxt);
8913
8914 if (r == EMULATION_INTERCEPTED)
8915 return 1;
8916
8917 if (r == EMULATION_FAILED) {
8918 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
8919 emulation_type))
8920 return 1;
8921
8922 return handle_emulation_failure(vcpu, emulation_type);
8923 }
8924
8925 if (ctxt->have_exception) {
8926 r = 1;
8927 inject_emulated_exception(vcpu);
8928 } else if (vcpu->arch.pio.count) {
8929 if (!vcpu->arch.pio.in) {
8930 /* FIXME: return into emulator if single-stepping. */
8931 vcpu->arch.pio.count = 0;
8932 } else {
8933 writeback = false;
8934 vcpu->arch.complete_userspace_io = complete_emulated_pio;
8935 }
8936 r = 0;
8937 } else if (vcpu->mmio_needed) {
8938 ++vcpu->stat.mmio_exits;
8939
8940 if (!vcpu->mmio_is_write)
8941 writeback = false;
8942 r = 0;
8943 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
8944 } else if (vcpu->arch.complete_userspace_io) {
8945 writeback = false;
8946 r = 0;
8947 } else if (r == EMULATION_RESTART)
8948 goto restart;
8949 else
8950 r = 1;
8951
8952 writeback:
8953 if (writeback) {
8954 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
8955 toggle_interruptibility(vcpu, ctxt->interruptibility);
8956 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
8957
8958 /*
8959 * Note, EXCPT_DB is assumed to be fault-like as the emulator
8960 * only supports code breakpoints and general detect #DB, both
8961 * of which are fault-like.
8962 */
8963 if (!ctxt->have_exception ||
8964 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
8965 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8966 if (ctxt->is_branch)
8967 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
8968 kvm_rip_write(vcpu, ctxt->eip);
8969 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
8970 r = kvm_vcpu_do_singlestep(vcpu);
8971 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
8972 __kvm_set_rflags(vcpu, ctxt->eflags);
8973 }
8974
8975 /*
8976 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
8977 * do nothing, and it will be requested again as soon as
8978 * the shadow expires. But we still need to check here,
8979 * because POPF has no interrupt shadow.
8980 */
8981 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
8982 kvm_make_request(KVM_REQ_EVENT, vcpu);
8983 } else
8984 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
8985
8986 return r;
8987 }
8988
kvm_emulate_instruction(struct kvm_vcpu * vcpu,int emulation_type)8989 int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
8990 {
8991 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
8992 }
8993 EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
8994
kvm_emulate_instruction_from_buffer(struct kvm_vcpu * vcpu,void * insn,int insn_len)8995 int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
8996 void *insn, int insn_len)
8997 {
8998 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
8999 }
9000 EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
9001
complete_fast_pio_out_port_0x7e(struct kvm_vcpu * vcpu)9002 static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9003 {
9004 vcpu->arch.pio.count = 0;
9005 return 1;
9006 }
9007
complete_fast_pio_out(struct kvm_vcpu * vcpu)9008 static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9009 {
9010 vcpu->arch.pio.count = 0;
9011
9012 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9013 return 1;
9014
9015 return kvm_skip_emulated_instruction(vcpu);
9016 }
9017
kvm_fast_pio_out(struct kvm_vcpu * vcpu,int size,unsigned short port)9018 static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9019 unsigned short port)
9020 {
9021 unsigned long val = kvm_rax_read(vcpu);
9022 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9023
9024 if (ret)
9025 return ret;
9026
9027 /*
9028 * Workaround userspace that relies on old KVM behavior of %rip being
9029 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9030 */
9031 if (port == 0x7e &&
9032 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9033 vcpu->arch.complete_userspace_io =
9034 complete_fast_pio_out_port_0x7e;
9035 kvm_skip_emulated_instruction(vcpu);
9036 } else {
9037 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9038 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9039 }
9040 return 0;
9041 }
9042
complete_fast_pio_in(struct kvm_vcpu * vcpu)9043 static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9044 {
9045 unsigned long val;
9046
9047 /* We should only ever be called with arch.pio.count equal to 1 */
9048 BUG_ON(vcpu->arch.pio.count != 1);
9049
9050 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9051 vcpu->arch.pio.count = 0;
9052 return 1;
9053 }
9054
9055 /* For size less than 4 we merge, else we zero extend */
9056 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
9057
9058 complete_emulator_pio_in(vcpu, &val);
9059 kvm_rax_write(vcpu, val);
9060
9061 return kvm_skip_emulated_instruction(vcpu);
9062 }
9063
kvm_fast_pio_in(struct kvm_vcpu * vcpu,int size,unsigned short port)9064 static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9065 unsigned short port)
9066 {
9067 unsigned long val;
9068 int ret;
9069
9070 /* For size less than 4 we merge, else we zero extend */
9071 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
9072
9073 ret = emulator_pio_in(vcpu, size, port, &val, 1);
9074 if (ret) {
9075 kvm_rax_write(vcpu, val);
9076 return ret;
9077 }
9078
9079 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9080 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9081
9082 return 0;
9083 }
9084
kvm_fast_pio(struct kvm_vcpu * vcpu,int size,unsigned short port,int in)9085 int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9086 {
9087 int ret;
9088
9089 if (in)
9090 ret = kvm_fast_pio_in(vcpu, size, port);
9091 else
9092 ret = kvm_fast_pio_out(vcpu, size, port);
9093 return ret && kvm_skip_emulated_instruction(vcpu);
9094 }
9095 EXPORT_SYMBOL_GPL(kvm_fast_pio);
9096
kvmclock_cpu_down_prep(unsigned int cpu)9097 static int kvmclock_cpu_down_prep(unsigned int cpu)
9098 {
9099 __this_cpu_write(cpu_tsc_khz, 0);
9100 return 0;
9101 }
9102
tsc_khz_changed(void * data)9103 static void tsc_khz_changed(void *data)
9104 {
9105 struct cpufreq_freqs *freq = data;
9106 unsigned long khz = 0;
9107
9108 if (data)
9109 khz = freq->new;
9110 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9111 khz = cpufreq_quick_get(raw_smp_processor_id());
9112 if (!khz)
9113 khz = tsc_khz;
9114 __this_cpu_write(cpu_tsc_khz, khz);
9115 }
9116
9117 #ifdef CONFIG_X86_64
kvm_hyperv_tsc_notifier(void)9118 static void kvm_hyperv_tsc_notifier(void)
9119 {
9120 struct kvm *kvm;
9121 int cpu;
9122
9123 mutex_lock(&kvm_lock);
9124 list_for_each_entry(kvm, &vm_list, vm_list)
9125 kvm_make_mclock_inprogress_request(kvm);
9126
9127 /* no guest entries from this point */
9128 hyperv_stop_tsc_emulation();
9129
9130 /* TSC frequency always matches when on Hyper-V */
9131 for_each_present_cpu(cpu)
9132 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9133 kvm_caps.max_guest_tsc_khz = tsc_khz;
9134
9135 list_for_each_entry(kvm, &vm_list, vm_list) {
9136 __kvm_start_pvclock_update(kvm);
9137 pvclock_update_vm_gtod_copy(kvm);
9138 kvm_end_pvclock_update(kvm);
9139 }
9140
9141 mutex_unlock(&kvm_lock);
9142 }
9143 #endif
9144
__kvmclock_cpufreq_notifier(struct cpufreq_freqs * freq,int cpu)9145 static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
9146 {
9147 struct kvm *kvm;
9148 struct kvm_vcpu *vcpu;
9149 int send_ipi = 0;
9150 unsigned long i;
9151
9152 /*
9153 * We allow guests to temporarily run on slowing clocks,
9154 * provided we notify them after, or to run on accelerating
9155 * clocks, provided we notify them before. Thus time never
9156 * goes backwards.
9157 *
9158 * However, we have a problem. We can't atomically update
9159 * the frequency of a given CPU from this function; it is
9160 * merely a notifier, which can be called from any CPU.
9161 * Changing the TSC frequency at arbitrary points in time
9162 * requires a recomputation of local variables related to
9163 * the TSC for each VCPU. We must flag these local variables
9164 * to be updated and be sure the update takes place with the
9165 * new frequency before any guests proceed.
9166 *
9167 * Unfortunately, the combination of hotplug CPU and frequency
9168 * change creates an intractable locking scenario; the order
9169 * of when these callouts happen is undefined with respect to
9170 * CPU hotplug, and they can race with each other. As such,
9171 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9172 * undefined; you can actually have a CPU frequency change take
9173 * place in between the computation of X and the setting of the
9174 * variable. To protect against this problem, all updates of
9175 * the per_cpu tsc_khz variable are done in an interrupt
9176 * protected IPI, and all callers wishing to update the value
9177 * must wait for a synchronous IPI to complete (which is trivial
9178 * if the caller is on the CPU already). This establishes the
9179 * necessary total order on variable updates.
9180 *
9181 * Note that because a guest time update may take place
9182 * anytime after the setting of the VCPU's request bit, the
9183 * correct TSC value must be set before the request. However,
9184 * to ensure the update actually makes it to any guest which
9185 * starts running in hardware virtualization between the set
9186 * and the acquisition of the spinlock, we must also ping the
9187 * CPU after setting the request bit.
9188 *
9189 */
9190
9191 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9192
9193 mutex_lock(&kvm_lock);
9194 list_for_each_entry(kvm, &vm_list, vm_list) {
9195 kvm_for_each_vcpu(i, vcpu, kvm) {
9196 if (vcpu->cpu != cpu)
9197 continue;
9198 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
9199 if (vcpu->cpu != raw_smp_processor_id())
9200 send_ipi = 1;
9201 }
9202 }
9203 mutex_unlock(&kvm_lock);
9204
9205 if (freq->old < freq->new && send_ipi) {
9206 /*
9207 * We upscale the frequency. Must make the guest
9208 * doesn't see old kvmclock values while running with
9209 * the new frequency, otherwise we risk the guest sees
9210 * time go backwards.
9211 *
9212 * In case we update the frequency for another cpu
9213 * (which might be in guest context) send an interrupt
9214 * to kick the cpu out of guest context. Next time
9215 * guest context is entered kvmclock will be updated,
9216 * so the guest will not see stale values.
9217 */
9218 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
9219 }
9220 }
9221
kvmclock_cpufreq_notifier(struct notifier_block * nb,unsigned long val,void * data)9222 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9223 void *data)
9224 {
9225 struct cpufreq_freqs *freq = data;
9226 int cpu;
9227
9228 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9229 return 0;
9230 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9231 return 0;
9232
9233 for_each_cpu(cpu, freq->policy->cpus)
9234 __kvmclock_cpufreq_notifier(freq, cpu);
9235
9236 return 0;
9237 }
9238
9239 static struct notifier_block kvmclock_cpufreq_notifier_block = {
9240 .notifier_call = kvmclock_cpufreq_notifier
9241 };
9242
kvmclock_cpu_online(unsigned int cpu)9243 static int kvmclock_cpu_online(unsigned int cpu)
9244 {
9245 tsc_khz_changed(NULL);
9246 return 0;
9247 }
9248
kvm_timer_init(void)9249 static void kvm_timer_init(void)
9250 {
9251 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9252 max_tsc_khz = tsc_khz;
9253
9254 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9255 struct cpufreq_policy *policy;
9256 int cpu;
9257
9258 cpu = get_cpu();
9259 policy = cpufreq_cpu_get(cpu);
9260 if (policy) {
9261 if (policy->cpuinfo.max_freq)
9262 max_tsc_khz = policy->cpuinfo.max_freq;
9263 cpufreq_cpu_put(policy);
9264 }
9265 put_cpu();
9266 }
9267 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9268 CPUFREQ_TRANSITION_NOTIFIER);
9269 }
9270
9271 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9272 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9273 }
9274
9275 #ifdef CONFIG_X86_64
pvclock_gtod_update_fn(struct work_struct * work)9276 static void pvclock_gtod_update_fn(struct work_struct *work)
9277 {
9278 struct kvm *kvm;
9279 struct kvm_vcpu *vcpu;
9280 unsigned long i;
9281
9282 mutex_lock(&kvm_lock);
9283 list_for_each_entry(kvm, &vm_list, vm_list)
9284 kvm_for_each_vcpu(i, vcpu, kvm)
9285 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
9286 atomic_set(&kvm_guest_has_master_clock, 0);
9287 mutex_unlock(&kvm_lock);
9288 }
9289
9290 static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9291
9292 /*
9293 * Indirection to move queue_work() out of the tk_core.seq write held
9294 * region to prevent possible deadlocks against time accessors which
9295 * are invoked with work related locks held.
9296 */
pvclock_irq_work_fn(struct irq_work * w)9297 static void pvclock_irq_work_fn(struct irq_work *w)
9298 {
9299 queue_work(system_long_wq, &pvclock_gtod_work);
9300 }
9301
9302 static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9303
9304 /*
9305 * Notification about pvclock gtod data update.
9306 */
pvclock_gtod_notify(struct notifier_block * nb,unsigned long unused,void * priv)9307 static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9308 void *priv)
9309 {
9310 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9311 struct timekeeper *tk = priv;
9312
9313 update_pvclock_gtod(tk);
9314
9315 /*
9316 * Disable master clock if host does not trust, or does not use,
9317 * TSC based clocksource. Delegate queue_work() to irq_work as
9318 * this is invoked with tk_core.seq write held.
9319 */
9320 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
9321 atomic_read(&kvm_guest_has_master_clock) != 0)
9322 irq_work_queue(&pvclock_irq_work);
9323 return 0;
9324 }
9325
9326 static struct notifier_block pvclock_gtod_notifier = {
9327 .notifier_call = pvclock_gtod_notify,
9328 };
9329 #endif
9330
kvm_arch_init(void * opaque)9331 int kvm_arch_init(void *opaque)
9332 {
9333 struct kvm_x86_init_ops *ops = opaque;
9334 u64 host_pat;
9335 int r;
9336
9337 if (kvm_x86_ops.hardware_enable) {
9338 pr_err("kvm: already loaded vendor module '%s'\n", kvm_x86_ops.name);
9339 return -EEXIST;
9340 }
9341
9342 if (!ops->cpu_has_kvm_support()) {
9343 pr_err_ratelimited("kvm: no hardware support for '%s'\n",
9344 ops->runtime_ops->name);
9345 return -EOPNOTSUPP;
9346 }
9347 if (ops->disabled_by_bios()) {
9348 pr_err_ratelimited("kvm: support for '%s' disabled by bios\n",
9349 ops->runtime_ops->name);
9350 return -EOPNOTSUPP;
9351 }
9352
9353 /*
9354 * KVM explicitly assumes that the guest has an FPU and
9355 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9356 * vCPU's FPU state as a fxregs_state struct.
9357 */
9358 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
9359 printk(KERN_ERR "kvm: inadequate fpu\n");
9360 return -EOPNOTSUPP;
9361 }
9362
9363 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9364 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
9365 return -EOPNOTSUPP;
9366 }
9367
9368 /*
9369 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9370 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9371 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9372 * with an exception. PAT[0] is set to WB on RESET and also by the
9373 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9374 */
9375 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9376 (host_pat & GENMASK(2, 0)) != 6) {
9377 pr_err("kvm: host PAT[0] is not WB\n");
9378 return -EIO;
9379 }
9380
9381 x86_emulator_cache = kvm_alloc_emulator_cache();
9382 if (!x86_emulator_cache) {
9383 pr_err("kvm: failed to allocate cache for x86 emulator\n");
9384 return -ENOMEM;
9385 }
9386
9387 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9388 if (!user_return_msrs) {
9389 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
9390 r = -ENOMEM;
9391 goto out_free_x86_emulator_cache;
9392 }
9393 kvm_nr_uret_msrs = 0;
9394
9395 r = kvm_mmu_vendor_module_init();
9396 if (r)
9397 goto out_free_percpu;
9398
9399 kvm_timer_init();
9400
9401 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
9402 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
9403 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
9404 }
9405
9406 if (pi_inject_timer == -1)
9407 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
9408 #ifdef CONFIG_X86_64
9409 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
9410
9411 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9412 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
9413 #endif
9414
9415 return 0;
9416
9417 out_free_percpu:
9418 free_percpu(user_return_msrs);
9419 out_free_x86_emulator_cache:
9420 kmem_cache_destroy(x86_emulator_cache);
9421 return r;
9422 }
9423
kvm_arch_exit(void)9424 void kvm_arch_exit(void)
9425 {
9426 #ifdef CONFIG_X86_64
9427 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
9428 clear_hv_tscchange_cb();
9429 #endif
9430 kvm_lapic_exit();
9431
9432 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
9433 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9434 CPUFREQ_TRANSITION_NOTIFIER);
9435 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9436 #ifdef CONFIG_X86_64
9437 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
9438 irq_work_sync(&pvclock_irq_work);
9439 cancel_work_sync(&pvclock_gtod_work);
9440 #endif
9441 kvm_x86_ops.hardware_enable = NULL;
9442 kvm_mmu_vendor_module_exit();
9443 free_percpu(user_return_msrs);
9444 kmem_cache_destroy(x86_emulator_cache);
9445 #ifdef CONFIG_KVM_XEN
9446 static_key_deferred_flush(&kvm_xen_enabled);
9447 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
9448 #endif
9449 }
9450
__kvm_emulate_halt(struct kvm_vcpu * vcpu,int state,int reason)9451 static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
9452 {
9453 /*
9454 * The vCPU has halted, e.g. executed HLT. Update the run state if the
9455 * local APIC is in-kernel, the run loop will detect the non-runnable
9456 * state and halt the vCPU. Exit to userspace if the local APIC is
9457 * managed by userspace, in which case userspace is responsible for
9458 * handling wake events.
9459 */
9460 ++vcpu->stat.halt_exits;
9461 if (lapic_in_kernel(vcpu)) {
9462 vcpu->arch.mp_state = state;
9463 return 1;
9464 } else {
9465 vcpu->run->exit_reason = reason;
9466 return 0;
9467 }
9468 }
9469
kvm_emulate_halt_noskip(struct kvm_vcpu * vcpu)9470 int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
9471 {
9472 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
9473 }
9474 EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
9475
kvm_emulate_halt(struct kvm_vcpu * vcpu)9476 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9477 {
9478 int ret = kvm_skip_emulated_instruction(vcpu);
9479 /*
9480 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9481 * KVM_EXIT_DEBUG here.
9482 */
9483 return kvm_emulate_halt_noskip(vcpu) && ret;
9484 }
9485 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9486
kvm_emulate_ap_reset_hold(struct kvm_vcpu * vcpu)9487 int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9488 {
9489 int ret = kvm_skip_emulated_instruction(vcpu);
9490
9491 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9492 KVM_EXIT_AP_RESET_HOLD) && ret;
9493 }
9494 EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9495
9496 #ifdef CONFIG_X86_64
kvm_pv_clock_pairing(struct kvm_vcpu * vcpu,gpa_t paddr,unsigned long clock_type)9497 static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9498 unsigned long clock_type)
9499 {
9500 struct kvm_clock_pairing clock_pairing;
9501 struct timespec64 ts;
9502 u64 cycle;
9503 int ret;
9504
9505 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9506 return -KVM_EOPNOTSUPP;
9507
9508 /*
9509 * When tsc is in permanent catchup mode guests won't be able to use
9510 * pvclock_read_retry loop to get consistent view of pvclock
9511 */
9512 if (vcpu->arch.tsc_always_catchup)
9513 return -KVM_EOPNOTSUPP;
9514
9515 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
9516 return -KVM_EOPNOTSUPP;
9517
9518 clock_pairing.sec = ts.tv_sec;
9519 clock_pairing.nsec = ts.tv_nsec;
9520 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9521 clock_pairing.flags = 0;
9522 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
9523
9524 ret = 0;
9525 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9526 sizeof(struct kvm_clock_pairing)))
9527 ret = -KVM_EFAULT;
9528
9529 return ret;
9530 }
9531 #endif
9532
9533 /*
9534 * kvm_pv_kick_cpu_op: Kick a vcpu.
9535 *
9536 * @apicid - apicid of vcpu to be kicked.
9537 */
kvm_pv_kick_cpu_op(struct kvm * kvm,int apicid)9538 static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
9539 {
9540 /*
9541 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9542 * common code, e.g. for tracing. Defer initialization to the compiler.
9543 */
9544 struct kvm_lapic_irq lapic_irq = {
9545 .delivery_mode = APIC_DM_REMRD,
9546 .dest_mode = APIC_DEST_PHYSICAL,
9547 .shorthand = APIC_DEST_NOSHORT,
9548 .dest_id = apicid,
9549 };
9550
9551 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
9552 }
9553
kvm_apicv_activated(struct kvm * kvm)9554 bool kvm_apicv_activated(struct kvm *kvm)
9555 {
9556 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9557 }
9558 EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9559
kvm_vcpu_apicv_activated(struct kvm_vcpu * vcpu)9560 bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9561 {
9562 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9563 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9564
9565 return (vm_reasons | vcpu_reasons) == 0;
9566 }
9567 EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
9568
set_or_clear_apicv_inhibit(unsigned long * inhibits,enum kvm_apicv_inhibit reason,bool set)9569 static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9570 enum kvm_apicv_inhibit reason, bool set)
9571 {
9572 if (set)
9573 __set_bit(reason, inhibits);
9574 else
9575 __clear_bit(reason, inhibits);
9576
9577 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9578 }
9579
kvm_apicv_init(struct kvm * kvm)9580 static void kvm_apicv_init(struct kvm *kvm)
9581 {
9582 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9583
9584 init_rwsem(&kvm->arch.apicv_update_lock);
9585
9586 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9587
9588 if (!enable_apicv)
9589 set_or_clear_apicv_inhibit(inhibits,
9590 APICV_INHIBIT_REASON_DISABLE, true);
9591 }
9592
kvm_sched_yield(struct kvm_vcpu * vcpu,unsigned long dest_id)9593 static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
9594 {
9595 struct kvm_vcpu *target = NULL;
9596 struct kvm_apic_map *map;
9597
9598 vcpu->stat.directed_yield_attempted++;
9599
9600 if (single_task_running())
9601 goto no_yield;
9602
9603 rcu_read_lock();
9604 map = rcu_dereference(vcpu->kvm->arch.apic_map);
9605
9606 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9607 target = map->phys_map[dest_id]->vcpu;
9608
9609 rcu_read_unlock();
9610
9611 if (!target || !READ_ONCE(target->ready))
9612 goto no_yield;
9613
9614 /* Ignore requests to yield to self */
9615 if (vcpu == target)
9616 goto no_yield;
9617
9618 if (kvm_vcpu_yield_to(target) <= 0)
9619 goto no_yield;
9620
9621 vcpu->stat.directed_yield_successful++;
9622
9623 no_yield:
9624 return;
9625 }
9626
complete_hypercall_exit(struct kvm_vcpu * vcpu)9627 static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9628 {
9629 u64 ret = vcpu->run->hypercall.ret;
9630
9631 if (!is_64_bit_mode(vcpu))
9632 ret = (u32)ret;
9633 kvm_rax_write(vcpu, ret);
9634 ++vcpu->stat.hypercalls;
9635 return kvm_skip_emulated_instruction(vcpu);
9636 }
9637
kvm_emulate_hypercall(struct kvm_vcpu * vcpu)9638 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9639 {
9640 unsigned long nr, a0, a1, a2, a3, ret;
9641 int op_64_bit;
9642
9643 if (kvm_xen_hypercall_enabled(vcpu->kvm))
9644 return kvm_xen_hypercall(vcpu);
9645
9646 if (kvm_hv_hypercall_enabled(vcpu))
9647 return kvm_hv_hypercall(vcpu);
9648
9649 nr = kvm_rax_read(vcpu);
9650 a0 = kvm_rbx_read(vcpu);
9651 a1 = kvm_rcx_read(vcpu);
9652 a2 = kvm_rdx_read(vcpu);
9653 a3 = kvm_rsi_read(vcpu);
9654
9655 trace_kvm_hypercall(nr, a0, a1, a2, a3);
9656
9657 op_64_bit = is_64_bit_hypercall(vcpu);
9658 if (!op_64_bit) {
9659 nr &= 0xFFFFFFFF;
9660 a0 &= 0xFFFFFFFF;
9661 a1 &= 0xFFFFFFFF;
9662 a2 &= 0xFFFFFFFF;
9663 a3 &= 0xFFFFFFFF;
9664 }
9665
9666 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
9667 ret = -KVM_EPERM;
9668 goto out;
9669 }
9670
9671 ret = -KVM_ENOSYS;
9672
9673 switch (nr) {
9674 case KVM_HC_VAPIC_POLL_IRQ:
9675 ret = 0;
9676 break;
9677 case KVM_HC_KICK_CPU:
9678 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9679 break;
9680
9681 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
9682 kvm_sched_yield(vcpu, a1);
9683 ret = 0;
9684 break;
9685 #ifdef CONFIG_X86_64
9686 case KVM_HC_CLOCK_PAIRING:
9687 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9688 break;
9689 #endif
9690 case KVM_HC_SEND_IPI:
9691 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9692 break;
9693
9694 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9695 break;
9696 case KVM_HC_SCHED_YIELD:
9697 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9698 break;
9699
9700 kvm_sched_yield(vcpu, a0);
9701 ret = 0;
9702 break;
9703 case KVM_HC_MAP_GPA_RANGE: {
9704 u64 gpa = a0, npages = a1, attrs = a2;
9705
9706 ret = -KVM_ENOSYS;
9707 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9708 break;
9709
9710 if (!PAGE_ALIGNED(gpa) || !npages ||
9711 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9712 ret = -KVM_EINVAL;
9713 break;
9714 }
9715
9716 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
9717 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
9718 vcpu->run->hypercall.args[0] = gpa;
9719 vcpu->run->hypercall.args[1] = npages;
9720 vcpu->run->hypercall.args[2] = attrs;
9721 vcpu->run->hypercall.longmode = op_64_bit;
9722 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9723 return 0;
9724 }
9725 default:
9726 ret = -KVM_ENOSYS;
9727 break;
9728 }
9729 out:
9730 if (!op_64_bit)
9731 ret = (u32)ret;
9732 kvm_rax_write(vcpu, ret);
9733
9734 ++vcpu->stat.hypercalls;
9735 return kvm_skip_emulated_instruction(vcpu);
9736 }
9737 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9738
emulator_fix_hypercall(struct x86_emulate_ctxt * ctxt)9739 static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
9740 {
9741 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9742 char instruction[3];
9743 unsigned long rip = kvm_rip_read(vcpu);
9744
9745 /*
9746 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9747 * the pieces.
9748 */
9749 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9750 ctxt->exception.error_code_valid = false;
9751 ctxt->exception.vector = UD_VECTOR;
9752 ctxt->have_exception = true;
9753 return X86EMUL_PROPAGATE_FAULT;
9754 }
9755
9756 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
9757
9758 return emulator_write_emulated(ctxt, rip, instruction, 3,
9759 &ctxt->exception);
9760 }
9761
dm_request_for_irq_injection(struct kvm_vcpu * vcpu)9762 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
9763 {
9764 return vcpu->run->request_interrupt_window &&
9765 likely(!pic_in_kernel(vcpu->kvm));
9766 }
9767
9768 /* Called within kvm->srcu read side. */
post_kvm_run_save(struct kvm_vcpu * vcpu)9769 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
9770 {
9771 struct kvm_run *kvm_run = vcpu->run;
9772
9773 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
9774 kvm_run->cr8 = kvm_get_cr8(vcpu);
9775 kvm_run->apic_base = kvm_get_apic_base(vcpu);
9776
9777 kvm_run->ready_for_interrupt_injection =
9778 pic_in_kernel(vcpu->kvm) ||
9779 kvm_vcpu_ready_for_interrupt_injection(vcpu);
9780
9781 if (is_smm(vcpu))
9782 kvm_run->flags |= KVM_RUN_X86_SMM;
9783 }
9784
update_cr8_intercept(struct kvm_vcpu * vcpu)9785 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9786 {
9787 int max_irr, tpr;
9788
9789 if (!kvm_x86_ops.update_cr8_intercept)
9790 return;
9791
9792 if (!lapic_in_kernel(vcpu))
9793 return;
9794
9795 if (vcpu->arch.apic->apicv_active)
9796 return;
9797
9798 if (!vcpu->arch.apic->vapic_addr)
9799 max_irr = kvm_lapic_find_highest_irr(vcpu);
9800 else
9801 max_irr = -1;
9802
9803 if (max_irr != -1)
9804 max_irr >>= 4;
9805
9806 tpr = kvm_lapic_get_cr8(vcpu);
9807
9808 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
9809 }
9810
9811
kvm_check_nested_events(struct kvm_vcpu * vcpu)9812 int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9813 {
9814 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
9815 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9816 return 1;
9817 }
9818
9819 return kvm_x86_ops.nested_ops->check_events(vcpu);
9820 }
9821
kvm_inject_exception(struct kvm_vcpu * vcpu)9822 static void kvm_inject_exception(struct kvm_vcpu *vcpu)
9823 {
9824 trace_kvm_inj_exception(vcpu->arch.exception.vector,
9825 vcpu->arch.exception.has_error_code,
9826 vcpu->arch.exception.error_code,
9827 vcpu->arch.exception.injected);
9828
9829 if (vcpu->arch.exception.error_code && !is_protmode(vcpu))
9830 vcpu->arch.exception.error_code = false;
9831 static_call(kvm_x86_inject_exception)(vcpu);
9832 }
9833
9834 /*
9835 * Check for any event (interrupt or exception) that is ready to be injected,
9836 * and if there is at least one event, inject the event with the highest
9837 * priority. This handles both "pending" events, i.e. events that have never
9838 * been injected into the guest, and "injected" events, i.e. events that were
9839 * injected as part of a previous VM-Enter, but weren't successfully delivered
9840 * and need to be re-injected.
9841 *
9842 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
9843 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
9844 * be able to inject exceptions in the "middle" of an instruction, and so must
9845 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
9846 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
9847 * boundaries is necessary and correct.
9848 *
9849 * For simplicity, KVM uses a single path to inject all events (except events
9850 * that are injected directly from L1 to L2) and doesn't explicitly track
9851 * instruction boundaries for asynchronous events. However, because VM-Exits
9852 * that can occur during instruction execution typically result in KVM skipping
9853 * the instruction or injecting an exception, e.g. instruction and exception
9854 * intercepts, and because pending exceptions have higher priority than pending
9855 * interrupts, KVM still honors instruction boundaries in most scenarios.
9856 *
9857 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
9858 * the instruction or inject an exception, then KVM can incorrecty inject a new
9859 * asynchrounous event if the event became pending after the CPU fetched the
9860 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
9861 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
9862 * injected on the restarted instruction instead of being deferred until the
9863 * instruction completes.
9864 *
9865 * In practice, this virtualization hole is unlikely to be observed by the
9866 * guest, and even less likely to cause functional problems. To detect the
9867 * hole, the guest would have to trigger an event on a side effect of an early
9868 * phase of instruction execution, e.g. on the instruction fetch from memory.
9869 * And for it to be a functional problem, the guest would need to depend on the
9870 * ordering between that side effect, the instruction completing, _and_ the
9871 * delivery of the asynchronous event.
9872 */
kvm_check_and_inject_events(struct kvm_vcpu * vcpu,bool * req_immediate_exit)9873 static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
9874 bool *req_immediate_exit)
9875 {
9876 bool can_inject;
9877 int r;
9878
9879 /*
9880 * Process nested events first, as nested VM-Exit supercedes event
9881 * re-injection. If there's an event queued for re-injection, it will
9882 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
9883 */
9884 if (is_guest_mode(vcpu))
9885 r = kvm_check_nested_events(vcpu);
9886 else
9887 r = 0;
9888
9889 /*
9890 * Re-inject exceptions and events *especially* if immediate entry+exit
9891 * to/from L2 is needed, as any event that has already been injected
9892 * into L2 needs to complete its lifecycle before injecting a new event.
9893 *
9894 * Don't re-inject an NMI or interrupt if there is a pending exception.
9895 * This collision arises if an exception occurred while vectoring the
9896 * injected event, KVM intercepted said exception, and KVM ultimately
9897 * determined the fault belongs to the guest and queues the exception
9898 * for injection back into the guest.
9899 *
9900 * "Injected" interrupts can also collide with pending exceptions if
9901 * userspace ignores the "ready for injection" flag and blindly queues
9902 * an interrupt. In that case, prioritizing the exception is correct,
9903 * as the exception "occurred" before the exit to userspace. Trap-like
9904 * exceptions, e.g. most #DBs, have higher priority than interrupts.
9905 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
9906 * priority, they're only generated (pended) during instruction
9907 * execution, and interrupts are recognized at instruction boundaries.
9908 * Thus a pending fault-like exception means the fault occurred on the
9909 * *previous* instruction and must be serviced prior to recognizing any
9910 * new events in order to fully complete the previous instruction.
9911 */
9912 if (vcpu->arch.exception.injected)
9913 kvm_inject_exception(vcpu);
9914 else if (kvm_is_exception_pending(vcpu))
9915 ; /* see above */
9916 else if (vcpu->arch.nmi_injected)
9917 static_call(kvm_x86_inject_nmi)(vcpu);
9918 else if (vcpu->arch.interrupt.injected)
9919 static_call(kvm_x86_inject_irq)(vcpu, true);
9920
9921 /*
9922 * Exceptions that morph to VM-Exits are handled above, and pending
9923 * exceptions on top of injected exceptions that do not VM-Exit should
9924 * either morph to #DF or, sadly, override the injected exception.
9925 */
9926 WARN_ON_ONCE(vcpu->arch.exception.injected &&
9927 vcpu->arch.exception.pending);
9928
9929 /*
9930 * Bail if immediate entry+exit to/from the guest is needed to complete
9931 * nested VM-Enter or event re-injection so that a different pending
9932 * event can be serviced (or if KVM needs to exit to userspace).
9933 *
9934 * Otherwise, continue processing events even if VM-Exit occurred. The
9935 * VM-Exit will have cleared exceptions that were meant for L2, but
9936 * there may now be events that can be injected into L1.
9937 */
9938 if (r < 0)
9939 goto out;
9940
9941 /*
9942 * A pending exception VM-Exit should either result in nested VM-Exit
9943 * or force an immediate re-entry and exit to/from L2, and exception
9944 * VM-Exits cannot be injected (flag should _never_ be set).
9945 */
9946 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
9947 vcpu->arch.exception_vmexit.pending);
9948
9949 /*
9950 * New events, other than exceptions, cannot be injected if KVM needs
9951 * to re-inject a previous event. See above comments on re-injecting
9952 * for why pending exceptions get priority.
9953 */
9954 can_inject = !kvm_event_needs_reinjection(vcpu);
9955
9956 if (vcpu->arch.exception.pending) {
9957 /*
9958 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
9959 * value pushed on the stack. Trap-like exception and all #DBs
9960 * leave RF as-is (KVM follows Intel's behavior in this regard;
9961 * AMD states that code breakpoint #DBs excplitly clear RF=0).
9962 *
9963 * Note, most versions of Intel's SDM and AMD's APM incorrectly
9964 * describe the behavior of General Detect #DBs, which are
9965 * fault-like. They do _not_ set RF, a la code breakpoints.
9966 */
9967 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
9968 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
9969 X86_EFLAGS_RF);
9970
9971 if (vcpu->arch.exception.vector == DB_VECTOR) {
9972 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
9973 if (vcpu->arch.dr7 & DR7_GD) {
9974 vcpu->arch.dr7 &= ~DR7_GD;
9975 kvm_update_dr7(vcpu);
9976 }
9977 }
9978
9979 kvm_inject_exception(vcpu);
9980
9981 vcpu->arch.exception.pending = false;
9982 vcpu->arch.exception.injected = true;
9983
9984 can_inject = false;
9985 }
9986
9987 /* Don't inject interrupts if the user asked to avoid doing so */
9988 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
9989 return 0;
9990
9991 /*
9992 * Finally, inject interrupt events. If an event cannot be injected
9993 * due to architectural conditions (e.g. IF=0) a window-open exit
9994 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
9995 * and can architecturally be injected, but we cannot do it right now:
9996 * an interrupt could have arrived just now and we have to inject it
9997 * as a vmexit, or there could already an event in the queue, which is
9998 * indicated by can_inject. In that case we request an immediate exit
9999 * in order to make progress and get back here for another iteration.
10000 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10001 */
10002 if (vcpu->arch.smi_pending) {
10003 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
10004 if (r < 0)
10005 goto out;
10006 if (r) {
10007 vcpu->arch.smi_pending = false;
10008 ++vcpu->arch.smi_count;
10009 enter_smm(vcpu);
10010 can_inject = false;
10011 } else
10012 static_call(kvm_x86_enable_smi_window)(vcpu);
10013 }
10014
10015 if (vcpu->arch.nmi_pending) {
10016 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
10017 if (r < 0)
10018 goto out;
10019 if (r) {
10020 --vcpu->arch.nmi_pending;
10021 vcpu->arch.nmi_injected = true;
10022 static_call(kvm_x86_inject_nmi)(vcpu);
10023 can_inject = false;
10024 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
10025 }
10026 if (vcpu->arch.nmi_pending)
10027 static_call(kvm_x86_enable_nmi_window)(vcpu);
10028 }
10029
10030 if (kvm_cpu_has_injectable_intr(vcpu)) {
10031 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
10032 if (r < 0)
10033 goto out;
10034 if (r) {
10035 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
10036 static_call(kvm_x86_inject_irq)(vcpu, false);
10037 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10038 }
10039 if (kvm_cpu_has_injectable_intr(vcpu))
10040 static_call(kvm_x86_enable_irq_window)(vcpu);
10041 }
10042
10043 if (is_guest_mode(vcpu) &&
10044 kvm_x86_ops.nested_ops->has_events &&
10045 kvm_x86_ops.nested_ops->has_events(vcpu))
10046 *req_immediate_exit = true;
10047
10048 /*
10049 * KVM must never queue a new exception while injecting an event; KVM
10050 * is done emulating and should only propagate the to-be-injected event
10051 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10052 * infinite loop as KVM will bail from VM-Enter to inject the pending
10053 * exception and start the cycle all over.
10054 *
10055 * Exempt triple faults as they have special handling and won't put the
10056 * vCPU into an infinite loop. Triple fault can be queued when running
10057 * VMX without unrestricted guest, as that requires KVM to emulate Real
10058 * Mode events (see kvm_inject_realmode_interrupt()).
10059 */
10060 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10061 vcpu->arch.exception_vmexit.pending);
10062 return 0;
10063
10064 out:
10065 if (r == -EBUSY) {
10066 *req_immediate_exit = true;
10067 r = 0;
10068 }
10069 return r;
10070 }
10071
process_nmi(struct kvm_vcpu * vcpu)10072 static void process_nmi(struct kvm_vcpu *vcpu)
10073 {
10074 unsigned limit = 2;
10075
10076 /*
10077 * x86 is limited to one NMI running, and one NMI pending after it.
10078 * If an NMI is already in progress, limit further NMIs to just one.
10079 * Otherwise, allow two (and we'll inject the first one immediately).
10080 */
10081 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
10082 limit = 1;
10083
10084 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10085 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
10086 kvm_make_request(KVM_REQ_EVENT, vcpu);
10087 }
10088
enter_smm_get_segment_flags(struct kvm_segment * seg)10089 static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
10090 {
10091 u32 flags = 0;
10092 flags |= seg->g << 23;
10093 flags |= seg->db << 22;
10094 flags |= seg->l << 21;
10095 flags |= seg->avl << 20;
10096 flags |= seg->present << 15;
10097 flags |= seg->dpl << 13;
10098 flags |= seg->s << 12;
10099 flags |= seg->type << 8;
10100 return flags;
10101 }
10102
enter_smm_save_seg_32(struct kvm_vcpu * vcpu,char * buf,int n)10103 static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
10104 {
10105 struct kvm_segment seg;
10106 int offset;
10107
10108 kvm_get_segment(vcpu, &seg, n);
10109 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
10110
10111 if (n < 3)
10112 offset = 0x7f84 + n * 12;
10113 else
10114 offset = 0x7f2c + (n - 3) * 12;
10115
10116 put_smstate(u32, buf, offset + 8, seg.base);
10117 put_smstate(u32, buf, offset + 4, seg.limit);
10118 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
10119 }
10120
10121 #ifdef CONFIG_X86_64
enter_smm_save_seg_64(struct kvm_vcpu * vcpu,char * buf,int n)10122 static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
10123 {
10124 struct kvm_segment seg;
10125 int offset;
10126 u16 flags;
10127
10128 kvm_get_segment(vcpu, &seg, n);
10129 offset = 0x7e00 + n * 16;
10130
10131 flags = enter_smm_get_segment_flags(&seg) >> 8;
10132 put_smstate(u16, buf, offset, seg.selector);
10133 put_smstate(u16, buf, offset + 2, flags);
10134 put_smstate(u32, buf, offset + 4, seg.limit);
10135 put_smstate(u64, buf, offset + 8, seg.base);
10136 }
10137 #endif
10138
enter_smm_save_state_32(struct kvm_vcpu * vcpu,char * buf)10139 static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
10140 {
10141 struct desc_ptr dt;
10142 struct kvm_segment seg;
10143 unsigned long val;
10144 int i;
10145
10146 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
10147 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
10148 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
10149 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
10150
10151 for (i = 0; i < 8; i++)
10152 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read_raw(vcpu, i));
10153
10154 kvm_get_dr(vcpu, 6, &val);
10155 put_smstate(u32, buf, 0x7fcc, (u32)val);
10156 kvm_get_dr(vcpu, 7, &val);
10157 put_smstate(u32, buf, 0x7fc8, (u32)val);
10158
10159 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
10160 put_smstate(u32, buf, 0x7fc4, seg.selector);
10161 put_smstate(u32, buf, 0x7f64, seg.base);
10162 put_smstate(u32, buf, 0x7f60, seg.limit);
10163 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
10164
10165 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
10166 put_smstate(u32, buf, 0x7fc0, seg.selector);
10167 put_smstate(u32, buf, 0x7f80, seg.base);
10168 put_smstate(u32, buf, 0x7f7c, seg.limit);
10169 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
10170
10171 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10172 put_smstate(u32, buf, 0x7f74, dt.address);
10173 put_smstate(u32, buf, 0x7f70, dt.size);
10174
10175 static_call(kvm_x86_get_idt)(vcpu, &dt);
10176 put_smstate(u32, buf, 0x7f58, dt.address);
10177 put_smstate(u32, buf, 0x7f54, dt.size);
10178
10179 for (i = 0; i < 6; i++)
10180 enter_smm_save_seg_32(vcpu, buf, i);
10181
10182 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
10183
10184 /* revision id */
10185 put_smstate(u32, buf, 0x7efc, 0x00020000);
10186 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
10187 }
10188
10189 #ifdef CONFIG_X86_64
enter_smm_save_state_64(struct kvm_vcpu * vcpu,char * buf)10190 static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
10191 {
10192 struct desc_ptr dt;
10193 struct kvm_segment seg;
10194 unsigned long val;
10195 int i;
10196
10197 for (i = 0; i < 16; i++)
10198 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read_raw(vcpu, i));
10199
10200 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
10201 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
10202
10203 kvm_get_dr(vcpu, 6, &val);
10204 put_smstate(u64, buf, 0x7f68, val);
10205 kvm_get_dr(vcpu, 7, &val);
10206 put_smstate(u64, buf, 0x7f60, val);
10207
10208 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
10209 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
10210 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
10211
10212 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
10213
10214 /* revision id */
10215 put_smstate(u32, buf, 0x7efc, 0x00020064);
10216
10217 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
10218
10219 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
10220 put_smstate(u16, buf, 0x7e90, seg.selector);
10221 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
10222 put_smstate(u32, buf, 0x7e94, seg.limit);
10223 put_smstate(u64, buf, 0x7e98, seg.base);
10224
10225 static_call(kvm_x86_get_idt)(vcpu, &dt);
10226 put_smstate(u32, buf, 0x7e84, dt.size);
10227 put_smstate(u64, buf, 0x7e88, dt.address);
10228
10229 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
10230 put_smstate(u16, buf, 0x7e70, seg.selector);
10231 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
10232 put_smstate(u32, buf, 0x7e74, seg.limit);
10233 put_smstate(u64, buf, 0x7e78, seg.base);
10234
10235 static_call(kvm_x86_get_gdt)(vcpu, &dt);
10236 put_smstate(u32, buf, 0x7e64, dt.size);
10237 put_smstate(u64, buf, 0x7e68, dt.address);
10238
10239 for (i = 0; i < 6; i++)
10240 enter_smm_save_seg_64(vcpu, buf, i);
10241 }
10242 #endif
10243
enter_smm(struct kvm_vcpu * vcpu)10244 static void enter_smm(struct kvm_vcpu *vcpu)
10245 {
10246 struct kvm_segment cs, ds;
10247 struct desc_ptr dt;
10248 unsigned long cr0;
10249 char buf[512];
10250
10251 memset(buf, 0, 512);
10252 #ifdef CONFIG_X86_64
10253 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10254 enter_smm_save_state_64(vcpu, buf);
10255 else
10256 #endif
10257 enter_smm_save_state_32(vcpu, buf);
10258
10259 /*
10260 * Give enter_smm() a chance to make ISA-specific changes to the vCPU
10261 * state (e.g. leave guest mode) after we've saved the state into the
10262 * SMM state-save area.
10263 */
10264 static_call(kvm_x86_enter_smm)(vcpu, buf);
10265
10266 kvm_smm_changed(vcpu, true);
10267 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
10268
10269 if (static_call(kvm_x86_get_nmi_mask)(vcpu))
10270 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
10271 else
10272 static_call(kvm_x86_set_nmi_mask)(vcpu, true);
10273
10274 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
10275 kvm_rip_write(vcpu, 0x8000);
10276
10277 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
10278 static_call(kvm_x86_set_cr0)(vcpu, cr0);
10279 vcpu->arch.cr0 = cr0;
10280
10281 static_call(kvm_x86_set_cr4)(vcpu, 0);
10282
10283 /* Undocumented: IDT limit is set to zero on entry to SMM. */
10284 dt.address = dt.size = 0;
10285 static_call(kvm_x86_set_idt)(vcpu, &dt);
10286
10287 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
10288
10289 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
10290 cs.base = vcpu->arch.smbase;
10291
10292 ds.selector = 0;
10293 ds.base = 0;
10294
10295 cs.limit = ds.limit = 0xffffffff;
10296 cs.type = ds.type = 0x3;
10297 cs.dpl = ds.dpl = 0;
10298 cs.db = ds.db = 0;
10299 cs.s = ds.s = 1;
10300 cs.l = ds.l = 0;
10301 cs.g = ds.g = 1;
10302 cs.avl = ds.avl = 0;
10303 cs.present = ds.present = 1;
10304 cs.unusable = ds.unusable = 0;
10305 cs.padding = ds.padding = 0;
10306
10307 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10308 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
10309 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
10310 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
10311 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
10312 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
10313
10314 #ifdef CONFIG_X86_64
10315 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
10316 static_call(kvm_x86_set_efer)(vcpu, 0);
10317 #endif
10318
10319 kvm_update_cpuid_runtime(vcpu);
10320 kvm_mmu_reset_context(vcpu);
10321 }
10322
process_smi(struct kvm_vcpu * vcpu)10323 static void process_smi(struct kvm_vcpu *vcpu)
10324 {
10325 vcpu->arch.smi_pending = true;
10326 kvm_make_request(KVM_REQ_EVENT, vcpu);
10327 }
10328
kvm_make_scan_ioapic_request_mask(struct kvm * kvm,unsigned long * vcpu_bitmap)10329 void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10330 unsigned long *vcpu_bitmap)
10331 {
10332 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
10333 }
10334
kvm_make_scan_ioapic_request(struct kvm * kvm)10335 void kvm_make_scan_ioapic_request(struct kvm *kvm)
10336 {
10337 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10338 }
10339
kvm_vcpu_update_apicv(struct kvm_vcpu * vcpu)10340 void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10341 {
10342 struct kvm_lapic *apic = vcpu->arch.apic;
10343 bool activate;
10344
10345 if (!lapic_in_kernel(vcpu))
10346 return;
10347
10348 down_read(&vcpu->kvm->arch.apicv_update_lock);
10349 preempt_disable();
10350
10351 /* Do not activate APICV when APIC is disabled */
10352 activate = kvm_vcpu_apicv_activated(vcpu) &&
10353 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
10354
10355 if (apic->apicv_active == activate)
10356 goto out;
10357
10358 apic->apicv_active = activate;
10359 kvm_apic_update_apicv(vcpu);
10360 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
10361
10362 /*
10363 * When APICv gets disabled, we may still have injected interrupts
10364 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10365 * still active when the interrupt got accepted. Make sure
10366 * kvm_check_and_inject_events() is called to check for that.
10367 */
10368 if (!apic->apicv_active)
10369 kvm_make_request(KVM_REQ_EVENT, vcpu);
10370
10371 out:
10372 preempt_enable();
10373 up_read(&vcpu->kvm->arch.apicv_update_lock);
10374 }
10375 EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
10376
__kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10377 void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10378 enum kvm_apicv_inhibit reason, bool set)
10379 {
10380 unsigned long old, new;
10381
10382 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10383
10384 if (!static_call(kvm_x86_check_apicv_inhibit_reasons)(reason))
10385 return;
10386
10387 old = new = kvm->arch.apicv_inhibit_reasons;
10388
10389 set_or_clear_apicv_inhibit(&new, reason, set);
10390
10391 if (!!old != !!new) {
10392 /*
10393 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10394 * false positives in the sanity check WARN in svm_vcpu_run().
10395 * This task will wait for all vCPUs to ack the kick IRQ before
10396 * updating apicv_inhibit_reasons, and all other vCPUs will
10397 * block on acquiring apicv_update_lock so that vCPUs can't
10398 * redo svm_vcpu_run() without seeing the new inhibit state.
10399 *
10400 * Note, holding apicv_update_lock and taking it in the read
10401 * side (handling the request) also prevents other vCPUs from
10402 * servicing the request with a stale apicv_inhibit_reasons.
10403 */
10404 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
10405 kvm->arch.apicv_inhibit_reasons = new;
10406 if (new) {
10407 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
10408 int idx = srcu_read_lock(&kvm->srcu);
10409
10410 kvm_zap_gfn_range(kvm, gfn, gfn+1);
10411 srcu_read_unlock(&kvm->srcu, idx);
10412 }
10413 } else {
10414 kvm->arch.apicv_inhibit_reasons = new;
10415 }
10416 }
10417
kvm_set_or_clear_apicv_inhibit(struct kvm * kvm,enum kvm_apicv_inhibit reason,bool set)10418 void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10419 enum kvm_apicv_inhibit reason, bool set)
10420 {
10421 if (!enable_apicv)
10422 return;
10423
10424 down_write(&kvm->arch.apicv_update_lock);
10425 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
10426 up_write(&kvm->arch.apicv_update_lock);
10427 }
10428 EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
10429
vcpu_scan_ioapic(struct kvm_vcpu * vcpu)10430 static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
10431 {
10432 if (!kvm_apic_present(vcpu))
10433 return;
10434
10435 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
10436
10437 if (irqchip_split(vcpu->kvm))
10438 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
10439 else {
10440 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10441 if (ioapic_in_kernel(vcpu->kvm))
10442 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
10443 }
10444
10445 if (is_guest_mode(vcpu))
10446 vcpu->arch.load_eoi_exitmap_pending = true;
10447 else
10448 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10449 }
10450
vcpu_load_eoi_exitmap(struct kvm_vcpu * vcpu)10451 static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10452 {
10453 u64 eoi_exit_bitmap[4];
10454
10455 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10456 return;
10457
10458 if (to_hv_vcpu(vcpu)) {
10459 bitmap_or((ulong *)eoi_exit_bitmap,
10460 vcpu->arch.ioapic_handled_vectors,
10461 to_hv_synic(vcpu)->vec_bitmap, 256);
10462 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
10463 return;
10464 }
10465
10466 static_call_cond(kvm_x86_load_eoi_exitmap)(
10467 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
10468 }
10469
kvm_arch_mmu_notifier_invalidate_range(struct kvm * kvm,unsigned long start,unsigned long end)10470 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
10471 unsigned long start, unsigned long end)
10472 {
10473 unsigned long apic_address;
10474
10475 /*
10476 * The physical address of apic access page is stored in the VMCS.
10477 * Update it when it becomes invalid.
10478 */
10479 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
10480 if (start <= apic_address && apic_address < end)
10481 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
10482 }
10483
kvm_arch_guest_memory_reclaimed(struct kvm * kvm)10484 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10485 {
10486 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10487 }
10488
kvm_vcpu_reload_apic_access_page(struct kvm_vcpu * vcpu)10489 static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
10490 {
10491 if (!lapic_in_kernel(vcpu))
10492 return;
10493
10494 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
10495 }
10496
__kvm_request_immediate_exit(struct kvm_vcpu * vcpu)10497 void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10498 {
10499 smp_send_reschedule(vcpu->cpu);
10500 }
10501 EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10502
10503 /*
10504 * Called within kvm->srcu read side.
10505 * Returns 1 to let vcpu_run() continue the guest execution loop without
10506 * exiting to the userspace. Otherwise, the value will be returned to the
10507 * userspace.
10508 */
vcpu_enter_guest(struct kvm_vcpu * vcpu)10509 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
10510 {
10511 int r;
10512 bool req_int_win =
10513 dm_request_for_irq_injection(vcpu) &&
10514 kvm_cpu_accept_dm_intr(vcpu);
10515 fastpath_t exit_fastpath;
10516
10517 bool req_immediate_exit = false;
10518
10519 /* Forbid vmenter if vcpu dirty ring is soft-full */
10520 if (unlikely(vcpu->kvm->dirty_ring_size &&
10521 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
10522 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
10523 trace_kvm_dirty_ring_exit(vcpu);
10524 r = 0;
10525 goto out;
10526 }
10527
10528 if (kvm_request_pending(vcpu)) {
10529 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
10530 r = -EIO;
10531 goto out;
10532 }
10533 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
10534 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
10535 r = 0;
10536 goto out;
10537 }
10538 }
10539 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10540 kvm_mmu_free_obsolete_roots(vcpu);
10541 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
10542 __kvm_migrate_timers(vcpu);
10543 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
10544 kvm_update_masterclock(vcpu->kvm);
10545 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10546 kvm_gen_kvmclock_update(vcpu);
10547 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10548 r = kvm_guest_time_update(vcpu);
10549 if (unlikely(r))
10550 goto out;
10551 }
10552 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
10553 kvm_mmu_sync_roots(vcpu);
10554 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10555 kvm_mmu_load_pgd(vcpu);
10556 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
10557 kvm_vcpu_flush_tlb_all(vcpu);
10558
10559 /* Flushing all ASIDs flushes the current ASID... */
10560 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
10561 }
10562 kvm_service_local_tlb_flush_requests(vcpu);
10563
10564 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
10565 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
10566 r = 0;
10567 goto out;
10568 }
10569 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10570 if (is_guest_mode(vcpu))
10571 kvm_x86_ops.nested_ops->triple_fault(vcpu);
10572
10573 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10574 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10575 vcpu->mmio_needed = 0;
10576 r = 0;
10577 goto out;
10578 }
10579 }
10580 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10581 /* Page is swapped out. Do synthetic halt */
10582 vcpu->arch.apf.halted = true;
10583 r = 1;
10584 goto out;
10585 }
10586 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10587 record_steal_time(vcpu);
10588 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10589 process_smi(vcpu);
10590 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10591 process_nmi(vcpu);
10592 if (kvm_check_request(KVM_REQ_PMU, vcpu))
10593 kvm_pmu_handle_event(vcpu);
10594 if (kvm_check_request(KVM_REQ_PMI, vcpu))
10595 kvm_pmu_deliver_pmi(vcpu);
10596 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10597 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10598 if (test_bit(vcpu->arch.pending_ioapic_eoi,
10599 vcpu->arch.ioapic_handled_vectors)) {
10600 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10601 vcpu->run->eoi.vector =
10602 vcpu->arch.pending_ioapic_eoi;
10603 r = 0;
10604 goto out;
10605 }
10606 }
10607 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10608 vcpu_scan_ioapic(vcpu);
10609 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10610 vcpu_load_eoi_exitmap(vcpu);
10611 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10612 kvm_vcpu_reload_apic_access_page(vcpu);
10613 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10614 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10615 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
10616 vcpu->run->system_event.ndata = 0;
10617 r = 0;
10618 goto out;
10619 }
10620 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10621 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10622 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
10623 vcpu->run->system_event.ndata = 0;
10624 r = 0;
10625 goto out;
10626 }
10627 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
10628 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10629
10630 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
10631 vcpu->run->hyperv = hv_vcpu->exit;
10632 r = 0;
10633 goto out;
10634 }
10635
10636 /*
10637 * KVM_REQ_HV_STIMER has to be processed after
10638 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10639 * depend on the guest clock being up-to-date
10640 */
10641 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10642 kvm_hv_process_stimers(vcpu);
10643 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10644 kvm_vcpu_update_apicv(vcpu);
10645 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10646 kvm_check_async_pf_completion(vcpu);
10647 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
10648 static_call(kvm_x86_msr_filter_changed)(vcpu);
10649
10650 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10651 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
10652 }
10653
10654 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10655 kvm_xen_has_interrupt(vcpu)) {
10656 ++vcpu->stat.req_event;
10657 r = kvm_apic_accept_events(vcpu);
10658 if (r < 0) {
10659 r = 0;
10660 goto out;
10661 }
10662 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10663 r = 1;
10664 goto out;
10665 }
10666
10667 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
10668 if (r < 0) {
10669 r = 0;
10670 goto out;
10671 }
10672 if (req_int_win)
10673 static_call(kvm_x86_enable_irq_window)(vcpu);
10674
10675 if (kvm_lapic_enabled(vcpu)) {
10676 update_cr8_intercept(vcpu);
10677 kvm_lapic_sync_to_vapic(vcpu);
10678 }
10679 }
10680
10681 r = kvm_mmu_reload(vcpu);
10682 if (unlikely(r)) {
10683 goto cancel_injection;
10684 }
10685
10686 preempt_disable();
10687
10688 static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
10689
10690 /*
10691 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10692 * IPI are then delayed after guest entry, which ensures that they
10693 * result in virtual interrupt delivery.
10694 */
10695 local_irq_disable();
10696
10697 /* Store vcpu->apicv_active before vcpu->mode. */
10698 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
10699
10700 kvm_vcpu_srcu_read_unlock(vcpu);
10701
10702 /*
10703 * 1) We should set ->mode before checking ->requests. Please see
10704 * the comment in kvm_vcpu_exiting_guest_mode().
10705 *
10706 * 2) For APICv, we should set ->mode before checking PID.ON. This
10707 * pairs with the memory barrier implicit in pi_test_and_set_on
10708 * (see vmx_deliver_posted_interrupt).
10709 *
10710 * 3) This also orders the write to mode from any reads to the page
10711 * tables done while the VCPU is running. Please see the comment
10712 * in kvm_flush_remote_tlbs.
10713 */
10714 smp_mb__after_srcu_read_unlock();
10715
10716 /*
10717 * Process pending posted interrupts to handle the case where the
10718 * notification IRQ arrived in the host, or was never sent (because the
10719 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10720 * status, KVM doesn't update assigned devices when APICv is inhibited,
10721 * i.e. they can post interrupts even if APICv is temporarily disabled.
10722 */
10723 if (kvm_lapic_enabled(vcpu))
10724 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10725
10726 if (kvm_vcpu_exit_request(vcpu)) {
10727 vcpu->mode = OUTSIDE_GUEST_MODE;
10728 smp_wmb();
10729 local_irq_enable();
10730 preempt_enable();
10731 kvm_vcpu_srcu_read_lock(vcpu);
10732 r = 1;
10733 goto cancel_injection;
10734 }
10735
10736 if (req_immediate_exit) {
10737 kvm_make_request(KVM_REQ_EVENT, vcpu);
10738 static_call(kvm_x86_request_immediate_exit)(vcpu);
10739 }
10740
10741 fpregs_assert_state_consistent();
10742 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10743 switch_fpu_return();
10744
10745 if (vcpu->arch.guest_fpu.xfd_err)
10746 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10747
10748 if (unlikely(vcpu->arch.switch_db_regs)) {
10749 set_debugreg(0, 7);
10750 set_debugreg(vcpu->arch.eff_db[0], 0);
10751 set_debugreg(vcpu->arch.eff_db[1], 1);
10752 set_debugreg(vcpu->arch.eff_db[2], 2);
10753 set_debugreg(vcpu->arch.eff_db[3], 3);
10754 } else if (unlikely(hw_breakpoint_active())) {
10755 set_debugreg(0, 7);
10756 }
10757
10758 guest_timing_enter_irqoff();
10759
10760 for (;;) {
10761 /*
10762 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10763 * update must kick and wait for all vCPUs before toggling the
10764 * per-VM state, and responsing vCPUs must wait for the update
10765 * to complete before servicing KVM_REQ_APICV_UPDATE.
10766 */
10767 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10768 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
10769
10770 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
10771 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10772 break;
10773
10774 if (kvm_lapic_enabled(vcpu))
10775 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
10776
10777 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
10778 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10779 break;
10780 }
10781 }
10782
10783 /*
10784 * Do this here before restoring debug registers on the host. And
10785 * since we do this before handling the vmexit, a DR access vmexit
10786 * can (a) read the correct value of the debug registers, (b) set
10787 * KVM_DEBUGREG_WONT_EXIT again.
10788 */
10789 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
10790 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
10791 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
10792 kvm_update_dr0123(vcpu);
10793 kvm_update_dr7(vcpu);
10794 }
10795
10796 /*
10797 * If the guest has used debug registers, at least dr7
10798 * will be disabled while returning to the host.
10799 * If we don't have active breakpoints in the host, we don't
10800 * care about the messed up debug address registers. But if
10801 * we have some of them active, restore the old state.
10802 */
10803 if (hw_breakpoint_active())
10804 hw_breakpoint_restore();
10805
10806 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
10807 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
10808
10809 vcpu->mode = OUTSIDE_GUEST_MODE;
10810 smp_wmb();
10811
10812 /*
10813 * Sync xfd before calling handle_exit_irqoff() which may
10814 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10815 * in #NM irqoff handler).
10816 */
10817 if (vcpu->arch.xfd_no_write_intercept)
10818 fpu_sync_guest_vmexit_xfd_state();
10819
10820 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
10821
10822 if (vcpu->arch.guest_fpu.xfd_err)
10823 wrmsrl(MSR_IA32_XFD_ERR, 0);
10824
10825 /*
10826 * Consume any pending interrupts, including the possible source of
10827 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10828 * An instruction is required after local_irq_enable() to fully unblock
10829 * interrupts on processors that implement an interrupt shadow, the
10830 * stat.exits increment will do nicely.
10831 */
10832 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
10833 local_irq_enable();
10834 ++vcpu->stat.exits;
10835 local_irq_disable();
10836 kvm_after_interrupt(vcpu);
10837
10838 /*
10839 * Wait until after servicing IRQs to account guest time so that any
10840 * ticks that occurred while running the guest are properly accounted
10841 * to the guest. Waiting until IRQs are enabled degrades the accuracy
10842 * of accounting via context tracking, but the loss of accuracy is
10843 * acceptable for all known use cases.
10844 */
10845 guest_timing_exit_irqoff();
10846
10847 local_irq_enable();
10848 preempt_enable();
10849
10850 kvm_vcpu_srcu_read_lock(vcpu);
10851
10852 /*
10853 * Profile KVM exit RIPs:
10854 */
10855 if (unlikely(prof_on == KVM_PROFILING)) {
10856 unsigned long rip = kvm_rip_read(vcpu);
10857 profile_hit(KVM_PROFILING, (void *)rip);
10858 }
10859
10860 if (unlikely(vcpu->arch.tsc_always_catchup))
10861 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
10862
10863 if (vcpu->arch.apic_attention)
10864 kvm_lapic_sync_from_vapic(vcpu);
10865
10866 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
10867 return r;
10868
10869 cancel_injection:
10870 if (req_immediate_exit)
10871 kvm_make_request(KVM_REQ_EVENT, vcpu);
10872 static_call(kvm_x86_cancel_injection)(vcpu);
10873 if (unlikely(vcpu->arch.apic_attention))
10874 kvm_lapic_sync_from_vapic(vcpu);
10875 out:
10876 return r;
10877 }
10878
10879 /* Called within kvm->srcu read side. */
vcpu_block(struct kvm_vcpu * vcpu)10880 static inline int vcpu_block(struct kvm_vcpu *vcpu)
10881 {
10882 bool hv_timer;
10883
10884 if (!kvm_arch_vcpu_runnable(vcpu)) {
10885 /*
10886 * Switch to the software timer before halt-polling/blocking as
10887 * the guest's timer may be a break event for the vCPU, and the
10888 * hypervisor timer runs only when the CPU is in guest mode.
10889 * Switch before halt-polling so that KVM recognizes an expired
10890 * timer before blocking.
10891 */
10892 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10893 if (hv_timer)
10894 kvm_lapic_switch_to_sw_timer(vcpu);
10895
10896 kvm_vcpu_srcu_read_unlock(vcpu);
10897 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10898 kvm_vcpu_halt(vcpu);
10899 else
10900 kvm_vcpu_block(vcpu);
10901 kvm_vcpu_srcu_read_lock(vcpu);
10902
10903 if (hv_timer)
10904 kvm_lapic_switch_to_hv_timer(vcpu);
10905
10906 /*
10907 * If the vCPU is not runnable, a signal or another host event
10908 * of some kind is pending; service it without changing the
10909 * vCPU's activity state.
10910 */
10911 if (!kvm_arch_vcpu_runnable(vcpu))
10912 return 1;
10913 }
10914
10915 /*
10916 * Evaluate nested events before exiting the halted state. This allows
10917 * the halt state to be recorded properly in the VMCS12's activity
10918 * state field (AMD does not have a similar field and a VM-Exit always
10919 * causes a spurious wakeup from HLT).
10920 */
10921 if (is_guest_mode(vcpu)) {
10922 if (kvm_check_nested_events(vcpu) < 0)
10923 return 0;
10924 }
10925
10926 if (kvm_apic_accept_events(vcpu) < 0)
10927 return 0;
10928 switch(vcpu->arch.mp_state) {
10929 case KVM_MP_STATE_HALTED:
10930 case KVM_MP_STATE_AP_RESET_HOLD:
10931 vcpu->arch.pv.pv_unhalted = false;
10932 vcpu->arch.mp_state =
10933 KVM_MP_STATE_RUNNABLE;
10934 fallthrough;
10935 case KVM_MP_STATE_RUNNABLE:
10936 vcpu->arch.apf.halted = false;
10937 break;
10938 case KVM_MP_STATE_INIT_RECEIVED:
10939 break;
10940 default:
10941 WARN_ON_ONCE(1);
10942 break;
10943 }
10944 return 1;
10945 }
10946
kvm_vcpu_running(struct kvm_vcpu * vcpu)10947 static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10948 {
10949 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10950 !vcpu->arch.apf.halted);
10951 }
10952
10953 /* Called within kvm->srcu read side. */
vcpu_run(struct kvm_vcpu * vcpu)10954 static int vcpu_run(struct kvm_vcpu *vcpu)
10955 {
10956 int r;
10957
10958 vcpu->arch.l1tf_flush_l1d = true;
10959
10960 for (;;) {
10961 /*
10962 * If another guest vCPU requests a PV TLB flush in the middle
10963 * of instruction emulation, the rest of the emulation could
10964 * use a stale page translation. Assume that any code after
10965 * this point can start executing an instruction.
10966 */
10967 vcpu->arch.at_instruction_boundary = false;
10968 if (kvm_vcpu_running(vcpu)) {
10969 r = vcpu_enter_guest(vcpu);
10970 } else {
10971 r = vcpu_block(vcpu);
10972 }
10973
10974 if (r <= 0)
10975 break;
10976
10977 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
10978 if (kvm_xen_has_pending_events(vcpu))
10979 kvm_xen_inject_pending_events(vcpu);
10980
10981 if (kvm_cpu_has_pending_timer(vcpu))
10982 kvm_inject_pending_timer_irqs(vcpu);
10983
10984 if (dm_request_for_irq_injection(vcpu) &&
10985 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
10986 r = 0;
10987 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
10988 ++vcpu->stat.request_irq_exits;
10989 break;
10990 }
10991
10992 if (__xfer_to_guest_mode_work_pending()) {
10993 kvm_vcpu_srcu_read_unlock(vcpu);
10994 r = xfer_to_guest_mode_handle_work(vcpu);
10995 kvm_vcpu_srcu_read_lock(vcpu);
10996 if (r)
10997 return r;
10998 }
10999 }
11000
11001 return r;
11002 }
11003
complete_emulated_io(struct kvm_vcpu * vcpu)11004 static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11005 {
11006 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
11007 }
11008
complete_emulated_pio(struct kvm_vcpu * vcpu)11009 static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11010 {
11011 BUG_ON(!vcpu->arch.pio.count);
11012
11013 return complete_emulated_io(vcpu);
11014 }
11015
11016 /*
11017 * Implements the following, as a state machine:
11018 *
11019 * read:
11020 * for each fragment
11021 * for each mmio piece in the fragment
11022 * write gpa, len
11023 * exit
11024 * copy data
11025 * execute insn
11026 *
11027 * write:
11028 * for each fragment
11029 * for each mmio piece in the fragment
11030 * write gpa, len
11031 * copy data
11032 * exit
11033 */
complete_emulated_mmio(struct kvm_vcpu * vcpu)11034 static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
11035 {
11036 struct kvm_run *run = vcpu->run;
11037 struct kvm_mmio_fragment *frag;
11038 unsigned len;
11039
11040 BUG_ON(!vcpu->mmio_needed);
11041
11042 /* Complete previous fragment */
11043 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11044 len = min(8u, frag->len);
11045 if (!vcpu->mmio_is_write)
11046 memcpy(frag->data, run->mmio.data, len);
11047
11048 if (frag->len <= 8) {
11049 /* Switch to the next fragment. */
11050 frag++;
11051 vcpu->mmio_cur_fragment++;
11052 } else {
11053 /* Go forward to the next mmio piece. */
11054 frag->data += len;
11055 frag->gpa += len;
11056 frag->len -= len;
11057 }
11058
11059 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
11060 vcpu->mmio_needed = 0;
11061
11062 /* FIXME: return into emulator if single-stepping. */
11063 if (vcpu->mmio_is_write)
11064 return 1;
11065 vcpu->mmio_read_completed = 1;
11066 return complete_emulated_io(vcpu);
11067 }
11068
11069 run->exit_reason = KVM_EXIT_MMIO;
11070 run->mmio.phys_addr = frag->gpa;
11071 if (vcpu->mmio_is_write)
11072 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11073 run->mmio.len = min(8u, frag->len);
11074 run->mmio.is_write = vcpu->mmio_is_write;
11075 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11076 return 0;
11077 }
11078
11079 /* Swap (qemu) user FPU context for the guest FPU context. */
kvm_load_guest_fpu(struct kvm_vcpu * vcpu)11080 static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11081 {
11082 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
11083 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
11084 trace_kvm_fpu(1);
11085 }
11086
11087 /* When vcpu_run ends, restore user space FPU context. */
kvm_put_guest_fpu(struct kvm_vcpu * vcpu)11088 static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11089 {
11090 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
11091 ++vcpu->stat.fpu_reload;
11092 trace_kvm_fpu(0);
11093 }
11094
kvm_arch_vcpu_ioctl_run(struct kvm_vcpu * vcpu)11095 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
11096 {
11097 struct kvm_queued_exception *ex = &vcpu->arch.exception;
11098 struct kvm_run *kvm_run = vcpu->run;
11099 int r;
11100
11101 vcpu_load(vcpu);
11102 kvm_sigset_activate(vcpu);
11103 kvm_run->flags = 0;
11104 kvm_load_guest_fpu(vcpu);
11105
11106 kvm_vcpu_srcu_read_lock(vcpu);
11107 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
11108 if (kvm_run->immediate_exit) {
11109 r = -EINTR;
11110 goto out;
11111 }
11112 /*
11113 * It should be impossible for the hypervisor timer to be in
11114 * use before KVM has ever run the vCPU.
11115 */
11116 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
11117
11118 kvm_vcpu_srcu_read_unlock(vcpu);
11119 kvm_vcpu_block(vcpu);
11120 kvm_vcpu_srcu_read_lock(vcpu);
11121
11122 if (kvm_apic_accept_events(vcpu) < 0) {
11123 r = 0;
11124 goto out;
11125 }
11126 r = -EAGAIN;
11127 if (signal_pending(current)) {
11128 r = -EINTR;
11129 kvm_run->exit_reason = KVM_EXIT_INTR;
11130 ++vcpu->stat.signal_exits;
11131 }
11132 goto out;
11133 }
11134
11135 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11136 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
11137 r = -EINVAL;
11138 goto out;
11139 }
11140
11141 if (kvm_run->kvm_dirty_regs) {
11142 r = sync_regs(vcpu);
11143 if (r != 0)
11144 goto out;
11145 }
11146
11147 /* re-sync apic's tpr */
11148 if (!lapic_in_kernel(vcpu)) {
11149 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11150 r = -EINVAL;
11151 goto out;
11152 }
11153 }
11154
11155 /*
11156 * If userspace set a pending exception and L2 is active, convert it to
11157 * a pending VM-Exit if L1 wants to intercept the exception.
11158 */
11159 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11160 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11161 ex->error_code)) {
11162 kvm_queue_exception_vmexit(vcpu, ex->vector,
11163 ex->has_error_code, ex->error_code,
11164 ex->has_payload, ex->payload);
11165 ex->injected = false;
11166 ex->pending = false;
11167 }
11168 vcpu->arch.exception_from_userspace = false;
11169
11170 if (unlikely(vcpu->arch.complete_userspace_io)) {
11171 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11172 vcpu->arch.complete_userspace_io = NULL;
11173 r = cui(vcpu);
11174 if (r <= 0)
11175 goto out;
11176 } else {
11177 WARN_ON_ONCE(vcpu->arch.pio.count);
11178 WARN_ON_ONCE(vcpu->mmio_needed);
11179 }
11180
11181 if (kvm_run->immediate_exit) {
11182 r = -EINTR;
11183 goto out;
11184 }
11185
11186 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11187 if (r <= 0)
11188 goto out;
11189
11190 r = vcpu_run(vcpu);
11191
11192 out:
11193 kvm_put_guest_fpu(vcpu);
11194 if (kvm_run->kvm_valid_regs)
11195 store_regs(vcpu);
11196 post_kvm_run_save(vcpu);
11197 kvm_vcpu_srcu_read_unlock(vcpu);
11198
11199 kvm_sigset_deactivate(vcpu);
11200 vcpu_put(vcpu);
11201 return r;
11202 }
11203
__get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11204 static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11205 {
11206 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11207 /*
11208 * We are here if userspace calls get_regs() in the middle of
11209 * instruction emulation. Registers state needs to be copied
11210 * back from emulation context to vcpu. Userspace shouldn't do
11211 * that usually, but some bad designed PV devices (vmware
11212 * backdoor interface) need this to work
11213 */
11214 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
11215 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11216 }
11217 regs->rax = kvm_rax_read(vcpu);
11218 regs->rbx = kvm_rbx_read(vcpu);
11219 regs->rcx = kvm_rcx_read(vcpu);
11220 regs->rdx = kvm_rdx_read(vcpu);
11221 regs->rsi = kvm_rsi_read(vcpu);
11222 regs->rdi = kvm_rdi_read(vcpu);
11223 regs->rsp = kvm_rsp_read(vcpu);
11224 regs->rbp = kvm_rbp_read(vcpu);
11225 #ifdef CONFIG_X86_64
11226 regs->r8 = kvm_r8_read(vcpu);
11227 regs->r9 = kvm_r9_read(vcpu);
11228 regs->r10 = kvm_r10_read(vcpu);
11229 regs->r11 = kvm_r11_read(vcpu);
11230 regs->r12 = kvm_r12_read(vcpu);
11231 regs->r13 = kvm_r13_read(vcpu);
11232 regs->r14 = kvm_r14_read(vcpu);
11233 regs->r15 = kvm_r15_read(vcpu);
11234 #endif
11235
11236 regs->rip = kvm_rip_read(vcpu);
11237 regs->rflags = kvm_get_rflags(vcpu);
11238 }
11239
kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11240 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11241 {
11242 vcpu_load(vcpu);
11243 __get_regs(vcpu, regs);
11244 vcpu_put(vcpu);
11245 return 0;
11246 }
11247
__set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11248 static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11249 {
11250 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11251 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11252
11253 kvm_rax_write(vcpu, regs->rax);
11254 kvm_rbx_write(vcpu, regs->rbx);
11255 kvm_rcx_write(vcpu, regs->rcx);
11256 kvm_rdx_write(vcpu, regs->rdx);
11257 kvm_rsi_write(vcpu, regs->rsi);
11258 kvm_rdi_write(vcpu, regs->rdi);
11259 kvm_rsp_write(vcpu, regs->rsp);
11260 kvm_rbp_write(vcpu, regs->rbp);
11261 #ifdef CONFIG_X86_64
11262 kvm_r8_write(vcpu, regs->r8);
11263 kvm_r9_write(vcpu, regs->r9);
11264 kvm_r10_write(vcpu, regs->r10);
11265 kvm_r11_write(vcpu, regs->r11);
11266 kvm_r12_write(vcpu, regs->r12);
11267 kvm_r13_write(vcpu, regs->r13);
11268 kvm_r14_write(vcpu, regs->r14);
11269 kvm_r15_write(vcpu, regs->r15);
11270 #endif
11271
11272 kvm_rip_write(vcpu, regs->rip);
11273 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
11274
11275 vcpu->arch.exception.pending = false;
11276 vcpu->arch.exception_vmexit.pending = false;
11277
11278 kvm_make_request(KVM_REQ_EVENT, vcpu);
11279 }
11280
kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu * vcpu,struct kvm_regs * regs)11281 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11282 {
11283 vcpu_load(vcpu);
11284 __set_regs(vcpu, regs);
11285 vcpu_put(vcpu);
11286 return 0;
11287 }
11288
__get_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11289 static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11290 {
11291 struct desc_ptr dt;
11292
11293 if (vcpu->arch.guest_state_protected)
11294 goto skip_protected_regs;
11295
11296 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11297 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11298 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11299 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11300 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11301 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11302
11303 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11304 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11305
11306 static_call(kvm_x86_get_idt)(vcpu, &dt);
11307 sregs->idt.limit = dt.size;
11308 sregs->idt.base = dt.address;
11309 static_call(kvm_x86_get_gdt)(vcpu, &dt);
11310 sregs->gdt.limit = dt.size;
11311 sregs->gdt.base = dt.address;
11312
11313 sregs->cr2 = vcpu->arch.cr2;
11314 sregs->cr3 = kvm_read_cr3(vcpu);
11315
11316 skip_protected_regs:
11317 sregs->cr0 = kvm_read_cr0(vcpu);
11318 sregs->cr4 = kvm_read_cr4(vcpu);
11319 sregs->cr8 = kvm_get_cr8(vcpu);
11320 sregs->efer = vcpu->arch.efer;
11321 sregs->apic_base = kvm_get_apic_base(vcpu);
11322 }
11323
__get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11324 static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11325 {
11326 __get_sregs_common(vcpu, sregs);
11327
11328 if (vcpu->arch.guest_state_protected)
11329 return;
11330
11331 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
11332 set_bit(vcpu->arch.interrupt.nr,
11333 (unsigned long *)sregs->interrupt_bitmap);
11334 }
11335
__get_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11336 static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11337 {
11338 int i;
11339
11340 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11341
11342 if (vcpu->arch.guest_state_protected)
11343 return;
11344
11345 if (is_pae_paging(vcpu)) {
11346 for (i = 0 ; i < 4 ; i++)
11347 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11348 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11349 }
11350 }
11351
kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11352 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11353 struct kvm_sregs *sregs)
11354 {
11355 vcpu_load(vcpu);
11356 __get_sregs(vcpu, sregs);
11357 vcpu_put(vcpu);
11358 return 0;
11359 }
11360
kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11361 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11362 struct kvm_mp_state *mp_state)
11363 {
11364 int r;
11365
11366 vcpu_load(vcpu);
11367 if (kvm_mpx_supported())
11368 kvm_load_guest_fpu(vcpu);
11369
11370 r = kvm_apic_accept_events(vcpu);
11371 if (r < 0)
11372 goto out;
11373 r = 0;
11374
11375 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11376 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11377 vcpu->arch.pv.pv_unhalted)
11378 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11379 else
11380 mp_state->mp_state = vcpu->arch.mp_state;
11381
11382 out:
11383 if (kvm_mpx_supported())
11384 kvm_put_guest_fpu(vcpu);
11385 vcpu_put(vcpu);
11386 return r;
11387 }
11388
kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu * vcpu,struct kvm_mp_state * mp_state)11389 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11390 struct kvm_mp_state *mp_state)
11391 {
11392 int ret = -EINVAL;
11393
11394 vcpu_load(vcpu);
11395
11396 switch (mp_state->mp_state) {
11397 case KVM_MP_STATE_UNINITIALIZED:
11398 case KVM_MP_STATE_HALTED:
11399 case KVM_MP_STATE_AP_RESET_HOLD:
11400 case KVM_MP_STATE_INIT_RECEIVED:
11401 case KVM_MP_STATE_SIPI_RECEIVED:
11402 if (!lapic_in_kernel(vcpu))
11403 goto out;
11404 break;
11405
11406 case KVM_MP_STATE_RUNNABLE:
11407 break;
11408
11409 default:
11410 goto out;
11411 }
11412
11413 /*
11414 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11415 * forcing the guest into INIT/SIPI if those events are supposed to be
11416 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11417 * if an SMI is pending as well.
11418 */
11419 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
11420 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11421 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
11422 goto out;
11423
11424 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11425 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11426 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11427 } else
11428 vcpu->arch.mp_state = mp_state->mp_state;
11429 kvm_make_request(KVM_REQ_EVENT, vcpu);
11430
11431 ret = 0;
11432 out:
11433 vcpu_put(vcpu);
11434 return ret;
11435 }
11436
kvm_task_switch(struct kvm_vcpu * vcpu,u16 tss_selector,int idt_index,int reason,bool has_error_code,u32 error_code)11437 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11438 int reason, bool has_error_code, u32 error_code)
11439 {
11440 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
11441 int ret;
11442
11443 init_emulate_ctxt(vcpu);
11444
11445 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
11446 has_error_code, error_code);
11447 if (ret) {
11448 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11449 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11450 vcpu->run->internal.ndata = 0;
11451 return 0;
11452 }
11453
11454 kvm_rip_write(vcpu, ctxt->eip);
11455 kvm_set_rflags(vcpu, ctxt->eflags);
11456 return 1;
11457 }
11458 EXPORT_SYMBOL_GPL(kvm_task_switch);
11459
kvm_is_valid_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11460 static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11461 {
11462 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
11463 /*
11464 * When EFER.LME and CR0.PG are set, the processor is in
11465 * 64-bit mode (though maybe in a 32-bit code segment).
11466 * CR4.PAE and EFER.LMA must be set.
11467 */
11468 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11469 return false;
11470 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
11471 return false;
11472 } else {
11473 /*
11474 * Not in 64-bit mode: EFER.LMA is clear and the code
11475 * segment cannot be 64-bit.
11476 */
11477 if (sregs->efer & EFER_LMA || sregs->cs.l)
11478 return false;
11479 }
11480
11481 return kvm_is_valid_cr4(vcpu, sregs->cr4);
11482 }
11483
__set_sregs_common(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs,int * mmu_reset_needed,bool update_pdptrs)11484 static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11485 int *mmu_reset_needed, bool update_pdptrs)
11486 {
11487 struct msr_data apic_base_msr;
11488 int idx;
11489 struct desc_ptr dt;
11490
11491 if (!kvm_is_valid_sregs(vcpu, sregs))
11492 return -EINVAL;
11493
11494 apic_base_msr.data = sregs->apic_base;
11495 apic_base_msr.host_initiated = true;
11496 if (kvm_set_apic_base(vcpu, &apic_base_msr))
11497 return -EINVAL;
11498
11499 if (vcpu->arch.guest_state_protected)
11500 return 0;
11501
11502 dt.size = sregs->idt.limit;
11503 dt.address = sregs->idt.base;
11504 static_call(kvm_x86_set_idt)(vcpu, &dt);
11505 dt.size = sregs->gdt.limit;
11506 dt.address = sregs->gdt.base;
11507 static_call(kvm_x86_set_gdt)(vcpu, &dt);
11508
11509 vcpu->arch.cr2 = sregs->cr2;
11510 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
11511 vcpu->arch.cr3 = sregs->cr3;
11512 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
11513 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
11514
11515 kvm_set_cr8(vcpu, sregs->cr8);
11516
11517 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
11518 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
11519
11520 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
11521 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
11522 vcpu->arch.cr0 = sregs->cr0;
11523
11524 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
11525 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
11526
11527 if (update_pdptrs) {
11528 idx = srcu_read_lock(&vcpu->kvm->srcu);
11529 if (is_pae_paging(vcpu)) {
11530 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
11531 *mmu_reset_needed = 1;
11532 }
11533 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11534 }
11535
11536 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11537 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11538 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11539 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11540 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11541 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
11542
11543 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11544 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
11545
11546 update_cr8_intercept(vcpu);
11547
11548 /* Older userspace won't unhalt the vcpu on reset. */
11549 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
11550 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
11551 !is_protmode(vcpu))
11552 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11553
11554 return 0;
11555 }
11556
__set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11557 static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11558 {
11559 int pending_vec, max_bits;
11560 int mmu_reset_needed = 0;
11561 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11562
11563 if (ret)
11564 return ret;
11565
11566 if (mmu_reset_needed)
11567 kvm_mmu_reset_context(vcpu);
11568
11569 max_bits = KVM_NR_INTERRUPTS;
11570 pending_vec = find_first_bit(
11571 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
11572
11573 if (pending_vec < max_bits) {
11574 kvm_queue_interrupt(vcpu, pending_vec, false);
11575 pr_debug("Set back pending irq %d\n", pending_vec);
11576 kvm_make_request(KVM_REQ_EVENT, vcpu);
11577 }
11578 return 0;
11579 }
11580
__set_sregs2(struct kvm_vcpu * vcpu,struct kvm_sregs2 * sregs2)11581 static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11582 {
11583 int mmu_reset_needed = 0;
11584 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11585 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11586 !(sregs2->efer & EFER_LMA);
11587 int i, ret;
11588
11589 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11590 return -EINVAL;
11591
11592 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11593 return -EINVAL;
11594
11595 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11596 &mmu_reset_needed, !valid_pdptrs);
11597 if (ret)
11598 return ret;
11599
11600 if (valid_pdptrs) {
11601 for (i = 0; i < 4 ; i++)
11602 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11603
11604 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11605 mmu_reset_needed = 1;
11606 vcpu->arch.pdptrs_from_userspace = true;
11607 }
11608 if (mmu_reset_needed)
11609 kvm_mmu_reset_context(vcpu);
11610 return 0;
11611 }
11612
kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu * vcpu,struct kvm_sregs * sregs)11613 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11614 struct kvm_sregs *sregs)
11615 {
11616 int ret;
11617
11618 vcpu_load(vcpu);
11619 ret = __set_sregs(vcpu, sregs);
11620 vcpu_put(vcpu);
11621 return ret;
11622 }
11623
kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm * kvm)11624 static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11625 {
11626 bool set = false;
11627 struct kvm_vcpu *vcpu;
11628 unsigned long i;
11629
11630 if (!enable_apicv)
11631 return;
11632
11633 down_write(&kvm->arch.apicv_update_lock);
11634
11635 kvm_for_each_vcpu(i, vcpu, kvm) {
11636 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
11637 set = true;
11638 break;
11639 }
11640 }
11641 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
11642 up_write(&kvm->arch.apicv_update_lock);
11643 }
11644
kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu * vcpu,struct kvm_guest_debug * dbg)11645 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11646 struct kvm_guest_debug *dbg)
11647 {
11648 unsigned long rflags;
11649 int i, r;
11650
11651 if (vcpu->arch.guest_state_protected)
11652 return -EINVAL;
11653
11654 vcpu_load(vcpu);
11655
11656 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11657 r = -EBUSY;
11658 if (kvm_is_exception_pending(vcpu))
11659 goto out;
11660 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11661 kvm_queue_exception(vcpu, DB_VECTOR);
11662 else
11663 kvm_queue_exception(vcpu, BP_VECTOR);
11664 }
11665
11666 /*
11667 * Read rflags as long as potentially injected trace flags are still
11668 * filtered out.
11669 */
11670 rflags = kvm_get_rflags(vcpu);
11671
11672 vcpu->guest_debug = dbg->control;
11673 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11674 vcpu->guest_debug = 0;
11675
11676 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
11677 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11678 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
11679 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
11680 } else {
11681 for (i = 0; i < KVM_NR_DB_REGS; i++)
11682 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
11683 }
11684 kvm_update_dr7(vcpu);
11685
11686 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
11687 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
11688
11689 /*
11690 * Trigger an rflags update that will inject or remove the trace
11691 * flags.
11692 */
11693 kvm_set_rflags(vcpu, rflags);
11694
11695 static_call(kvm_x86_update_exception_bitmap)(vcpu);
11696
11697 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11698
11699 r = 0;
11700
11701 out:
11702 vcpu_put(vcpu);
11703 return r;
11704 }
11705
11706 /*
11707 * Translate a guest virtual address to a guest physical address.
11708 */
kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu * vcpu,struct kvm_translation * tr)11709 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11710 struct kvm_translation *tr)
11711 {
11712 unsigned long vaddr = tr->linear_address;
11713 gpa_t gpa;
11714 int idx;
11715
11716 vcpu_load(vcpu);
11717
11718 idx = srcu_read_lock(&vcpu->kvm->srcu);
11719 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
11720 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11721 tr->physical_address = gpa;
11722 tr->valid = gpa != INVALID_GPA;
11723 tr->writeable = 1;
11724 tr->usermode = 0;
11725
11726 vcpu_put(vcpu);
11727 return 0;
11728 }
11729
kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)11730 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11731 {
11732 struct fxregs_state *fxsave;
11733
11734 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11735 return 0;
11736
11737 vcpu_load(vcpu);
11738
11739 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11740 memcpy(fpu->fpr, fxsave->st_space, 128);
11741 fpu->fcw = fxsave->cwd;
11742 fpu->fsw = fxsave->swd;
11743 fpu->ftwx = fxsave->twd;
11744 fpu->last_opcode = fxsave->fop;
11745 fpu->last_ip = fxsave->rip;
11746 fpu->last_dp = fxsave->rdp;
11747 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
11748
11749 vcpu_put(vcpu);
11750 return 0;
11751 }
11752
kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu * vcpu,struct kvm_fpu * fpu)11753 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11754 {
11755 struct fxregs_state *fxsave;
11756
11757 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
11758 return 0;
11759
11760 vcpu_load(vcpu);
11761
11762 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
11763
11764 memcpy(fxsave->st_space, fpu->fpr, 128);
11765 fxsave->cwd = fpu->fcw;
11766 fxsave->swd = fpu->fsw;
11767 fxsave->twd = fpu->ftwx;
11768 fxsave->fop = fpu->last_opcode;
11769 fxsave->rip = fpu->last_ip;
11770 fxsave->rdp = fpu->last_dp;
11771 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
11772
11773 vcpu_put(vcpu);
11774 return 0;
11775 }
11776
store_regs(struct kvm_vcpu * vcpu)11777 static void store_regs(struct kvm_vcpu *vcpu)
11778 {
11779 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11780
11781 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11782 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11783
11784 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11785 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11786
11787 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11788 kvm_vcpu_ioctl_x86_get_vcpu_events(
11789 vcpu, &vcpu->run->s.regs.events);
11790 }
11791
sync_regs(struct kvm_vcpu * vcpu)11792 static int sync_regs(struct kvm_vcpu *vcpu)
11793 {
11794 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11795 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11796 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11797 }
11798 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11799 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11800 return -EINVAL;
11801 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11802 }
11803 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11804 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11805 vcpu, &vcpu->run->s.regs.events))
11806 return -EINVAL;
11807 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11808 }
11809
11810 return 0;
11811 }
11812
kvm_arch_vcpu_precreate(struct kvm * kvm,unsigned int id)11813 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
11814 {
11815 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
11816 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
11817 "guest TSC will not be reliable\n");
11818
11819 if (!kvm->arch.max_vcpu_ids)
11820 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11821
11822 if (id >= kvm->arch.max_vcpu_ids)
11823 return -EINVAL;
11824
11825 return static_call(kvm_x86_vcpu_precreate)(kvm);
11826 }
11827
kvm_arch_vcpu_create(struct kvm_vcpu * vcpu)11828 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
11829 {
11830 struct page *page;
11831 int r;
11832
11833 vcpu->arch.last_vmentry_cpu = -1;
11834 vcpu->arch.regs_avail = ~0;
11835 vcpu->arch.regs_dirty = ~0;
11836
11837 kvm_gpc_init(&vcpu->arch.pv_time);
11838
11839 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11840 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11841 else
11842 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
11843
11844 r = kvm_mmu_create(vcpu);
11845 if (r < 0)
11846 return r;
11847
11848 if (irqchip_in_kernel(vcpu->kvm)) {
11849 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11850 if (r < 0)
11851 goto fail_mmu_destroy;
11852
11853 /*
11854 * Defer evaluating inhibits until the vCPU is first run, as
11855 * this vCPU will not get notified of any changes until this
11856 * vCPU is visible to other vCPUs (marked online and added to
11857 * the set of vCPUs). Opportunistically mark APICv active as
11858 * VMX in particularly is highly unlikely to have inhibits.
11859 * Ignore the current per-VM APICv state so that vCPU creation
11860 * is guaranteed to run with a deterministic value, the request
11861 * will ensure the vCPU gets the correct state before VM-Entry.
11862 */
11863 if (enable_apicv) {
11864 vcpu->arch.apic->apicv_active = true;
11865 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11866 }
11867 } else
11868 static_branch_inc(&kvm_has_noapic_vcpu);
11869
11870 r = -ENOMEM;
11871
11872 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
11873 if (!page)
11874 goto fail_free_lapic;
11875 vcpu->arch.pio_data = page_address(page);
11876
11877 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
11878 GFP_KERNEL_ACCOUNT);
11879 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11880 GFP_KERNEL_ACCOUNT);
11881 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
11882 goto fail_free_mce_banks;
11883 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11884
11885 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11886 GFP_KERNEL_ACCOUNT))
11887 goto fail_free_mce_banks;
11888
11889 if (!alloc_emulate_ctxt(vcpu))
11890 goto free_wbinvd_dirty_mask;
11891
11892 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
11893 pr_err("kvm: failed to allocate vcpu's fpu\n");
11894 goto free_emulate_ctxt;
11895 }
11896
11897 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
11898 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
11899
11900 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11901
11902 kvm_async_pf_hash_reset(vcpu);
11903 kvm_pmu_init(vcpu);
11904
11905 vcpu->arch.pending_external_vector = -1;
11906 vcpu->arch.preempted_in_kernel = false;
11907
11908 #if IS_ENABLED(CONFIG_HYPERV)
11909 vcpu->arch.hv_root_tdp = INVALID_PAGE;
11910 #endif
11911
11912 r = static_call(kvm_x86_vcpu_create)(vcpu);
11913 if (r)
11914 goto free_guest_fpu;
11915
11916 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
11917 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
11918 kvm_xen_init_vcpu(vcpu);
11919 kvm_vcpu_mtrr_init(vcpu);
11920 vcpu_load(vcpu);
11921 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
11922 kvm_vcpu_reset(vcpu, false);
11923 kvm_init_mmu(vcpu);
11924 vcpu_put(vcpu);
11925 return 0;
11926
11927 free_guest_fpu:
11928 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11929 free_emulate_ctxt:
11930 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11931 free_wbinvd_dirty_mask:
11932 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11933 fail_free_mce_banks:
11934 kfree(vcpu->arch.mce_banks);
11935 kfree(vcpu->arch.mci_ctl2_banks);
11936 free_page((unsigned long)vcpu->arch.pio_data);
11937 fail_free_lapic:
11938 kvm_free_lapic(vcpu);
11939 fail_mmu_destroy:
11940 kvm_mmu_destroy(vcpu);
11941 return r;
11942 }
11943
kvm_arch_vcpu_postcreate(struct kvm_vcpu * vcpu)11944 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
11945 {
11946 struct kvm *kvm = vcpu->kvm;
11947
11948 if (mutex_lock_killable(&vcpu->mutex))
11949 return;
11950 vcpu_load(vcpu);
11951 kvm_synchronize_tsc(vcpu, 0);
11952 vcpu_put(vcpu);
11953
11954 /* poll control enabled by default */
11955 vcpu->arch.msr_kvm_poll_control = 1;
11956
11957 mutex_unlock(&vcpu->mutex);
11958
11959 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11960 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11961 KVMCLOCK_SYNC_PERIOD);
11962 }
11963
kvm_arch_vcpu_destroy(struct kvm_vcpu * vcpu)11964 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
11965 {
11966 int idx;
11967
11968 kvmclock_reset(vcpu);
11969
11970 static_call(kvm_x86_vcpu_free)(vcpu);
11971
11972 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
11973 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11974 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
11975
11976 kvm_xen_destroy_vcpu(vcpu);
11977 kvm_hv_vcpu_uninit(vcpu);
11978 kvm_pmu_destroy(vcpu);
11979 kfree(vcpu->arch.mce_banks);
11980 kfree(vcpu->arch.mci_ctl2_banks);
11981 kvm_free_lapic(vcpu);
11982 idx = srcu_read_lock(&vcpu->kvm->srcu);
11983 kvm_mmu_destroy(vcpu);
11984 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11985 free_page((unsigned long)vcpu->arch.pio_data);
11986 kvfree(vcpu->arch.cpuid_entries);
11987 if (!lapic_in_kernel(vcpu))
11988 static_branch_dec(&kvm_has_noapic_vcpu);
11989 }
11990
kvm_vcpu_reset(struct kvm_vcpu * vcpu,bool init_event)11991 void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
11992 {
11993 struct kvm_cpuid_entry2 *cpuid_0x1;
11994 unsigned long old_cr0 = kvm_read_cr0(vcpu);
11995 unsigned long new_cr0;
11996
11997 /*
11998 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
11999 * to handle side effects. RESET emulation hits those flows and relies
12000 * on emulated/virtualized registers, including those that are loaded
12001 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12002 * to detect improper or missing initialization.
12003 */
12004 WARN_ON_ONCE(!init_event &&
12005 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
12006
12007 /*
12008 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12009 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12010 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12011 * bits), i.e. virtualization is disabled.
12012 */
12013 if (is_guest_mode(vcpu))
12014 kvm_leave_nested(vcpu);
12015
12016 kvm_lapic_reset(vcpu, init_event);
12017
12018 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
12019 vcpu->arch.hflags = 0;
12020
12021 vcpu->arch.smi_pending = 0;
12022 vcpu->arch.smi_count = 0;
12023 atomic_set(&vcpu->arch.nmi_queued, 0);
12024 vcpu->arch.nmi_pending = 0;
12025 vcpu->arch.nmi_injected = false;
12026 kvm_clear_interrupt_queue(vcpu);
12027 kvm_clear_exception_queue(vcpu);
12028
12029 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
12030 kvm_update_dr0123(vcpu);
12031 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
12032 vcpu->arch.dr7 = DR7_FIXED_1;
12033 kvm_update_dr7(vcpu);
12034
12035 vcpu->arch.cr2 = 0;
12036
12037 kvm_make_request(KVM_REQ_EVENT, vcpu);
12038 vcpu->arch.apf.msr_en_val = 0;
12039 vcpu->arch.apf.msr_int_val = 0;
12040 vcpu->arch.st.msr_val = 0;
12041
12042 kvmclock_reset(vcpu);
12043
12044 kvm_clear_async_pf_completion_queue(vcpu);
12045 kvm_async_pf_hash_reset(vcpu);
12046 vcpu->arch.apf.halted = false;
12047
12048 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12049 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
12050
12051 /*
12052 * All paths that lead to INIT are required to load the guest's
12053 * FPU state (because most paths are buried in KVM_RUN).
12054 */
12055 if (init_event)
12056 kvm_put_guest_fpu(vcpu);
12057
12058 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12059 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12060
12061 if (init_event)
12062 kvm_load_guest_fpu(vcpu);
12063 }
12064
12065 if (!init_event) {
12066 kvm_pmu_reset(vcpu);
12067 vcpu->arch.smbase = 0x30000;
12068
12069 vcpu->arch.msr_misc_features_enables = 0;
12070 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12071 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
12072
12073 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12074 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
12075 }
12076
12077 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
12078 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
12079 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
12080
12081 /*
12082 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12083 * if no CPUID match is found. Note, it's impossible to get a match at
12084 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
12085 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12086 * on RESET. But, go through the motions in case that's ever remedied.
12087 */
12088 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
12089 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
12090
12091 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
12092
12093 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12094 kvm_rip_write(vcpu, 0xfff0);
12095
12096 vcpu->arch.cr3 = 0;
12097 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12098
12099 /*
12100 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12101 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12102 * (or qualify) that with a footnote stating that CD/NW are preserved.
12103 */
12104 new_cr0 = X86_CR0_ET;
12105 if (init_event)
12106 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12107 else
12108 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12109
12110 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
12111 static_call(kvm_x86_set_cr4)(vcpu, 0);
12112 static_call(kvm_x86_set_efer)(vcpu, 0);
12113 static_call(kvm_x86_update_exception_bitmap)(vcpu);
12114
12115 /*
12116 * On the standard CR0/CR4/EFER modification paths, there are several
12117 * complex conditions determining whether the MMU has to be reset and/or
12118 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12119 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12120 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12121 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
12122 */
12123 if (old_cr0 & X86_CR0_PG) {
12124 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12125 kvm_mmu_reset_context(vcpu);
12126 }
12127
12128 /*
12129 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12130 * APM states the TLBs are untouched by INIT, but it also states that
12131 * the TLBs are flushed on "External initialization of the processor."
12132 * Flush the guest TLB regardless of vendor, there is no meaningful
12133 * benefit in relying on the guest to flush the TLB immediately after
12134 * INIT. A spurious TLB flush is benign and likely negligible from a
12135 * performance perspective.
12136 */
12137 if (init_event)
12138 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
12139 }
12140 EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
12141
kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu * vcpu,u8 vector)12142 void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
12143 {
12144 struct kvm_segment cs;
12145
12146 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12147 cs.selector = vector << 8;
12148 cs.base = vector << 12;
12149 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12150 kvm_rip_write(vcpu, 0);
12151 }
12152 EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
12153
kvm_arch_hardware_enable(void)12154 int kvm_arch_hardware_enable(void)
12155 {
12156 struct kvm *kvm;
12157 struct kvm_vcpu *vcpu;
12158 unsigned long i;
12159 int ret;
12160 u64 local_tsc;
12161 u64 max_tsc = 0;
12162 bool stable, backwards_tsc = false;
12163
12164 kvm_user_return_msr_cpu_online();
12165 ret = static_call(kvm_x86_hardware_enable)();
12166 if (ret != 0)
12167 return ret;
12168
12169 local_tsc = rdtsc();
12170 stable = !kvm_check_tsc_unstable();
12171 list_for_each_entry(kvm, &vm_list, vm_list) {
12172 kvm_for_each_vcpu(i, vcpu, kvm) {
12173 if (!stable && vcpu->cpu == smp_processor_id())
12174 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
12175 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12176 backwards_tsc = true;
12177 if (vcpu->arch.last_host_tsc > max_tsc)
12178 max_tsc = vcpu->arch.last_host_tsc;
12179 }
12180 }
12181 }
12182
12183 /*
12184 * Sometimes, even reliable TSCs go backwards. This happens on
12185 * platforms that reset TSC during suspend or hibernate actions, but
12186 * maintain synchronization. We must compensate. Fortunately, we can
12187 * detect that condition here, which happens early in CPU bringup,
12188 * before any KVM threads can be running. Unfortunately, we can't
12189 * bring the TSCs fully up to date with real time, as we aren't yet far
12190 * enough into CPU bringup that we know how much real time has actually
12191 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
12192 * variables that haven't been updated yet.
12193 *
12194 * So we simply find the maximum observed TSC above, then record the
12195 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12196 * the adjustment will be applied. Note that we accumulate
12197 * adjustments, in case multiple suspend cycles happen before some VCPU
12198 * gets a chance to run again. In the event that no KVM threads get a
12199 * chance to run, we will miss the entire elapsed period, as we'll have
12200 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12201 * loose cycle time. This isn't too big a deal, since the loss will be
12202 * uniform across all VCPUs (not to mention the scenario is extremely
12203 * unlikely). It is possible that a second hibernate recovery happens
12204 * much faster than a first, causing the observed TSC here to be
12205 * smaller; this would require additional padding adjustment, which is
12206 * why we set last_host_tsc to the local tsc observed here.
12207 *
12208 * N.B. - this code below runs only on platforms with reliable TSC,
12209 * as that is the only way backwards_tsc is set above. Also note
12210 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12211 * have the same delta_cyc adjustment applied if backwards_tsc
12212 * is detected. Note further, this adjustment is only done once,
12213 * as we reset last_host_tsc on all VCPUs to stop this from being
12214 * called multiple times (one for each physical CPU bringup).
12215 *
12216 * Platforms with unreliable TSCs don't have to deal with this, they
12217 * will be compensated by the logic in vcpu_load, which sets the TSC to
12218 * catchup mode. This will catchup all VCPUs to real time, but cannot
12219 * guarantee that they stay in perfect synchronization.
12220 */
12221 if (backwards_tsc) {
12222 u64 delta_cyc = max_tsc - local_tsc;
12223 list_for_each_entry(kvm, &vm_list, vm_list) {
12224 kvm->arch.backwards_tsc_observed = true;
12225 kvm_for_each_vcpu(i, vcpu, kvm) {
12226 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12227 vcpu->arch.last_host_tsc = local_tsc;
12228 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
12229 }
12230
12231 /*
12232 * We have to disable TSC offset matching.. if you were
12233 * booting a VM while issuing an S4 host suspend....
12234 * you may have some problem. Solving this issue is
12235 * left as an exercise to the reader.
12236 */
12237 kvm->arch.last_tsc_nsec = 0;
12238 kvm->arch.last_tsc_write = 0;
12239 }
12240
12241 }
12242 return 0;
12243 }
12244
kvm_arch_hardware_disable(void)12245 void kvm_arch_hardware_disable(void)
12246 {
12247 static_call(kvm_x86_hardware_disable)();
12248 drop_user_return_notifiers();
12249 }
12250
kvm_ops_update(struct kvm_x86_init_ops * ops)12251 static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
12252 {
12253 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
12254
12255 #define __KVM_X86_OP(func) \
12256 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
12257 #define KVM_X86_OP(func) \
12258 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
12259 #define KVM_X86_OP_OPTIONAL __KVM_X86_OP
12260 #define KVM_X86_OP_OPTIONAL_RET0(func) \
12261 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
12262 (void *)__static_call_return0);
12263 #include <asm/kvm-x86-ops.h>
12264 #undef __KVM_X86_OP
12265
12266 kvm_pmu_ops_update(ops->pmu_ops);
12267 }
12268
kvm_arch_hardware_setup(void * opaque)12269 int kvm_arch_hardware_setup(void *opaque)
12270 {
12271 struct kvm_x86_init_ops *ops = opaque;
12272 int r;
12273
12274 rdmsrl_safe(MSR_EFER, &host_efer);
12275
12276 if (boot_cpu_has(X86_FEATURE_XSAVES))
12277 rdmsrl(MSR_IA32_XSS, host_xss);
12278
12279 kvm_init_pmu_capability();
12280
12281 r = ops->hardware_setup();
12282 if (r != 0)
12283 return r;
12284
12285 kvm_ops_update(ops);
12286
12287 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
12288
12289 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
12290 kvm_caps.supported_xss = 0;
12291
12292 #define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
12293 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
12294 #undef __kvm_cpu_cap_has
12295
12296 if (kvm_caps.has_tsc_control) {
12297 /*
12298 * Make sure the user can only configure tsc_khz values that
12299 * fit into a signed integer.
12300 * A min value is not calculated because it will always
12301 * be 1 on all machines.
12302 */
12303 u64 max = min(0x7fffffffULL,
12304 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
12305 kvm_caps.max_guest_tsc_khz = max;
12306 }
12307 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
12308 kvm_init_msr_list();
12309 return 0;
12310 }
12311
kvm_arch_hardware_unsetup(void)12312 void kvm_arch_hardware_unsetup(void)
12313 {
12314 kvm_unregister_perf_callbacks();
12315
12316 static_call(kvm_x86_hardware_unsetup)();
12317 }
12318
kvm_arch_check_processor_compat(void * opaque)12319 int kvm_arch_check_processor_compat(void *opaque)
12320 {
12321 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
12322 struct kvm_x86_init_ops *ops = opaque;
12323
12324 WARN_ON(!irqs_disabled());
12325
12326 if (__cr4_reserved_bits(cpu_has, c) !=
12327 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
12328 return -EIO;
12329
12330 return ops->check_processor_compatibility();
12331 }
12332
kvm_vcpu_is_reset_bsp(struct kvm_vcpu * vcpu)12333 bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12334 {
12335 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12336 }
12337 EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
12338
kvm_vcpu_is_bsp(struct kvm_vcpu * vcpu)12339 bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12340 {
12341 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
12342 }
12343
12344 __read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12345 EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
12346
kvm_arch_sched_in(struct kvm_vcpu * vcpu,int cpu)12347 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12348 {
12349 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12350
12351 vcpu->arch.l1tf_flush_l1d = true;
12352 if (pmu->version && unlikely(pmu->event_count)) {
12353 pmu->need_cleanup = true;
12354 kvm_make_request(KVM_REQ_PMU, vcpu);
12355 }
12356 static_call(kvm_x86_sched_in)(vcpu, cpu);
12357 }
12358
kvm_arch_free_vm(struct kvm * kvm)12359 void kvm_arch_free_vm(struct kvm *kvm)
12360 {
12361 kfree(to_kvm_hv(kvm)->hv_pa_pg);
12362 __kvm_arch_free_vm(kvm);
12363 }
12364
12365
kvm_arch_init_vm(struct kvm * kvm,unsigned long type)12366 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
12367 {
12368 int ret;
12369 unsigned long flags;
12370
12371 if (type)
12372 return -EINVAL;
12373
12374 ret = kvm_page_track_init(kvm);
12375 if (ret)
12376 goto out;
12377
12378 ret = kvm_mmu_init_vm(kvm);
12379 if (ret)
12380 goto out_page_track;
12381
12382 ret = static_call(kvm_x86_vm_init)(kvm);
12383 if (ret)
12384 goto out_uninit_mmu;
12385
12386 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
12387 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
12388 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
12389
12390 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12391 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
12392 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12393 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12394 &kvm->arch.irq_sources_bitmap);
12395
12396 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
12397 mutex_init(&kvm->arch.apic_map_lock);
12398 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
12399 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
12400
12401 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
12402 pvclock_update_vm_gtod_copy(kvm);
12403 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
12404
12405 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
12406 kvm->arch.guest_can_read_msr_platform_info = true;
12407 kvm->arch.enable_pmu = enable_pmu;
12408
12409 #if IS_ENABLED(CONFIG_HYPERV)
12410 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12411 kvm->arch.hv_root_tdp = INVALID_PAGE;
12412 #endif
12413
12414 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
12415 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
12416
12417 kvm_apicv_init(kvm);
12418 kvm_hv_init_vm(kvm);
12419 kvm_xen_init_vm(kvm);
12420
12421 return 0;
12422
12423 out_uninit_mmu:
12424 kvm_mmu_uninit_vm(kvm);
12425 out_page_track:
12426 kvm_page_track_cleanup(kvm);
12427 out:
12428 return ret;
12429 }
12430
kvm_arch_post_init_vm(struct kvm * kvm)12431 int kvm_arch_post_init_vm(struct kvm *kvm)
12432 {
12433 return kvm_mmu_post_init_vm(kvm);
12434 }
12435
kvm_unload_vcpu_mmu(struct kvm_vcpu * vcpu)12436 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12437 {
12438 vcpu_load(vcpu);
12439 kvm_mmu_unload(vcpu);
12440 vcpu_put(vcpu);
12441 }
12442
kvm_unload_vcpu_mmus(struct kvm * kvm)12443 static void kvm_unload_vcpu_mmus(struct kvm *kvm)
12444 {
12445 unsigned long i;
12446 struct kvm_vcpu *vcpu;
12447
12448 kvm_for_each_vcpu(i, vcpu, kvm) {
12449 kvm_clear_async_pf_completion_queue(vcpu);
12450 kvm_unload_vcpu_mmu(vcpu);
12451 }
12452 }
12453
kvm_arch_sync_events(struct kvm * kvm)12454 void kvm_arch_sync_events(struct kvm *kvm)
12455 {
12456 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
12457 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
12458 kvm_free_pit(kvm);
12459 }
12460
12461 /**
12462 * __x86_set_memory_region: Setup KVM internal memory slot
12463 *
12464 * @kvm: the kvm pointer to the VM.
12465 * @id: the slot ID to setup.
12466 * @gpa: the GPA to install the slot (unused when @size == 0).
12467 * @size: the size of the slot. Set to zero to uninstall a slot.
12468 *
12469 * This function helps to setup a KVM internal memory slot. Specify
12470 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12471 * slot. The return code can be one of the following:
12472 *
12473 * HVA: on success (uninstall will return a bogus HVA)
12474 * -errno: on error
12475 *
12476 * The caller should always use IS_ERR() to check the return value
12477 * before use. Note, the KVM internal memory slots are guaranteed to
12478 * remain valid and unchanged until the VM is destroyed, i.e., the
12479 * GPA->HVA translation will not change. However, the HVA is a user
12480 * address, i.e. its accessibility is not guaranteed, and must be
12481 * accessed via __copy_{to,from}_user().
12482 */
__x86_set_memory_region(struct kvm * kvm,int id,gpa_t gpa,u32 size)12483 void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12484 u32 size)
12485 {
12486 int i, r;
12487 unsigned long hva, old_npages;
12488 struct kvm_memslots *slots = kvm_memslots(kvm);
12489 struct kvm_memory_slot *slot;
12490
12491 /* Called with kvm->slots_lock held. */
12492 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
12493 return ERR_PTR_USR(-EINVAL);
12494
12495 slot = id_to_memslot(slots, id);
12496 if (size) {
12497 if (slot && slot->npages)
12498 return ERR_PTR_USR(-EEXIST);
12499
12500 /*
12501 * MAP_SHARED to prevent internal slot pages from being moved
12502 * by fork()/COW.
12503 */
12504 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12505 MAP_SHARED | MAP_ANONYMOUS, 0);
12506 if (IS_ERR((void *)hva))
12507 return (void __user *)hva;
12508 } else {
12509 if (!slot || !slot->npages)
12510 return NULL;
12511
12512 old_npages = slot->npages;
12513 hva = slot->userspace_addr;
12514 }
12515
12516 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
12517 struct kvm_userspace_memory_region m;
12518
12519 m.slot = id | (i << 16);
12520 m.flags = 0;
12521 m.guest_phys_addr = gpa;
12522 m.userspace_addr = hva;
12523 m.memory_size = size;
12524 r = __kvm_set_memory_region(kvm, &m);
12525 if (r < 0)
12526 return ERR_PTR_USR(r);
12527 }
12528
12529 if (!size)
12530 vm_munmap(hva, old_npages * PAGE_SIZE);
12531
12532 return (void __user *)hva;
12533 }
12534 EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12535
kvm_arch_pre_destroy_vm(struct kvm * kvm)12536 void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12537 {
12538 kvm_mmu_pre_destroy_vm(kvm);
12539 }
12540
kvm_arch_destroy_vm(struct kvm * kvm)12541 void kvm_arch_destroy_vm(struct kvm *kvm)
12542 {
12543 if (current->mm == kvm->mm) {
12544 /*
12545 * Free memory regions allocated on behalf of userspace,
12546 * unless the memory map has changed due to process exit
12547 * or fd copying.
12548 */
12549 mutex_lock(&kvm->slots_lock);
12550 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12551 0, 0);
12552 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12553 0, 0);
12554 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12555 mutex_unlock(&kvm->slots_lock);
12556 }
12557 kvm_unload_vcpu_mmus(kvm);
12558 static_call_cond(kvm_x86_vm_destroy)(kvm);
12559 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
12560 kvm_pic_destroy(kvm);
12561 kvm_ioapic_destroy(kvm);
12562 kvm_destroy_vcpus(kvm);
12563 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
12564 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
12565 kvm_mmu_uninit_vm(kvm);
12566 kvm_page_track_cleanup(kvm);
12567 kvm_xen_destroy_vm(kvm);
12568 kvm_hv_destroy_vm(kvm);
12569 }
12570
memslot_rmap_free(struct kvm_memory_slot * slot)12571 static void memslot_rmap_free(struct kvm_memory_slot *slot)
12572 {
12573 int i;
12574
12575 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12576 kvfree(slot->arch.rmap[i]);
12577 slot->arch.rmap[i] = NULL;
12578 }
12579 }
12580
kvm_arch_free_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12581 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12582 {
12583 int i;
12584
12585 memslot_rmap_free(slot);
12586
12587 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12588 kvfree(slot->arch.lpage_info[i - 1]);
12589 slot->arch.lpage_info[i - 1] = NULL;
12590 }
12591
12592 kvm_page_track_free_memslot(slot);
12593 }
12594
memslot_rmap_alloc(struct kvm_memory_slot * slot,unsigned long npages)12595 int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
12596 {
12597 const int sz = sizeof(*slot->arch.rmap[0]);
12598 int i;
12599
12600 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12601 int level = i + 1;
12602 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12603
12604 if (slot->arch.rmap[i])
12605 continue;
12606
12607 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
12608 if (!slot->arch.rmap[i]) {
12609 memslot_rmap_free(slot);
12610 return -ENOMEM;
12611 }
12612 }
12613
12614 return 0;
12615 }
12616
kvm_alloc_memslot_metadata(struct kvm * kvm,struct kvm_memory_slot * slot)12617 static int kvm_alloc_memslot_metadata(struct kvm *kvm,
12618 struct kvm_memory_slot *slot)
12619 {
12620 unsigned long npages = slot->npages;
12621 int i, r;
12622
12623 /*
12624 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12625 * old arrays will be freed by __kvm_set_memory_region() if installing
12626 * the new memslot is successful.
12627 */
12628 memset(&slot->arch, 0, sizeof(slot->arch));
12629
12630 if (kvm_memslots_have_rmaps(kvm)) {
12631 r = memslot_rmap_alloc(slot, npages);
12632 if (r)
12633 return r;
12634 }
12635
12636 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12637 struct kvm_lpage_info *linfo;
12638 unsigned long ugfn;
12639 int lpages;
12640 int level = i + 1;
12641
12642 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
12643
12644 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
12645 if (!linfo)
12646 goto out_free;
12647
12648 slot->arch.lpage_info[i - 1] = linfo;
12649
12650 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
12651 linfo[0].disallow_lpage = 1;
12652 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
12653 linfo[lpages - 1].disallow_lpage = 1;
12654 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12655 /*
12656 * If the gfn and userspace address are not aligned wrt each
12657 * other, disable large page support for this slot.
12658 */
12659 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
12660 unsigned long j;
12661
12662 for (j = 0; j < lpages; ++j)
12663 linfo[j].disallow_lpage = 1;
12664 }
12665 }
12666
12667 if (kvm_page_track_create_memslot(kvm, slot, npages))
12668 goto out_free;
12669
12670 return 0;
12671
12672 out_free:
12673 memslot_rmap_free(slot);
12674
12675 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
12676 kvfree(slot->arch.lpage_info[i - 1]);
12677 slot->arch.lpage_info[i - 1] = NULL;
12678 }
12679 return -ENOMEM;
12680 }
12681
kvm_arch_memslots_updated(struct kvm * kvm,u64 gen)12682 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
12683 {
12684 struct kvm_vcpu *vcpu;
12685 unsigned long i;
12686
12687 /*
12688 * memslots->generation has been incremented.
12689 * mmio generation may have reached its maximum value.
12690 */
12691 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
12692
12693 /* Force re-initialization of steal_time cache */
12694 kvm_for_each_vcpu(i, vcpu, kvm)
12695 kvm_vcpu_kick(vcpu);
12696 }
12697
kvm_arch_prepare_memory_region(struct kvm * kvm,const struct kvm_memory_slot * old,struct kvm_memory_slot * new,enum kvm_mr_change change)12698 int kvm_arch_prepare_memory_region(struct kvm *kvm,
12699 const struct kvm_memory_slot *old,
12700 struct kvm_memory_slot *new,
12701 enum kvm_mr_change change)
12702 {
12703 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12704 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12705 return -EINVAL;
12706
12707 return kvm_alloc_memslot_metadata(kvm, new);
12708 }
12709
12710 if (change == KVM_MR_FLAGS_ONLY)
12711 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12712 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12713 return -EIO;
12714
12715 return 0;
12716 }
12717
12718
kvm_mmu_update_cpu_dirty_logging(struct kvm * kvm,bool enable)12719 static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12720 {
12721 struct kvm_arch *ka = &kvm->arch;
12722
12723 if (!kvm_x86_ops.cpu_dirty_log_size)
12724 return;
12725
12726 if ((enable && ++ka->cpu_dirty_logging_count == 1) ||
12727 (!enable && --ka->cpu_dirty_logging_count == 0))
12728 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
12729
12730 WARN_ON_ONCE(ka->cpu_dirty_logging_count < 0);
12731 }
12732
kvm_mmu_slot_apply_flags(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)12733 static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
12734 struct kvm_memory_slot *old,
12735 const struct kvm_memory_slot *new,
12736 enum kvm_mr_change change)
12737 {
12738 u32 old_flags = old ? old->flags : 0;
12739 u32 new_flags = new ? new->flags : 0;
12740 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
12741
12742 /*
12743 * Update CPU dirty logging if dirty logging is being toggled. This
12744 * applies to all operations.
12745 */
12746 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
12747 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
12748
12749 /*
12750 * Nothing more to do for RO slots (which can't be dirtied and can't be
12751 * made writable) or CREATE/MOVE/DELETE of a slot.
12752 *
12753 * For a memslot with dirty logging disabled:
12754 * CREATE: No dirty mappings will already exist.
12755 * MOVE/DELETE: The old mappings will already have been cleaned up by
12756 * kvm_arch_flush_shadow_memslot()
12757 *
12758 * For a memslot with dirty logging enabled:
12759 * CREATE: No shadow pages exist, thus nothing to write-protect
12760 * and no dirty bits to clear.
12761 * MOVE/DELETE: The old mappings will already have been cleaned up by
12762 * kvm_arch_flush_shadow_memslot().
12763 */
12764 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
12765 return;
12766
12767 /*
12768 * READONLY and non-flags changes were filtered out above, and the only
12769 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12770 * logging isn't being toggled on or off.
12771 */
12772 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
12773 return;
12774
12775 if (!log_dirty_pages) {
12776 /*
12777 * Dirty logging tracks sptes in 4k granularity, meaning that
12778 * large sptes have to be split. If live migration succeeds,
12779 * the guest in the source machine will be destroyed and large
12780 * sptes will be created in the destination. However, if the
12781 * guest continues to run in the source machine (for example if
12782 * live migration fails), small sptes will remain around and
12783 * cause bad performance.
12784 *
12785 * Scan sptes if dirty logging has been stopped, dropping those
12786 * which can be collapsed into a single large-page spte. Later
12787 * page faults will create the large-page sptes.
12788 */
12789 kvm_mmu_zap_collapsible_sptes(kvm, new);
12790 } else {
12791 /*
12792 * Initially-all-set does not require write protecting any page,
12793 * because they're all assumed to be dirty.
12794 */
12795 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12796 return;
12797
12798 if (READ_ONCE(eager_page_split))
12799 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12800
12801 if (kvm_x86_ops.cpu_dirty_log_size) {
12802 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12803 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12804 } else {
12805 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
12806 }
12807
12808 /*
12809 * Unconditionally flush the TLBs after enabling dirty logging.
12810 * A flush is almost always going to be necessary (see below),
12811 * and unconditionally flushing allows the helpers to omit
12812 * the subtly complex checks when removing write access.
12813 *
12814 * Do the flush outside of mmu_lock to reduce the amount of
12815 * time mmu_lock is held. Flushing after dropping mmu_lock is
12816 * safe as KVM only needs to guarantee the slot is fully
12817 * write-protected before returning to userspace, i.e. before
12818 * userspace can consume the dirty status.
12819 *
12820 * Flushing outside of mmu_lock requires KVM to be careful when
12821 * making decisions based on writable status of an SPTE, e.g. a
12822 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12823 *
12824 * Specifically, KVM also write-protects guest page tables to
12825 * monitor changes when using shadow paging, and must guarantee
12826 * no CPUs can write to those page before mmu_lock is dropped.
12827 * Because CPUs may have stale TLB entries at this point, a
12828 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12829 *
12830 * KVM also allows making SPTES writable outside of mmu_lock,
12831 * e.g. to allow dirty logging without taking mmu_lock.
12832 *
12833 * To handle these scenarios, KVM uses a separate software-only
12834 * bit (MMU-writable) to track if a SPTE is !writable due to
12835 * a guest page table being write-protected (KVM clears the
12836 * MMU-writable flag when write-protecting for shadow paging).
12837 *
12838 * The use of MMU-writable is also the primary motivation for
12839 * the unconditional flush. Because KVM must guarantee that a
12840 * CPU doesn't contain stale, writable TLB entries for a
12841 * !MMU-writable SPTE, KVM must flush if it encounters any
12842 * MMU-writable SPTE regardless of whether the actual hardware
12843 * writable bit was set. I.e. KVM is almost guaranteed to need
12844 * to flush, while unconditionally flushing allows the "remove
12845 * write access" helpers to ignore MMU-writable entirely.
12846 *
12847 * See is_writable_pte() for more details (the case involving
12848 * access-tracked SPTEs is particularly relevant).
12849 */
12850 kvm_arch_flush_remote_tlbs_memslot(kvm, new);
12851 }
12852 }
12853
kvm_arch_commit_memory_region(struct kvm * kvm,struct kvm_memory_slot * old,const struct kvm_memory_slot * new,enum kvm_mr_change change)12854 void kvm_arch_commit_memory_region(struct kvm *kvm,
12855 struct kvm_memory_slot *old,
12856 const struct kvm_memory_slot *new,
12857 enum kvm_mr_change change)
12858 {
12859 if (!kvm->arch.n_requested_mmu_pages &&
12860 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12861 unsigned long nr_mmu_pages;
12862
12863 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12864 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12865 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12866 }
12867
12868 kvm_mmu_slot_apply_flags(kvm, old, new, change);
12869
12870 /* Free the arrays associated with the old memslot. */
12871 if (change == KVM_MR_MOVE)
12872 kvm_arch_free_memslot(kvm, old);
12873 }
12874
kvm_arch_flush_shadow_all(struct kvm * kvm)12875 void kvm_arch_flush_shadow_all(struct kvm *kvm)
12876 {
12877 kvm_mmu_zap_all(kvm);
12878 }
12879
kvm_arch_flush_shadow_memslot(struct kvm * kvm,struct kvm_memory_slot * slot)12880 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12881 struct kvm_memory_slot *slot)
12882 {
12883 kvm_page_track_flush_slot(kvm, slot);
12884 }
12885
kvm_guest_apic_has_interrupt(struct kvm_vcpu * vcpu)12886 static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12887 {
12888 return (is_guest_mode(vcpu) &&
12889 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
12890 }
12891
kvm_vcpu_has_events(struct kvm_vcpu * vcpu)12892 static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12893 {
12894 if (!list_empty_careful(&vcpu->async_pf.done))
12895 return true;
12896
12897 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12898 kvm_apic_init_sipi_allowed(vcpu))
12899 return true;
12900
12901 if (vcpu->arch.pv.pv_unhalted)
12902 return true;
12903
12904 if (kvm_is_exception_pending(vcpu))
12905 return true;
12906
12907 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12908 (vcpu->arch.nmi_pending &&
12909 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
12910 return true;
12911
12912 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
12913 (vcpu->arch.smi_pending &&
12914 static_call(kvm_x86_smi_allowed)(vcpu, false)))
12915 return true;
12916
12917 if (kvm_arch_interrupt_allowed(vcpu) &&
12918 (kvm_cpu_has_interrupt(vcpu) ||
12919 kvm_guest_apic_has_interrupt(vcpu)))
12920 return true;
12921
12922 if (kvm_hv_has_stimer_pending(vcpu))
12923 return true;
12924
12925 if (is_guest_mode(vcpu) &&
12926 kvm_x86_ops.nested_ops->has_events &&
12927 kvm_x86_ops.nested_ops->has_events(vcpu))
12928 return true;
12929
12930 if (kvm_xen_has_pending_events(vcpu))
12931 return true;
12932
12933 return false;
12934 }
12935
kvm_arch_vcpu_runnable(struct kvm_vcpu * vcpu)12936 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12937 {
12938 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
12939 }
12940
kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu * vcpu)12941 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
12942 {
12943 if (kvm_vcpu_apicv_active(vcpu) &&
12944 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
12945 return true;
12946
12947 return false;
12948 }
12949
kvm_arch_dy_runnable(struct kvm_vcpu * vcpu)12950 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12951 {
12952 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12953 return true;
12954
12955 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12956 kvm_test_request(KVM_REQ_SMI, vcpu) ||
12957 kvm_test_request(KVM_REQ_EVENT, vcpu))
12958 return true;
12959
12960 return kvm_arch_dy_has_pending_interrupt(vcpu);
12961 }
12962
kvm_arch_vcpu_in_kernel(struct kvm_vcpu * vcpu)12963 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12964 {
12965 if (vcpu->arch.guest_state_protected)
12966 return true;
12967
12968 return vcpu->arch.preempted_in_kernel;
12969 }
12970
kvm_arch_vcpu_get_ip(struct kvm_vcpu * vcpu)12971 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12972 {
12973 return kvm_rip_read(vcpu);
12974 }
12975
kvm_arch_vcpu_should_kick(struct kvm_vcpu * vcpu)12976 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
12977 {
12978 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
12979 }
12980
kvm_arch_interrupt_allowed(struct kvm_vcpu * vcpu)12981 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12982 {
12983 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
12984 }
12985
kvm_get_linear_rip(struct kvm_vcpu * vcpu)12986 unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
12987 {
12988 /* Can't read the RIP when guest state is protected, just return 0 */
12989 if (vcpu->arch.guest_state_protected)
12990 return 0;
12991
12992 if (is_64_bit_mode(vcpu))
12993 return kvm_rip_read(vcpu);
12994 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12995 kvm_rip_read(vcpu));
12996 }
12997 EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
12998
kvm_is_linear_rip(struct kvm_vcpu * vcpu,unsigned long linear_rip)12999 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
13000 {
13001 return kvm_get_linear_rip(vcpu) == linear_rip;
13002 }
13003 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
13004
kvm_get_rflags(struct kvm_vcpu * vcpu)13005 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
13006 {
13007 unsigned long rflags;
13008
13009 rflags = static_call(kvm_x86_get_rflags)(vcpu);
13010 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
13011 rflags &= ~X86_EFLAGS_TF;
13012 return rflags;
13013 }
13014 EXPORT_SYMBOL_GPL(kvm_get_rflags);
13015
__kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13016 static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13017 {
13018 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
13019 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
13020 rflags |= X86_EFLAGS_TF;
13021 static_call(kvm_x86_set_rflags)(vcpu, rflags);
13022 }
13023
kvm_set_rflags(struct kvm_vcpu * vcpu,unsigned long rflags)13024 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
13025 {
13026 __kvm_set_rflags(vcpu, rflags);
13027 kvm_make_request(KVM_REQ_EVENT, vcpu);
13028 }
13029 EXPORT_SYMBOL_GPL(kvm_set_rflags);
13030
kvm_async_pf_hash_fn(gfn_t gfn)13031 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
13032 {
13033 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
13034
13035 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
13036 }
13037
kvm_async_pf_next_probe(u32 key)13038 static inline u32 kvm_async_pf_next_probe(u32 key)
13039 {
13040 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
13041 }
13042
kvm_add_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13043 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13044 {
13045 u32 key = kvm_async_pf_hash_fn(gfn);
13046
13047 while (vcpu->arch.apf.gfns[key] != ~0)
13048 key = kvm_async_pf_next_probe(key);
13049
13050 vcpu->arch.apf.gfns[key] = gfn;
13051 }
13052
kvm_async_pf_gfn_slot(struct kvm_vcpu * vcpu,gfn_t gfn)13053 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
13054 {
13055 int i;
13056 u32 key = kvm_async_pf_hash_fn(gfn);
13057
13058 for (i = 0; i < ASYNC_PF_PER_VCPU &&
13059 (vcpu->arch.apf.gfns[key] != gfn &&
13060 vcpu->arch.apf.gfns[key] != ~0); i++)
13061 key = kvm_async_pf_next_probe(key);
13062
13063 return key;
13064 }
13065
kvm_find_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13066 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13067 {
13068 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
13069 }
13070
kvm_del_async_pf_gfn(struct kvm_vcpu * vcpu,gfn_t gfn)13071 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13072 {
13073 u32 i, j, k;
13074
13075 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
13076
13077 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13078 return;
13079
13080 while (true) {
13081 vcpu->arch.apf.gfns[i] = ~0;
13082 do {
13083 j = kvm_async_pf_next_probe(j);
13084 if (vcpu->arch.apf.gfns[j] == ~0)
13085 return;
13086 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13087 /*
13088 * k lies cyclically in ]i,j]
13089 * | i.k.j |
13090 * |....j i.k.| or |.k..j i...|
13091 */
13092 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13093 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13094 i = j;
13095 }
13096 }
13097
apf_put_user_notpresent(struct kvm_vcpu * vcpu)13098 static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
13099 {
13100 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13101
13102 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13103 sizeof(reason));
13104 }
13105
apf_put_user_ready(struct kvm_vcpu * vcpu,u32 token)13106 static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13107 {
13108 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13109
13110 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13111 &token, offset, sizeof(token));
13112 }
13113
apf_pageready_slot_free(struct kvm_vcpu * vcpu)13114 static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13115 {
13116 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13117 u32 val;
13118
13119 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13120 &val, offset, sizeof(val)))
13121 return false;
13122
13123 return !val;
13124 }
13125
kvm_can_deliver_async_pf(struct kvm_vcpu * vcpu)13126 static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13127 {
13128
13129 if (!kvm_pv_async_pf_enabled(vcpu))
13130 return false;
13131
13132 if (vcpu->arch.apf.send_user_only &&
13133 static_call(kvm_x86_get_cpl)(vcpu) == 0)
13134 return false;
13135
13136 if (is_guest_mode(vcpu)) {
13137 /*
13138 * L1 needs to opt into the special #PF vmexits that are
13139 * used to deliver async page faults.
13140 */
13141 return vcpu->arch.apf.delivery_as_pf_vmexit;
13142 } else {
13143 /*
13144 * Play it safe in case the guest temporarily disables paging.
13145 * The real mode IDT in particular is unlikely to have a #PF
13146 * exception setup.
13147 */
13148 return is_paging(vcpu);
13149 }
13150 }
13151
kvm_can_do_async_pf(struct kvm_vcpu * vcpu)13152 bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13153 {
13154 if (unlikely(!lapic_in_kernel(vcpu) ||
13155 kvm_event_needs_reinjection(vcpu) ||
13156 kvm_is_exception_pending(vcpu)))
13157 return false;
13158
13159 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13160 return false;
13161
13162 /*
13163 * If interrupts are off we cannot even use an artificial
13164 * halt state.
13165 */
13166 return kvm_arch_interrupt_allowed(vcpu);
13167 }
13168
kvm_arch_async_page_not_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13169 bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
13170 struct kvm_async_pf *work)
13171 {
13172 struct x86_exception fault;
13173
13174 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
13175 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
13176
13177 if (kvm_can_deliver_async_pf(vcpu) &&
13178 !apf_put_user_notpresent(vcpu)) {
13179 fault.vector = PF_VECTOR;
13180 fault.error_code_valid = true;
13181 fault.error_code = 0;
13182 fault.nested_page_fault = false;
13183 fault.address = work->arch.token;
13184 fault.async_page_fault = true;
13185 kvm_inject_page_fault(vcpu, &fault);
13186 return true;
13187 } else {
13188 /*
13189 * It is not possible to deliver a paravirtualized asynchronous
13190 * page fault, but putting the guest in an artificial halt state
13191 * can be beneficial nevertheless: if an interrupt arrives, we
13192 * can deliver it timely and perhaps the guest will schedule
13193 * another process. When the instruction that triggered a page
13194 * fault is retried, hopefully the page will be ready in the host.
13195 */
13196 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
13197 return false;
13198 }
13199 }
13200
kvm_arch_async_page_present(struct kvm_vcpu * vcpu,struct kvm_async_pf * work)13201 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13202 struct kvm_async_pf *work)
13203 {
13204 struct kvm_lapic_irq irq = {
13205 .delivery_mode = APIC_DM_FIXED,
13206 .vector = vcpu->arch.apf.vec
13207 };
13208
13209 if (work->wakeup_all)
13210 work->arch.token = ~0; /* broadcast wakeup */
13211 else
13212 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
13213 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
13214
13215 if ((work->wakeup_all || work->notpresent_injected) &&
13216 kvm_pv_async_pf_enabled(vcpu) &&
13217 !apf_put_user_ready(vcpu, work->arch.token)) {
13218 vcpu->arch.apf.pageready_pending = true;
13219 kvm_apic_set_irq(vcpu, &irq, NULL);
13220 }
13221
13222 vcpu->arch.apf.halted = false;
13223 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
13224 }
13225
kvm_arch_async_page_present_queued(struct kvm_vcpu * vcpu)13226 void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13227 {
13228 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13229 if (!vcpu->arch.apf.pageready_pending)
13230 kvm_vcpu_kick(vcpu);
13231 }
13232
kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu * vcpu)13233 bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
13234 {
13235 if (!kvm_pv_async_pf_enabled(vcpu))
13236 return true;
13237 else
13238 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
13239 }
13240
kvm_arch_start_assignment(struct kvm * kvm)13241 void kvm_arch_start_assignment(struct kvm *kvm)
13242 {
13243 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
13244 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
13245 }
13246 EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13247
kvm_arch_end_assignment(struct kvm * kvm)13248 void kvm_arch_end_assignment(struct kvm *kvm)
13249 {
13250 atomic_dec(&kvm->arch.assigned_device_count);
13251 }
13252 EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13253
kvm_arch_has_assigned_device(struct kvm * kvm)13254 bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
13255 {
13256 return arch_atomic_read(&kvm->arch.assigned_device_count);
13257 }
13258 EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13259
kvm_arch_register_noncoherent_dma(struct kvm * kvm)13260 void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13261 {
13262 atomic_inc(&kvm->arch.noncoherent_dma_count);
13263 }
13264 EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13265
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)13266 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13267 {
13268 atomic_dec(&kvm->arch.noncoherent_dma_count);
13269 }
13270 EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13271
kvm_arch_has_noncoherent_dma(struct kvm * kvm)13272 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13273 {
13274 return atomic_read(&kvm->arch.noncoherent_dma_count);
13275 }
13276 EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13277
kvm_arch_has_irq_bypass(void)13278 bool kvm_arch_has_irq_bypass(void)
13279 {
13280 return true;
13281 }
13282
kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13283 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13284 struct irq_bypass_producer *prod)
13285 {
13286 struct kvm_kernel_irqfd *irqfd =
13287 container_of(cons, struct kvm_kernel_irqfd, consumer);
13288 int ret;
13289
13290 irqfd->producer = prod;
13291 kvm_arch_start_assignment(irqfd->kvm);
13292 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
13293 prod->irq, irqfd->gsi, 1);
13294
13295 if (ret)
13296 kvm_arch_end_assignment(irqfd->kvm);
13297
13298 return ret;
13299 }
13300
kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer * cons,struct irq_bypass_producer * prod)13301 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13302 struct irq_bypass_producer *prod)
13303 {
13304 int ret;
13305 struct kvm_kernel_irqfd *irqfd =
13306 container_of(cons, struct kvm_kernel_irqfd, consumer);
13307
13308 WARN_ON(irqfd->producer != prod);
13309 irqfd->producer = NULL;
13310
13311 /*
13312 * When producer of consumer is unregistered, we change back to
13313 * remapped mode, so we can re-use the current implementation
13314 * when the irq is masked/disabled or the consumer side (KVM
13315 * int this case doesn't want to receive the interrupts.
13316 */
13317 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
13318 if (ret)
13319 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13320 " fails: %d\n", irqfd->consumer.token, ret);
13321
13322 kvm_arch_end_assignment(irqfd->kvm);
13323 }
13324
kvm_arch_update_irqfd_routing(struct kvm * kvm,unsigned int host_irq,uint32_t guest_irq,bool set)13325 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13326 uint32_t guest_irq, bool set)
13327 {
13328 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
13329 }
13330
kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry * old,struct kvm_kernel_irq_routing_entry * new)13331 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13332 struct kvm_kernel_irq_routing_entry *new)
13333 {
13334 if (new->type != KVM_IRQ_ROUTING_MSI)
13335 return true;
13336
13337 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13338 }
13339
kvm_vector_hashing_enabled(void)13340 bool kvm_vector_hashing_enabled(void)
13341 {
13342 return vector_hashing;
13343 }
13344
kvm_arch_no_poll(struct kvm_vcpu * vcpu)13345 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13346 {
13347 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13348 }
13349 EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13350
13351
kvm_spec_ctrl_test_value(u64 value)13352 int kvm_spec_ctrl_test_value(u64 value)
13353 {
13354 /*
13355 * test that setting IA32_SPEC_CTRL to given value
13356 * is allowed by the host processor
13357 */
13358
13359 u64 saved_value;
13360 unsigned long flags;
13361 int ret = 0;
13362
13363 local_irq_save(flags);
13364
13365 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13366 ret = 1;
13367 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13368 ret = 1;
13369 else
13370 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
13371
13372 local_irq_restore(flags);
13373
13374 return ret;
13375 }
13376 EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
13377
kvm_fixup_and_inject_pf_error(struct kvm_vcpu * vcpu,gva_t gva,u16 error_code)13378 void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13379 {
13380 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
13381 struct x86_exception fault;
13382 u64 access = error_code &
13383 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
13384
13385 if (!(error_code & PFERR_PRESENT_MASK) ||
13386 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
13387 /*
13388 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13389 * tables probably do not match the TLB. Just proceed
13390 * with the error code that the processor gave.
13391 */
13392 fault.vector = PF_VECTOR;
13393 fault.error_code_valid = true;
13394 fault.error_code = error_code;
13395 fault.nested_page_fault = false;
13396 fault.address = gva;
13397 fault.async_page_fault = false;
13398 }
13399 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
13400 }
13401 EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
13402
13403 /*
13404 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13405 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13406 * indicates whether exit to userspace is needed.
13407 */
kvm_handle_memory_failure(struct kvm_vcpu * vcpu,int r,struct x86_exception * e)13408 int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13409 struct x86_exception *e)
13410 {
13411 if (r == X86EMUL_PROPAGATE_FAULT) {
13412 kvm_inject_emulated_page_fault(vcpu, e);
13413 return 1;
13414 }
13415
13416 /*
13417 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13418 * while handling a VMX instruction KVM could've handled the request
13419 * correctly by exiting to userspace and performing I/O but there
13420 * doesn't seem to be a real use-case behind such requests, just return
13421 * KVM_EXIT_INTERNAL_ERROR for now.
13422 */
13423 kvm_prepare_emulation_failure_exit(vcpu);
13424
13425 return 0;
13426 }
13427 EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13428
kvm_handle_invpcid(struct kvm_vcpu * vcpu,unsigned long type,gva_t gva)13429 int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13430 {
13431 bool pcid_enabled;
13432 struct x86_exception e;
13433 struct {
13434 u64 pcid;
13435 u64 gla;
13436 } operand;
13437 int r;
13438
13439 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13440 if (r != X86EMUL_CONTINUE)
13441 return kvm_handle_memory_failure(vcpu, r, &e);
13442
13443 if (operand.pcid >> 12 != 0) {
13444 kvm_inject_gp(vcpu, 0);
13445 return 1;
13446 }
13447
13448 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
13449
13450 switch (type) {
13451 case INVPCID_TYPE_INDIV_ADDR:
13452 if ((!pcid_enabled && (operand.pcid != 0)) ||
13453 is_noncanonical_address(operand.gla, vcpu)) {
13454 kvm_inject_gp(vcpu, 0);
13455 return 1;
13456 }
13457 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13458 return kvm_skip_emulated_instruction(vcpu);
13459
13460 case INVPCID_TYPE_SINGLE_CTXT:
13461 if (!pcid_enabled && (operand.pcid != 0)) {
13462 kvm_inject_gp(vcpu, 0);
13463 return 1;
13464 }
13465
13466 kvm_invalidate_pcid(vcpu, operand.pcid);
13467 return kvm_skip_emulated_instruction(vcpu);
13468
13469 case INVPCID_TYPE_ALL_NON_GLOBAL:
13470 /*
13471 * Currently, KVM doesn't mark global entries in the shadow
13472 * page tables, so a non-global flush just degenerates to a
13473 * global flush. If needed, we could optimize this later by
13474 * keeping track of global entries in shadow page tables.
13475 */
13476
13477 fallthrough;
13478 case INVPCID_TYPE_ALL_INCL_GLOBAL:
13479 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
13480 return kvm_skip_emulated_instruction(vcpu);
13481
13482 default:
13483 kvm_inject_gp(vcpu, 0);
13484 return 1;
13485 }
13486 }
13487 EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13488
complete_sev_es_emulated_mmio(struct kvm_vcpu * vcpu)13489 static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13490 {
13491 struct kvm_run *run = vcpu->run;
13492 struct kvm_mmio_fragment *frag;
13493 unsigned int len;
13494
13495 BUG_ON(!vcpu->mmio_needed);
13496
13497 /* Complete previous fragment */
13498 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13499 len = min(8u, frag->len);
13500 if (!vcpu->mmio_is_write)
13501 memcpy(frag->data, run->mmio.data, len);
13502
13503 if (frag->len <= 8) {
13504 /* Switch to the next fragment. */
13505 frag++;
13506 vcpu->mmio_cur_fragment++;
13507 } else {
13508 /* Go forward to the next mmio piece. */
13509 frag->data += len;
13510 frag->gpa += len;
13511 frag->len -= len;
13512 }
13513
13514 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13515 vcpu->mmio_needed = 0;
13516
13517 // VMG change, at this point, we're always done
13518 // RIP has already been advanced
13519 return 1;
13520 }
13521
13522 // More MMIO is needed
13523 run->mmio.phys_addr = frag->gpa;
13524 run->mmio.len = min(8u, frag->len);
13525 run->mmio.is_write = vcpu->mmio_is_write;
13526 if (run->mmio.is_write)
13527 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13528 run->exit_reason = KVM_EXIT_MMIO;
13529
13530 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13531
13532 return 0;
13533 }
13534
kvm_sev_es_mmio_write(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13535 int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13536 void *data)
13537 {
13538 int handled;
13539 struct kvm_mmio_fragment *frag;
13540
13541 if (!data)
13542 return -EINVAL;
13543
13544 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13545 if (handled == bytes)
13546 return 1;
13547
13548 bytes -= handled;
13549 gpa += handled;
13550 data += handled;
13551
13552 /*TODO: Check if need to increment number of frags */
13553 frag = vcpu->mmio_fragments;
13554 vcpu->mmio_nr_fragments = 1;
13555 frag->len = bytes;
13556 frag->gpa = gpa;
13557 frag->data = data;
13558
13559 vcpu->mmio_needed = 1;
13560 vcpu->mmio_cur_fragment = 0;
13561
13562 vcpu->run->mmio.phys_addr = gpa;
13563 vcpu->run->mmio.len = min(8u, frag->len);
13564 vcpu->run->mmio.is_write = 1;
13565 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13566 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13567
13568 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13569
13570 return 0;
13571 }
13572 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13573
kvm_sev_es_mmio_read(struct kvm_vcpu * vcpu,gpa_t gpa,unsigned int bytes,void * data)13574 int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13575 void *data)
13576 {
13577 int handled;
13578 struct kvm_mmio_fragment *frag;
13579
13580 if (!data)
13581 return -EINVAL;
13582
13583 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13584 if (handled == bytes)
13585 return 1;
13586
13587 bytes -= handled;
13588 gpa += handled;
13589 data += handled;
13590
13591 /*TODO: Check if need to increment number of frags */
13592 frag = vcpu->mmio_fragments;
13593 vcpu->mmio_nr_fragments = 1;
13594 frag->len = bytes;
13595 frag->gpa = gpa;
13596 frag->data = data;
13597
13598 vcpu->mmio_needed = 1;
13599 vcpu->mmio_cur_fragment = 0;
13600
13601 vcpu->run->mmio.phys_addr = gpa;
13602 vcpu->run->mmio.len = min(8u, frag->len);
13603 vcpu->run->mmio.is_write = 0;
13604 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13605
13606 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13607
13608 return 0;
13609 }
13610 EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13611
advance_sev_es_emulated_pio(struct kvm_vcpu * vcpu,unsigned count,int size)13612 static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13613 {
13614 vcpu->arch.sev_pio_count -= count;
13615 vcpu->arch.sev_pio_data += count * size;
13616 }
13617
13618 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13619 unsigned int port);
13620
complete_sev_es_emulated_outs(struct kvm_vcpu * vcpu)13621 static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
13622 {
13623 int size = vcpu->arch.pio.size;
13624 int port = vcpu->arch.pio.port;
13625
13626 vcpu->arch.pio.count = 0;
13627 if (vcpu->arch.sev_pio_count)
13628 return kvm_sev_es_outs(vcpu, size, port);
13629 return 1;
13630 }
13631
kvm_sev_es_outs(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13632 static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13633 unsigned int port)
13634 {
13635 for (;;) {
13636 unsigned int count =
13637 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13638 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13639
13640 /* memcpy done already by emulator_pio_out. */
13641 advance_sev_es_emulated_pio(vcpu, count, size);
13642 if (!ret)
13643 break;
13644
13645 /* Emulation done by the kernel. */
13646 if (!vcpu->arch.sev_pio_count)
13647 return 1;
13648 }
13649
13650 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
13651 return 0;
13652 }
13653
13654 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13655 unsigned int port);
13656
complete_sev_es_emulated_ins(struct kvm_vcpu * vcpu)13657 static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13658 {
13659 unsigned count = vcpu->arch.pio.count;
13660 int size = vcpu->arch.pio.size;
13661 int port = vcpu->arch.pio.port;
13662
13663 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
13664 advance_sev_es_emulated_pio(vcpu, count, size);
13665 if (vcpu->arch.sev_pio_count)
13666 return kvm_sev_es_ins(vcpu, size, port);
13667 return 1;
13668 }
13669
kvm_sev_es_ins(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port)13670 static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13671 unsigned int port)
13672 {
13673 for (;;) {
13674 unsigned int count =
13675 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13676 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
13677 break;
13678
13679 /* Emulation done by the kernel. */
13680 advance_sev_es_emulated_pio(vcpu, count, size);
13681 if (!vcpu->arch.sev_pio_count)
13682 return 1;
13683 }
13684
13685 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
13686 return 0;
13687 }
13688
kvm_sev_es_string_io(struct kvm_vcpu * vcpu,unsigned int size,unsigned int port,void * data,unsigned int count,int in)13689 int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13690 unsigned int port, void *data, unsigned int count,
13691 int in)
13692 {
13693 vcpu->arch.sev_pio_data = data;
13694 vcpu->arch.sev_pio_count = count;
13695 return in ? kvm_sev_es_ins(vcpu, size, port)
13696 : kvm_sev_es_outs(vcpu, size, port);
13697 }
13698 EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13699
13700 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
13701 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
13702 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
13703 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13704 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13705 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13706 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
13707 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
13708 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
13709 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
13710 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
13711 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
13712 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
13713 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
13714 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
13715 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
13716 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
13717 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
13718 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
13719 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13720 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
13721 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
13722 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
13723 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
13724 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
13725 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13726 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
13727 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13728 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
13729
kvm_x86_init(void)13730 static int __init kvm_x86_init(void)
13731 {
13732 kvm_mmu_x86_module_init();
13733 return 0;
13734 }
13735 module_init(kvm_x86_init);
13736
kvm_x86_exit(void)13737 static void __exit kvm_x86_exit(void)
13738 {
13739 /*
13740 * If module_init() is implemented, module_exit() must also be
13741 * implemented to allow module unload.
13742 */
13743 }
13744 module_exit(kvm_x86_exit);
13745