1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 */
5
6 #include <linux/bsearch.h>
7 #include <linux/fs.h>
8 #include <linux/file.h>
9 #include <linux/sort.h>
10 #include <linux/mount.h>
11 #include <linux/xattr.h>
12 #include <linux/posix_acl_xattr.h>
13 #include <linux/radix-tree.h>
14 #include <linux/vmalloc.h>
15 #include <linux/string.h>
16 #include <linux/compat.h>
17 #include <linux/crc32c.h>
18 #include <linux/fsverity.h>
19
20 #include "send.h"
21 #include "ctree.h"
22 #include "backref.h"
23 #include "locking.h"
24 #include "disk-io.h"
25 #include "btrfs_inode.h"
26 #include "transaction.h"
27 #include "compression.h"
28 #include "xattr.h"
29 #include "print-tree.h"
30
31 /*
32 * Maximum number of references an extent can have in order for us to attempt to
33 * issue clone operations instead of write operations. This currently exists to
34 * avoid hitting limitations of the backreference walking code (taking a lot of
35 * time and using too much memory for extents with large number of references).
36 */
37 #define SEND_MAX_EXTENT_REFS 64
38
39 /*
40 * A fs_path is a helper to dynamically build path names with unknown size.
41 * It reallocates the internal buffer on demand.
42 * It allows fast adding of path elements on the right side (normal path) and
43 * fast adding to the left side (reversed path). A reversed path can also be
44 * unreversed if needed.
45 */
46 struct fs_path {
47 union {
48 struct {
49 char *start;
50 char *end;
51
52 char *buf;
53 unsigned short buf_len:15;
54 unsigned short reversed:1;
55 char inline_buf[];
56 };
57 /*
58 * Average path length does not exceed 200 bytes, we'll have
59 * better packing in the slab and higher chance to satisfy
60 * a allocation later during send.
61 */
62 char pad[256];
63 };
64 };
65 #define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
67
68
69 /* reused for each extent */
70 struct clone_root {
71 struct btrfs_root *root;
72 u64 ino;
73 u64 offset;
74
75 u64 found_refs;
76 };
77
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
80
81 struct send_ctx {
82 struct file *send_filp;
83 loff_t send_off;
84 char *send_buf;
85 u32 send_size;
86 u32 send_max_size;
87 /*
88 * Whether BTRFS_SEND_A_DATA attribute was already added to current
89 * command (since protocol v2, data must be the last attribute).
90 */
91 bool put_data;
92 struct page **send_buf_pages;
93 u64 flags; /* 'flags' member of btrfs_ioctl_send_args is u64 */
94 /* Protocol version compatibility requested */
95 u32 proto;
96
97 struct btrfs_root *send_root;
98 struct btrfs_root *parent_root;
99 struct clone_root *clone_roots;
100 int clone_roots_cnt;
101
102 /* current state of the compare_tree call */
103 struct btrfs_path *left_path;
104 struct btrfs_path *right_path;
105 struct btrfs_key *cmp_key;
106
107 /*
108 * Keep track of the generation of the last transaction that was used
109 * for relocating a block group. This is periodically checked in order
110 * to detect if a relocation happened since the last check, so that we
111 * don't operate on stale extent buffers for nodes (level >= 1) or on
112 * stale disk_bytenr values of file extent items.
113 */
114 u64 last_reloc_trans;
115
116 /*
117 * infos of the currently processed inode. In case of deleted inodes,
118 * these are the values from the deleted inode.
119 */
120 u64 cur_ino;
121 u64 cur_inode_gen;
122 u64 cur_inode_size;
123 u64 cur_inode_mode;
124 u64 cur_inode_rdev;
125 u64 cur_inode_last_extent;
126 u64 cur_inode_next_write_offset;
127 bool cur_inode_new;
128 bool cur_inode_new_gen;
129 bool cur_inode_deleted;
130 bool ignore_cur_inode;
131 bool cur_inode_needs_verity;
132 void *verity_descriptor;
133
134 u64 send_progress;
135
136 struct list_head new_refs;
137 struct list_head deleted_refs;
138
139 struct radix_tree_root name_cache;
140 struct list_head name_cache_list;
141 int name_cache_size;
142
143 /*
144 * The inode we are currently processing. It's not NULL only when we
145 * need to issue write commands for data extents from this inode.
146 */
147 struct inode *cur_inode;
148 struct file_ra_state ra;
149 u64 page_cache_clear_start;
150 bool clean_page_cache;
151
152 /*
153 * We process inodes by their increasing order, so if before an
154 * incremental send we reverse the parent/child relationship of
155 * directories such that a directory with a lower inode number was
156 * the parent of a directory with a higher inode number, and the one
157 * becoming the new parent got renamed too, we can't rename/move the
158 * directory with lower inode number when we finish processing it - we
159 * must process the directory with higher inode number first, then
160 * rename/move it and then rename/move the directory with lower inode
161 * number. Example follows.
162 *
163 * Tree state when the first send was performed:
164 *
165 * .
166 * |-- a (ino 257)
167 * |-- b (ino 258)
168 * |
169 * |
170 * |-- c (ino 259)
171 * | |-- d (ino 260)
172 * |
173 * |-- c2 (ino 261)
174 *
175 * Tree state when the second (incremental) send is performed:
176 *
177 * .
178 * |-- a (ino 257)
179 * |-- b (ino 258)
180 * |-- c2 (ino 261)
181 * |-- d2 (ino 260)
182 * |-- cc (ino 259)
183 *
184 * The sequence of steps that lead to the second state was:
185 *
186 * mv /a/b/c/d /a/b/c2/d2
187 * mv /a/b/c /a/b/c2/d2/cc
188 *
189 * "c" has lower inode number, but we can't move it (2nd mv operation)
190 * before we move "d", which has higher inode number.
191 *
192 * So we just memorize which move/rename operations must be performed
193 * later when their respective parent is processed and moved/renamed.
194 */
195
196 /* Indexed by parent directory inode number. */
197 struct rb_root pending_dir_moves;
198
199 /*
200 * Reverse index, indexed by the inode number of a directory that
201 * is waiting for the move/rename of its immediate parent before its
202 * own move/rename can be performed.
203 */
204 struct rb_root waiting_dir_moves;
205
206 /*
207 * A directory that is going to be rm'ed might have a child directory
208 * which is in the pending directory moves index above. In this case,
209 * the directory can only be removed after the move/rename of its child
210 * is performed. Example:
211 *
212 * Parent snapshot:
213 *
214 * . (ino 256)
215 * |-- a/ (ino 257)
216 * |-- b/ (ino 258)
217 * |-- c/ (ino 259)
218 * | |-- x/ (ino 260)
219 * |
220 * |-- y/ (ino 261)
221 *
222 * Send snapshot:
223 *
224 * . (ino 256)
225 * |-- a/ (ino 257)
226 * |-- b/ (ino 258)
227 * |-- YY/ (ino 261)
228 * |-- x/ (ino 260)
229 *
230 * Sequence of steps that lead to the send snapshot:
231 * rm -f /a/b/c/foo.txt
232 * mv /a/b/y /a/b/YY
233 * mv /a/b/c/x /a/b/YY
234 * rmdir /a/b/c
235 *
236 * When the child is processed, its move/rename is delayed until its
237 * parent is processed (as explained above), but all other operations
238 * like update utimes, chown, chgrp, etc, are performed and the paths
239 * that it uses for those operations must use the orphanized name of
240 * its parent (the directory we're going to rm later), so we need to
241 * memorize that name.
242 *
243 * Indexed by the inode number of the directory to be deleted.
244 */
245 struct rb_root orphan_dirs;
246
247 struct rb_root rbtree_new_refs;
248 struct rb_root rbtree_deleted_refs;
249 };
250
251 struct pending_dir_move {
252 struct rb_node node;
253 struct list_head list;
254 u64 parent_ino;
255 u64 ino;
256 u64 gen;
257 struct list_head update_refs;
258 };
259
260 struct waiting_dir_move {
261 struct rb_node node;
262 u64 ino;
263 /*
264 * There might be some directory that could not be removed because it
265 * was waiting for this directory inode to be moved first. Therefore
266 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
267 */
268 u64 rmdir_ino;
269 u64 rmdir_gen;
270 bool orphanized;
271 };
272
273 struct orphan_dir_info {
274 struct rb_node node;
275 u64 ino;
276 u64 gen;
277 u64 last_dir_index_offset;
278 };
279
280 struct name_cache_entry {
281 struct list_head list;
282 /*
283 * radix_tree has only 32bit entries but we need to handle 64bit inums.
284 * We use the lower 32bit of the 64bit inum to store it in the tree. If
285 * more then one inum would fall into the same entry, we use radix_list
286 * to store the additional entries. radix_list is also used to store
287 * entries where two entries have the same inum but different
288 * generations.
289 */
290 struct list_head radix_list;
291 u64 ino;
292 u64 gen;
293 u64 parent_ino;
294 u64 parent_gen;
295 int ret;
296 int need_later_update;
297 int name_len;
298 char name[];
299 };
300
301 #define ADVANCE 1
302 #define ADVANCE_ONLY_NEXT -1
303
304 enum btrfs_compare_tree_result {
305 BTRFS_COMPARE_TREE_NEW,
306 BTRFS_COMPARE_TREE_DELETED,
307 BTRFS_COMPARE_TREE_CHANGED,
308 BTRFS_COMPARE_TREE_SAME,
309 };
310
311 __cold
inconsistent_snapshot_error(struct send_ctx * sctx,enum btrfs_compare_tree_result result,const char * what)312 static void inconsistent_snapshot_error(struct send_ctx *sctx,
313 enum btrfs_compare_tree_result result,
314 const char *what)
315 {
316 const char *result_string;
317
318 switch (result) {
319 case BTRFS_COMPARE_TREE_NEW:
320 result_string = "new";
321 break;
322 case BTRFS_COMPARE_TREE_DELETED:
323 result_string = "deleted";
324 break;
325 case BTRFS_COMPARE_TREE_CHANGED:
326 result_string = "updated";
327 break;
328 case BTRFS_COMPARE_TREE_SAME:
329 ASSERT(0);
330 result_string = "unchanged";
331 break;
332 default:
333 ASSERT(0);
334 result_string = "unexpected";
335 }
336
337 btrfs_err(sctx->send_root->fs_info,
338 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
339 result_string, what, sctx->cmp_key->objectid,
340 sctx->send_root->root_key.objectid,
341 (sctx->parent_root ?
342 sctx->parent_root->root_key.objectid : 0));
343 }
344
345 __maybe_unused
proto_cmd_ok(const struct send_ctx * sctx,int cmd)346 static bool proto_cmd_ok(const struct send_ctx *sctx, int cmd)
347 {
348 switch (sctx->proto) {
349 case 1: return cmd <= BTRFS_SEND_C_MAX_V1;
350 case 2: return cmd <= BTRFS_SEND_C_MAX_V2;
351 case 3: return cmd <= BTRFS_SEND_C_MAX_V3;
352 default: return false;
353 }
354 }
355
356 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino);
357
358 static struct waiting_dir_move *
359 get_waiting_dir_move(struct send_ctx *sctx, u64 ino);
360
361 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen);
362
need_send_hole(struct send_ctx * sctx)363 static int need_send_hole(struct send_ctx *sctx)
364 {
365 return (sctx->parent_root && !sctx->cur_inode_new &&
366 !sctx->cur_inode_new_gen && !sctx->cur_inode_deleted &&
367 S_ISREG(sctx->cur_inode_mode));
368 }
369
fs_path_reset(struct fs_path * p)370 static void fs_path_reset(struct fs_path *p)
371 {
372 if (p->reversed) {
373 p->start = p->buf + p->buf_len - 1;
374 p->end = p->start;
375 *p->start = 0;
376 } else {
377 p->start = p->buf;
378 p->end = p->start;
379 *p->start = 0;
380 }
381 }
382
fs_path_alloc(void)383 static struct fs_path *fs_path_alloc(void)
384 {
385 struct fs_path *p;
386
387 p = kmalloc(sizeof(*p), GFP_KERNEL);
388 if (!p)
389 return NULL;
390 p->reversed = 0;
391 p->buf = p->inline_buf;
392 p->buf_len = FS_PATH_INLINE_SIZE;
393 fs_path_reset(p);
394 return p;
395 }
396
fs_path_alloc_reversed(void)397 static struct fs_path *fs_path_alloc_reversed(void)
398 {
399 struct fs_path *p;
400
401 p = fs_path_alloc();
402 if (!p)
403 return NULL;
404 p->reversed = 1;
405 fs_path_reset(p);
406 return p;
407 }
408
fs_path_free(struct fs_path * p)409 static void fs_path_free(struct fs_path *p)
410 {
411 if (!p)
412 return;
413 if (p->buf != p->inline_buf)
414 kfree(p->buf);
415 kfree(p);
416 }
417
fs_path_len(struct fs_path * p)418 static int fs_path_len(struct fs_path *p)
419 {
420 return p->end - p->start;
421 }
422
fs_path_ensure_buf(struct fs_path * p,int len)423 static int fs_path_ensure_buf(struct fs_path *p, int len)
424 {
425 char *tmp_buf;
426 int path_len;
427 int old_buf_len;
428
429 len++;
430
431 if (p->buf_len >= len)
432 return 0;
433
434 if (len > PATH_MAX) {
435 WARN_ON(1);
436 return -ENOMEM;
437 }
438
439 path_len = p->end - p->start;
440 old_buf_len = p->buf_len;
441
442 /*
443 * First time the inline_buf does not suffice
444 */
445 if (p->buf == p->inline_buf) {
446 tmp_buf = kmalloc(len, GFP_KERNEL);
447 if (tmp_buf)
448 memcpy(tmp_buf, p->buf, old_buf_len);
449 } else {
450 tmp_buf = krealloc(p->buf, len, GFP_KERNEL);
451 }
452 if (!tmp_buf)
453 return -ENOMEM;
454 p->buf = tmp_buf;
455 /*
456 * The real size of the buffer is bigger, this will let the fast path
457 * happen most of the time
458 */
459 p->buf_len = ksize(p->buf);
460
461 if (p->reversed) {
462 tmp_buf = p->buf + old_buf_len - path_len - 1;
463 p->end = p->buf + p->buf_len - 1;
464 p->start = p->end - path_len;
465 memmove(p->start, tmp_buf, path_len + 1);
466 } else {
467 p->start = p->buf;
468 p->end = p->start + path_len;
469 }
470 return 0;
471 }
472
fs_path_prepare_for_add(struct fs_path * p,int name_len,char ** prepared)473 static int fs_path_prepare_for_add(struct fs_path *p, int name_len,
474 char **prepared)
475 {
476 int ret;
477 int new_len;
478
479 new_len = p->end - p->start + name_len;
480 if (p->start != p->end)
481 new_len++;
482 ret = fs_path_ensure_buf(p, new_len);
483 if (ret < 0)
484 goto out;
485
486 if (p->reversed) {
487 if (p->start != p->end)
488 *--p->start = '/';
489 p->start -= name_len;
490 *prepared = p->start;
491 } else {
492 if (p->start != p->end)
493 *p->end++ = '/';
494 *prepared = p->end;
495 p->end += name_len;
496 *p->end = 0;
497 }
498
499 out:
500 return ret;
501 }
502
fs_path_add(struct fs_path * p,const char * name,int name_len)503 static int fs_path_add(struct fs_path *p, const char *name, int name_len)
504 {
505 int ret;
506 char *prepared;
507
508 ret = fs_path_prepare_for_add(p, name_len, &prepared);
509 if (ret < 0)
510 goto out;
511 memcpy(prepared, name, name_len);
512
513 out:
514 return ret;
515 }
516
fs_path_add_path(struct fs_path * p,struct fs_path * p2)517 static int fs_path_add_path(struct fs_path *p, struct fs_path *p2)
518 {
519 int ret;
520 char *prepared;
521
522 ret = fs_path_prepare_for_add(p, p2->end - p2->start, &prepared);
523 if (ret < 0)
524 goto out;
525 memcpy(prepared, p2->start, p2->end - p2->start);
526
527 out:
528 return ret;
529 }
530
fs_path_add_from_extent_buffer(struct fs_path * p,struct extent_buffer * eb,unsigned long off,int len)531 static int fs_path_add_from_extent_buffer(struct fs_path *p,
532 struct extent_buffer *eb,
533 unsigned long off, int len)
534 {
535 int ret;
536 char *prepared;
537
538 ret = fs_path_prepare_for_add(p, len, &prepared);
539 if (ret < 0)
540 goto out;
541
542 read_extent_buffer(eb, prepared, off, len);
543
544 out:
545 return ret;
546 }
547
fs_path_copy(struct fs_path * p,struct fs_path * from)548 static int fs_path_copy(struct fs_path *p, struct fs_path *from)
549 {
550 p->reversed = from->reversed;
551 fs_path_reset(p);
552
553 return fs_path_add_path(p, from);
554 }
555
fs_path_unreverse(struct fs_path * p)556 static void fs_path_unreverse(struct fs_path *p)
557 {
558 char *tmp;
559 int len;
560
561 if (!p->reversed)
562 return;
563
564 tmp = p->start;
565 len = p->end - p->start;
566 p->start = p->buf;
567 p->end = p->start + len;
568 memmove(p->start, tmp, len + 1);
569 p->reversed = 0;
570 }
571
alloc_path_for_send(void)572 static struct btrfs_path *alloc_path_for_send(void)
573 {
574 struct btrfs_path *path;
575
576 path = btrfs_alloc_path();
577 if (!path)
578 return NULL;
579 path->search_commit_root = 1;
580 path->skip_locking = 1;
581 path->need_commit_sem = 1;
582 return path;
583 }
584
write_buf(struct file * filp,const void * buf,u32 len,loff_t * off)585 static int write_buf(struct file *filp, const void *buf, u32 len, loff_t *off)
586 {
587 int ret;
588 u32 pos = 0;
589
590 while (pos < len) {
591 ret = kernel_write(filp, buf + pos, len - pos, off);
592 if (ret < 0)
593 return ret;
594 if (ret == 0)
595 return -EIO;
596 pos += ret;
597 }
598
599 return 0;
600 }
601
tlv_put(struct send_ctx * sctx,u16 attr,const void * data,int len)602 static int tlv_put(struct send_ctx *sctx, u16 attr, const void *data, int len)
603 {
604 struct btrfs_tlv_header *hdr;
605 int total_len = sizeof(*hdr) + len;
606 int left = sctx->send_max_size - sctx->send_size;
607
608 if (WARN_ON_ONCE(sctx->put_data))
609 return -EINVAL;
610
611 if (unlikely(left < total_len))
612 return -EOVERFLOW;
613
614 hdr = (struct btrfs_tlv_header *) (sctx->send_buf + sctx->send_size);
615 put_unaligned_le16(attr, &hdr->tlv_type);
616 put_unaligned_le16(len, &hdr->tlv_len);
617 memcpy(hdr + 1, data, len);
618 sctx->send_size += total_len;
619
620 return 0;
621 }
622
623 #define TLV_PUT_DEFINE_INT(bits) \
624 static int tlv_put_u##bits(struct send_ctx *sctx, \
625 u##bits attr, u##bits value) \
626 { \
627 __le##bits __tmp = cpu_to_le##bits(value); \
628 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
629 }
630
631 TLV_PUT_DEFINE_INT(8)
632 TLV_PUT_DEFINE_INT(32)
633 TLV_PUT_DEFINE_INT(64)
634
tlv_put_string(struct send_ctx * sctx,u16 attr,const char * str,int len)635 static int tlv_put_string(struct send_ctx *sctx, u16 attr,
636 const char *str, int len)
637 {
638 if (len == -1)
639 len = strlen(str);
640 return tlv_put(sctx, attr, str, len);
641 }
642
tlv_put_uuid(struct send_ctx * sctx,u16 attr,const u8 * uuid)643 static int tlv_put_uuid(struct send_ctx *sctx, u16 attr,
644 const u8 *uuid)
645 {
646 return tlv_put(sctx, attr, uuid, BTRFS_UUID_SIZE);
647 }
648
tlv_put_btrfs_timespec(struct send_ctx * sctx,u16 attr,struct extent_buffer * eb,struct btrfs_timespec * ts)649 static int tlv_put_btrfs_timespec(struct send_ctx *sctx, u16 attr,
650 struct extent_buffer *eb,
651 struct btrfs_timespec *ts)
652 {
653 struct btrfs_timespec bts;
654 read_extent_buffer(eb, &bts, (unsigned long)ts, sizeof(bts));
655 return tlv_put(sctx, attr, &bts, sizeof(bts));
656 }
657
658
659 #define TLV_PUT(sctx, attrtype, data, attrlen) \
660 do { \
661 ret = tlv_put(sctx, attrtype, data, attrlen); \
662 if (ret < 0) \
663 goto tlv_put_failure; \
664 } while (0)
665
666 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
667 do { \
668 ret = tlv_put_u##bits(sctx, attrtype, value); \
669 if (ret < 0) \
670 goto tlv_put_failure; \
671 } while (0)
672
673 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
674 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
675 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
676 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
677 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
678 do { \
679 ret = tlv_put_string(sctx, attrtype, str, len); \
680 if (ret < 0) \
681 goto tlv_put_failure; \
682 } while (0)
683 #define TLV_PUT_PATH(sctx, attrtype, p) \
684 do { \
685 ret = tlv_put_string(sctx, attrtype, p->start, \
686 p->end - p->start); \
687 if (ret < 0) \
688 goto tlv_put_failure; \
689 } while(0)
690 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
691 do { \
692 ret = tlv_put_uuid(sctx, attrtype, uuid); \
693 if (ret < 0) \
694 goto tlv_put_failure; \
695 } while (0)
696 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
697 do { \
698 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
699 if (ret < 0) \
700 goto tlv_put_failure; \
701 } while (0)
702
send_header(struct send_ctx * sctx)703 static int send_header(struct send_ctx *sctx)
704 {
705 struct btrfs_stream_header hdr;
706
707 strcpy(hdr.magic, BTRFS_SEND_STREAM_MAGIC);
708 hdr.version = cpu_to_le32(sctx->proto);
709 return write_buf(sctx->send_filp, &hdr, sizeof(hdr),
710 &sctx->send_off);
711 }
712
713 /*
714 * For each command/item we want to send to userspace, we call this function.
715 */
begin_cmd(struct send_ctx * sctx,int cmd)716 static int begin_cmd(struct send_ctx *sctx, int cmd)
717 {
718 struct btrfs_cmd_header *hdr;
719
720 if (WARN_ON(!sctx->send_buf))
721 return -EINVAL;
722
723 BUG_ON(sctx->send_size);
724
725 sctx->send_size += sizeof(*hdr);
726 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
727 put_unaligned_le16(cmd, &hdr->cmd);
728
729 return 0;
730 }
731
send_cmd(struct send_ctx * sctx)732 static int send_cmd(struct send_ctx *sctx)
733 {
734 int ret;
735 struct btrfs_cmd_header *hdr;
736 u32 crc;
737
738 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
739 put_unaligned_le32(sctx->send_size - sizeof(*hdr), &hdr->len);
740 put_unaligned_le32(0, &hdr->crc);
741
742 crc = btrfs_crc32c(0, (unsigned char *)sctx->send_buf, sctx->send_size);
743 put_unaligned_le32(crc, &hdr->crc);
744
745 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
746 &sctx->send_off);
747
748 sctx->send_size = 0;
749 sctx->put_data = false;
750
751 return ret;
752 }
753
754 /*
755 * Sends a move instruction to user space
756 */
send_rename(struct send_ctx * sctx,struct fs_path * from,struct fs_path * to)757 static int send_rename(struct send_ctx *sctx,
758 struct fs_path *from, struct fs_path *to)
759 {
760 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
761 int ret;
762
763 btrfs_debug(fs_info, "send_rename %s -> %s", from->start, to->start);
764
765 ret = begin_cmd(sctx, BTRFS_SEND_C_RENAME);
766 if (ret < 0)
767 goto out;
768
769 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, from);
770 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_TO, to);
771
772 ret = send_cmd(sctx);
773
774 tlv_put_failure:
775 out:
776 return ret;
777 }
778
779 /*
780 * Sends a link instruction to user space
781 */
send_link(struct send_ctx * sctx,struct fs_path * path,struct fs_path * lnk)782 static int send_link(struct send_ctx *sctx,
783 struct fs_path *path, struct fs_path *lnk)
784 {
785 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
786 int ret;
787
788 btrfs_debug(fs_info, "send_link %s -> %s", path->start, lnk->start);
789
790 ret = begin_cmd(sctx, BTRFS_SEND_C_LINK);
791 if (ret < 0)
792 goto out;
793
794 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
795 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, lnk);
796
797 ret = send_cmd(sctx);
798
799 tlv_put_failure:
800 out:
801 return ret;
802 }
803
804 /*
805 * Sends an unlink instruction to user space
806 */
send_unlink(struct send_ctx * sctx,struct fs_path * path)807 static int send_unlink(struct send_ctx *sctx, struct fs_path *path)
808 {
809 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
810 int ret;
811
812 btrfs_debug(fs_info, "send_unlink %s", path->start);
813
814 ret = begin_cmd(sctx, BTRFS_SEND_C_UNLINK);
815 if (ret < 0)
816 goto out;
817
818 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
819
820 ret = send_cmd(sctx);
821
822 tlv_put_failure:
823 out:
824 return ret;
825 }
826
827 /*
828 * Sends a rmdir instruction to user space
829 */
send_rmdir(struct send_ctx * sctx,struct fs_path * path)830 static int send_rmdir(struct send_ctx *sctx, struct fs_path *path)
831 {
832 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
833 int ret;
834
835 btrfs_debug(fs_info, "send_rmdir %s", path->start);
836
837 ret = begin_cmd(sctx, BTRFS_SEND_C_RMDIR);
838 if (ret < 0)
839 goto out;
840
841 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
842
843 ret = send_cmd(sctx);
844
845 tlv_put_failure:
846 out:
847 return ret;
848 }
849
850 struct btrfs_inode_info {
851 u64 size;
852 u64 gen;
853 u64 mode;
854 u64 uid;
855 u64 gid;
856 u64 rdev;
857 u64 fileattr;
858 u64 nlink;
859 };
860
861 /*
862 * Helper function to retrieve some fields from an inode item.
863 */
get_inode_info(struct btrfs_root * root,u64 ino,struct btrfs_inode_info * info)864 static int get_inode_info(struct btrfs_root *root, u64 ino,
865 struct btrfs_inode_info *info)
866 {
867 int ret;
868 struct btrfs_path *path;
869 struct btrfs_inode_item *ii;
870 struct btrfs_key key;
871
872 path = alloc_path_for_send();
873 if (!path)
874 return -ENOMEM;
875
876 key.objectid = ino;
877 key.type = BTRFS_INODE_ITEM_KEY;
878 key.offset = 0;
879 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
880 if (ret) {
881 if (ret > 0)
882 ret = -ENOENT;
883 goto out;
884 }
885
886 if (!info)
887 goto out;
888
889 ii = btrfs_item_ptr(path->nodes[0], path->slots[0],
890 struct btrfs_inode_item);
891 info->size = btrfs_inode_size(path->nodes[0], ii);
892 info->gen = btrfs_inode_generation(path->nodes[0], ii);
893 info->mode = btrfs_inode_mode(path->nodes[0], ii);
894 info->uid = btrfs_inode_uid(path->nodes[0], ii);
895 info->gid = btrfs_inode_gid(path->nodes[0], ii);
896 info->rdev = btrfs_inode_rdev(path->nodes[0], ii);
897 info->nlink = btrfs_inode_nlink(path->nodes[0], ii);
898 /*
899 * Transfer the unchanged u64 value of btrfs_inode_item::flags, that's
900 * otherwise logically split to 32/32 parts.
901 */
902 info->fileattr = btrfs_inode_flags(path->nodes[0], ii);
903
904 out:
905 btrfs_free_path(path);
906 return ret;
907 }
908
get_inode_gen(struct btrfs_root * root,u64 ino,u64 * gen)909 static int get_inode_gen(struct btrfs_root *root, u64 ino, u64 *gen)
910 {
911 int ret;
912 struct btrfs_inode_info info;
913
914 if (!gen)
915 return -EPERM;
916
917 ret = get_inode_info(root, ino, &info);
918 if (!ret)
919 *gen = info.gen;
920 return ret;
921 }
922
923 typedef int (*iterate_inode_ref_t)(int num, u64 dir, int index,
924 struct fs_path *p,
925 void *ctx);
926
927 /*
928 * Helper function to iterate the entries in ONE btrfs_inode_ref or
929 * btrfs_inode_extref.
930 * The iterate callback may return a non zero value to stop iteration. This can
931 * be a negative value for error codes or 1 to simply stop it.
932 *
933 * path must point to the INODE_REF or INODE_EXTREF when called.
934 */
iterate_inode_ref(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * found_key,int resolve,iterate_inode_ref_t iterate,void * ctx)935 static int iterate_inode_ref(struct btrfs_root *root, struct btrfs_path *path,
936 struct btrfs_key *found_key, int resolve,
937 iterate_inode_ref_t iterate, void *ctx)
938 {
939 struct extent_buffer *eb = path->nodes[0];
940 struct btrfs_inode_ref *iref;
941 struct btrfs_inode_extref *extref;
942 struct btrfs_path *tmp_path;
943 struct fs_path *p;
944 u32 cur = 0;
945 u32 total;
946 int slot = path->slots[0];
947 u32 name_len;
948 char *start;
949 int ret = 0;
950 int num = 0;
951 int index;
952 u64 dir;
953 unsigned long name_off;
954 unsigned long elem_size;
955 unsigned long ptr;
956
957 p = fs_path_alloc_reversed();
958 if (!p)
959 return -ENOMEM;
960
961 tmp_path = alloc_path_for_send();
962 if (!tmp_path) {
963 fs_path_free(p);
964 return -ENOMEM;
965 }
966
967
968 if (found_key->type == BTRFS_INODE_REF_KEY) {
969 ptr = (unsigned long)btrfs_item_ptr(eb, slot,
970 struct btrfs_inode_ref);
971 total = btrfs_item_size(eb, slot);
972 elem_size = sizeof(*iref);
973 } else {
974 ptr = btrfs_item_ptr_offset(eb, slot);
975 total = btrfs_item_size(eb, slot);
976 elem_size = sizeof(*extref);
977 }
978
979 while (cur < total) {
980 fs_path_reset(p);
981
982 if (found_key->type == BTRFS_INODE_REF_KEY) {
983 iref = (struct btrfs_inode_ref *)(ptr + cur);
984 name_len = btrfs_inode_ref_name_len(eb, iref);
985 name_off = (unsigned long)(iref + 1);
986 index = btrfs_inode_ref_index(eb, iref);
987 dir = found_key->offset;
988 } else {
989 extref = (struct btrfs_inode_extref *)(ptr + cur);
990 name_len = btrfs_inode_extref_name_len(eb, extref);
991 name_off = (unsigned long)&extref->name;
992 index = btrfs_inode_extref_index(eb, extref);
993 dir = btrfs_inode_extref_parent(eb, extref);
994 }
995
996 if (resolve) {
997 start = btrfs_ref_to_path(root, tmp_path, name_len,
998 name_off, eb, dir,
999 p->buf, p->buf_len);
1000 if (IS_ERR(start)) {
1001 ret = PTR_ERR(start);
1002 goto out;
1003 }
1004 if (start < p->buf) {
1005 /* overflow , try again with larger buffer */
1006 ret = fs_path_ensure_buf(p,
1007 p->buf_len + p->buf - start);
1008 if (ret < 0)
1009 goto out;
1010 start = btrfs_ref_to_path(root, tmp_path,
1011 name_len, name_off,
1012 eb, dir,
1013 p->buf, p->buf_len);
1014 if (IS_ERR(start)) {
1015 ret = PTR_ERR(start);
1016 goto out;
1017 }
1018 BUG_ON(start < p->buf);
1019 }
1020 p->start = start;
1021 } else {
1022 ret = fs_path_add_from_extent_buffer(p, eb, name_off,
1023 name_len);
1024 if (ret < 0)
1025 goto out;
1026 }
1027
1028 cur += elem_size + name_len;
1029 ret = iterate(num, dir, index, p, ctx);
1030 if (ret)
1031 goto out;
1032 num++;
1033 }
1034
1035 out:
1036 btrfs_free_path(tmp_path);
1037 fs_path_free(p);
1038 return ret;
1039 }
1040
1041 typedef int (*iterate_dir_item_t)(int num, struct btrfs_key *di_key,
1042 const char *name, int name_len,
1043 const char *data, int data_len,
1044 void *ctx);
1045
1046 /*
1047 * Helper function to iterate the entries in ONE btrfs_dir_item.
1048 * The iterate callback may return a non zero value to stop iteration. This can
1049 * be a negative value for error codes or 1 to simply stop it.
1050 *
1051 * path must point to the dir item when called.
1052 */
iterate_dir_item(struct btrfs_root * root,struct btrfs_path * path,iterate_dir_item_t iterate,void * ctx)1053 static int iterate_dir_item(struct btrfs_root *root, struct btrfs_path *path,
1054 iterate_dir_item_t iterate, void *ctx)
1055 {
1056 int ret = 0;
1057 struct extent_buffer *eb;
1058 struct btrfs_dir_item *di;
1059 struct btrfs_key di_key;
1060 char *buf = NULL;
1061 int buf_len;
1062 u32 name_len;
1063 u32 data_len;
1064 u32 cur;
1065 u32 len;
1066 u32 total;
1067 int slot;
1068 int num;
1069
1070 /*
1071 * Start with a small buffer (1 page). If later we end up needing more
1072 * space, which can happen for xattrs on a fs with a leaf size greater
1073 * then the page size, attempt to increase the buffer. Typically xattr
1074 * values are small.
1075 */
1076 buf_len = PATH_MAX;
1077 buf = kmalloc(buf_len, GFP_KERNEL);
1078 if (!buf) {
1079 ret = -ENOMEM;
1080 goto out;
1081 }
1082
1083 eb = path->nodes[0];
1084 slot = path->slots[0];
1085 di = btrfs_item_ptr(eb, slot, struct btrfs_dir_item);
1086 cur = 0;
1087 len = 0;
1088 total = btrfs_item_size(eb, slot);
1089
1090 num = 0;
1091 while (cur < total) {
1092 name_len = btrfs_dir_name_len(eb, di);
1093 data_len = btrfs_dir_data_len(eb, di);
1094 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
1095
1096 if (btrfs_dir_type(eb, di) == BTRFS_FT_XATTR) {
1097 if (name_len > XATTR_NAME_MAX) {
1098 ret = -ENAMETOOLONG;
1099 goto out;
1100 }
1101 if (name_len + data_len >
1102 BTRFS_MAX_XATTR_SIZE(root->fs_info)) {
1103 ret = -E2BIG;
1104 goto out;
1105 }
1106 } else {
1107 /*
1108 * Path too long
1109 */
1110 if (name_len + data_len > PATH_MAX) {
1111 ret = -ENAMETOOLONG;
1112 goto out;
1113 }
1114 }
1115
1116 if (name_len + data_len > buf_len) {
1117 buf_len = name_len + data_len;
1118 if (is_vmalloc_addr(buf)) {
1119 vfree(buf);
1120 buf = NULL;
1121 } else {
1122 char *tmp = krealloc(buf, buf_len,
1123 GFP_KERNEL | __GFP_NOWARN);
1124
1125 if (!tmp)
1126 kfree(buf);
1127 buf = tmp;
1128 }
1129 if (!buf) {
1130 buf = kvmalloc(buf_len, GFP_KERNEL);
1131 if (!buf) {
1132 ret = -ENOMEM;
1133 goto out;
1134 }
1135 }
1136 }
1137
1138 read_extent_buffer(eb, buf, (unsigned long)(di + 1),
1139 name_len + data_len);
1140
1141 len = sizeof(*di) + name_len + data_len;
1142 di = (struct btrfs_dir_item *)((char *)di + len);
1143 cur += len;
1144
1145 ret = iterate(num, &di_key, buf, name_len, buf + name_len,
1146 data_len, ctx);
1147 if (ret < 0)
1148 goto out;
1149 if (ret) {
1150 ret = 0;
1151 goto out;
1152 }
1153
1154 num++;
1155 }
1156
1157 out:
1158 kvfree(buf);
1159 return ret;
1160 }
1161
__copy_first_ref(int num,u64 dir,int index,struct fs_path * p,void * ctx)1162 static int __copy_first_ref(int num, u64 dir, int index,
1163 struct fs_path *p, void *ctx)
1164 {
1165 int ret;
1166 struct fs_path *pt = ctx;
1167
1168 ret = fs_path_copy(pt, p);
1169 if (ret < 0)
1170 return ret;
1171
1172 /* we want the first only */
1173 return 1;
1174 }
1175
1176 /*
1177 * Retrieve the first path of an inode. If an inode has more then one
1178 * ref/hardlink, this is ignored.
1179 */
get_inode_path(struct btrfs_root * root,u64 ino,struct fs_path * path)1180 static int get_inode_path(struct btrfs_root *root,
1181 u64 ino, struct fs_path *path)
1182 {
1183 int ret;
1184 struct btrfs_key key, found_key;
1185 struct btrfs_path *p;
1186
1187 p = alloc_path_for_send();
1188 if (!p)
1189 return -ENOMEM;
1190
1191 fs_path_reset(path);
1192
1193 key.objectid = ino;
1194 key.type = BTRFS_INODE_REF_KEY;
1195 key.offset = 0;
1196
1197 ret = btrfs_search_slot_for_read(root, &key, p, 1, 0);
1198 if (ret < 0)
1199 goto out;
1200 if (ret) {
1201 ret = 1;
1202 goto out;
1203 }
1204 btrfs_item_key_to_cpu(p->nodes[0], &found_key, p->slots[0]);
1205 if (found_key.objectid != ino ||
1206 (found_key.type != BTRFS_INODE_REF_KEY &&
1207 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1208 ret = -ENOENT;
1209 goto out;
1210 }
1211
1212 ret = iterate_inode_ref(root, p, &found_key, 1,
1213 __copy_first_ref, path);
1214 if (ret < 0)
1215 goto out;
1216 ret = 0;
1217
1218 out:
1219 btrfs_free_path(p);
1220 return ret;
1221 }
1222
1223 struct backref_ctx {
1224 struct send_ctx *sctx;
1225
1226 /* number of total found references */
1227 u64 found;
1228
1229 /*
1230 * used for clones found in send_root. clones found behind cur_objectid
1231 * and cur_offset are not considered as allowed clones.
1232 */
1233 u64 cur_objectid;
1234 u64 cur_offset;
1235
1236 /* may be truncated in case it's the last extent in a file */
1237 u64 extent_len;
1238
1239 /* Just to check for bugs in backref resolving */
1240 int found_itself;
1241 };
1242
__clone_root_cmp_bsearch(const void * key,const void * elt)1243 static int __clone_root_cmp_bsearch(const void *key, const void *elt)
1244 {
1245 u64 root = (u64)(uintptr_t)key;
1246 const struct clone_root *cr = elt;
1247
1248 if (root < cr->root->root_key.objectid)
1249 return -1;
1250 if (root > cr->root->root_key.objectid)
1251 return 1;
1252 return 0;
1253 }
1254
__clone_root_cmp_sort(const void * e1,const void * e2)1255 static int __clone_root_cmp_sort(const void *e1, const void *e2)
1256 {
1257 const struct clone_root *cr1 = e1;
1258 const struct clone_root *cr2 = e2;
1259
1260 if (cr1->root->root_key.objectid < cr2->root->root_key.objectid)
1261 return -1;
1262 if (cr1->root->root_key.objectid > cr2->root->root_key.objectid)
1263 return 1;
1264 return 0;
1265 }
1266
1267 /*
1268 * Called for every backref that is found for the current extent.
1269 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1270 */
__iterate_backrefs(u64 ino,u64 offset,u64 root,void * ctx_)1271 static int __iterate_backrefs(u64 ino, u64 offset, u64 root, void *ctx_)
1272 {
1273 struct backref_ctx *bctx = ctx_;
1274 struct clone_root *found;
1275
1276 /* First check if the root is in the list of accepted clone sources */
1277 found = bsearch((void *)(uintptr_t)root, bctx->sctx->clone_roots,
1278 bctx->sctx->clone_roots_cnt,
1279 sizeof(struct clone_root),
1280 __clone_root_cmp_bsearch);
1281 if (!found)
1282 return 0;
1283
1284 if (found->root == bctx->sctx->send_root &&
1285 ino == bctx->cur_objectid &&
1286 offset == bctx->cur_offset) {
1287 bctx->found_itself = 1;
1288 }
1289
1290 /*
1291 * Make sure we don't consider clones from send_root that are
1292 * behind the current inode/offset.
1293 */
1294 if (found->root == bctx->sctx->send_root) {
1295 /*
1296 * If the source inode was not yet processed we can't issue a
1297 * clone operation, as the source extent does not exist yet at
1298 * the destination of the stream.
1299 */
1300 if (ino > bctx->cur_objectid)
1301 return 0;
1302 /*
1303 * We clone from the inode currently being sent as long as the
1304 * source extent is already processed, otherwise we could try
1305 * to clone from an extent that does not exist yet at the
1306 * destination of the stream.
1307 */
1308 if (ino == bctx->cur_objectid &&
1309 offset + bctx->extent_len >
1310 bctx->sctx->cur_inode_next_write_offset)
1311 return 0;
1312 }
1313
1314 bctx->found++;
1315 found->found_refs++;
1316 if (ino < found->ino) {
1317 found->ino = ino;
1318 found->offset = offset;
1319 } else if (found->ino == ino) {
1320 /*
1321 * same extent found more then once in the same file.
1322 */
1323 if (found->offset > offset + bctx->extent_len)
1324 found->offset = offset;
1325 }
1326
1327 return 0;
1328 }
1329
1330 /*
1331 * Given an inode, offset and extent item, it finds a good clone for a clone
1332 * instruction. Returns -ENOENT when none could be found. The function makes
1333 * sure that the returned clone is usable at the point where sending is at the
1334 * moment. This means, that no clones are accepted which lie behind the current
1335 * inode+offset.
1336 *
1337 * path must point to the extent item when called.
1338 */
find_extent_clone(struct send_ctx * sctx,struct btrfs_path * path,u64 ino,u64 data_offset,u64 ino_size,struct clone_root ** found)1339 static int find_extent_clone(struct send_ctx *sctx,
1340 struct btrfs_path *path,
1341 u64 ino, u64 data_offset,
1342 u64 ino_size,
1343 struct clone_root **found)
1344 {
1345 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
1346 int ret;
1347 int extent_type;
1348 u64 logical;
1349 u64 disk_byte;
1350 u64 num_bytes;
1351 u64 extent_item_pos;
1352 u64 flags = 0;
1353 struct btrfs_file_extent_item *fi;
1354 struct extent_buffer *eb = path->nodes[0];
1355 struct backref_ctx backref_ctx = {0};
1356 struct clone_root *cur_clone_root;
1357 struct btrfs_key found_key;
1358 struct btrfs_path *tmp_path;
1359 struct btrfs_extent_item *ei;
1360 int compressed;
1361 u32 i;
1362
1363 tmp_path = alloc_path_for_send();
1364 if (!tmp_path)
1365 return -ENOMEM;
1366
1367 /* We only use this path under the commit sem */
1368 tmp_path->need_commit_sem = 0;
1369
1370 if (data_offset >= ino_size) {
1371 /*
1372 * There may be extents that lie behind the file's size.
1373 * I at least had this in combination with snapshotting while
1374 * writing large files.
1375 */
1376 ret = 0;
1377 goto out;
1378 }
1379
1380 fi = btrfs_item_ptr(eb, path->slots[0],
1381 struct btrfs_file_extent_item);
1382 extent_type = btrfs_file_extent_type(eb, fi);
1383 if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1384 ret = -ENOENT;
1385 goto out;
1386 }
1387 compressed = btrfs_file_extent_compression(eb, fi);
1388
1389 num_bytes = btrfs_file_extent_num_bytes(eb, fi);
1390 disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
1391 if (disk_byte == 0) {
1392 ret = -ENOENT;
1393 goto out;
1394 }
1395 logical = disk_byte + btrfs_file_extent_offset(eb, fi);
1396
1397 down_read(&fs_info->commit_root_sem);
1398 ret = extent_from_logical(fs_info, disk_byte, tmp_path,
1399 &found_key, &flags);
1400 up_read(&fs_info->commit_root_sem);
1401
1402 if (ret < 0)
1403 goto out;
1404 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1405 ret = -EIO;
1406 goto out;
1407 }
1408
1409 ei = btrfs_item_ptr(tmp_path->nodes[0], tmp_path->slots[0],
1410 struct btrfs_extent_item);
1411 /*
1412 * Backreference walking (iterate_extent_inodes() below) is currently
1413 * too expensive when an extent has a large number of references, both
1414 * in time spent and used memory. So for now just fallback to write
1415 * operations instead of clone operations when an extent has more than
1416 * a certain amount of references.
1417 */
1418 if (btrfs_extent_refs(tmp_path->nodes[0], ei) > SEND_MAX_EXTENT_REFS) {
1419 ret = -ENOENT;
1420 goto out;
1421 }
1422 btrfs_release_path(tmp_path);
1423
1424 /*
1425 * Setup the clone roots.
1426 */
1427 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1428 cur_clone_root = sctx->clone_roots + i;
1429 cur_clone_root->ino = (u64)-1;
1430 cur_clone_root->offset = 0;
1431 cur_clone_root->found_refs = 0;
1432 }
1433
1434 backref_ctx.sctx = sctx;
1435 backref_ctx.found = 0;
1436 backref_ctx.cur_objectid = ino;
1437 backref_ctx.cur_offset = data_offset;
1438 backref_ctx.found_itself = 0;
1439 backref_ctx.extent_len = num_bytes;
1440
1441 /*
1442 * The last extent of a file may be too large due to page alignment.
1443 * We need to adjust extent_len in this case so that the checks in
1444 * __iterate_backrefs work.
1445 */
1446 if (data_offset + num_bytes >= ino_size)
1447 backref_ctx.extent_len = ino_size - data_offset;
1448
1449 /*
1450 * Now collect all backrefs.
1451 */
1452 if (compressed == BTRFS_COMPRESS_NONE)
1453 extent_item_pos = logical - found_key.objectid;
1454 else
1455 extent_item_pos = 0;
1456 ret = iterate_extent_inodes(fs_info, found_key.objectid,
1457 extent_item_pos, 1, __iterate_backrefs,
1458 &backref_ctx, false);
1459
1460 if (ret < 0)
1461 goto out;
1462
1463 down_read(&fs_info->commit_root_sem);
1464 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
1465 /*
1466 * A transaction commit for a transaction in which block group
1467 * relocation was done just happened.
1468 * The disk_bytenr of the file extent item we processed is
1469 * possibly stale, referring to the extent's location before
1470 * relocation. So act as if we haven't found any clone sources
1471 * and fallback to write commands, which will read the correct
1472 * data from the new extent location. Otherwise we will fail
1473 * below because we haven't found our own back reference or we
1474 * could be getting incorrect sources in case the old extent
1475 * was already reallocated after the relocation.
1476 */
1477 up_read(&fs_info->commit_root_sem);
1478 ret = -ENOENT;
1479 goto out;
1480 }
1481 up_read(&fs_info->commit_root_sem);
1482
1483 if (!backref_ctx.found_itself) {
1484 /* found a bug in backref code? */
1485 ret = -EIO;
1486 btrfs_err(fs_info,
1487 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1488 ino, data_offset, disk_byte, found_key.objectid);
1489 goto out;
1490 }
1491
1492 btrfs_debug(fs_info,
1493 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1494 data_offset, ino, num_bytes, logical);
1495
1496 if (!backref_ctx.found)
1497 btrfs_debug(fs_info, "no clones found");
1498
1499 cur_clone_root = NULL;
1500 for (i = 0; i < sctx->clone_roots_cnt; i++) {
1501 if (sctx->clone_roots[i].found_refs) {
1502 if (!cur_clone_root)
1503 cur_clone_root = sctx->clone_roots + i;
1504 else if (sctx->clone_roots[i].root == sctx->send_root)
1505 /* prefer clones from send_root over others */
1506 cur_clone_root = sctx->clone_roots + i;
1507 }
1508
1509 }
1510
1511 if (cur_clone_root) {
1512 *found = cur_clone_root;
1513 ret = 0;
1514 } else {
1515 ret = -ENOENT;
1516 }
1517
1518 out:
1519 btrfs_free_path(tmp_path);
1520 return ret;
1521 }
1522
read_symlink(struct btrfs_root * root,u64 ino,struct fs_path * dest)1523 static int read_symlink(struct btrfs_root *root,
1524 u64 ino,
1525 struct fs_path *dest)
1526 {
1527 int ret;
1528 struct btrfs_path *path;
1529 struct btrfs_key key;
1530 struct btrfs_file_extent_item *ei;
1531 u8 type;
1532 u8 compression;
1533 unsigned long off;
1534 int len;
1535
1536 path = alloc_path_for_send();
1537 if (!path)
1538 return -ENOMEM;
1539
1540 key.objectid = ino;
1541 key.type = BTRFS_EXTENT_DATA_KEY;
1542 key.offset = 0;
1543 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1544 if (ret < 0)
1545 goto out;
1546 if (ret) {
1547 /*
1548 * An empty symlink inode. Can happen in rare error paths when
1549 * creating a symlink (transaction committed before the inode
1550 * eviction handler removed the symlink inode items and a crash
1551 * happened in between or the subvol was snapshoted in between).
1552 * Print an informative message to dmesg/syslog so that the user
1553 * can delete the symlink.
1554 */
1555 btrfs_err(root->fs_info,
1556 "Found empty symlink inode %llu at root %llu",
1557 ino, root->root_key.objectid);
1558 ret = -EIO;
1559 goto out;
1560 }
1561
1562 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
1563 struct btrfs_file_extent_item);
1564 type = btrfs_file_extent_type(path->nodes[0], ei);
1565 compression = btrfs_file_extent_compression(path->nodes[0], ei);
1566 BUG_ON(type != BTRFS_FILE_EXTENT_INLINE);
1567 BUG_ON(compression);
1568
1569 off = btrfs_file_extent_inline_start(ei);
1570 len = btrfs_file_extent_ram_bytes(path->nodes[0], ei);
1571
1572 ret = fs_path_add_from_extent_buffer(dest, path->nodes[0], off, len);
1573
1574 out:
1575 btrfs_free_path(path);
1576 return ret;
1577 }
1578
1579 /*
1580 * Helper function to generate a file name that is unique in the root of
1581 * send_root and parent_root. This is used to generate names for orphan inodes.
1582 */
gen_unique_name(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)1583 static int gen_unique_name(struct send_ctx *sctx,
1584 u64 ino, u64 gen,
1585 struct fs_path *dest)
1586 {
1587 int ret = 0;
1588 struct btrfs_path *path;
1589 struct btrfs_dir_item *di;
1590 char tmp[64];
1591 int len;
1592 u64 idx = 0;
1593
1594 path = alloc_path_for_send();
1595 if (!path)
1596 return -ENOMEM;
1597
1598 while (1) {
1599 len = snprintf(tmp, sizeof(tmp), "o%llu-%llu-%llu",
1600 ino, gen, idx);
1601 ASSERT(len < sizeof(tmp));
1602
1603 di = btrfs_lookup_dir_item(NULL, sctx->send_root,
1604 path, BTRFS_FIRST_FREE_OBJECTID,
1605 tmp, strlen(tmp), 0);
1606 btrfs_release_path(path);
1607 if (IS_ERR(di)) {
1608 ret = PTR_ERR(di);
1609 goto out;
1610 }
1611 if (di) {
1612 /* not unique, try again */
1613 idx++;
1614 continue;
1615 }
1616
1617 if (!sctx->parent_root) {
1618 /* unique */
1619 ret = 0;
1620 break;
1621 }
1622
1623 di = btrfs_lookup_dir_item(NULL, sctx->parent_root,
1624 path, BTRFS_FIRST_FREE_OBJECTID,
1625 tmp, strlen(tmp), 0);
1626 btrfs_release_path(path);
1627 if (IS_ERR(di)) {
1628 ret = PTR_ERR(di);
1629 goto out;
1630 }
1631 if (di) {
1632 /* not unique, try again */
1633 idx++;
1634 continue;
1635 }
1636 /* unique */
1637 break;
1638 }
1639
1640 ret = fs_path_add(dest, tmp, strlen(tmp));
1641
1642 out:
1643 btrfs_free_path(path);
1644 return ret;
1645 }
1646
1647 enum inode_state {
1648 inode_state_no_change,
1649 inode_state_will_create,
1650 inode_state_did_create,
1651 inode_state_will_delete,
1652 inode_state_did_delete,
1653 };
1654
get_cur_inode_state(struct send_ctx * sctx,u64 ino,u64 gen)1655 static int get_cur_inode_state(struct send_ctx *sctx, u64 ino, u64 gen)
1656 {
1657 int ret;
1658 int left_ret;
1659 int right_ret;
1660 u64 left_gen;
1661 u64 right_gen;
1662 struct btrfs_inode_info info;
1663
1664 ret = get_inode_info(sctx->send_root, ino, &info);
1665 if (ret < 0 && ret != -ENOENT)
1666 goto out;
1667 left_ret = (info.nlink == 0) ? -ENOENT : ret;
1668 left_gen = info.gen;
1669
1670 if (!sctx->parent_root) {
1671 right_ret = -ENOENT;
1672 } else {
1673 ret = get_inode_info(sctx->parent_root, ino, &info);
1674 if (ret < 0 && ret != -ENOENT)
1675 goto out;
1676 right_ret = (info.nlink == 0) ? -ENOENT : ret;
1677 right_gen = info.gen;
1678 }
1679
1680 if (!left_ret && !right_ret) {
1681 if (left_gen == gen && right_gen == gen) {
1682 ret = inode_state_no_change;
1683 } else if (left_gen == gen) {
1684 if (ino < sctx->send_progress)
1685 ret = inode_state_did_create;
1686 else
1687 ret = inode_state_will_create;
1688 } else if (right_gen == gen) {
1689 if (ino < sctx->send_progress)
1690 ret = inode_state_did_delete;
1691 else
1692 ret = inode_state_will_delete;
1693 } else {
1694 ret = -ENOENT;
1695 }
1696 } else if (!left_ret) {
1697 if (left_gen == gen) {
1698 if (ino < sctx->send_progress)
1699 ret = inode_state_did_create;
1700 else
1701 ret = inode_state_will_create;
1702 } else {
1703 ret = -ENOENT;
1704 }
1705 } else if (!right_ret) {
1706 if (right_gen == gen) {
1707 if (ino < sctx->send_progress)
1708 ret = inode_state_did_delete;
1709 else
1710 ret = inode_state_will_delete;
1711 } else {
1712 ret = -ENOENT;
1713 }
1714 } else {
1715 ret = -ENOENT;
1716 }
1717
1718 out:
1719 return ret;
1720 }
1721
is_inode_existent(struct send_ctx * sctx,u64 ino,u64 gen)1722 static int is_inode_existent(struct send_ctx *sctx, u64 ino, u64 gen)
1723 {
1724 int ret;
1725
1726 if (ino == BTRFS_FIRST_FREE_OBJECTID)
1727 return 1;
1728
1729 ret = get_cur_inode_state(sctx, ino, gen);
1730 if (ret < 0)
1731 goto out;
1732
1733 if (ret == inode_state_no_change ||
1734 ret == inode_state_did_create ||
1735 ret == inode_state_will_delete)
1736 ret = 1;
1737 else
1738 ret = 0;
1739
1740 out:
1741 return ret;
1742 }
1743
1744 /*
1745 * Helper function to lookup a dir item in a dir.
1746 */
lookup_dir_item_inode(struct btrfs_root * root,u64 dir,const char * name,int name_len,u64 * found_inode)1747 static int lookup_dir_item_inode(struct btrfs_root *root,
1748 u64 dir, const char *name, int name_len,
1749 u64 *found_inode)
1750 {
1751 int ret = 0;
1752 struct btrfs_dir_item *di;
1753 struct btrfs_key key;
1754 struct btrfs_path *path;
1755
1756 path = alloc_path_for_send();
1757 if (!path)
1758 return -ENOMEM;
1759
1760 di = btrfs_lookup_dir_item(NULL, root, path,
1761 dir, name, name_len, 0);
1762 if (IS_ERR_OR_NULL(di)) {
1763 ret = di ? PTR_ERR(di) : -ENOENT;
1764 goto out;
1765 }
1766 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1767 if (key.type == BTRFS_ROOT_ITEM_KEY) {
1768 ret = -ENOENT;
1769 goto out;
1770 }
1771 *found_inode = key.objectid;
1772
1773 out:
1774 btrfs_free_path(path);
1775 return ret;
1776 }
1777
1778 /*
1779 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1780 * generation of the parent dir and the name of the dir entry.
1781 */
get_first_ref(struct btrfs_root * root,u64 ino,u64 * dir,u64 * dir_gen,struct fs_path * name)1782 static int get_first_ref(struct btrfs_root *root, u64 ino,
1783 u64 *dir, u64 *dir_gen, struct fs_path *name)
1784 {
1785 int ret;
1786 struct btrfs_key key;
1787 struct btrfs_key found_key;
1788 struct btrfs_path *path;
1789 int len;
1790 u64 parent_dir;
1791
1792 path = alloc_path_for_send();
1793 if (!path)
1794 return -ENOMEM;
1795
1796 key.objectid = ino;
1797 key.type = BTRFS_INODE_REF_KEY;
1798 key.offset = 0;
1799
1800 ret = btrfs_search_slot_for_read(root, &key, path, 1, 0);
1801 if (ret < 0)
1802 goto out;
1803 if (!ret)
1804 btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1805 path->slots[0]);
1806 if (ret || found_key.objectid != ino ||
1807 (found_key.type != BTRFS_INODE_REF_KEY &&
1808 found_key.type != BTRFS_INODE_EXTREF_KEY)) {
1809 ret = -ENOENT;
1810 goto out;
1811 }
1812
1813 if (found_key.type == BTRFS_INODE_REF_KEY) {
1814 struct btrfs_inode_ref *iref;
1815 iref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1816 struct btrfs_inode_ref);
1817 len = btrfs_inode_ref_name_len(path->nodes[0], iref);
1818 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1819 (unsigned long)(iref + 1),
1820 len);
1821 parent_dir = found_key.offset;
1822 } else {
1823 struct btrfs_inode_extref *extref;
1824 extref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1825 struct btrfs_inode_extref);
1826 len = btrfs_inode_extref_name_len(path->nodes[0], extref);
1827 ret = fs_path_add_from_extent_buffer(name, path->nodes[0],
1828 (unsigned long)&extref->name, len);
1829 parent_dir = btrfs_inode_extref_parent(path->nodes[0], extref);
1830 }
1831 if (ret < 0)
1832 goto out;
1833 btrfs_release_path(path);
1834
1835 if (dir_gen) {
1836 ret = get_inode_gen(root, parent_dir, dir_gen);
1837 if (ret < 0)
1838 goto out;
1839 }
1840
1841 *dir = parent_dir;
1842
1843 out:
1844 btrfs_free_path(path);
1845 return ret;
1846 }
1847
is_first_ref(struct btrfs_root * root,u64 ino,u64 dir,const char * name,int name_len)1848 static int is_first_ref(struct btrfs_root *root,
1849 u64 ino, u64 dir,
1850 const char *name, int name_len)
1851 {
1852 int ret;
1853 struct fs_path *tmp_name;
1854 u64 tmp_dir;
1855
1856 tmp_name = fs_path_alloc();
1857 if (!tmp_name)
1858 return -ENOMEM;
1859
1860 ret = get_first_ref(root, ino, &tmp_dir, NULL, tmp_name);
1861 if (ret < 0)
1862 goto out;
1863
1864 if (dir != tmp_dir || name_len != fs_path_len(tmp_name)) {
1865 ret = 0;
1866 goto out;
1867 }
1868
1869 ret = !memcmp(tmp_name->start, name, name_len);
1870
1871 out:
1872 fs_path_free(tmp_name);
1873 return ret;
1874 }
1875
1876 /*
1877 * Used by process_recorded_refs to determine if a new ref would overwrite an
1878 * already existing ref. In case it detects an overwrite, it returns the
1879 * inode/gen in who_ino/who_gen.
1880 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1881 * to make sure later references to the overwritten inode are possible.
1882 * Orphanizing is however only required for the first ref of an inode.
1883 * process_recorded_refs does an additional is_first_ref check to see if
1884 * orphanizing is really required.
1885 */
will_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,const char * name,int name_len,u64 * who_ino,u64 * who_gen,u64 * who_mode)1886 static int will_overwrite_ref(struct send_ctx *sctx, u64 dir, u64 dir_gen,
1887 const char *name, int name_len,
1888 u64 *who_ino, u64 *who_gen, u64 *who_mode)
1889 {
1890 int ret = 0;
1891 u64 gen;
1892 u64 other_inode = 0;
1893 struct btrfs_inode_info info;
1894
1895 if (!sctx->parent_root)
1896 goto out;
1897
1898 ret = is_inode_existent(sctx, dir, dir_gen);
1899 if (ret <= 0)
1900 goto out;
1901
1902 /*
1903 * If we have a parent root we need to verify that the parent dir was
1904 * not deleted and then re-created, if it was then we have no overwrite
1905 * and we can just unlink this entry.
1906 */
1907 if (sctx->parent_root && dir != BTRFS_FIRST_FREE_OBJECTID) {
1908 ret = get_inode_gen(sctx->parent_root, dir, &gen);
1909 if (ret < 0 && ret != -ENOENT)
1910 goto out;
1911 if (ret) {
1912 ret = 0;
1913 goto out;
1914 }
1915 if (gen != dir_gen)
1916 goto out;
1917 }
1918
1919 ret = lookup_dir_item_inode(sctx->parent_root, dir, name, name_len,
1920 &other_inode);
1921 if (ret < 0 && ret != -ENOENT)
1922 goto out;
1923 if (ret) {
1924 ret = 0;
1925 goto out;
1926 }
1927
1928 /*
1929 * Check if the overwritten ref was already processed. If yes, the ref
1930 * was already unlinked/moved, so we can safely assume that we will not
1931 * overwrite anything at this point in time.
1932 */
1933 if (other_inode > sctx->send_progress ||
1934 is_waiting_for_move(sctx, other_inode)) {
1935 ret = get_inode_info(sctx->parent_root, other_inode, &info);
1936 if (ret < 0)
1937 goto out;
1938
1939 ret = 1;
1940 *who_ino = other_inode;
1941 *who_gen = info.gen;
1942 *who_mode = info.mode;
1943 } else {
1944 ret = 0;
1945 }
1946
1947 out:
1948 return ret;
1949 }
1950
1951 /*
1952 * Checks if the ref was overwritten by an already processed inode. This is
1953 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1954 * thus the orphan name needs be used.
1955 * process_recorded_refs also uses it to avoid unlinking of refs that were
1956 * overwritten.
1957 */
did_overwrite_ref(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 ino,u64 ino_gen,const char * name,int name_len)1958 static int did_overwrite_ref(struct send_ctx *sctx,
1959 u64 dir, u64 dir_gen,
1960 u64 ino, u64 ino_gen,
1961 const char *name, int name_len)
1962 {
1963 int ret = 0;
1964 u64 gen;
1965 u64 ow_inode;
1966
1967 if (!sctx->parent_root)
1968 goto out;
1969
1970 ret = is_inode_existent(sctx, dir, dir_gen);
1971 if (ret <= 0)
1972 goto out;
1973
1974 if (dir != BTRFS_FIRST_FREE_OBJECTID) {
1975 ret = get_inode_gen(sctx->send_root, dir, &gen);
1976 if (ret < 0 && ret != -ENOENT)
1977 goto out;
1978 if (ret) {
1979 ret = 0;
1980 goto out;
1981 }
1982 if (gen != dir_gen)
1983 goto out;
1984 }
1985
1986 /* check if the ref was overwritten by another ref */
1987 ret = lookup_dir_item_inode(sctx->send_root, dir, name, name_len,
1988 &ow_inode);
1989 if (ret < 0 && ret != -ENOENT)
1990 goto out;
1991 if (ret) {
1992 /* was never and will never be overwritten */
1993 ret = 0;
1994 goto out;
1995 }
1996
1997 ret = get_inode_gen(sctx->send_root, ow_inode, &gen);
1998 if (ret < 0)
1999 goto out;
2000
2001 if (ow_inode == ino && gen == ino_gen) {
2002 ret = 0;
2003 goto out;
2004 }
2005
2006 /*
2007 * We know that it is or will be overwritten. Check this now.
2008 * The current inode being processed might have been the one that caused
2009 * inode 'ino' to be orphanized, therefore check if ow_inode matches
2010 * the current inode being processed.
2011 */
2012 if ((ow_inode < sctx->send_progress) ||
2013 (ino != sctx->cur_ino && ow_inode == sctx->cur_ino &&
2014 gen == sctx->cur_inode_gen))
2015 ret = 1;
2016 else
2017 ret = 0;
2018
2019 out:
2020 return ret;
2021 }
2022
2023 /*
2024 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
2025 * that got overwritten. This is used by process_recorded_refs to determine
2026 * if it has to use the path as returned by get_cur_path or the orphan name.
2027 */
did_overwrite_first_ref(struct send_ctx * sctx,u64 ino,u64 gen)2028 static int did_overwrite_first_ref(struct send_ctx *sctx, u64 ino, u64 gen)
2029 {
2030 int ret = 0;
2031 struct fs_path *name = NULL;
2032 u64 dir;
2033 u64 dir_gen;
2034
2035 if (!sctx->parent_root)
2036 goto out;
2037
2038 name = fs_path_alloc();
2039 if (!name)
2040 return -ENOMEM;
2041
2042 ret = get_first_ref(sctx->parent_root, ino, &dir, &dir_gen, name);
2043 if (ret < 0)
2044 goto out;
2045
2046 ret = did_overwrite_ref(sctx, dir, dir_gen, ino, gen,
2047 name->start, fs_path_len(name));
2048
2049 out:
2050 fs_path_free(name);
2051 return ret;
2052 }
2053
2054 /*
2055 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2056 * so we need to do some special handling in case we have clashes. This function
2057 * takes care of this with the help of name_cache_entry::radix_list.
2058 * In case of error, nce is kfreed.
2059 */
name_cache_insert(struct send_ctx * sctx,struct name_cache_entry * nce)2060 static int name_cache_insert(struct send_ctx *sctx,
2061 struct name_cache_entry *nce)
2062 {
2063 int ret = 0;
2064 struct list_head *nce_head;
2065
2066 nce_head = radix_tree_lookup(&sctx->name_cache,
2067 (unsigned long)nce->ino);
2068 if (!nce_head) {
2069 nce_head = kmalloc(sizeof(*nce_head), GFP_KERNEL);
2070 if (!nce_head) {
2071 kfree(nce);
2072 return -ENOMEM;
2073 }
2074 INIT_LIST_HEAD(nce_head);
2075
2076 ret = radix_tree_insert(&sctx->name_cache, nce->ino, nce_head);
2077 if (ret < 0) {
2078 kfree(nce_head);
2079 kfree(nce);
2080 return ret;
2081 }
2082 }
2083 list_add_tail(&nce->radix_list, nce_head);
2084 list_add_tail(&nce->list, &sctx->name_cache_list);
2085 sctx->name_cache_size++;
2086
2087 return ret;
2088 }
2089
name_cache_delete(struct send_ctx * sctx,struct name_cache_entry * nce)2090 static void name_cache_delete(struct send_ctx *sctx,
2091 struct name_cache_entry *nce)
2092 {
2093 struct list_head *nce_head;
2094
2095 nce_head = radix_tree_lookup(&sctx->name_cache,
2096 (unsigned long)nce->ino);
2097 if (!nce_head) {
2098 btrfs_err(sctx->send_root->fs_info,
2099 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2100 nce->ino, sctx->name_cache_size);
2101 }
2102
2103 list_del(&nce->radix_list);
2104 list_del(&nce->list);
2105 sctx->name_cache_size--;
2106
2107 /*
2108 * We may not get to the final release of nce_head if the lookup fails
2109 */
2110 if (nce_head && list_empty(nce_head)) {
2111 radix_tree_delete(&sctx->name_cache, (unsigned long)nce->ino);
2112 kfree(nce_head);
2113 }
2114 }
2115
name_cache_search(struct send_ctx * sctx,u64 ino,u64 gen)2116 static struct name_cache_entry *name_cache_search(struct send_ctx *sctx,
2117 u64 ino, u64 gen)
2118 {
2119 struct list_head *nce_head;
2120 struct name_cache_entry *cur;
2121
2122 nce_head = radix_tree_lookup(&sctx->name_cache, (unsigned long)ino);
2123 if (!nce_head)
2124 return NULL;
2125
2126 list_for_each_entry(cur, nce_head, radix_list) {
2127 if (cur->ino == ino && cur->gen == gen)
2128 return cur;
2129 }
2130 return NULL;
2131 }
2132
2133 /*
2134 * Remove some entries from the beginning of name_cache_list.
2135 */
name_cache_clean_unused(struct send_ctx * sctx)2136 static void name_cache_clean_unused(struct send_ctx *sctx)
2137 {
2138 struct name_cache_entry *nce;
2139
2140 if (sctx->name_cache_size < SEND_CTX_NAME_CACHE_CLEAN_SIZE)
2141 return;
2142
2143 while (sctx->name_cache_size > SEND_CTX_MAX_NAME_CACHE_SIZE) {
2144 nce = list_entry(sctx->name_cache_list.next,
2145 struct name_cache_entry, list);
2146 name_cache_delete(sctx, nce);
2147 kfree(nce);
2148 }
2149 }
2150
name_cache_free(struct send_ctx * sctx)2151 static void name_cache_free(struct send_ctx *sctx)
2152 {
2153 struct name_cache_entry *nce;
2154
2155 while (!list_empty(&sctx->name_cache_list)) {
2156 nce = list_entry(sctx->name_cache_list.next,
2157 struct name_cache_entry, list);
2158 name_cache_delete(sctx, nce);
2159 kfree(nce);
2160 }
2161 }
2162
2163 /*
2164 * Used by get_cur_path for each ref up to the root.
2165 * Returns 0 if it succeeded.
2166 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2167 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2168 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2169 * Returns <0 in case of error.
2170 */
__get_cur_name_and_parent(struct send_ctx * sctx,u64 ino,u64 gen,u64 * parent_ino,u64 * parent_gen,struct fs_path * dest)2171 static int __get_cur_name_and_parent(struct send_ctx *sctx,
2172 u64 ino, u64 gen,
2173 u64 *parent_ino,
2174 u64 *parent_gen,
2175 struct fs_path *dest)
2176 {
2177 int ret;
2178 int nce_ret;
2179 struct name_cache_entry *nce = NULL;
2180
2181 /*
2182 * First check if we already did a call to this function with the same
2183 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2184 * return the cached result.
2185 */
2186 nce = name_cache_search(sctx, ino, gen);
2187 if (nce) {
2188 if (ino < sctx->send_progress && nce->need_later_update) {
2189 name_cache_delete(sctx, nce);
2190 kfree(nce);
2191 nce = NULL;
2192 } else {
2193 /*
2194 * Removes the entry from the list and adds it back to
2195 * the end. This marks the entry as recently used so
2196 * that name_cache_clean_unused does not remove it.
2197 */
2198 list_move_tail(&nce->list, &sctx->name_cache_list);
2199
2200 *parent_ino = nce->parent_ino;
2201 *parent_gen = nce->parent_gen;
2202 ret = fs_path_add(dest, nce->name, nce->name_len);
2203 if (ret < 0)
2204 goto out;
2205 ret = nce->ret;
2206 goto out;
2207 }
2208 }
2209
2210 /*
2211 * If the inode is not existent yet, add the orphan name and return 1.
2212 * This should only happen for the parent dir that we determine in
2213 * record_new_ref_if_needed().
2214 */
2215 ret = is_inode_existent(sctx, ino, gen);
2216 if (ret < 0)
2217 goto out;
2218
2219 if (!ret) {
2220 ret = gen_unique_name(sctx, ino, gen, dest);
2221 if (ret < 0)
2222 goto out;
2223 ret = 1;
2224 goto out_cache;
2225 }
2226
2227 /*
2228 * Depending on whether the inode was already processed or not, use
2229 * send_root or parent_root for ref lookup.
2230 */
2231 if (ino < sctx->send_progress)
2232 ret = get_first_ref(sctx->send_root, ino,
2233 parent_ino, parent_gen, dest);
2234 else
2235 ret = get_first_ref(sctx->parent_root, ino,
2236 parent_ino, parent_gen, dest);
2237 if (ret < 0)
2238 goto out;
2239
2240 /*
2241 * Check if the ref was overwritten by an inode's ref that was processed
2242 * earlier. If yes, treat as orphan and return 1.
2243 */
2244 ret = did_overwrite_ref(sctx, *parent_ino, *parent_gen, ino, gen,
2245 dest->start, dest->end - dest->start);
2246 if (ret < 0)
2247 goto out;
2248 if (ret) {
2249 fs_path_reset(dest);
2250 ret = gen_unique_name(sctx, ino, gen, dest);
2251 if (ret < 0)
2252 goto out;
2253 ret = 1;
2254 }
2255
2256 out_cache:
2257 /*
2258 * Store the result of the lookup in the name cache.
2259 */
2260 nce = kmalloc(sizeof(*nce) + fs_path_len(dest) + 1, GFP_KERNEL);
2261 if (!nce) {
2262 ret = -ENOMEM;
2263 goto out;
2264 }
2265
2266 nce->ino = ino;
2267 nce->gen = gen;
2268 nce->parent_ino = *parent_ino;
2269 nce->parent_gen = *parent_gen;
2270 nce->name_len = fs_path_len(dest);
2271 nce->ret = ret;
2272 strcpy(nce->name, dest->start);
2273
2274 if (ino < sctx->send_progress)
2275 nce->need_later_update = 0;
2276 else
2277 nce->need_later_update = 1;
2278
2279 nce_ret = name_cache_insert(sctx, nce);
2280 if (nce_ret < 0)
2281 ret = nce_ret;
2282 name_cache_clean_unused(sctx);
2283
2284 out:
2285 return ret;
2286 }
2287
2288 /*
2289 * Magic happens here. This function returns the first ref to an inode as it
2290 * would look like while receiving the stream at this point in time.
2291 * We walk the path up to the root. For every inode in between, we check if it
2292 * was already processed/sent. If yes, we continue with the parent as found
2293 * in send_root. If not, we continue with the parent as found in parent_root.
2294 * If we encounter an inode that was deleted at this point in time, we use the
2295 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2296 * that were not created yet and overwritten inodes/refs.
2297 *
2298 * When do we have orphan inodes:
2299 * 1. When an inode is freshly created and thus no valid refs are available yet
2300 * 2. When a directory lost all it's refs (deleted) but still has dir items
2301 * inside which were not processed yet (pending for move/delete). If anyone
2302 * tried to get the path to the dir items, it would get a path inside that
2303 * orphan directory.
2304 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2305 * of an unprocessed inode. If in that case the first ref would be
2306 * overwritten, the overwritten inode gets "orphanized". Later when we
2307 * process this overwritten inode, it is restored at a new place by moving
2308 * the orphan inode.
2309 *
2310 * sctx->send_progress tells this function at which point in time receiving
2311 * would be.
2312 */
get_cur_path(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * dest)2313 static int get_cur_path(struct send_ctx *sctx, u64 ino, u64 gen,
2314 struct fs_path *dest)
2315 {
2316 int ret = 0;
2317 struct fs_path *name = NULL;
2318 u64 parent_inode = 0;
2319 u64 parent_gen = 0;
2320 int stop = 0;
2321
2322 name = fs_path_alloc();
2323 if (!name) {
2324 ret = -ENOMEM;
2325 goto out;
2326 }
2327
2328 dest->reversed = 1;
2329 fs_path_reset(dest);
2330
2331 while (!stop && ino != BTRFS_FIRST_FREE_OBJECTID) {
2332 struct waiting_dir_move *wdm;
2333
2334 fs_path_reset(name);
2335
2336 if (is_waiting_for_rm(sctx, ino, gen)) {
2337 ret = gen_unique_name(sctx, ino, gen, name);
2338 if (ret < 0)
2339 goto out;
2340 ret = fs_path_add_path(dest, name);
2341 break;
2342 }
2343
2344 wdm = get_waiting_dir_move(sctx, ino);
2345 if (wdm && wdm->orphanized) {
2346 ret = gen_unique_name(sctx, ino, gen, name);
2347 stop = 1;
2348 } else if (wdm) {
2349 ret = get_first_ref(sctx->parent_root, ino,
2350 &parent_inode, &parent_gen, name);
2351 } else {
2352 ret = __get_cur_name_and_parent(sctx, ino, gen,
2353 &parent_inode,
2354 &parent_gen, name);
2355 if (ret)
2356 stop = 1;
2357 }
2358
2359 if (ret < 0)
2360 goto out;
2361
2362 ret = fs_path_add_path(dest, name);
2363 if (ret < 0)
2364 goto out;
2365
2366 ino = parent_inode;
2367 gen = parent_gen;
2368 }
2369
2370 out:
2371 fs_path_free(name);
2372 if (!ret)
2373 fs_path_unreverse(dest);
2374 return ret;
2375 }
2376
2377 /*
2378 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2379 */
send_subvol_begin(struct send_ctx * sctx)2380 static int send_subvol_begin(struct send_ctx *sctx)
2381 {
2382 int ret;
2383 struct btrfs_root *send_root = sctx->send_root;
2384 struct btrfs_root *parent_root = sctx->parent_root;
2385 struct btrfs_path *path;
2386 struct btrfs_key key;
2387 struct btrfs_root_ref *ref;
2388 struct extent_buffer *leaf;
2389 char *name = NULL;
2390 int namelen;
2391
2392 path = btrfs_alloc_path();
2393 if (!path)
2394 return -ENOMEM;
2395
2396 name = kmalloc(BTRFS_PATH_NAME_MAX, GFP_KERNEL);
2397 if (!name) {
2398 btrfs_free_path(path);
2399 return -ENOMEM;
2400 }
2401
2402 key.objectid = send_root->root_key.objectid;
2403 key.type = BTRFS_ROOT_BACKREF_KEY;
2404 key.offset = 0;
2405
2406 ret = btrfs_search_slot_for_read(send_root->fs_info->tree_root,
2407 &key, path, 1, 0);
2408 if (ret < 0)
2409 goto out;
2410 if (ret) {
2411 ret = -ENOENT;
2412 goto out;
2413 }
2414
2415 leaf = path->nodes[0];
2416 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2417 if (key.type != BTRFS_ROOT_BACKREF_KEY ||
2418 key.objectid != send_root->root_key.objectid) {
2419 ret = -ENOENT;
2420 goto out;
2421 }
2422 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
2423 namelen = btrfs_root_ref_name_len(leaf, ref);
2424 read_extent_buffer(leaf, name, (unsigned long)(ref + 1), namelen);
2425 btrfs_release_path(path);
2426
2427 if (parent_root) {
2428 ret = begin_cmd(sctx, BTRFS_SEND_C_SNAPSHOT);
2429 if (ret < 0)
2430 goto out;
2431 } else {
2432 ret = begin_cmd(sctx, BTRFS_SEND_C_SUBVOL);
2433 if (ret < 0)
2434 goto out;
2435 }
2436
2437 TLV_PUT_STRING(sctx, BTRFS_SEND_A_PATH, name, namelen);
2438
2439 if (!btrfs_is_empty_uuid(sctx->send_root->root_item.received_uuid))
2440 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2441 sctx->send_root->root_item.received_uuid);
2442 else
2443 TLV_PUT_UUID(sctx, BTRFS_SEND_A_UUID,
2444 sctx->send_root->root_item.uuid);
2445
2446 TLV_PUT_U64(sctx, BTRFS_SEND_A_CTRANSID,
2447 btrfs_root_ctransid(&sctx->send_root->root_item));
2448 if (parent_root) {
2449 if (!btrfs_is_empty_uuid(parent_root->root_item.received_uuid))
2450 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2451 parent_root->root_item.received_uuid);
2452 else
2453 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
2454 parent_root->root_item.uuid);
2455 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
2456 btrfs_root_ctransid(&sctx->parent_root->root_item));
2457 }
2458
2459 ret = send_cmd(sctx);
2460
2461 tlv_put_failure:
2462 out:
2463 btrfs_free_path(path);
2464 kfree(name);
2465 return ret;
2466 }
2467
send_truncate(struct send_ctx * sctx,u64 ino,u64 gen,u64 size)2468 static int send_truncate(struct send_ctx *sctx, u64 ino, u64 gen, u64 size)
2469 {
2470 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2471 int ret = 0;
2472 struct fs_path *p;
2473
2474 btrfs_debug(fs_info, "send_truncate %llu size=%llu", ino, size);
2475
2476 p = fs_path_alloc();
2477 if (!p)
2478 return -ENOMEM;
2479
2480 ret = begin_cmd(sctx, BTRFS_SEND_C_TRUNCATE);
2481 if (ret < 0)
2482 goto out;
2483
2484 ret = get_cur_path(sctx, ino, gen, p);
2485 if (ret < 0)
2486 goto out;
2487 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2488 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, size);
2489
2490 ret = send_cmd(sctx);
2491
2492 tlv_put_failure:
2493 out:
2494 fs_path_free(p);
2495 return ret;
2496 }
2497
send_chmod(struct send_ctx * sctx,u64 ino,u64 gen,u64 mode)2498 static int send_chmod(struct send_ctx *sctx, u64 ino, u64 gen, u64 mode)
2499 {
2500 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2501 int ret = 0;
2502 struct fs_path *p;
2503
2504 btrfs_debug(fs_info, "send_chmod %llu mode=%llu", ino, mode);
2505
2506 p = fs_path_alloc();
2507 if (!p)
2508 return -ENOMEM;
2509
2510 ret = begin_cmd(sctx, BTRFS_SEND_C_CHMOD);
2511 if (ret < 0)
2512 goto out;
2513
2514 ret = get_cur_path(sctx, ino, gen, p);
2515 if (ret < 0)
2516 goto out;
2517 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2518 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode & 07777);
2519
2520 ret = send_cmd(sctx);
2521
2522 tlv_put_failure:
2523 out:
2524 fs_path_free(p);
2525 return ret;
2526 }
2527
send_fileattr(struct send_ctx * sctx,u64 ino,u64 gen,u64 fileattr)2528 static int send_fileattr(struct send_ctx *sctx, u64 ino, u64 gen, u64 fileattr)
2529 {
2530 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2531 int ret = 0;
2532 struct fs_path *p;
2533
2534 if (sctx->proto < 2)
2535 return 0;
2536
2537 btrfs_debug(fs_info, "send_fileattr %llu fileattr=%llu", ino, fileattr);
2538
2539 p = fs_path_alloc();
2540 if (!p)
2541 return -ENOMEM;
2542
2543 ret = begin_cmd(sctx, BTRFS_SEND_C_FILEATTR);
2544 if (ret < 0)
2545 goto out;
2546
2547 ret = get_cur_path(sctx, ino, gen, p);
2548 if (ret < 0)
2549 goto out;
2550 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2551 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILEATTR, fileattr);
2552
2553 ret = send_cmd(sctx);
2554
2555 tlv_put_failure:
2556 out:
2557 fs_path_free(p);
2558 return ret;
2559 }
2560
send_chown(struct send_ctx * sctx,u64 ino,u64 gen,u64 uid,u64 gid)2561 static int send_chown(struct send_ctx *sctx, u64 ino, u64 gen, u64 uid, u64 gid)
2562 {
2563 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2564 int ret = 0;
2565 struct fs_path *p;
2566
2567 btrfs_debug(fs_info, "send_chown %llu uid=%llu, gid=%llu",
2568 ino, uid, gid);
2569
2570 p = fs_path_alloc();
2571 if (!p)
2572 return -ENOMEM;
2573
2574 ret = begin_cmd(sctx, BTRFS_SEND_C_CHOWN);
2575 if (ret < 0)
2576 goto out;
2577
2578 ret = get_cur_path(sctx, ino, gen, p);
2579 if (ret < 0)
2580 goto out;
2581 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2582 TLV_PUT_U64(sctx, BTRFS_SEND_A_UID, uid);
2583 TLV_PUT_U64(sctx, BTRFS_SEND_A_GID, gid);
2584
2585 ret = send_cmd(sctx);
2586
2587 tlv_put_failure:
2588 out:
2589 fs_path_free(p);
2590 return ret;
2591 }
2592
send_utimes(struct send_ctx * sctx,u64 ino,u64 gen)2593 static int send_utimes(struct send_ctx *sctx, u64 ino, u64 gen)
2594 {
2595 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2596 int ret = 0;
2597 struct fs_path *p = NULL;
2598 struct btrfs_inode_item *ii;
2599 struct btrfs_path *path = NULL;
2600 struct extent_buffer *eb;
2601 struct btrfs_key key;
2602 int slot;
2603
2604 btrfs_debug(fs_info, "send_utimes %llu", ino);
2605
2606 p = fs_path_alloc();
2607 if (!p)
2608 return -ENOMEM;
2609
2610 path = alloc_path_for_send();
2611 if (!path) {
2612 ret = -ENOMEM;
2613 goto out;
2614 }
2615
2616 key.objectid = ino;
2617 key.type = BTRFS_INODE_ITEM_KEY;
2618 key.offset = 0;
2619 ret = btrfs_search_slot(NULL, sctx->send_root, &key, path, 0, 0);
2620 if (ret > 0)
2621 ret = -ENOENT;
2622 if (ret < 0)
2623 goto out;
2624
2625 eb = path->nodes[0];
2626 slot = path->slots[0];
2627 ii = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
2628
2629 ret = begin_cmd(sctx, BTRFS_SEND_C_UTIMES);
2630 if (ret < 0)
2631 goto out;
2632
2633 ret = get_cur_path(sctx, ino, gen, p);
2634 if (ret < 0)
2635 goto out;
2636 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2637 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_ATIME, eb, &ii->atime);
2638 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_MTIME, eb, &ii->mtime);
2639 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_CTIME, eb, &ii->ctime);
2640 if (sctx->proto >= 2)
2641 TLV_PUT_BTRFS_TIMESPEC(sctx, BTRFS_SEND_A_OTIME, eb, &ii->otime);
2642
2643 ret = send_cmd(sctx);
2644
2645 tlv_put_failure:
2646 out:
2647 fs_path_free(p);
2648 btrfs_free_path(path);
2649 return ret;
2650 }
2651
2652 /*
2653 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2654 * a valid path yet because we did not process the refs yet. So, the inode
2655 * is created as orphan.
2656 */
send_create_inode(struct send_ctx * sctx,u64 ino)2657 static int send_create_inode(struct send_ctx *sctx, u64 ino)
2658 {
2659 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
2660 int ret = 0;
2661 struct fs_path *p;
2662 int cmd;
2663 struct btrfs_inode_info info;
2664 u64 gen;
2665 u64 mode;
2666 u64 rdev;
2667
2668 btrfs_debug(fs_info, "send_create_inode %llu", ino);
2669
2670 p = fs_path_alloc();
2671 if (!p)
2672 return -ENOMEM;
2673
2674 if (ino != sctx->cur_ino) {
2675 ret = get_inode_info(sctx->send_root, ino, &info);
2676 if (ret < 0)
2677 goto out;
2678 gen = info.gen;
2679 mode = info.mode;
2680 rdev = info.rdev;
2681 } else {
2682 gen = sctx->cur_inode_gen;
2683 mode = sctx->cur_inode_mode;
2684 rdev = sctx->cur_inode_rdev;
2685 }
2686
2687 if (S_ISREG(mode)) {
2688 cmd = BTRFS_SEND_C_MKFILE;
2689 } else if (S_ISDIR(mode)) {
2690 cmd = BTRFS_SEND_C_MKDIR;
2691 } else if (S_ISLNK(mode)) {
2692 cmd = BTRFS_SEND_C_SYMLINK;
2693 } else if (S_ISCHR(mode) || S_ISBLK(mode)) {
2694 cmd = BTRFS_SEND_C_MKNOD;
2695 } else if (S_ISFIFO(mode)) {
2696 cmd = BTRFS_SEND_C_MKFIFO;
2697 } else if (S_ISSOCK(mode)) {
2698 cmd = BTRFS_SEND_C_MKSOCK;
2699 } else {
2700 btrfs_warn(sctx->send_root->fs_info, "unexpected inode type %o",
2701 (int)(mode & S_IFMT));
2702 ret = -EOPNOTSUPP;
2703 goto out;
2704 }
2705
2706 ret = begin_cmd(sctx, cmd);
2707 if (ret < 0)
2708 goto out;
2709
2710 ret = gen_unique_name(sctx, ino, gen, p);
2711 if (ret < 0)
2712 goto out;
2713
2714 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
2715 TLV_PUT_U64(sctx, BTRFS_SEND_A_INO, ino);
2716
2717 if (S_ISLNK(mode)) {
2718 fs_path_reset(p);
2719 ret = read_symlink(sctx->send_root, ino, p);
2720 if (ret < 0)
2721 goto out;
2722 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH_LINK, p);
2723 } else if (S_ISCHR(mode) || S_ISBLK(mode) ||
2724 S_ISFIFO(mode) || S_ISSOCK(mode)) {
2725 TLV_PUT_U64(sctx, BTRFS_SEND_A_RDEV, new_encode_dev(rdev));
2726 TLV_PUT_U64(sctx, BTRFS_SEND_A_MODE, mode);
2727 }
2728
2729 ret = send_cmd(sctx);
2730 if (ret < 0)
2731 goto out;
2732
2733
2734 tlv_put_failure:
2735 out:
2736 fs_path_free(p);
2737 return ret;
2738 }
2739
2740 /*
2741 * We need some special handling for inodes that get processed before the parent
2742 * directory got created. See process_recorded_refs for details.
2743 * This function does the check if we already created the dir out of order.
2744 */
did_create_dir(struct send_ctx * sctx,u64 dir)2745 static int did_create_dir(struct send_ctx *sctx, u64 dir)
2746 {
2747 int ret = 0;
2748 int iter_ret = 0;
2749 struct btrfs_path *path = NULL;
2750 struct btrfs_key key;
2751 struct btrfs_key found_key;
2752 struct btrfs_key di_key;
2753 struct btrfs_dir_item *di;
2754
2755 path = alloc_path_for_send();
2756 if (!path)
2757 return -ENOMEM;
2758
2759 key.objectid = dir;
2760 key.type = BTRFS_DIR_INDEX_KEY;
2761 key.offset = 0;
2762
2763 btrfs_for_each_slot(sctx->send_root, &key, &found_key, path, iter_ret) {
2764 struct extent_buffer *eb = path->nodes[0];
2765
2766 if (found_key.objectid != key.objectid ||
2767 found_key.type != key.type) {
2768 ret = 0;
2769 break;
2770 }
2771
2772 di = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dir_item);
2773 btrfs_dir_item_key_to_cpu(eb, di, &di_key);
2774
2775 if (di_key.type != BTRFS_ROOT_ITEM_KEY &&
2776 di_key.objectid < sctx->send_progress) {
2777 ret = 1;
2778 break;
2779 }
2780 }
2781 /* Catch error found during iteration */
2782 if (iter_ret < 0)
2783 ret = iter_ret;
2784
2785 btrfs_free_path(path);
2786 return ret;
2787 }
2788
2789 /*
2790 * Only creates the inode if it is:
2791 * 1. Not a directory
2792 * 2. Or a directory which was not created already due to out of order
2793 * directories. See did_create_dir and process_recorded_refs for details.
2794 */
send_create_inode_if_needed(struct send_ctx * sctx)2795 static int send_create_inode_if_needed(struct send_ctx *sctx)
2796 {
2797 int ret;
2798
2799 if (S_ISDIR(sctx->cur_inode_mode)) {
2800 ret = did_create_dir(sctx, sctx->cur_ino);
2801 if (ret < 0)
2802 return ret;
2803 else if (ret > 0)
2804 return 0;
2805 }
2806
2807 return send_create_inode(sctx, sctx->cur_ino);
2808 }
2809
2810 struct recorded_ref {
2811 struct list_head list;
2812 char *name;
2813 struct fs_path *full_path;
2814 u64 dir;
2815 u64 dir_gen;
2816 int name_len;
2817 struct rb_node node;
2818 struct rb_root *root;
2819 };
2820
recorded_ref_alloc(void)2821 static struct recorded_ref *recorded_ref_alloc(void)
2822 {
2823 struct recorded_ref *ref;
2824
2825 ref = kzalloc(sizeof(*ref), GFP_KERNEL);
2826 if (!ref)
2827 return NULL;
2828 RB_CLEAR_NODE(&ref->node);
2829 INIT_LIST_HEAD(&ref->list);
2830 return ref;
2831 }
2832
recorded_ref_free(struct recorded_ref * ref)2833 static void recorded_ref_free(struct recorded_ref *ref)
2834 {
2835 if (!ref)
2836 return;
2837 if (!RB_EMPTY_NODE(&ref->node))
2838 rb_erase(&ref->node, ref->root);
2839 list_del(&ref->list);
2840 fs_path_free(ref->full_path);
2841 kfree(ref);
2842 }
2843
set_ref_path(struct recorded_ref * ref,struct fs_path * path)2844 static void set_ref_path(struct recorded_ref *ref, struct fs_path *path)
2845 {
2846 ref->full_path = path;
2847 ref->name = (char *)kbasename(ref->full_path->start);
2848 ref->name_len = ref->full_path->end - ref->name;
2849 }
2850
dup_ref(struct recorded_ref * ref,struct list_head * list)2851 static int dup_ref(struct recorded_ref *ref, struct list_head *list)
2852 {
2853 struct recorded_ref *new;
2854
2855 new = recorded_ref_alloc();
2856 if (!new)
2857 return -ENOMEM;
2858
2859 new->dir = ref->dir;
2860 new->dir_gen = ref->dir_gen;
2861 list_add_tail(&new->list, list);
2862 return 0;
2863 }
2864
__free_recorded_refs(struct list_head * head)2865 static void __free_recorded_refs(struct list_head *head)
2866 {
2867 struct recorded_ref *cur;
2868
2869 while (!list_empty(head)) {
2870 cur = list_entry(head->next, struct recorded_ref, list);
2871 recorded_ref_free(cur);
2872 }
2873 }
2874
free_recorded_refs(struct send_ctx * sctx)2875 static void free_recorded_refs(struct send_ctx *sctx)
2876 {
2877 __free_recorded_refs(&sctx->new_refs);
2878 __free_recorded_refs(&sctx->deleted_refs);
2879 }
2880
2881 /*
2882 * Renames/moves a file/dir to its orphan name. Used when the first
2883 * ref of an unprocessed inode gets overwritten and for all non empty
2884 * directories.
2885 */
orphanize_inode(struct send_ctx * sctx,u64 ino,u64 gen,struct fs_path * path)2886 static int orphanize_inode(struct send_ctx *sctx, u64 ino, u64 gen,
2887 struct fs_path *path)
2888 {
2889 int ret;
2890 struct fs_path *orphan;
2891
2892 orphan = fs_path_alloc();
2893 if (!orphan)
2894 return -ENOMEM;
2895
2896 ret = gen_unique_name(sctx, ino, gen, orphan);
2897 if (ret < 0)
2898 goto out;
2899
2900 ret = send_rename(sctx, path, orphan);
2901
2902 out:
2903 fs_path_free(orphan);
2904 return ret;
2905 }
2906
add_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 dir_gen)2907 static struct orphan_dir_info *add_orphan_dir_info(struct send_ctx *sctx,
2908 u64 dir_ino, u64 dir_gen)
2909 {
2910 struct rb_node **p = &sctx->orphan_dirs.rb_node;
2911 struct rb_node *parent = NULL;
2912 struct orphan_dir_info *entry, *odi;
2913
2914 while (*p) {
2915 parent = *p;
2916 entry = rb_entry(parent, struct orphan_dir_info, node);
2917 if (dir_ino < entry->ino)
2918 p = &(*p)->rb_left;
2919 else if (dir_ino > entry->ino)
2920 p = &(*p)->rb_right;
2921 else if (dir_gen < entry->gen)
2922 p = &(*p)->rb_left;
2923 else if (dir_gen > entry->gen)
2924 p = &(*p)->rb_right;
2925 else
2926 return entry;
2927 }
2928
2929 odi = kmalloc(sizeof(*odi), GFP_KERNEL);
2930 if (!odi)
2931 return ERR_PTR(-ENOMEM);
2932 odi->ino = dir_ino;
2933 odi->gen = dir_gen;
2934 odi->last_dir_index_offset = 0;
2935
2936 rb_link_node(&odi->node, parent, p);
2937 rb_insert_color(&odi->node, &sctx->orphan_dirs);
2938 return odi;
2939 }
2940
get_orphan_dir_info(struct send_ctx * sctx,u64 dir_ino,u64 gen)2941 static struct orphan_dir_info *get_orphan_dir_info(struct send_ctx *sctx,
2942 u64 dir_ino, u64 gen)
2943 {
2944 struct rb_node *n = sctx->orphan_dirs.rb_node;
2945 struct orphan_dir_info *entry;
2946
2947 while (n) {
2948 entry = rb_entry(n, struct orphan_dir_info, node);
2949 if (dir_ino < entry->ino)
2950 n = n->rb_left;
2951 else if (dir_ino > entry->ino)
2952 n = n->rb_right;
2953 else if (gen < entry->gen)
2954 n = n->rb_left;
2955 else if (gen > entry->gen)
2956 n = n->rb_right;
2957 else
2958 return entry;
2959 }
2960 return NULL;
2961 }
2962
is_waiting_for_rm(struct send_ctx * sctx,u64 dir_ino,u64 gen)2963 static int is_waiting_for_rm(struct send_ctx *sctx, u64 dir_ino, u64 gen)
2964 {
2965 struct orphan_dir_info *odi = get_orphan_dir_info(sctx, dir_ino, gen);
2966
2967 return odi != NULL;
2968 }
2969
free_orphan_dir_info(struct send_ctx * sctx,struct orphan_dir_info * odi)2970 static void free_orphan_dir_info(struct send_ctx *sctx,
2971 struct orphan_dir_info *odi)
2972 {
2973 if (!odi)
2974 return;
2975 rb_erase(&odi->node, &sctx->orphan_dirs);
2976 kfree(odi);
2977 }
2978
2979 /*
2980 * Returns 1 if a directory can be removed at this point in time.
2981 * We check this by iterating all dir items and checking if the inode behind
2982 * the dir item was already processed.
2983 */
can_rmdir(struct send_ctx * sctx,u64 dir,u64 dir_gen,u64 send_progress)2984 static int can_rmdir(struct send_ctx *sctx, u64 dir, u64 dir_gen,
2985 u64 send_progress)
2986 {
2987 int ret = 0;
2988 int iter_ret = 0;
2989 struct btrfs_root *root = sctx->parent_root;
2990 struct btrfs_path *path;
2991 struct btrfs_key key;
2992 struct btrfs_key found_key;
2993 struct btrfs_key loc;
2994 struct btrfs_dir_item *di;
2995 struct orphan_dir_info *odi = NULL;
2996
2997 /*
2998 * Don't try to rmdir the top/root subvolume dir.
2999 */
3000 if (dir == BTRFS_FIRST_FREE_OBJECTID)
3001 return 0;
3002
3003 path = alloc_path_for_send();
3004 if (!path)
3005 return -ENOMEM;
3006
3007 key.objectid = dir;
3008 key.type = BTRFS_DIR_INDEX_KEY;
3009 key.offset = 0;
3010
3011 odi = get_orphan_dir_info(sctx, dir, dir_gen);
3012 if (odi)
3013 key.offset = odi->last_dir_index_offset;
3014
3015 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
3016 struct waiting_dir_move *dm;
3017
3018 if (found_key.objectid != key.objectid ||
3019 found_key.type != key.type)
3020 break;
3021
3022 di = btrfs_item_ptr(path->nodes[0], path->slots[0],
3023 struct btrfs_dir_item);
3024 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &loc);
3025
3026 dm = get_waiting_dir_move(sctx, loc.objectid);
3027 if (dm) {
3028 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3029 if (IS_ERR(odi)) {
3030 ret = PTR_ERR(odi);
3031 goto out;
3032 }
3033 odi->gen = dir_gen;
3034 odi->last_dir_index_offset = found_key.offset;
3035 dm->rmdir_ino = dir;
3036 dm->rmdir_gen = dir_gen;
3037 ret = 0;
3038 goto out;
3039 }
3040
3041 if (loc.objectid > send_progress) {
3042 odi = add_orphan_dir_info(sctx, dir, dir_gen);
3043 if (IS_ERR(odi)) {
3044 ret = PTR_ERR(odi);
3045 goto out;
3046 }
3047 odi->gen = dir_gen;
3048 odi->last_dir_index_offset = found_key.offset;
3049 ret = 0;
3050 goto out;
3051 }
3052 }
3053 if (iter_ret < 0) {
3054 ret = iter_ret;
3055 goto out;
3056 }
3057 free_orphan_dir_info(sctx, odi);
3058
3059 ret = 1;
3060
3061 out:
3062 btrfs_free_path(path);
3063 return ret;
3064 }
3065
is_waiting_for_move(struct send_ctx * sctx,u64 ino)3066 static int is_waiting_for_move(struct send_ctx *sctx, u64 ino)
3067 {
3068 struct waiting_dir_move *entry = get_waiting_dir_move(sctx, ino);
3069
3070 return entry != NULL;
3071 }
3072
add_waiting_dir_move(struct send_ctx * sctx,u64 ino,bool orphanized)3073 static int add_waiting_dir_move(struct send_ctx *sctx, u64 ino, bool orphanized)
3074 {
3075 struct rb_node **p = &sctx->waiting_dir_moves.rb_node;
3076 struct rb_node *parent = NULL;
3077 struct waiting_dir_move *entry, *dm;
3078
3079 dm = kmalloc(sizeof(*dm), GFP_KERNEL);
3080 if (!dm)
3081 return -ENOMEM;
3082 dm->ino = ino;
3083 dm->rmdir_ino = 0;
3084 dm->rmdir_gen = 0;
3085 dm->orphanized = orphanized;
3086
3087 while (*p) {
3088 parent = *p;
3089 entry = rb_entry(parent, struct waiting_dir_move, node);
3090 if (ino < entry->ino) {
3091 p = &(*p)->rb_left;
3092 } else if (ino > entry->ino) {
3093 p = &(*p)->rb_right;
3094 } else {
3095 kfree(dm);
3096 return -EEXIST;
3097 }
3098 }
3099
3100 rb_link_node(&dm->node, parent, p);
3101 rb_insert_color(&dm->node, &sctx->waiting_dir_moves);
3102 return 0;
3103 }
3104
3105 static struct waiting_dir_move *
get_waiting_dir_move(struct send_ctx * sctx,u64 ino)3106 get_waiting_dir_move(struct send_ctx *sctx, u64 ino)
3107 {
3108 struct rb_node *n = sctx->waiting_dir_moves.rb_node;
3109 struct waiting_dir_move *entry;
3110
3111 while (n) {
3112 entry = rb_entry(n, struct waiting_dir_move, node);
3113 if (ino < entry->ino)
3114 n = n->rb_left;
3115 else if (ino > entry->ino)
3116 n = n->rb_right;
3117 else
3118 return entry;
3119 }
3120 return NULL;
3121 }
3122
free_waiting_dir_move(struct send_ctx * sctx,struct waiting_dir_move * dm)3123 static void free_waiting_dir_move(struct send_ctx *sctx,
3124 struct waiting_dir_move *dm)
3125 {
3126 if (!dm)
3127 return;
3128 rb_erase(&dm->node, &sctx->waiting_dir_moves);
3129 kfree(dm);
3130 }
3131
add_pending_dir_move(struct send_ctx * sctx,u64 ino,u64 ino_gen,u64 parent_ino,struct list_head * new_refs,struct list_head * deleted_refs,const bool is_orphan)3132 static int add_pending_dir_move(struct send_ctx *sctx,
3133 u64 ino,
3134 u64 ino_gen,
3135 u64 parent_ino,
3136 struct list_head *new_refs,
3137 struct list_head *deleted_refs,
3138 const bool is_orphan)
3139 {
3140 struct rb_node **p = &sctx->pending_dir_moves.rb_node;
3141 struct rb_node *parent = NULL;
3142 struct pending_dir_move *entry = NULL, *pm;
3143 struct recorded_ref *cur;
3144 int exists = 0;
3145 int ret;
3146
3147 pm = kmalloc(sizeof(*pm), GFP_KERNEL);
3148 if (!pm)
3149 return -ENOMEM;
3150 pm->parent_ino = parent_ino;
3151 pm->ino = ino;
3152 pm->gen = ino_gen;
3153 INIT_LIST_HEAD(&pm->list);
3154 INIT_LIST_HEAD(&pm->update_refs);
3155 RB_CLEAR_NODE(&pm->node);
3156
3157 while (*p) {
3158 parent = *p;
3159 entry = rb_entry(parent, struct pending_dir_move, node);
3160 if (parent_ino < entry->parent_ino) {
3161 p = &(*p)->rb_left;
3162 } else if (parent_ino > entry->parent_ino) {
3163 p = &(*p)->rb_right;
3164 } else {
3165 exists = 1;
3166 break;
3167 }
3168 }
3169
3170 list_for_each_entry(cur, deleted_refs, list) {
3171 ret = dup_ref(cur, &pm->update_refs);
3172 if (ret < 0)
3173 goto out;
3174 }
3175 list_for_each_entry(cur, new_refs, list) {
3176 ret = dup_ref(cur, &pm->update_refs);
3177 if (ret < 0)
3178 goto out;
3179 }
3180
3181 ret = add_waiting_dir_move(sctx, pm->ino, is_orphan);
3182 if (ret)
3183 goto out;
3184
3185 if (exists) {
3186 list_add_tail(&pm->list, &entry->list);
3187 } else {
3188 rb_link_node(&pm->node, parent, p);
3189 rb_insert_color(&pm->node, &sctx->pending_dir_moves);
3190 }
3191 ret = 0;
3192 out:
3193 if (ret) {
3194 __free_recorded_refs(&pm->update_refs);
3195 kfree(pm);
3196 }
3197 return ret;
3198 }
3199
get_pending_dir_moves(struct send_ctx * sctx,u64 parent_ino)3200 static struct pending_dir_move *get_pending_dir_moves(struct send_ctx *sctx,
3201 u64 parent_ino)
3202 {
3203 struct rb_node *n = sctx->pending_dir_moves.rb_node;
3204 struct pending_dir_move *entry;
3205
3206 while (n) {
3207 entry = rb_entry(n, struct pending_dir_move, node);
3208 if (parent_ino < entry->parent_ino)
3209 n = n->rb_left;
3210 else if (parent_ino > entry->parent_ino)
3211 n = n->rb_right;
3212 else
3213 return entry;
3214 }
3215 return NULL;
3216 }
3217
path_loop(struct send_ctx * sctx,struct fs_path * name,u64 ino,u64 gen,u64 * ancestor_ino)3218 static int path_loop(struct send_ctx *sctx, struct fs_path *name,
3219 u64 ino, u64 gen, u64 *ancestor_ino)
3220 {
3221 int ret = 0;
3222 u64 parent_inode = 0;
3223 u64 parent_gen = 0;
3224 u64 start_ino = ino;
3225
3226 *ancestor_ino = 0;
3227 while (ino != BTRFS_FIRST_FREE_OBJECTID) {
3228 fs_path_reset(name);
3229
3230 if (is_waiting_for_rm(sctx, ino, gen))
3231 break;
3232 if (is_waiting_for_move(sctx, ino)) {
3233 if (*ancestor_ino == 0)
3234 *ancestor_ino = ino;
3235 ret = get_first_ref(sctx->parent_root, ino,
3236 &parent_inode, &parent_gen, name);
3237 } else {
3238 ret = __get_cur_name_and_parent(sctx, ino, gen,
3239 &parent_inode,
3240 &parent_gen, name);
3241 if (ret > 0) {
3242 ret = 0;
3243 break;
3244 }
3245 }
3246 if (ret < 0)
3247 break;
3248 if (parent_inode == start_ino) {
3249 ret = 1;
3250 if (*ancestor_ino == 0)
3251 *ancestor_ino = ino;
3252 break;
3253 }
3254 ino = parent_inode;
3255 gen = parent_gen;
3256 }
3257 return ret;
3258 }
3259
apply_dir_move(struct send_ctx * sctx,struct pending_dir_move * pm)3260 static int apply_dir_move(struct send_ctx *sctx, struct pending_dir_move *pm)
3261 {
3262 struct fs_path *from_path = NULL;
3263 struct fs_path *to_path = NULL;
3264 struct fs_path *name = NULL;
3265 u64 orig_progress = sctx->send_progress;
3266 struct recorded_ref *cur;
3267 u64 parent_ino, parent_gen;
3268 struct waiting_dir_move *dm = NULL;
3269 u64 rmdir_ino = 0;
3270 u64 rmdir_gen;
3271 u64 ancestor;
3272 bool is_orphan;
3273 int ret;
3274
3275 name = fs_path_alloc();
3276 from_path = fs_path_alloc();
3277 if (!name || !from_path) {
3278 ret = -ENOMEM;
3279 goto out;
3280 }
3281
3282 dm = get_waiting_dir_move(sctx, pm->ino);
3283 ASSERT(dm);
3284 rmdir_ino = dm->rmdir_ino;
3285 rmdir_gen = dm->rmdir_gen;
3286 is_orphan = dm->orphanized;
3287 free_waiting_dir_move(sctx, dm);
3288
3289 if (is_orphan) {
3290 ret = gen_unique_name(sctx, pm->ino,
3291 pm->gen, from_path);
3292 } else {
3293 ret = get_first_ref(sctx->parent_root, pm->ino,
3294 &parent_ino, &parent_gen, name);
3295 if (ret < 0)
3296 goto out;
3297 ret = get_cur_path(sctx, parent_ino, parent_gen,
3298 from_path);
3299 if (ret < 0)
3300 goto out;
3301 ret = fs_path_add_path(from_path, name);
3302 }
3303 if (ret < 0)
3304 goto out;
3305
3306 sctx->send_progress = sctx->cur_ino + 1;
3307 ret = path_loop(sctx, name, pm->ino, pm->gen, &ancestor);
3308 if (ret < 0)
3309 goto out;
3310 if (ret) {
3311 LIST_HEAD(deleted_refs);
3312 ASSERT(ancestor > BTRFS_FIRST_FREE_OBJECTID);
3313 ret = add_pending_dir_move(sctx, pm->ino, pm->gen, ancestor,
3314 &pm->update_refs, &deleted_refs,
3315 is_orphan);
3316 if (ret < 0)
3317 goto out;
3318 if (rmdir_ino) {
3319 dm = get_waiting_dir_move(sctx, pm->ino);
3320 ASSERT(dm);
3321 dm->rmdir_ino = rmdir_ino;
3322 dm->rmdir_gen = rmdir_gen;
3323 }
3324 goto out;
3325 }
3326 fs_path_reset(name);
3327 to_path = name;
3328 name = NULL;
3329 ret = get_cur_path(sctx, pm->ino, pm->gen, to_path);
3330 if (ret < 0)
3331 goto out;
3332
3333 ret = send_rename(sctx, from_path, to_path);
3334 if (ret < 0)
3335 goto out;
3336
3337 if (rmdir_ino) {
3338 struct orphan_dir_info *odi;
3339 u64 gen;
3340
3341 odi = get_orphan_dir_info(sctx, rmdir_ino, rmdir_gen);
3342 if (!odi) {
3343 /* already deleted */
3344 goto finish;
3345 }
3346 gen = odi->gen;
3347
3348 ret = can_rmdir(sctx, rmdir_ino, gen, sctx->cur_ino);
3349 if (ret < 0)
3350 goto out;
3351 if (!ret)
3352 goto finish;
3353
3354 name = fs_path_alloc();
3355 if (!name) {
3356 ret = -ENOMEM;
3357 goto out;
3358 }
3359 ret = get_cur_path(sctx, rmdir_ino, gen, name);
3360 if (ret < 0)
3361 goto out;
3362 ret = send_rmdir(sctx, name);
3363 if (ret < 0)
3364 goto out;
3365 }
3366
3367 finish:
3368 ret = send_utimes(sctx, pm->ino, pm->gen);
3369 if (ret < 0)
3370 goto out;
3371
3372 /*
3373 * After rename/move, need to update the utimes of both new parent(s)
3374 * and old parent(s).
3375 */
3376 list_for_each_entry(cur, &pm->update_refs, list) {
3377 /*
3378 * The parent inode might have been deleted in the send snapshot
3379 */
3380 ret = get_inode_info(sctx->send_root, cur->dir, NULL);
3381 if (ret == -ENOENT) {
3382 ret = 0;
3383 continue;
3384 }
3385 if (ret < 0)
3386 goto out;
3387
3388 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
3389 if (ret < 0)
3390 goto out;
3391 }
3392
3393 out:
3394 fs_path_free(name);
3395 fs_path_free(from_path);
3396 fs_path_free(to_path);
3397 sctx->send_progress = orig_progress;
3398
3399 return ret;
3400 }
3401
free_pending_move(struct send_ctx * sctx,struct pending_dir_move * m)3402 static void free_pending_move(struct send_ctx *sctx, struct pending_dir_move *m)
3403 {
3404 if (!list_empty(&m->list))
3405 list_del(&m->list);
3406 if (!RB_EMPTY_NODE(&m->node))
3407 rb_erase(&m->node, &sctx->pending_dir_moves);
3408 __free_recorded_refs(&m->update_refs);
3409 kfree(m);
3410 }
3411
tail_append_pending_moves(struct send_ctx * sctx,struct pending_dir_move * moves,struct list_head * stack)3412 static void tail_append_pending_moves(struct send_ctx *sctx,
3413 struct pending_dir_move *moves,
3414 struct list_head *stack)
3415 {
3416 if (list_empty(&moves->list)) {
3417 list_add_tail(&moves->list, stack);
3418 } else {
3419 LIST_HEAD(list);
3420 list_splice_init(&moves->list, &list);
3421 list_add_tail(&moves->list, stack);
3422 list_splice_tail(&list, stack);
3423 }
3424 if (!RB_EMPTY_NODE(&moves->node)) {
3425 rb_erase(&moves->node, &sctx->pending_dir_moves);
3426 RB_CLEAR_NODE(&moves->node);
3427 }
3428 }
3429
apply_children_dir_moves(struct send_ctx * sctx)3430 static int apply_children_dir_moves(struct send_ctx *sctx)
3431 {
3432 struct pending_dir_move *pm;
3433 struct list_head stack;
3434 u64 parent_ino = sctx->cur_ino;
3435 int ret = 0;
3436
3437 pm = get_pending_dir_moves(sctx, parent_ino);
3438 if (!pm)
3439 return 0;
3440
3441 INIT_LIST_HEAD(&stack);
3442 tail_append_pending_moves(sctx, pm, &stack);
3443
3444 while (!list_empty(&stack)) {
3445 pm = list_first_entry(&stack, struct pending_dir_move, list);
3446 parent_ino = pm->ino;
3447 ret = apply_dir_move(sctx, pm);
3448 free_pending_move(sctx, pm);
3449 if (ret)
3450 goto out;
3451 pm = get_pending_dir_moves(sctx, parent_ino);
3452 if (pm)
3453 tail_append_pending_moves(sctx, pm, &stack);
3454 }
3455 return 0;
3456
3457 out:
3458 while (!list_empty(&stack)) {
3459 pm = list_first_entry(&stack, struct pending_dir_move, list);
3460 free_pending_move(sctx, pm);
3461 }
3462 return ret;
3463 }
3464
3465 /*
3466 * We might need to delay a directory rename even when no ancestor directory
3467 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3468 * renamed. This happens when we rename a directory to the old name (the name
3469 * in the parent root) of some other unrelated directory that got its rename
3470 * delayed due to some ancestor with higher number that got renamed.
3471 *
3472 * Example:
3473 *
3474 * Parent snapshot:
3475 * . (ino 256)
3476 * |---- a/ (ino 257)
3477 * | |---- file (ino 260)
3478 * |
3479 * |---- b/ (ino 258)
3480 * |---- c/ (ino 259)
3481 *
3482 * Send snapshot:
3483 * . (ino 256)
3484 * |---- a/ (ino 258)
3485 * |---- x/ (ino 259)
3486 * |---- y/ (ino 257)
3487 * |----- file (ino 260)
3488 *
3489 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3490 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3491 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3492 * must issue is:
3493 *
3494 * 1 - rename 259 from 'c' to 'x'
3495 * 2 - rename 257 from 'a' to 'x/y'
3496 * 3 - rename 258 from 'b' to 'a'
3497 *
3498 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3499 * be done right away and < 0 on error.
3500 */
wait_for_dest_dir_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3501 static int wait_for_dest_dir_move(struct send_ctx *sctx,
3502 struct recorded_ref *parent_ref,
3503 const bool is_orphan)
3504 {
3505 struct btrfs_fs_info *fs_info = sctx->parent_root->fs_info;
3506 struct btrfs_path *path;
3507 struct btrfs_key key;
3508 struct btrfs_key di_key;
3509 struct btrfs_dir_item *di;
3510 u64 left_gen;
3511 u64 right_gen;
3512 int ret = 0;
3513 struct waiting_dir_move *wdm;
3514
3515 if (RB_EMPTY_ROOT(&sctx->waiting_dir_moves))
3516 return 0;
3517
3518 path = alloc_path_for_send();
3519 if (!path)
3520 return -ENOMEM;
3521
3522 key.objectid = parent_ref->dir;
3523 key.type = BTRFS_DIR_ITEM_KEY;
3524 key.offset = btrfs_name_hash(parent_ref->name, parent_ref->name_len);
3525
3526 ret = btrfs_search_slot(NULL, sctx->parent_root, &key, path, 0, 0);
3527 if (ret < 0) {
3528 goto out;
3529 } else if (ret > 0) {
3530 ret = 0;
3531 goto out;
3532 }
3533
3534 di = btrfs_match_dir_item_name(fs_info, path, parent_ref->name,
3535 parent_ref->name_len);
3536 if (!di) {
3537 ret = 0;
3538 goto out;
3539 }
3540 /*
3541 * di_key.objectid has the number of the inode that has a dentry in the
3542 * parent directory with the same name that sctx->cur_ino is being
3543 * renamed to. We need to check if that inode is in the send root as
3544 * well and if it is currently marked as an inode with a pending rename,
3545 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3546 * that it happens after that other inode is renamed.
3547 */
3548 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &di_key);
3549 if (di_key.type != BTRFS_INODE_ITEM_KEY) {
3550 ret = 0;
3551 goto out;
3552 }
3553
3554 ret = get_inode_gen(sctx->parent_root, di_key.objectid, &left_gen);
3555 if (ret < 0)
3556 goto out;
3557 ret = get_inode_gen(sctx->send_root, di_key.objectid, &right_gen);
3558 if (ret < 0) {
3559 if (ret == -ENOENT)
3560 ret = 0;
3561 goto out;
3562 }
3563
3564 /* Different inode, no need to delay the rename of sctx->cur_ino */
3565 if (right_gen != left_gen) {
3566 ret = 0;
3567 goto out;
3568 }
3569
3570 wdm = get_waiting_dir_move(sctx, di_key.objectid);
3571 if (wdm && !wdm->orphanized) {
3572 ret = add_pending_dir_move(sctx,
3573 sctx->cur_ino,
3574 sctx->cur_inode_gen,
3575 di_key.objectid,
3576 &sctx->new_refs,
3577 &sctx->deleted_refs,
3578 is_orphan);
3579 if (!ret)
3580 ret = 1;
3581 }
3582 out:
3583 btrfs_free_path(path);
3584 return ret;
3585 }
3586
3587 /*
3588 * Check if inode ino2, or any of its ancestors, is inode ino1.
3589 * Return 1 if true, 0 if false and < 0 on error.
3590 */
check_ino_in_path(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,const u64 ino2_gen,struct fs_path * fs_path)3591 static int check_ino_in_path(struct btrfs_root *root,
3592 const u64 ino1,
3593 const u64 ino1_gen,
3594 const u64 ino2,
3595 const u64 ino2_gen,
3596 struct fs_path *fs_path)
3597 {
3598 u64 ino = ino2;
3599
3600 if (ino1 == ino2)
3601 return ino1_gen == ino2_gen;
3602
3603 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3604 u64 parent;
3605 u64 parent_gen;
3606 int ret;
3607
3608 fs_path_reset(fs_path);
3609 ret = get_first_ref(root, ino, &parent, &parent_gen, fs_path);
3610 if (ret < 0)
3611 return ret;
3612 if (parent == ino1)
3613 return parent_gen == ino1_gen;
3614 ino = parent;
3615 }
3616 return 0;
3617 }
3618
3619 /*
3620 * Check if inode ino1 is an ancestor of inode ino2 in the given root for any
3621 * possible path (in case ino2 is not a directory and has multiple hard links).
3622 * Return 1 if true, 0 if false and < 0 on error.
3623 */
is_ancestor(struct btrfs_root * root,const u64 ino1,const u64 ino1_gen,const u64 ino2,struct fs_path * fs_path)3624 static int is_ancestor(struct btrfs_root *root,
3625 const u64 ino1,
3626 const u64 ino1_gen,
3627 const u64 ino2,
3628 struct fs_path *fs_path)
3629 {
3630 bool free_fs_path = false;
3631 int ret = 0;
3632 int iter_ret = 0;
3633 struct btrfs_path *path = NULL;
3634 struct btrfs_key key;
3635
3636 if (!fs_path) {
3637 fs_path = fs_path_alloc();
3638 if (!fs_path)
3639 return -ENOMEM;
3640 free_fs_path = true;
3641 }
3642
3643 path = alloc_path_for_send();
3644 if (!path) {
3645 ret = -ENOMEM;
3646 goto out;
3647 }
3648
3649 key.objectid = ino2;
3650 key.type = BTRFS_INODE_REF_KEY;
3651 key.offset = 0;
3652
3653 btrfs_for_each_slot(root, &key, &key, path, iter_ret) {
3654 struct extent_buffer *leaf = path->nodes[0];
3655 int slot = path->slots[0];
3656 u32 cur_offset = 0;
3657 u32 item_size;
3658
3659 if (key.objectid != ino2)
3660 break;
3661 if (key.type != BTRFS_INODE_REF_KEY &&
3662 key.type != BTRFS_INODE_EXTREF_KEY)
3663 break;
3664
3665 item_size = btrfs_item_size(leaf, slot);
3666 while (cur_offset < item_size) {
3667 u64 parent;
3668 u64 parent_gen;
3669
3670 if (key.type == BTRFS_INODE_EXTREF_KEY) {
3671 unsigned long ptr;
3672 struct btrfs_inode_extref *extref;
3673
3674 ptr = btrfs_item_ptr_offset(leaf, slot);
3675 extref = (struct btrfs_inode_extref *)
3676 (ptr + cur_offset);
3677 parent = btrfs_inode_extref_parent(leaf,
3678 extref);
3679 cur_offset += sizeof(*extref);
3680 cur_offset += btrfs_inode_extref_name_len(leaf,
3681 extref);
3682 } else {
3683 parent = key.offset;
3684 cur_offset = item_size;
3685 }
3686
3687 ret = get_inode_gen(root, parent, &parent_gen);
3688 if (ret < 0)
3689 goto out;
3690 ret = check_ino_in_path(root, ino1, ino1_gen,
3691 parent, parent_gen, fs_path);
3692 if (ret)
3693 goto out;
3694 }
3695 }
3696 ret = 0;
3697 if (iter_ret < 0)
3698 ret = iter_ret;
3699
3700 out:
3701 btrfs_free_path(path);
3702 if (free_fs_path)
3703 fs_path_free(fs_path);
3704 return ret;
3705 }
3706
wait_for_parent_move(struct send_ctx * sctx,struct recorded_ref * parent_ref,const bool is_orphan)3707 static int wait_for_parent_move(struct send_ctx *sctx,
3708 struct recorded_ref *parent_ref,
3709 const bool is_orphan)
3710 {
3711 int ret = 0;
3712 u64 ino = parent_ref->dir;
3713 u64 ino_gen = parent_ref->dir_gen;
3714 u64 parent_ino_before, parent_ino_after;
3715 struct fs_path *path_before = NULL;
3716 struct fs_path *path_after = NULL;
3717 int len1, len2;
3718
3719 path_after = fs_path_alloc();
3720 path_before = fs_path_alloc();
3721 if (!path_after || !path_before) {
3722 ret = -ENOMEM;
3723 goto out;
3724 }
3725
3726 /*
3727 * Our current directory inode may not yet be renamed/moved because some
3728 * ancestor (immediate or not) has to be renamed/moved first. So find if
3729 * such ancestor exists and make sure our own rename/move happens after
3730 * that ancestor is processed to avoid path build infinite loops (done
3731 * at get_cur_path()).
3732 */
3733 while (ino > BTRFS_FIRST_FREE_OBJECTID) {
3734 u64 parent_ino_after_gen;
3735
3736 if (is_waiting_for_move(sctx, ino)) {
3737 /*
3738 * If the current inode is an ancestor of ino in the
3739 * parent root, we need to delay the rename of the
3740 * current inode, otherwise don't delayed the rename
3741 * because we can end up with a circular dependency
3742 * of renames, resulting in some directories never
3743 * getting the respective rename operations issued in
3744 * the send stream or getting into infinite path build
3745 * loops.
3746 */
3747 ret = is_ancestor(sctx->parent_root,
3748 sctx->cur_ino, sctx->cur_inode_gen,
3749 ino, path_before);
3750 if (ret)
3751 break;
3752 }
3753
3754 fs_path_reset(path_before);
3755 fs_path_reset(path_after);
3756
3757 ret = get_first_ref(sctx->send_root, ino, &parent_ino_after,
3758 &parent_ino_after_gen, path_after);
3759 if (ret < 0)
3760 goto out;
3761 ret = get_first_ref(sctx->parent_root, ino, &parent_ino_before,
3762 NULL, path_before);
3763 if (ret < 0 && ret != -ENOENT) {
3764 goto out;
3765 } else if (ret == -ENOENT) {
3766 ret = 0;
3767 break;
3768 }
3769
3770 len1 = fs_path_len(path_before);
3771 len2 = fs_path_len(path_after);
3772 if (ino > sctx->cur_ino &&
3773 (parent_ino_before != parent_ino_after || len1 != len2 ||
3774 memcmp(path_before->start, path_after->start, len1))) {
3775 u64 parent_ino_gen;
3776
3777 ret = get_inode_gen(sctx->parent_root, ino, &parent_ino_gen);
3778 if (ret < 0)
3779 goto out;
3780 if (ino_gen == parent_ino_gen) {
3781 ret = 1;
3782 break;
3783 }
3784 }
3785 ino = parent_ino_after;
3786 ino_gen = parent_ino_after_gen;
3787 }
3788
3789 out:
3790 fs_path_free(path_before);
3791 fs_path_free(path_after);
3792
3793 if (ret == 1) {
3794 ret = add_pending_dir_move(sctx,
3795 sctx->cur_ino,
3796 sctx->cur_inode_gen,
3797 ino,
3798 &sctx->new_refs,
3799 &sctx->deleted_refs,
3800 is_orphan);
3801 if (!ret)
3802 ret = 1;
3803 }
3804
3805 return ret;
3806 }
3807
update_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)3808 static int update_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3809 {
3810 int ret;
3811 struct fs_path *new_path;
3812
3813 /*
3814 * Our reference's name member points to its full_path member string, so
3815 * we use here a new path.
3816 */
3817 new_path = fs_path_alloc();
3818 if (!new_path)
3819 return -ENOMEM;
3820
3821 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, new_path);
3822 if (ret < 0) {
3823 fs_path_free(new_path);
3824 return ret;
3825 }
3826 ret = fs_path_add(new_path, ref->name, ref->name_len);
3827 if (ret < 0) {
3828 fs_path_free(new_path);
3829 return ret;
3830 }
3831
3832 fs_path_free(ref->full_path);
3833 set_ref_path(ref, new_path);
3834
3835 return 0;
3836 }
3837
3838 /*
3839 * When processing the new references for an inode we may orphanize an existing
3840 * directory inode because its old name conflicts with one of the new references
3841 * of the current inode. Later, when processing another new reference of our
3842 * inode, we might need to orphanize another inode, but the path we have in the
3843 * reference reflects the pre-orphanization name of the directory we previously
3844 * orphanized. For example:
3845 *
3846 * parent snapshot looks like:
3847 *
3848 * . (ino 256)
3849 * |----- f1 (ino 257)
3850 * |----- f2 (ino 258)
3851 * |----- d1/ (ino 259)
3852 * |----- d2/ (ino 260)
3853 *
3854 * send snapshot looks like:
3855 *
3856 * . (ino 256)
3857 * |----- d1 (ino 258)
3858 * |----- f2/ (ino 259)
3859 * |----- f2_link/ (ino 260)
3860 * | |----- f1 (ino 257)
3861 * |
3862 * |----- d2 (ino 258)
3863 *
3864 * When processing inode 257 we compute the name for inode 259 as "d1", and we
3865 * cache it in the name cache. Later when we start processing inode 258, when
3866 * collecting all its new references we set a full path of "d1/d2" for its new
3867 * reference with name "d2". When we start processing the new references we
3868 * start by processing the new reference with name "d1", and this results in
3869 * orphanizing inode 259, since its old reference causes a conflict. Then we
3870 * move on the next new reference, with name "d2", and we find out we must
3871 * orphanize inode 260, as its old reference conflicts with ours - but for the
3872 * orphanization we use a source path corresponding to the path we stored in the
3873 * new reference, which is "d1/d2" and not "o259-6-0/d2" - this makes the
3874 * receiver fail since the path component "d1/" no longer exists, it was renamed
3875 * to "o259-6-0/" when processing the previous new reference. So in this case we
3876 * must recompute the path in the new reference and use it for the new
3877 * orphanization operation.
3878 */
refresh_ref_path(struct send_ctx * sctx,struct recorded_ref * ref)3879 static int refresh_ref_path(struct send_ctx *sctx, struct recorded_ref *ref)
3880 {
3881 char *name;
3882 int ret;
3883
3884 name = kmemdup(ref->name, ref->name_len, GFP_KERNEL);
3885 if (!name)
3886 return -ENOMEM;
3887
3888 fs_path_reset(ref->full_path);
3889 ret = get_cur_path(sctx, ref->dir, ref->dir_gen, ref->full_path);
3890 if (ret < 0)
3891 goto out;
3892
3893 ret = fs_path_add(ref->full_path, name, ref->name_len);
3894 if (ret < 0)
3895 goto out;
3896
3897 /* Update the reference's base name pointer. */
3898 set_ref_path(ref, ref->full_path);
3899 out:
3900 kfree(name);
3901 return ret;
3902 }
3903
3904 /*
3905 * This does all the move/link/unlink/rmdir magic.
3906 */
process_recorded_refs(struct send_ctx * sctx,int * pending_move)3907 static int process_recorded_refs(struct send_ctx *sctx, int *pending_move)
3908 {
3909 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
3910 int ret = 0;
3911 struct recorded_ref *cur;
3912 struct recorded_ref *cur2;
3913 struct list_head check_dirs;
3914 struct fs_path *valid_path = NULL;
3915 u64 ow_inode = 0;
3916 u64 ow_gen;
3917 u64 ow_mode;
3918 int did_overwrite = 0;
3919 int is_orphan = 0;
3920 u64 last_dir_ino_rm = 0;
3921 bool can_rename = true;
3922 bool orphanized_dir = false;
3923 bool orphanized_ancestor = false;
3924
3925 btrfs_debug(fs_info, "process_recorded_refs %llu", sctx->cur_ino);
3926
3927 /*
3928 * This should never happen as the root dir always has the same ref
3929 * which is always '..'
3930 */
3931 BUG_ON(sctx->cur_ino <= BTRFS_FIRST_FREE_OBJECTID);
3932 INIT_LIST_HEAD(&check_dirs);
3933
3934 valid_path = fs_path_alloc();
3935 if (!valid_path) {
3936 ret = -ENOMEM;
3937 goto out;
3938 }
3939
3940 /*
3941 * First, check if the first ref of the current inode was overwritten
3942 * before. If yes, we know that the current inode was already orphanized
3943 * and thus use the orphan name. If not, we can use get_cur_path to
3944 * get the path of the first ref as it would like while receiving at
3945 * this point in time.
3946 * New inodes are always orphan at the beginning, so force to use the
3947 * orphan name in this case.
3948 * The first ref is stored in valid_path and will be updated if it
3949 * gets moved around.
3950 */
3951 if (!sctx->cur_inode_new) {
3952 ret = did_overwrite_first_ref(sctx, sctx->cur_ino,
3953 sctx->cur_inode_gen);
3954 if (ret < 0)
3955 goto out;
3956 if (ret)
3957 did_overwrite = 1;
3958 }
3959 if (sctx->cur_inode_new || did_overwrite) {
3960 ret = gen_unique_name(sctx, sctx->cur_ino,
3961 sctx->cur_inode_gen, valid_path);
3962 if (ret < 0)
3963 goto out;
3964 is_orphan = 1;
3965 } else {
3966 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen,
3967 valid_path);
3968 if (ret < 0)
3969 goto out;
3970 }
3971
3972 /*
3973 * Before doing any rename and link operations, do a first pass on the
3974 * new references to orphanize any unprocessed inodes that may have a
3975 * reference that conflicts with one of the new references of the current
3976 * inode. This needs to happen first because a new reference may conflict
3977 * with the old reference of a parent directory, so we must make sure
3978 * that the path used for link and rename commands don't use an
3979 * orphanized name when an ancestor was not yet orphanized.
3980 *
3981 * Example:
3982 *
3983 * Parent snapshot:
3984 *
3985 * . (ino 256)
3986 * |----- testdir/ (ino 259)
3987 * | |----- a (ino 257)
3988 * |
3989 * |----- b (ino 258)
3990 *
3991 * Send snapshot:
3992 *
3993 * . (ino 256)
3994 * |----- testdir_2/ (ino 259)
3995 * | |----- a (ino 260)
3996 * |
3997 * |----- testdir (ino 257)
3998 * |----- b (ino 257)
3999 * |----- b2 (ino 258)
4000 *
4001 * Processing the new reference for inode 257 with name "b" may happen
4002 * before processing the new reference with name "testdir". If so, we
4003 * must make sure that by the time we send a link command to create the
4004 * hard link "b", inode 259 was already orphanized, since the generated
4005 * path in "valid_path" already contains the orphanized name for 259.
4006 * We are processing inode 257, so only later when processing 259 we do
4007 * the rename operation to change its temporary (orphanized) name to
4008 * "testdir_2".
4009 */
4010 list_for_each_entry(cur, &sctx->new_refs, list) {
4011 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4012 if (ret < 0)
4013 goto out;
4014 if (ret == inode_state_will_create)
4015 continue;
4016
4017 /*
4018 * Check if this new ref would overwrite the first ref of another
4019 * unprocessed inode. If yes, orphanize the overwritten inode.
4020 * If we find an overwritten ref that is not the first ref,
4021 * simply unlink it.
4022 */
4023 ret = will_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4024 cur->name, cur->name_len,
4025 &ow_inode, &ow_gen, &ow_mode);
4026 if (ret < 0)
4027 goto out;
4028 if (ret) {
4029 ret = is_first_ref(sctx->parent_root,
4030 ow_inode, cur->dir, cur->name,
4031 cur->name_len);
4032 if (ret < 0)
4033 goto out;
4034 if (ret) {
4035 struct name_cache_entry *nce;
4036 struct waiting_dir_move *wdm;
4037
4038 if (orphanized_dir) {
4039 ret = refresh_ref_path(sctx, cur);
4040 if (ret < 0)
4041 goto out;
4042 }
4043
4044 ret = orphanize_inode(sctx, ow_inode, ow_gen,
4045 cur->full_path);
4046 if (ret < 0)
4047 goto out;
4048 if (S_ISDIR(ow_mode))
4049 orphanized_dir = true;
4050
4051 /*
4052 * If ow_inode has its rename operation delayed
4053 * make sure that its orphanized name is used in
4054 * the source path when performing its rename
4055 * operation.
4056 */
4057 if (is_waiting_for_move(sctx, ow_inode)) {
4058 wdm = get_waiting_dir_move(sctx,
4059 ow_inode);
4060 ASSERT(wdm);
4061 wdm->orphanized = true;
4062 }
4063
4064 /*
4065 * Make sure we clear our orphanized inode's
4066 * name from the name cache. This is because the
4067 * inode ow_inode might be an ancestor of some
4068 * other inode that will be orphanized as well
4069 * later and has an inode number greater than
4070 * sctx->send_progress. We need to prevent
4071 * future name lookups from using the old name
4072 * and get instead the orphan name.
4073 */
4074 nce = name_cache_search(sctx, ow_inode, ow_gen);
4075 if (nce) {
4076 name_cache_delete(sctx, nce);
4077 kfree(nce);
4078 }
4079
4080 /*
4081 * ow_inode might currently be an ancestor of
4082 * cur_ino, therefore compute valid_path (the
4083 * current path of cur_ino) again because it
4084 * might contain the pre-orphanization name of
4085 * ow_inode, which is no longer valid.
4086 */
4087 ret = is_ancestor(sctx->parent_root,
4088 ow_inode, ow_gen,
4089 sctx->cur_ino, NULL);
4090 if (ret > 0) {
4091 orphanized_ancestor = true;
4092 fs_path_reset(valid_path);
4093 ret = get_cur_path(sctx, sctx->cur_ino,
4094 sctx->cur_inode_gen,
4095 valid_path);
4096 }
4097 if (ret < 0)
4098 goto out;
4099 } else {
4100 /*
4101 * If we previously orphanized a directory that
4102 * collided with a new reference that we already
4103 * processed, recompute the current path because
4104 * that directory may be part of the path.
4105 */
4106 if (orphanized_dir) {
4107 ret = refresh_ref_path(sctx, cur);
4108 if (ret < 0)
4109 goto out;
4110 }
4111 ret = send_unlink(sctx, cur->full_path);
4112 if (ret < 0)
4113 goto out;
4114 }
4115 }
4116
4117 }
4118
4119 list_for_each_entry(cur, &sctx->new_refs, list) {
4120 /*
4121 * We may have refs where the parent directory does not exist
4122 * yet. This happens if the parent directories inum is higher
4123 * than the current inum. To handle this case, we create the
4124 * parent directory out of order. But we need to check if this
4125 * did already happen before due to other refs in the same dir.
4126 */
4127 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4128 if (ret < 0)
4129 goto out;
4130 if (ret == inode_state_will_create) {
4131 ret = 0;
4132 /*
4133 * First check if any of the current inodes refs did
4134 * already create the dir.
4135 */
4136 list_for_each_entry(cur2, &sctx->new_refs, list) {
4137 if (cur == cur2)
4138 break;
4139 if (cur2->dir == cur->dir) {
4140 ret = 1;
4141 break;
4142 }
4143 }
4144
4145 /*
4146 * If that did not happen, check if a previous inode
4147 * did already create the dir.
4148 */
4149 if (!ret)
4150 ret = did_create_dir(sctx, cur->dir);
4151 if (ret < 0)
4152 goto out;
4153 if (!ret) {
4154 ret = send_create_inode(sctx, cur->dir);
4155 if (ret < 0)
4156 goto out;
4157 }
4158 }
4159
4160 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root) {
4161 ret = wait_for_dest_dir_move(sctx, cur, is_orphan);
4162 if (ret < 0)
4163 goto out;
4164 if (ret == 1) {
4165 can_rename = false;
4166 *pending_move = 1;
4167 }
4168 }
4169
4170 if (S_ISDIR(sctx->cur_inode_mode) && sctx->parent_root &&
4171 can_rename) {
4172 ret = wait_for_parent_move(sctx, cur, is_orphan);
4173 if (ret < 0)
4174 goto out;
4175 if (ret == 1) {
4176 can_rename = false;
4177 *pending_move = 1;
4178 }
4179 }
4180
4181 /*
4182 * link/move the ref to the new place. If we have an orphan
4183 * inode, move it and update valid_path. If not, link or move
4184 * it depending on the inode mode.
4185 */
4186 if (is_orphan && can_rename) {
4187 ret = send_rename(sctx, valid_path, cur->full_path);
4188 if (ret < 0)
4189 goto out;
4190 is_orphan = 0;
4191 ret = fs_path_copy(valid_path, cur->full_path);
4192 if (ret < 0)
4193 goto out;
4194 } else if (can_rename) {
4195 if (S_ISDIR(sctx->cur_inode_mode)) {
4196 /*
4197 * Dirs can't be linked, so move it. For moved
4198 * dirs, we always have one new and one deleted
4199 * ref. The deleted ref is ignored later.
4200 */
4201 ret = send_rename(sctx, valid_path,
4202 cur->full_path);
4203 if (!ret)
4204 ret = fs_path_copy(valid_path,
4205 cur->full_path);
4206 if (ret < 0)
4207 goto out;
4208 } else {
4209 /*
4210 * We might have previously orphanized an inode
4211 * which is an ancestor of our current inode,
4212 * so our reference's full path, which was
4213 * computed before any such orphanizations, must
4214 * be updated.
4215 */
4216 if (orphanized_dir) {
4217 ret = update_ref_path(sctx, cur);
4218 if (ret < 0)
4219 goto out;
4220 }
4221 ret = send_link(sctx, cur->full_path,
4222 valid_path);
4223 if (ret < 0)
4224 goto out;
4225 }
4226 }
4227 ret = dup_ref(cur, &check_dirs);
4228 if (ret < 0)
4229 goto out;
4230 }
4231
4232 if (S_ISDIR(sctx->cur_inode_mode) && sctx->cur_inode_deleted) {
4233 /*
4234 * Check if we can already rmdir the directory. If not,
4235 * orphanize it. For every dir item inside that gets deleted
4236 * later, we do this check again and rmdir it then if possible.
4237 * See the use of check_dirs for more details.
4238 */
4239 ret = can_rmdir(sctx, sctx->cur_ino, sctx->cur_inode_gen,
4240 sctx->cur_ino);
4241 if (ret < 0)
4242 goto out;
4243 if (ret) {
4244 ret = send_rmdir(sctx, valid_path);
4245 if (ret < 0)
4246 goto out;
4247 } else if (!is_orphan) {
4248 ret = orphanize_inode(sctx, sctx->cur_ino,
4249 sctx->cur_inode_gen, valid_path);
4250 if (ret < 0)
4251 goto out;
4252 is_orphan = 1;
4253 }
4254
4255 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4256 ret = dup_ref(cur, &check_dirs);
4257 if (ret < 0)
4258 goto out;
4259 }
4260 } else if (S_ISDIR(sctx->cur_inode_mode) &&
4261 !list_empty(&sctx->deleted_refs)) {
4262 /*
4263 * We have a moved dir. Add the old parent to check_dirs
4264 */
4265 cur = list_entry(sctx->deleted_refs.next, struct recorded_ref,
4266 list);
4267 ret = dup_ref(cur, &check_dirs);
4268 if (ret < 0)
4269 goto out;
4270 } else if (!S_ISDIR(sctx->cur_inode_mode)) {
4271 /*
4272 * We have a non dir inode. Go through all deleted refs and
4273 * unlink them if they were not already overwritten by other
4274 * inodes.
4275 */
4276 list_for_each_entry(cur, &sctx->deleted_refs, list) {
4277 ret = did_overwrite_ref(sctx, cur->dir, cur->dir_gen,
4278 sctx->cur_ino, sctx->cur_inode_gen,
4279 cur->name, cur->name_len);
4280 if (ret < 0)
4281 goto out;
4282 if (!ret) {
4283 /*
4284 * If we orphanized any ancestor before, we need
4285 * to recompute the full path for deleted names,
4286 * since any such path was computed before we
4287 * processed any references and orphanized any
4288 * ancestor inode.
4289 */
4290 if (orphanized_ancestor) {
4291 ret = update_ref_path(sctx, cur);
4292 if (ret < 0)
4293 goto out;
4294 }
4295 ret = send_unlink(sctx, cur->full_path);
4296 if (ret < 0)
4297 goto out;
4298 }
4299 ret = dup_ref(cur, &check_dirs);
4300 if (ret < 0)
4301 goto out;
4302 }
4303 /*
4304 * If the inode is still orphan, unlink the orphan. This may
4305 * happen when a previous inode did overwrite the first ref
4306 * of this inode and no new refs were added for the current
4307 * inode. Unlinking does not mean that the inode is deleted in
4308 * all cases. There may still be links to this inode in other
4309 * places.
4310 */
4311 if (is_orphan) {
4312 ret = send_unlink(sctx, valid_path);
4313 if (ret < 0)
4314 goto out;
4315 }
4316 }
4317
4318 /*
4319 * We did collect all parent dirs where cur_inode was once located. We
4320 * now go through all these dirs and check if they are pending for
4321 * deletion and if it's finally possible to perform the rmdir now.
4322 * We also update the inode stats of the parent dirs here.
4323 */
4324 list_for_each_entry(cur, &check_dirs, list) {
4325 /*
4326 * In case we had refs into dirs that were not processed yet,
4327 * we don't need to do the utime and rmdir logic for these dirs.
4328 * The dir will be processed later.
4329 */
4330 if (cur->dir > sctx->cur_ino)
4331 continue;
4332
4333 ret = get_cur_inode_state(sctx, cur->dir, cur->dir_gen);
4334 if (ret < 0)
4335 goto out;
4336
4337 if (ret == inode_state_did_create ||
4338 ret == inode_state_no_change) {
4339 /* TODO delayed utimes */
4340 ret = send_utimes(sctx, cur->dir, cur->dir_gen);
4341 if (ret < 0)
4342 goto out;
4343 } else if (ret == inode_state_did_delete &&
4344 cur->dir != last_dir_ino_rm) {
4345 ret = can_rmdir(sctx, cur->dir, cur->dir_gen,
4346 sctx->cur_ino);
4347 if (ret < 0)
4348 goto out;
4349 if (ret) {
4350 ret = get_cur_path(sctx, cur->dir,
4351 cur->dir_gen, valid_path);
4352 if (ret < 0)
4353 goto out;
4354 ret = send_rmdir(sctx, valid_path);
4355 if (ret < 0)
4356 goto out;
4357 last_dir_ino_rm = cur->dir;
4358 }
4359 }
4360 }
4361
4362 ret = 0;
4363
4364 out:
4365 __free_recorded_refs(&check_dirs);
4366 free_recorded_refs(sctx);
4367 fs_path_free(valid_path);
4368 return ret;
4369 }
4370
rbtree_ref_comp(const void * k,const struct rb_node * node)4371 static int rbtree_ref_comp(const void *k, const struct rb_node *node)
4372 {
4373 const struct recorded_ref *data = k;
4374 const struct recorded_ref *ref = rb_entry(node, struct recorded_ref, node);
4375 int result;
4376
4377 if (data->dir > ref->dir)
4378 return 1;
4379 if (data->dir < ref->dir)
4380 return -1;
4381 if (data->dir_gen > ref->dir_gen)
4382 return 1;
4383 if (data->dir_gen < ref->dir_gen)
4384 return -1;
4385 if (data->name_len > ref->name_len)
4386 return 1;
4387 if (data->name_len < ref->name_len)
4388 return -1;
4389 result = strcmp(data->name, ref->name);
4390 if (result > 0)
4391 return 1;
4392 if (result < 0)
4393 return -1;
4394 return 0;
4395 }
4396
rbtree_ref_less(struct rb_node * node,const struct rb_node * parent)4397 static bool rbtree_ref_less(struct rb_node *node, const struct rb_node *parent)
4398 {
4399 const struct recorded_ref *entry = rb_entry(node, struct recorded_ref, node);
4400
4401 return rbtree_ref_comp(entry, parent) < 0;
4402 }
4403
record_ref_in_tree(struct rb_root * root,struct list_head * refs,struct fs_path * name,u64 dir,u64 dir_gen,struct send_ctx * sctx)4404 static int record_ref_in_tree(struct rb_root *root, struct list_head *refs,
4405 struct fs_path *name, u64 dir, u64 dir_gen,
4406 struct send_ctx *sctx)
4407 {
4408 int ret = 0;
4409 struct fs_path *path = NULL;
4410 struct recorded_ref *ref = NULL;
4411
4412 path = fs_path_alloc();
4413 if (!path) {
4414 ret = -ENOMEM;
4415 goto out;
4416 }
4417
4418 ref = recorded_ref_alloc();
4419 if (!ref) {
4420 ret = -ENOMEM;
4421 goto out;
4422 }
4423
4424 ret = get_cur_path(sctx, dir, dir_gen, path);
4425 if (ret < 0)
4426 goto out;
4427 ret = fs_path_add_path(path, name);
4428 if (ret < 0)
4429 goto out;
4430
4431 ref->dir = dir;
4432 ref->dir_gen = dir_gen;
4433 set_ref_path(ref, path);
4434 list_add_tail(&ref->list, refs);
4435 rb_add(&ref->node, root, rbtree_ref_less);
4436 ref->root = root;
4437 out:
4438 if (ret) {
4439 if (path && (!ref || !ref->full_path))
4440 fs_path_free(path);
4441 recorded_ref_free(ref);
4442 }
4443 return ret;
4444 }
4445
record_new_ref_if_needed(int num,u64 dir,int index,struct fs_path * name,void * ctx)4446 static int record_new_ref_if_needed(int num, u64 dir, int index,
4447 struct fs_path *name, void *ctx)
4448 {
4449 int ret = 0;
4450 struct send_ctx *sctx = ctx;
4451 struct rb_node *node = NULL;
4452 struct recorded_ref data;
4453 struct recorded_ref *ref;
4454 u64 dir_gen;
4455
4456 ret = get_inode_gen(sctx->send_root, dir, &dir_gen);
4457 if (ret < 0)
4458 goto out;
4459
4460 data.dir = dir;
4461 data.dir_gen = dir_gen;
4462 set_ref_path(&data, name);
4463 node = rb_find(&data, &sctx->rbtree_deleted_refs, rbtree_ref_comp);
4464 if (node) {
4465 ref = rb_entry(node, struct recorded_ref, node);
4466 recorded_ref_free(ref);
4467 } else {
4468 ret = record_ref_in_tree(&sctx->rbtree_new_refs,
4469 &sctx->new_refs, name, dir, dir_gen,
4470 sctx);
4471 }
4472 out:
4473 return ret;
4474 }
4475
record_deleted_ref_if_needed(int num,u64 dir,int index,struct fs_path * name,void * ctx)4476 static int record_deleted_ref_if_needed(int num, u64 dir, int index,
4477 struct fs_path *name, void *ctx)
4478 {
4479 int ret = 0;
4480 struct send_ctx *sctx = ctx;
4481 struct rb_node *node = NULL;
4482 struct recorded_ref data;
4483 struct recorded_ref *ref;
4484 u64 dir_gen;
4485
4486 ret = get_inode_gen(sctx->parent_root, dir, &dir_gen);
4487 if (ret < 0)
4488 goto out;
4489
4490 data.dir = dir;
4491 data.dir_gen = dir_gen;
4492 set_ref_path(&data, name);
4493 node = rb_find(&data, &sctx->rbtree_new_refs, rbtree_ref_comp);
4494 if (node) {
4495 ref = rb_entry(node, struct recorded_ref, node);
4496 recorded_ref_free(ref);
4497 } else {
4498 ret = record_ref_in_tree(&sctx->rbtree_deleted_refs,
4499 &sctx->deleted_refs, name, dir,
4500 dir_gen, sctx);
4501 }
4502 out:
4503 return ret;
4504 }
4505
record_new_ref(struct send_ctx * sctx)4506 static int record_new_ref(struct send_ctx *sctx)
4507 {
4508 int ret;
4509
4510 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4511 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4512 if (ret < 0)
4513 goto out;
4514 ret = 0;
4515
4516 out:
4517 return ret;
4518 }
4519
record_deleted_ref(struct send_ctx * sctx)4520 static int record_deleted_ref(struct send_ctx *sctx)
4521 {
4522 int ret;
4523
4524 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4525 sctx->cmp_key, 0, record_deleted_ref_if_needed,
4526 sctx);
4527 if (ret < 0)
4528 goto out;
4529 ret = 0;
4530
4531 out:
4532 return ret;
4533 }
4534
record_changed_ref(struct send_ctx * sctx)4535 static int record_changed_ref(struct send_ctx *sctx)
4536 {
4537 int ret = 0;
4538
4539 ret = iterate_inode_ref(sctx->send_root, sctx->left_path,
4540 sctx->cmp_key, 0, record_new_ref_if_needed, sctx);
4541 if (ret < 0)
4542 goto out;
4543 ret = iterate_inode_ref(sctx->parent_root, sctx->right_path,
4544 sctx->cmp_key, 0, record_deleted_ref_if_needed, sctx);
4545 if (ret < 0)
4546 goto out;
4547 ret = 0;
4548
4549 out:
4550 return ret;
4551 }
4552
4553 /*
4554 * Record and process all refs at once. Needed when an inode changes the
4555 * generation number, which means that it was deleted and recreated.
4556 */
process_all_refs(struct send_ctx * sctx,enum btrfs_compare_tree_result cmd)4557 static int process_all_refs(struct send_ctx *sctx,
4558 enum btrfs_compare_tree_result cmd)
4559 {
4560 int ret = 0;
4561 int iter_ret = 0;
4562 struct btrfs_root *root;
4563 struct btrfs_path *path;
4564 struct btrfs_key key;
4565 struct btrfs_key found_key;
4566 iterate_inode_ref_t cb;
4567 int pending_move = 0;
4568
4569 path = alloc_path_for_send();
4570 if (!path)
4571 return -ENOMEM;
4572
4573 if (cmd == BTRFS_COMPARE_TREE_NEW) {
4574 root = sctx->send_root;
4575 cb = record_new_ref_if_needed;
4576 } else if (cmd == BTRFS_COMPARE_TREE_DELETED) {
4577 root = sctx->parent_root;
4578 cb = record_deleted_ref_if_needed;
4579 } else {
4580 btrfs_err(sctx->send_root->fs_info,
4581 "Wrong command %d in process_all_refs", cmd);
4582 ret = -EINVAL;
4583 goto out;
4584 }
4585
4586 key.objectid = sctx->cmp_key->objectid;
4587 key.type = BTRFS_INODE_REF_KEY;
4588 key.offset = 0;
4589 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4590 if (found_key.objectid != key.objectid ||
4591 (found_key.type != BTRFS_INODE_REF_KEY &&
4592 found_key.type != BTRFS_INODE_EXTREF_KEY))
4593 break;
4594
4595 ret = iterate_inode_ref(root, path, &found_key, 0, cb, sctx);
4596 if (ret < 0)
4597 goto out;
4598 }
4599 /* Catch error found during iteration */
4600 if (iter_ret < 0) {
4601 ret = iter_ret;
4602 goto out;
4603 }
4604 btrfs_release_path(path);
4605
4606 /*
4607 * We don't actually care about pending_move as we are simply
4608 * re-creating this inode and will be rename'ing it into place once we
4609 * rename the parent directory.
4610 */
4611 ret = process_recorded_refs(sctx, &pending_move);
4612 out:
4613 btrfs_free_path(path);
4614 return ret;
4615 }
4616
send_set_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len,const char * data,int data_len)4617 static int send_set_xattr(struct send_ctx *sctx,
4618 struct fs_path *path,
4619 const char *name, int name_len,
4620 const char *data, int data_len)
4621 {
4622 int ret = 0;
4623
4624 ret = begin_cmd(sctx, BTRFS_SEND_C_SET_XATTR);
4625 if (ret < 0)
4626 goto out;
4627
4628 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4629 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4630 TLV_PUT(sctx, BTRFS_SEND_A_XATTR_DATA, data, data_len);
4631
4632 ret = send_cmd(sctx);
4633
4634 tlv_put_failure:
4635 out:
4636 return ret;
4637 }
4638
send_remove_xattr(struct send_ctx * sctx,struct fs_path * path,const char * name,int name_len)4639 static int send_remove_xattr(struct send_ctx *sctx,
4640 struct fs_path *path,
4641 const char *name, int name_len)
4642 {
4643 int ret = 0;
4644
4645 ret = begin_cmd(sctx, BTRFS_SEND_C_REMOVE_XATTR);
4646 if (ret < 0)
4647 goto out;
4648
4649 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4650 TLV_PUT_STRING(sctx, BTRFS_SEND_A_XATTR_NAME, name, name_len);
4651
4652 ret = send_cmd(sctx);
4653
4654 tlv_put_failure:
4655 out:
4656 return ret;
4657 }
4658
__process_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4659 static int __process_new_xattr(int num, struct btrfs_key *di_key,
4660 const char *name, int name_len, const char *data,
4661 int data_len, void *ctx)
4662 {
4663 int ret;
4664 struct send_ctx *sctx = ctx;
4665 struct fs_path *p;
4666 struct posix_acl_xattr_header dummy_acl;
4667
4668 /* Capabilities are emitted by finish_inode_if_needed */
4669 if (!strncmp(name, XATTR_NAME_CAPS, name_len))
4670 return 0;
4671
4672 p = fs_path_alloc();
4673 if (!p)
4674 return -ENOMEM;
4675
4676 /*
4677 * This hack is needed because empty acls are stored as zero byte
4678 * data in xattrs. Problem with that is, that receiving these zero byte
4679 * acls will fail later. To fix this, we send a dummy acl list that
4680 * only contains the version number and no entries.
4681 */
4682 if (!strncmp(name, XATTR_NAME_POSIX_ACL_ACCESS, name_len) ||
4683 !strncmp(name, XATTR_NAME_POSIX_ACL_DEFAULT, name_len)) {
4684 if (data_len == 0) {
4685 dummy_acl.a_version =
4686 cpu_to_le32(POSIX_ACL_XATTR_VERSION);
4687 data = (char *)&dummy_acl;
4688 data_len = sizeof(dummy_acl);
4689 }
4690 }
4691
4692 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4693 if (ret < 0)
4694 goto out;
4695
4696 ret = send_set_xattr(sctx, p, name, name_len, data, data_len);
4697
4698 out:
4699 fs_path_free(p);
4700 return ret;
4701 }
4702
__process_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4703 static int __process_deleted_xattr(int num, struct btrfs_key *di_key,
4704 const char *name, int name_len,
4705 const char *data, int data_len, void *ctx)
4706 {
4707 int ret;
4708 struct send_ctx *sctx = ctx;
4709 struct fs_path *p;
4710
4711 p = fs_path_alloc();
4712 if (!p)
4713 return -ENOMEM;
4714
4715 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4716 if (ret < 0)
4717 goto out;
4718
4719 ret = send_remove_xattr(sctx, p, name, name_len);
4720
4721 out:
4722 fs_path_free(p);
4723 return ret;
4724 }
4725
process_new_xattr(struct send_ctx * sctx)4726 static int process_new_xattr(struct send_ctx *sctx)
4727 {
4728 int ret = 0;
4729
4730 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4731 __process_new_xattr, sctx);
4732
4733 return ret;
4734 }
4735
process_deleted_xattr(struct send_ctx * sctx)4736 static int process_deleted_xattr(struct send_ctx *sctx)
4737 {
4738 return iterate_dir_item(sctx->parent_root, sctx->right_path,
4739 __process_deleted_xattr, sctx);
4740 }
4741
4742 struct find_xattr_ctx {
4743 const char *name;
4744 int name_len;
4745 int found_idx;
4746 char *found_data;
4747 int found_data_len;
4748 };
4749
__find_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * vctx)4750 static int __find_xattr(int num, struct btrfs_key *di_key, const char *name,
4751 int name_len, const char *data, int data_len, void *vctx)
4752 {
4753 struct find_xattr_ctx *ctx = vctx;
4754
4755 if (name_len == ctx->name_len &&
4756 strncmp(name, ctx->name, name_len) == 0) {
4757 ctx->found_idx = num;
4758 ctx->found_data_len = data_len;
4759 ctx->found_data = kmemdup(data, data_len, GFP_KERNEL);
4760 if (!ctx->found_data)
4761 return -ENOMEM;
4762 return 1;
4763 }
4764 return 0;
4765 }
4766
find_xattr(struct btrfs_root * root,struct btrfs_path * path,struct btrfs_key * key,const char * name,int name_len,char ** data,int * data_len)4767 static int find_xattr(struct btrfs_root *root,
4768 struct btrfs_path *path,
4769 struct btrfs_key *key,
4770 const char *name, int name_len,
4771 char **data, int *data_len)
4772 {
4773 int ret;
4774 struct find_xattr_ctx ctx;
4775
4776 ctx.name = name;
4777 ctx.name_len = name_len;
4778 ctx.found_idx = -1;
4779 ctx.found_data = NULL;
4780 ctx.found_data_len = 0;
4781
4782 ret = iterate_dir_item(root, path, __find_xattr, &ctx);
4783 if (ret < 0)
4784 return ret;
4785
4786 if (ctx.found_idx == -1)
4787 return -ENOENT;
4788 if (data) {
4789 *data = ctx.found_data;
4790 *data_len = ctx.found_data_len;
4791 } else {
4792 kfree(ctx.found_data);
4793 }
4794 return ctx.found_idx;
4795 }
4796
4797
__process_changed_new_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4798 static int __process_changed_new_xattr(int num, struct btrfs_key *di_key,
4799 const char *name, int name_len,
4800 const char *data, int data_len,
4801 void *ctx)
4802 {
4803 int ret;
4804 struct send_ctx *sctx = ctx;
4805 char *found_data = NULL;
4806 int found_data_len = 0;
4807
4808 ret = find_xattr(sctx->parent_root, sctx->right_path,
4809 sctx->cmp_key, name, name_len, &found_data,
4810 &found_data_len);
4811 if (ret == -ENOENT) {
4812 ret = __process_new_xattr(num, di_key, name, name_len, data,
4813 data_len, ctx);
4814 } else if (ret >= 0) {
4815 if (data_len != found_data_len ||
4816 memcmp(data, found_data, data_len)) {
4817 ret = __process_new_xattr(num, di_key, name, name_len,
4818 data, data_len, ctx);
4819 } else {
4820 ret = 0;
4821 }
4822 }
4823
4824 kfree(found_data);
4825 return ret;
4826 }
4827
__process_changed_deleted_xattr(int num,struct btrfs_key * di_key,const char * name,int name_len,const char * data,int data_len,void * ctx)4828 static int __process_changed_deleted_xattr(int num, struct btrfs_key *di_key,
4829 const char *name, int name_len,
4830 const char *data, int data_len,
4831 void *ctx)
4832 {
4833 int ret;
4834 struct send_ctx *sctx = ctx;
4835
4836 ret = find_xattr(sctx->send_root, sctx->left_path, sctx->cmp_key,
4837 name, name_len, NULL, NULL);
4838 if (ret == -ENOENT)
4839 ret = __process_deleted_xattr(num, di_key, name, name_len, data,
4840 data_len, ctx);
4841 else if (ret >= 0)
4842 ret = 0;
4843
4844 return ret;
4845 }
4846
process_changed_xattr(struct send_ctx * sctx)4847 static int process_changed_xattr(struct send_ctx *sctx)
4848 {
4849 int ret = 0;
4850
4851 ret = iterate_dir_item(sctx->send_root, sctx->left_path,
4852 __process_changed_new_xattr, sctx);
4853 if (ret < 0)
4854 goto out;
4855 ret = iterate_dir_item(sctx->parent_root, sctx->right_path,
4856 __process_changed_deleted_xattr, sctx);
4857
4858 out:
4859 return ret;
4860 }
4861
process_all_new_xattrs(struct send_ctx * sctx)4862 static int process_all_new_xattrs(struct send_ctx *sctx)
4863 {
4864 int ret = 0;
4865 int iter_ret = 0;
4866 struct btrfs_root *root;
4867 struct btrfs_path *path;
4868 struct btrfs_key key;
4869 struct btrfs_key found_key;
4870
4871 path = alloc_path_for_send();
4872 if (!path)
4873 return -ENOMEM;
4874
4875 root = sctx->send_root;
4876
4877 key.objectid = sctx->cmp_key->objectid;
4878 key.type = BTRFS_XATTR_ITEM_KEY;
4879 key.offset = 0;
4880 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
4881 if (found_key.objectid != key.objectid ||
4882 found_key.type != key.type) {
4883 ret = 0;
4884 break;
4885 }
4886
4887 ret = iterate_dir_item(root, path, __process_new_xattr, sctx);
4888 if (ret < 0)
4889 break;
4890 }
4891 /* Catch error found during iteration */
4892 if (iter_ret < 0)
4893 ret = iter_ret;
4894
4895 btrfs_free_path(path);
4896 return ret;
4897 }
4898
send_verity(struct send_ctx * sctx,struct fs_path * path,struct fsverity_descriptor * desc)4899 static int send_verity(struct send_ctx *sctx, struct fs_path *path,
4900 struct fsverity_descriptor *desc)
4901 {
4902 int ret;
4903
4904 ret = begin_cmd(sctx, BTRFS_SEND_C_ENABLE_VERITY);
4905 if (ret < 0)
4906 goto out;
4907
4908 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, path);
4909 TLV_PUT_U8(sctx, BTRFS_SEND_A_VERITY_ALGORITHM,
4910 le8_to_cpu(desc->hash_algorithm));
4911 TLV_PUT_U32(sctx, BTRFS_SEND_A_VERITY_BLOCK_SIZE,
4912 1U << le8_to_cpu(desc->log_blocksize));
4913 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SALT_DATA, desc->salt,
4914 le8_to_cpu(desc->salt_size));
4915 TLV_PUT(sctx, BTRFS_SEND_A_VERITY_SIG_DATA, desc->signature,
4916 le32_to_cpu(desc->sig_size));
4917
4918 ret = send_cmd(sctx);
4919
4920 tlv_put_failure:
4921 out:
4922 return ret;
4923 }
4924
process_verity(struct send_ctx * sctx)4925 static int process_verity(struct send_ctx *sctx)
4926 {
4927 int ret = 0;
4928 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
4929 struct inode *inode;
4930 struct fs_path *p;
4931
4932 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, sctx->send_root);
4933 if (IS_ERR(inode))
4934 return PTR_ERR(inode);
4935
4936 ret = btrfs_get_verity_descriptor(inode, NULL, 0);
4937 if (ret < 0)
4938 goto iput;
4939
4940 if (ret > FS_VERITY_MAX_DESCRIPTOR_SIZE) {
4941 ret = -EMSGSIZE;
4942 goto iput;
4943 }
4944 if (!sctx->verity_descriptor) {
4945 sctx->verity_descriptor = kvmalloc(FS_VERITY_MAX_DESCRIPTOR_SIZE,
4946 GFP_KERNEL);
4947 if (!sctx->verity_descriptor) {
4948 ret = -ENOMEM;
4949 goto iput;
4950 }
4951 }
4952
4953 ret = btrfs_get_verity_descriptor(inode, sctx->verity_descriptor, ret);
4954 if (ret < 0)
4955 goto iput;
4956
4957 p = fs_path_alloc();
4958 if (!p) {
4959 ret = -ENOMEM;
4960 goto iput;
4961 }
4962 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
4963 if (ret < 0)
4964 goto free_path;
4965
4966 ret = send_verity(sctx, p, sctx->verity_descriptor);
4967 if (ret < 0)
4968 goto free_path;
4969
4970 free_path:
4971 fs_path_free(p);
4972 iput:
4973 iput(inode);
4974 return ret;
4975 }
4976
max_send_read_size(const struct send_ctx * sctx)4977 static inline u64 max_send_read_size(const struct send_ctx *sctx)
4978 {
4979 return sctx->send_max_size - SZ_16K;
4980 }
4981
put_data_header(struct send_ctx * sctx,u32 len)4982 static int put_data_header(struct send_ctx *sctx, u32 len)
4983 {
4984 if (WARN_ON_ONCE(sctx->put_data))
4985 return -EINVAL;
4986 sctx->put_data = true;
4987 if (sctx->proto >= 2) {
4988 /*
4989 * Since v2, the data attribute header doesn't include a length,
4990 * it is implicitly to the end of the command.
4991 */
4992 if (sctx->send_max_size - sctx->send_size < sizeof(__le16) + len)
4993 return -EOVERFLOW;
4994 put_unaligned_le16(BTRFS_SEND_A_DATA, sctx->send_buf + sctx->send_size);
4995 sctx->send_size += sizeof(__le16);
4996 } else {
4997 struct btrfs_tlv_header *hdr;
4998
4999 if (sctx->send_max_size - sctx->send_size < sizeof(*hdr) + len)
5000 return -EOVERFLOW;
5001 hdr = (struct btrfs_tlv_header *)(sctx->send_buf + sctx->send_size);
5002 put_unaligned_le16(BTRFS_SEND_A_DATA, &hdr->tlv_type);
5003 put_unaligned_le16(len, &hdr->tlv_len);
5004 sctx->send_size += sizeof(*hdr);
5005 }
5006 return 0;
5007 }
5008
put_file_data(struct send_ctx * sctx,u64 offset,u32 len)5009 static int put_file_data(struct send_ctx *sctx, u64 offset, u32 len)
5010 {
5011 struct btrfs_root *root = sctx->send_root;
5012 struct btrfs_fs_info *fs_info = root->fs_info;
5013 struct page *page;
5014 pgoff_t index = offset >> PAGE_SHIFT;
5015 pgoff_t last_index;
5016 unsigned pg_offset = offset_in_page(offset);
5017 int ret;
5018
5019 ret = put_data_header(sctx, len);
5020 if (ret)
5021 return ret;
5022
5023 last_index = (offset + len - 1) >> PAGE_SHIFT;
5024
5025 while (index <= last_index) {
5026 unsigned cur_len = min_t(unsigned, len,
5027 PAGE_SIZE - pg_offset);
5028
5029 page = find_lock_page(sctx->cur_inode->i_mapping, index);
5030 if (!page) {
5031 page_cache_sync_readahead(sctx->cur_inode->i_mapping,
5032 &sctx->ra, NULL, index,
5033 last_index + 1 - index);
5034
5035 page = find_or_create_page(sctx->cur_inode->i_mapping,
5036 index, GFP_KERNEL);
5037 if (!page) {
5038 ret = -ENOMEM;
5039 break;
5040 }
5041 }
5042
5043 if (PageReadahead(page))
5044 page_cache_async_readahead(sctx->cur_inode->i_mapping,
5045 &sctx->ra, NULL, page_folio(page),
5046 index, last_index + 1 - index);
5047
5048 if (!PageUptodate(page)) {
5049 btrfs_read_folio(NULL, page_folio(page));
5050 lock_page(page);
5051 if (!PageUptodate(page)) {
5052 unlock_page(page);
5053 btrfs_err(fs_info,
5054 "send: IO error at offset %llu for inode %llu root %llu",
5055 page_offset(page), sctx->cur_ino,
5056 sctx->send_root->root_key.objectid);
5057 put_page(page);
5058 ret = -EIO;
5059 break;
5060 }
5061 }
5062
5063 memcpy_from_page(sctx->send_buf + sctx->send_size, page,
5064 pg_offset, cur_len);
5065 unlock_page(page);
5066 put_page(page);
5067 index++;
5068 pg_offset = 0;
5069 len -= cur_len;
5070 sctx->send_size += cur_len;
5071 }
5072
5073 return ret;
5074 }
5075
5076 /*
5077 * Read some bytes from the current inode/file and send a write command to
5078 * user space.
5079 */
send_write(struct send_ctx * sctx,u64 offset,u32 len)5080 static int send_write(struct send_ctx *sctx, u64 offset, u32 len)
5081 {
5082 struct btrfs_fs_info *fs_info = sctx->send_root->fs_info;
5083 int ret = 0;
5084 struct fs_path *p;
5085
5086 p = fs_path_alloc();
5087 if (!p)
5088 return -ENOMEM;
5089
5090 btrfs_debug(fs_info, "send_write offset=%llu, len=%d", offset, len);
5091
5092 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5093 if (ret < 0)
5094 goto out;
5095
5096 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5097 if (ret < 0)
5098 goto out;
5099
5100 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5101 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5102 ret = put_file_data(sctx, offset, len);
5103 if (ret < 0)
5104 goto out;
5105
5106 ret = send_cmd(sctx);
5107
5108 tlv_put_failure:
5109 out:
5110 fs_path_free(p);
5111 return ret;
5112 }
5113
5114 /*
5115 * Send a clone command to user space.
5116 */
send_clone(struct send_ctx * sctx,u64 offset,u32 len,struct clone_root * clone_root)5117 static int send_clone(struct send_ctx *sctx,
5118 u64 offset, u32 len,
5119 struct clone_root *clone_root)
5120 {
5121 int ret = 0;
5122 struct fs_path *p;
5123 u64 gen;
5124
5125 btrfs_debug(sctx->send_root->fs_info,
5126 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
5127 offset, len, clone_root->root->root_key.objectid,
5128 clone_root->ino, clone_root->offset);
5129
5130 p = fs_path_alloc();
5131 if (!p)
5132 return -ENOMEM;
5133
5134 ret = begin_cmd(sctx, BTRFS_SEND_C_CLONE);
5135 if (ret < 0)
5136 goto out;
5137
5138 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5139 if (ret < 0)
5140 goto out;
5141
5142 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5143 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_LEN, len);
5144 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5145
5146 if (clone_root->root == sctx->send_root) {
5147 ret = get_inode_gen(sctx->send_root, clone_root->ino, &gen);
5148 if (ret < 0)
5149 goto out;
5150 ret = get_cur_path(sctx, clone_root->ino, gen, p);
5151 } else {
5152 ret = get_inode_path(clone_root->root, clone_root->ino, p);
5153 }
5154 if (ret < 0)
5155 goto out;
5156
5157 /*
5158 * If the parent we're using has a received_uuid set then use that as
5159 * our clone source as that is what we will look for when doing a
5160 * receive.
5161 *
5162 * This covers the case that we create a snapshot off of a received
5163 * subvolume and then use that as the parent and try to receive on a
5164 * different host.
5165 */
5166 if (!btrfs_is_empty_uuid(clone_root->root->root_item.received_uuid))
5167 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5168 clone_root->root->root_item.received_uuid);
5169 else
5170 TLV_PUT_UUID(sctx, BTRFS_SEND_A_CLONE_UUID,
5171 clone_root->root->root_item.uuid);
5172 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_CTRANSID,
5173 btrfs_root_ctransid(&clone_root->root->root_item));
5174 TLV_PUT_PATH(sctx, BTRFS_SEND_A_CLONE_PATH, p);
5175 TLV_PUT_U64(sctx, BTRFS_SEND_A_CLONE_OFFSET,
5176 clone_root->offset);
5177
5178 ret = send_cmd(sctx);
5179
5180 tlv_put_failure:
5181 out:
5182 fs_path_free(p);
5183 return ret;
5184 }
5185
5186 /*
5187 * Send an update extent command to user space.
5188 */
send_update_extent(struct send_ctx * sctx,u64 offset,u32 len)5189 static int send_update_extent(struct send_ctx *sctx,
5190 u64 offset, u32 len)
5191 {
5192 int ret = 0;
5193 struct fs_path *p;
5194
5195 p = fs_path_alloc();
5196 if (!p)
5197 return -ENOMEM;
5198
5199 ret = begin_cmd(sctx, BTRFS_SEND_C_UPDATE_EXTENT);
5200 if (ret < 0)
5201 goto out;
5202
5203 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5204 if (ret < 0)
5205 goto out;
5206
5207 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5208 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5209 TLV_PUT_U64(sctx, BTRFS_SEND_A_SIZE, len);
5210
5211 ret = send_cmd(sctx);
5212
5213 tlv_put_failure:
5214 out:
5215 fs_path_free(p);
5216 return ret;
5217 }
5218
send_hole(struct send_ctx * sctx,u64 end)5219 static int send_hole(struct send_ctx *sctx, u64 end)
5220 {
5221 struct fs_path *p = NULL;
5222 u64 read_size = max_send_read_size(sctx);
5223 u64 offset = sctx->cur_inode_last_extent;
5224 int ret = 0;
5225
5226 /*
5227 * A hole that starts at EOF or beyond it. Since we do not yet support
5228 * fallocate (for extent preallocation and hole punching), sending a
5229 * write of zeroes starting at EOF or beyond would later require issuing
5230 * a truncate operation which would undo the write and achieve nothing.
5231 */
5232 if (offset >= sctx->cur_inode_size)
5233 return 0;
5234
5235 /*
5236 * Don't go beyond the inode's i_size due to prealloc extents that start
5237 * after the i_size.
5238 */
5239 end = min_t(u64, end, sctx->cur_inode_size);
5240
5241 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5242 return send_update_extent(sctx, offset, end - offset);
5243
5244 p = fs_path_alloc();
5245 if (!p)
5246 return -ENOMEM;
5247 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, p);
5248 if (ret < 0)
5249 goto tlv_put_failure;
5250 while (offset < end) {
5251 u64 len = min(end - offset, read_size);
5252
5253 ret = begin_cmd(sctx, BTRFS_SEND_C_WRITE);
5254 if (ret < 0)
5255 break;
5256 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, p);
5257 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5258 ret = put_data_header(sctx, len);
5259 if (ret < 0)
5260 break;
5261 memset(sctx->send_buf + sctx->send_size, 0, len);
5262 sctx->send_size += len;
5263 ret = send_cmd(sctx);
5264 if (ret < 0)
5265 break;
5266 offset += len;
5267 }
5268 sctx->cur_inode_next_write_offset = offset;
5269 tlv_put_failure:
5270 fs_path_free(p);
5271 return ret;
5272 }
5273
send_encoded_inline_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5274 static int send_encoded_inline_extent(struct send_ctx *sctx,
5275 struct btrfs_path *path, u64 offset,
5276 u64 len)
5277 {
5278 struct btrfs_root *root = sctx->send_root;
5279 struct btrfs_fs_info *fs_info = root->fs_info;
5280 struct inode *inode;
5281 struct fs_path *fspath;
5282 struct extent_buffer *leaf = path->nodes[0];
5283 struct btrfs_key key;
5284 struct btrfs_file_extent_item *ei;
5285 u64 ram_bytes;
5286 size_t inline_size;
5287 int ret;
5288
5289 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5290 if (IS_ERR(inode))
5291 return PTR_ERR(inode);
5292
5293 fspath = fs_path_alloc();
5294 if (!fspath) {
5295 ret = -ENOMEM;
5296 goto out;
5297 }
5298
5299 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5300 if (ret < 0)
5301 goto out;
5302
5303 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5304 if (ret < 0)
5305 goto out;
5306
5307 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5308 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5309 ram_bytes = btrfs_file_extent_ram_bytes(leaf, ei);
5310 inline_size = btrfs_file_extent_inline_item_len(leaf, path->slots[0]);
5311
5312 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5313 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5314 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5315 min(key.offset + ram_bytes - offset, len));
5316 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN, ram_bytes);
5317 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET, offset - key.offset);
5318 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5319 btrfs_file_extent_compression(leaf, ei));
5320 if (ret < 0)
5321 goto out;
5322 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5323
5324 ret = put_data_header(sctx, inline_size);
5325 if (ret < 0)
5326 goto out;
5327 read_extent_buffer(leaf, sctx->send_buf + sctx->send_size,
5328 btrfs_file_extent_inline_start(ei), inline_size);
5329 sctx->send_size += inline_size;
5330
5331 ret = send_cmd(sctx);
5332
5333 tlv_put_failure:
5334 out:
5335 fs_path_free(fspath);
5336 iput(inode);
5337 return ret;
5338 }
5339
send_encoded_extent(struct send_ctx * sctx,struct btrfs_path * path,u64 offset,u64 len)5340 static int send_encoded_extent(struct send_ctx *sctx, struct btrfs_path *path,
5341 u64 offset, u64 len)
5342 {
5343 struct btrfs_root *root = sctx->send_root;
5344 struct btrfs_fs_info *fs_info = root->fs_info;
5345 struct inode *inode;
5346 struct fs_path *fspath;
5347 struct extent_buffer *leaf = path->nodes[0];
5348 struct btrfs_key key;
5349 struct btrfs_file_extent_item *ei;
5350 u64 disk_bytenr, disk_num_bytes;
5351 u32 data_offset;
5352 struct btrfs_cmd_header *hdr;
5353 u32 crc;
5354 int ret;
5355
5356 inode = btrfs_iget(fs_info->sb, sctx->cur_ino, root);
5357 if (IS_ERR(inode))
5358 return PTR_ERR(inode);
5359
5360 fspath = fs_path_alloc();
5361 if (!fspath) {
5362 ret = -ENOMEM;
5363 goto out;
5364 }
5365
5366 ret = begin_cmd(sctx, BTRFS_SEND_C_ENCODED_WRITE);
5367 if (ret < 0)
5368 goto out;
5369
5370 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5371 if (ret < 0)
5372 goto out;
5373
5374 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
5375 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_file_extent_item);
5376 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, ei);
5377 disk_num_bytes = btrfs_file_extent_disk_num_bytes(leaf, ei);
5378
5379 TLV_PUT_PATH(sctx, BTRFS_SEND_A_PATH, fspath);
5380 TLV_PUT_U64(sctx, BTRFS_SEND_A_FILE_OFFSET, offset);
5381 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_FILE_LEN,
5382 min(key.offset + btrfs_file_extent_num_bytes(leaf, ei) - offset,
5383 len));
5384 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_LEN,
5385 btrfs_file_extent_ram_bytes(leaf, ei));
5386 TLV_PUT_U64(sctx, BTRFS_SEND_A_UNENCODED_OFFSET,
5387 offset - key.offset + btrfs_file_extent_offset(leaf, ei));
5388 ret = btrfs_encoded_io_compression_from_extent(fs_info,
5389 btrfs_file_extent_compression(leaf, ei));
5390 if (ret < 0)
5391 goto out;
5392 TLV_PUT_U32(sctx, BTRFS_SEND_A_COMPRESSION, ret);
5393 TLV_PUT_U32(sctx, BTRFS_SEND_A_ENCRYPTION, 0);
5394
5395 ret = put_data_header(sctx, disk_num_bytes);
5396 if (ret < 0)
5397 goto out;
5398
5399 /*
5400 * We want to do I/O directly into the send buffer, so get the next page
5401 * boundary in the send buffer. This means that there may be a gap
5402 * between the beginning of the command and the file data.
5403 */
5404 data_offset = ALIGN(sctx->send_size, PAGE_SIZE);
5405 if (data_offset > sctx->send_max_size ||
5406 sctx->send_max_size - data_offset < disk_num_bytes) {
5407 ret = -EOVERFLOW;
5408 goto out;
5409 }
5410
5411 /*
5412 * Note that send_buf is a mapping of send_buf_pages, so this is really
5413 * reading into send_buf.
5414 */
5415 ret = btrfs_encoded_read_regular_fill_pages(BTRFS_I(inode), offset,
5416 disk_bytenr, disk_num_bytes,
5417 sctx->send_buf_pages +
5418 (data_offset >> PAGE_SHIFT));
5419 if (ret)
5420 goto out;
5421
5422 hdr = (struct btrfs_cmd_header *)sctx->send_buf;
5423 hdr->len = cpu_to_le32(sctx->send_size + disk_num_bytes - sizeof(*hdr));
5424 hdr->crc = 0;
5425 crc = btrfs_crc32c(0, sctx->send_buf, sctx->send_size);
5426 crc = btrfs_crc32c(crc, sctx->send_buf + data_offset, disk_num_bytes);
5427 hdr->crc = cpu_to_le32(crc);
5428
5429 ret = write_buf(sctx->send_filp, sctx->send_buf, sctx->send_size,
5430 &sctx->send_off);
5431 if (!ret) {
5432 ret = write_buf(sctx->send_filp, sctx->send_buf + data_offset,
5433 disk_num_bytes, &sctx->send_off);
5434 }
5435 sctx->send_size = 0;
5436 sctx->put_data = false;
5437
5438 tlv_put_failure:
5439 out:
5440 fs_path_free(fspath);
5441 iput(inode);
5442 return ret;
5443 }
5444
send_extent_data(struct send_ctx * sctx,struct btrfs_path * path,const u64 offset,const u64 len)5445 static int send_extent_data(struct send_ctx *sctx, struct btrfs_path *path,
5446 const u64 offset, const u64 len)
5447 {
5448 const u64 end = offset + len;
5449 struct extent_buffer *leaf = path->nodes[0];
5450 struct btrfs_file_extent_item *ei;
5451 u64 read_size = max_send_read_size(sctx);
5452 u64 sent = 0;
5453
5454 if (sctx->flags & BTRFS_SEND_FLAG_NO_FILE_DATA)
5455 return send_update_extent(sctx, offset, len);
5456
5457 ei = btrfs_item_ptr(leaf, path->slots[0],
5458 struct btrfs_file_extent_item);
5459 if ((sctx->flags & BTRFS_SEND_FLAG_COMPRESSED) &&
5460 btrfs_file_extent_compression(leaf, ei) != BTRFS_COMPRESS_NONE) {
5461 bool is_inline = (btrfs_file_extent_type(leaf, ei) ==
5462 BTRFS_FILE_EXTENT_INLINE);
5463
5464 /*
5465 * Send the compressed extent unless the compressed data is
5466 * larger than the decompressed data. This can happen if we're
5467 * not sending the entire extent, either because it has been
5468 * partially overwritten/truncated or because this is a part of
5469 * the extent that we couldn't clone in clone_range().
5470 */
5471 if (is_inline &&
5472 btrfs_file_extent_inline_item_len(leaf,
5473 path->slots[0]) <= len) {
5474 return send_encoded_inline_extent(sctx, path, offset,
5475 len);
5476 } else if (!is_inline &&
5477 btrfs_file_extent_disk_num_bytes(leaf, ei) <= len) {
5478 return send_encoded_extent(sctx, path, offset, len);
5479 }
5480 }
5481
5482 if (sctx->cur_inode == NULL) {
5483 struct btrfs_root *root = sctx->send_root;
5484
5485 sctx->cur_inode = btrfs_iget(root->fs_info->sb, sctx->cur_ino, root);
5486 if (IS_ERR(sctx->cur_inode)) {
5487 int err = PTR_ERR(sctx->cur_inode);
5488
5489 sctx->cur_inode = NULL;
5490 return err;
5491 }
5492 memset(&sctx->ra, 0, sizeof(struct file_ra_state));
5493 file_ra_state_init(&sctx->ra, sctx->cur_inode->i_mapping);
5494
5495 /*
5496 * It's very likely there are no pages from this inode in the page
5497 * cache, so after reading extents and sending their data, we clean
5498 * the page cache to avoid trashing the page cache (adding pressure
5499 * to the page cache and forcing eviction of other data more useful
5500 * for applications).
5501 *
5502 * We decide if we should clean the page cache simply by checking
5503 * if the inode's mapping nrpages is 0 when we first open it, and
5504 * not by using something like filemap_range_has_page() before
5505 * reading an extent because when we ask the readahead code to
5506 * read a given file range, it may (and almost always does) read
5507 * pages from beyond that range (see the documentation for
5508 * page_cache_sync_readahead()), so it would not be reliable,
5509 * because after reading the first extent future calls to
5510 * filemap_range_has_page() would return true because the readahead
5511 * on the previous extent resulted in reading pages of the current
5512 * extent as well.
5513 */
5514 sctx->clean_page_cache = (sctx->cur_inode->i_mapping->nrpages == 0);
5515 sctx->page_cache_clear_start = round_down(offset, PAGE_SIZE);
5516 }
5517
5518 while (sent < len) {
5519 u64 size = min(len - sent, read_size);
5520 int ret;
5521
5522 ret = send_write(sctx, offset + sent, size);
5523 if (ret < 0)
5524 return ret;
5525 sent += size;
5526 }
5527
5528 if (sctx->clean_page_cache && IS_ALIGNED(end, PAGE_SIZE)) {
5529 /*
5530 * Always operate only on ranges that are a multiple of the page
5531 * size. This is not only to prevent zeroing parts of a page in
5532 * the case of subpage sector size, but also to guarantee we evict
5533 * pages, as passing a range that is smaller than page size does
5534 * not evict the respective page (only zeroes part of its content).
5535 *
5536 * Always start from the end offset of the last range cleared.
5537 * This is because the readahead code may (and very often does)
5538 * reads pages beyond the range we request for readahead. So if
5539 * we have an extent layout like this:
5540 *
5541 * [ extent A ] [ extent B ] [ extent C ]
5542 *
5543 * When we ask page_cache_sync_readahead() to read extent A, it
5544 * may also trigger reads for pages of extent B. If we are doing
5545 * an incremental send and extent B has not changed between the
5546 * parent and send snapshots, some or all of its pages may end
5547 * up being read and placed in the page cache. So when truncating
5548 * the page cache we always start from the end offset of the
5549 * previously processed extent up to the end of the current
5550 * extent.
5551 */
5552 truncate_inode_pages_range(&sctx->cur_inode->i_data,
5553 sctx->page_cache_clear_start,
5554 end - 1);
5555 sctx->page_cache_clear_start = end;
5556 }
5557
5558 return 0;
5559 }
5560
5561 /*
5562 * Search for a capability xattr related to sctx->cur_ino. If the capability is
5563 * found, call send_set_xattr function to emit it.
5564 *
5565 * Return 0 if there isn't a capability, or when the capability was emitted
5566 * successfully, or < 0 if an error occurred.
5567 */
send_capabilities(struct send_ctx * sctx)5568 static int send_capabilities(struct send_ctx *sctx)
5569 {
5570 struct fs_path *fspath = NULL;
5571 struct btrfs_path *path;
5572 struct btrfs_dir_item *di;
5573 struct extent_buffer *leaf;
5574 unsigned long data_ptr;
5575 char *buf = NULL;
5576 int buf_len;
5577 int ret = 0;
5578
5579 path = alloc_path_for_send();
5580 if (!path)
5581 return -ENOMEM;
5582
5583 di = btrfs_lookup_xattr(NULL, sctx->send_root, path, sctx->cur_ino,
5584 XATTR_NAME_CAPS, strlen(XATTR_NAME_CAPS), 0);
5585 if (!di) {
5586 /* There is no xattr for this inode */
5587 goto out;
5588 } else if (IS_ERR(di)) {
5589 ret = PTR_ERR(di);
5590 goto out;
5591 }
5592
5593 leaf = path->nodes[0];
5594 buf_len = btrfs_dir_data_len(leaf, di);
5595
5596 fspath = fs_path_alloc();
5597 buf = kmalloc(buf_len, GFP_KERNEL);
5598 if (!fspath || !buf) {
5599 ret = -ENOMEM;
5600 goto out;
5601 }
5602
5603 ret = get_cur_path(sctx, sctx->cur_ino, sctx->cur_inode_gen, fspath);
5604 if (ret < 0)
5605 goto out;
5606
5607 data_ptr = (unsigned long)(di + 1) + btrfs_dir_name_len(leaf, di);
5608 read_extent_buffer(leaf, buf, data_ptr, buf_len);
5609
5610 ret = send_set_xattr(sctx, fspath, XATTR_NAME_CAPS,
5611 strlen(XATTR_NAME_CAPS), buf, buf_len);
5612 out:
5613 kfree(buf);
5614 fs_path_free(fspath);
5615 btrfs_free_path(path);
5616 return ret;
5617 }
5618
clone_range(struct send_ctx * sctx,struct btrfs_path * dst_path,struct clone_root * clone_root,const u64 disk_byte,u64 data_offset,u64 offset,u64 len)5619 static int clone_range(struct send_ctx *sctx, struct btrfs_path *dst_path,
5620 struct clone_root *clone_root, const u64 disk_byte,
5621 u64 data_offset, u64 offset, u64 len)
5622 {
5623 struct btrfs_path *path;
5624 struct btrfs_key key;
5625 int ret;
5626 struct btrfs_inode_info info;
5627 u64 clone_src_i_size = 0;
5628
5629 /*
5630 * Prevent cloning from a zero offset with a length matching the sector
5631 * size because in some scenarios this will make the receiver fail.
5632 *
5633 * For example, if in the source filesystem the extent at offset 0
5634 * has a length of sectorsize and it was written using direct IO, then
5635 * it can never be an inline extent (even if compression is enabled).
5636 * Then this extent can be cloned in the original filesystem to a non
5637 * zero file offset, but it may not be possible to clone in the
5638 * destination filesystem because it can be inlined due to compression
5639 * on the destination filesystem (as the receiver's write operations are
5640 * always done using buffered IO). The same happens when the original
5641 * filesystem does not have compression enabled but the destination
5642 * filesystem has.
5643 */
5644 if (clone_root->offset == 0 &&
5645 len == sctx->send_root->fs_info->sectorsize)
5646 return send_extent_data(sctx, dst_path, offset, len);
5647
5648 path = alloc_path_for_send();
5649 if (!path)
5650 return -ENOMEM;
5651
5652 /*
5653 * There are inodes that have extents that lie behind its i_size. Don't
5654 * accept clones from these extents.
5655 */
5656 ret = get_inode_info(clone_root->root, clone_root->ino, &info);
5657 btrfs_release_path(path);
5658 if (ret < 0)
5659 goto out;
5660 clone_src_i_size = info.size;
5661
5662 /*
5663 * We can't send a clone operation for the entire range if we find
5664 * extent items in the respective range in the source file that
5665 * refer to different extents or if we find holes.
5666 * So check for that and do a mix of clone and regular write/copy
5667 * operations if needed.
5668 *
5669 * Example:
5670 *
5671 * mkfs.btrfs -f /dev/sda
5672 * mount /dev/sda /mnt
5673 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5674 * cp --reflink=always /mnt/foo /mnt/bar
5675 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5676 * btrfs subvolume snapshot -r /mnt /mnt/snap
5677 *
5678 * If when we send the snapshot and we are processing file bar (which
5679 * has a higher inode number than foo) we blindly send a clone operation
5680 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5681 * a file bar that matches the content of file foo - iow, doesn't match
5682 * the content from bar in the original filesystem.
5683 */
5684 key.objectid = clone_root->ino;
5685 key.type = BTRFS_EXTENT_DATA_KEY;
5686 key.offset = clone_root->offset;
5687 ret = btrfs_search_slot(NULL, clone_root->root, &key, path, 0, 0);
5688 if (ret < 0)
5689 goto out;
5690 if (ret > 0 && path->slots[0] > 0) {
5691 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0] - 1);
5692 if (key.objectid == clone_root->ino &&
5693 key.type == BTRFS_EXTENT_DATA_KEY)
5694 path->slots[0]--;
5695 }
5696
5697 while (true) {
5698 struct extent_buffer *leaf = path->nodes[0];
5699 int slot = path->slots[0];
5700 struct btrfs_file_extent_item *ei;
5701 u8 type;
5702 u64 ext_len;
5703 u64 clone_len;
5704 u64 clone_data_offset;
5705 bool crossed_src_i_size = false;
5706
5707 if (slot >= btrfs_header_nritems(leaf)) {
5708 ret = btrfs_next_leaf(clone_root->root, path);
5709 if (ret < 0)
5710 goto out;
5711 else if (ret > 0)
5712 break;
5713 continue;
5714 }
5715
5716 btrfs_item_key_to_cpu(leaf, &key, slot);
5717
5718 /*
5719 * We might have an implicit trailing hole (NO_HOLES feature
5720 * enabled). We deal with it after leaving this loop.
5721 */
5722 if (key.objectid != clone_root->ino ||
5723 key.type != BTRFS_EXTENT_DATA_KEY)
5724 break;
5725
5726 ei = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5727 type = btrfs_file_extent_type(leaf, ei);
5728 if (type == BTRFS_FILE_EXTENT_INLINE) {
5729 ext_len = btrfs_file_extent_ram_bytes(leaf, ei);
5730 ext_len = PAGE_ALIGN(ext_len);
5731 } else {
5732 ext_len = btrfs_file_extent_num_bytes(leaf, ei);
5733 }
5734
5735 if (key.offset + ext_len <= clone_root->offset)
5736 goto next;
5737
5738 if (key.offset > clone_root->offset) {
5739 /* Implicit hole, NO_HOLES feature enabled. */
5740 u64 hole_len = key.offset - clone_root->offset;
5741
5742 if (hole_len > len)
5743 hole_len = len;
5744 ret = send_extent_data(sctx, dst_path, offset,
5745 hole_len);
5746 if (ret < 0)
5747 goto out;
5748
5749 len -= hole_len;
5750 if (len == 0)
5751 break;
5752 offset += hole_len;
5753 clone_root->offset += hole_len;
5754 data_offset += hole_len;
5755 }
5756
5757 if (key.offset >= clone_root->offset + len)
5758 break;
5759
5760 if (key.offset >= clone_src_i_size)
5761 break;
5762
5763 if (key.offset + ext_len > clone_src_i_size) {
5764 ext_len = clone_src_i_size - key.offset;
5765 crossed_src_i_size = true;
5766 }
5767
5768 clone_data_offset = btrfs_file_extent_offset(leaf, ei);
5769 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte) {
5770 clone_root->offset = key.offset;
5771 if (clone_data_offset < data_offset &&
5772 clone_data_offset + ext_len > data_offset) {
5773 u64 extent_offset;
5774
5775 extent_offset = data_offset - clone_data_offset;
5776 ext_len -= extent_offset;
5777 clone_data_offset += extent_offset;
5778 clone_root->offset += extent_offset;
5779 }
5780 }
5781
5782 clone_len = min_t(u64, ext_len, len);
5783
5784 if (btrfs_file_extent_disk_bytenr(leaf, ei) == disk_byte &&
5785 clone_data_offset == data_offset) {
5786 const u64 src_end = clone_root->offset + clone_len;
5787 const u64 sectorsize = SZ_64K;
5788
5789 /*
5790 * We can't clone the last block, when its size is not
5791 * sector size aligned, into the middle of a file. If we
5792 * do so, the receiver will get a failure (-EINVAL) when
5793 * trying to clone or will silently corrupt the data in
5794 * the destination file if it's on a kernel without the
5795 * fix introduced by commit ac765f83f1397646
5796 * ("Btrfs: fix data corruption due to cloning of eof
5797 * block).
5798 *
5799 * So issue a clone of the aligned down range plus a
5800 * regular write for the eof block, if we hit that case.
5801 *
5802 * Also, we use the maximum possible sector size, 64K,
5803 * because we don't know what's the sector size of the
5804 * filesystem that receives the stream, so we have to
5805 * assume the largest possible sector size.
5806 */
5807 if (src_end == clone_src_i_size &&
5808 !IS_ALIGNED(src_end, sectorsize) &&
5809 offset + clone_len < sctx->cur_inode_size) {
5810 u64 slen;
5811
5812 slen = ALIGN_DOWN(src_end - clone_root->offset,
5813 sectorsize);
5814 if (slen > 0) {
5815 ret = send_clone(sctx, offset, slen,
5816 clone_root);
5817 if (ret < 0)
5818 goto out;
5819 }
5820 ret = send_extent_data(sctx, dst_path,
5821 offset + slen,
5822 clone_len - slen);
5823 } else {
5824 ret = send_clone(sctx, offset, clone_len,
5825 clone_root);
5826 }
5827 } else if (crossed_src_i_size && clone_len < len) {
5828 /*
5829 * If we are at i_size of the clone source inode and we
5830 * can not clone from it, terminate the loop. This is
5831 * to avoid sending two write operations, one with a
5832 * length matching clone_len and the final one after
5833 * this loop with a length of len - clone_len.
5834 *
5835 * When using encoded writes (BTRFS_SEND_FLAG_COMPRESSED
5836 * was passed to the send ioctl), this helps avoid
5837 * sending an encoded write for an offset that is not
5838 * sector size aligned, in case the i_size of the source
5839 * inode is not sector size aligned. That will make the
5840 * receiver fallback to decompression of the data and
5841 * writing it using regular buffered IO, therefore while
5842 * not incorrect, it's not optimal due decompression and
5843 * possible re-compression at the receiver.
5844 */
5845 break;
5846 } else {
5847 ret = send_extent_data(sctx, dst_path, offset,
5848 clone_len);
5849 }
5850
5851 if (ret < 0)
5852 goto out;
5853
5854 len -= clone_len;
5855 if (len == 0)
5856 break;
5857 offset += clone_len;
5858 clone_root->offset += clone_len;
5859
5860 /*
5861 * If we are cloning from the file we are currently processing,
5862 * and using the send root as the clone root, we must stop once
5863 * the current clone offset reaches the current eof of the file
5864 * at the receiver, otherwise we would issue an invalid clone
5865 * operation (source range going beyond eof) and cause the
5866 * receiver to fail. So if we reach the current eof, bail out
5867 * and fallback to a regular write.
5868 */
5869 if (clone_root->root == sctx->send_root &&
5870 clone_root->ino == sctx->cur_ino &&
5871 clone_root->offset >= sctx->cur_inode_next_write_offset)
5872 break;
5873
5874 data_offset += clone_len;
5875 next:
5876 path->slots[0]++;
5877 }
5878
5879 if (len > 0)
5880 ret = send_extent_data(sctx, dst_path, offset, len);
5881 else
5882 ret = 0;
5883 out:
5884 btrfs_free_path(path);
5885 return ret;
5886 }
5887
send_write_or_clone(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key,struct clone_root * clone_root)5888 static int send_write_or_clone(struct send_ctx *sctx,
5889 struct btrfs_path *path,
5890 struct btrfs_key *key,
5891 struct clone_root *clone_root)
5892 {
5893 int ret = 0;
5894 u64 offset = key->offset;
5895 u64 end;
5896 u64 bs = sctx->send_root->fs_info->sb->s_blocksize;
5897
5898 end = min_t(u64, btrfs_file_extent_end(path), sctx->cur_inode_size);
5899 if (offset >= end)
5900 return 0;
5901
5902 if (clone_root && IS_ALIGNED(end, bs)) {
5903 struct btrfs_file_extent_item *ei;
5904 u64 disk_byte;
5905 u64 data_offset;
5906
5907 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
5908 struct btrfs_file_extent_item);
5909 disk_byte = btrfs_file_extent_disk_bytenr(path->nodes[0], ei);
5910 data_offset = btrfs_file_extent_offset(path->nodes[0], ei);
5911 ret = clone_range(sctx, path, clone_root, disk_byte,
5912 data_offset, offset, end - offset);
5913 } else {
5914 ret = send_extent_data(sctx, path, offset, end - offset);
5915 }
5916 sctx->cur_inode_next_write_offset = end;
5917 return ret;
5918 }
5919
is_extent_unchanged(struct send_ctx * sctx,struct btrfs_path * left_path,struct btrfs_key * ekey)5920 static int is_extent_unchanged(struct send_ctx *sctx,
5921 struct btrfs_path *left_path,
5922 struct btrfs_key *ekey)
5923 {
5924 int ret = 0;
5925 struct btrfs_key key;
5926 struct btrfs_path *path = NULL;
5927 struct extent_buffer *eb;
5928 int slot;
5929 struct btrfs_key found_key;
5930 struct btrfs_file_extent_item *ei;
5931 u64 left_disknr;
5932 u64 right_disknr;
5933 u64 left_offset;
5934 u64 right_offset;
5935 u64 left_offset_fixed;
5936 u64 left_len;
5937 u64 right_len;
5938 u64 left_gen;
5939 u64 right_gen;
5940 u8 left_type;
5941 u8 right_type;
5942
5943 path = alloc_path_for_send();
5944 if (!path)
5945 return -ENOMEM;
5946
5947 eb = left_path->nodes[0];
5948 slot = left_path->slots[0];
5949 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
5950 left_type = btrfs_file_extent_type(eb, ei);
5951
5952 if (left_type != BTRFS_FILE_EXTENT_REG) {
5953 ret = 0;
5954 goto out;
5955 }
5956 left_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
5957 left_len = btrfs_file_extent_num_bytes(eb, ei);
5958 left_offset = btrfs_file_extent_offset(eb, ei);
5959 left_gen = btrfs_file_extent_generation(eb, ei);
5960
5961 /*
5962 * Following comments will refer to these graphics. L is the left
5963 * extents which we are checking at the moment. 1-8 are the right
5964 * extents that we iterate.
5965 *
5966 * |-----L-----|
5967 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5968 *
5969 * |-----L-----|
5970 * |--1--|-2b-|...(same as above)
5971 *
5972 * Alternative situation. Happens on files where extents got split.
5973 * |-----L-----|
5974 * |-----------7-----------|-6-|
5975 *
5976 * Alternative situation. Happens on files which got larger.
5977 * |-----L-----|
5978 * |-8-|
5979 * Nothing follows after 8.
5980 */
5981
5982 key.objectid = ekey->objectid;
5983 key.type = BTRFS_EXTENT_DATA_KEY;
5984 key.offset = ekey->offset;
5985 ret = btrfs_search_slot_for_read(sctx->parent_root, &key, path, 0, 0);
5986 if (ret < 0)
5987 goto out;
5988 if (ret) {
5989 ret = 0;
5990 goto out;
5991 }
5992
5993 /*
5994 * Handle special case where the right side has no extents at all.
5995 */
5996 eb = path->nodes[0];
5997 slot = path->slots[0];
5998 btrfs_item_key_to_cpu(eb, &found_key, slot);
5999 if (found_key.objectid != key.objectid ||
6000 found_key.type != key.type) {
6001 /* If we're a hole then just pretend nothing changed */
6002 ret = (left_disknr) ? 0 : 1;
6003 goto out;
6004 }
6005
6006 /*
6007 * We're now on 2a, 2b or 7.
6008 */
6009 key = found_key;
6010 while (key.offset < ekey->offset + left_len) {
6011 ei = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
6012 right_type = btrfs_file_extent_type(eb, ei);
6013 if (right_type != BTRFS_FILE_EXTENT_REG &&
6014 right_type != BTRFS_FILE_EXTENT_INLINE) {
6015 ret = 0;
6016 goto out;
6017 }
6018
6019 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6020 right_len = btrfs_file_extent_ram_bytes(eb, ei);
6021 right_len = PAGE_ALIGN(right_len);
6022 } else {
6023 right_len = btrfs_file_extent_num_bytes(eb, ei);
6024 }
6025
6026 /*
6027 * Are we at extent 8? If yes, we know the extent is changed.
6028 * This may only happen on the first iteration.
6029 */
6030 if (found_key.offset + right_len <= ekey->offset) {
6031 /* If we're a hole just pretend nothing changed */
6032 ret = (left_disknr) ? 0 : 1;
6033 goto out;
6034 }
6035
6036 /*
6037 * We just wanted to see if when we have an inline extent, what
6038 * follows it is a regular extent (wanted to check the above
6039 * condition for inline extents too). This should normally not
6040 * happen but it's possible for example when we have an inline
6041 * compressed extent representing data with a size matching
6042 * the page size (currently the same as sector size).
6043 */
6044 if (right_type == BTRFS_FILE_EXTENT_INLINE) {
6045 ret = 0;
6046 goto out;
6047 }
6048
6049 right_disknr = btrfs_file_extent_disk_bytenr(eb, ei);
6050 right_offset = btrfs_file_extent_offset(eb, ei);
6051 right_gen = btrfs_file_extent_generation(eb, ei);
6052
6053 left_offset_fixed = left_offset;
6054 if (key.offset < ekey->offset) {
6055 /* Fix the right offset for 2a and 7. */
6056 right_offset += ekey->offset - key.offset;
6057 } else {
6058 /* Fix the left offset for all behind 2a and 2b */
6059 left_offset_fixed += key.offset - ekey->offset;
6060 }
6061
6062 /*
6063 * Check if we have the same extent.
6064 */
6065 if (left_disknr != right_disknr ||
6066 left_offset_fixed != right_offset ||
6067 left_gen != right_gen) {
6068 ret = 0;
6069 goto out;
6070 }
6071
6072 /*
6073 * Go to the next extent.
6074 */
6075 ret = btrfs_next_item(sctx->parent_root, path);
6076 if (ret < 0)
6077 goto out;
6078 if (!ret) {
6079 eb = path->nodes[0];
6080 slot = path->slots[0];
6081 btrfs_item_key_to_cpu(eb, &found_key, slot);
6082 }
6083 if (ret || found_key.objectid != key.objectid ||
6084 found_key.type != key.type) {
6085 key.offset += right_len;
6086 break;
6087 }
6088 if (found_key.offset != key.offset + right_len) {
6089 ret = 0;
6090 goto out;
6091 }
6092 key = found_key;
6093 }
6094
6095 /*
6096 * We're now behind the left extent (treat as unchanged) or at the end
6097 * of the right side (treat as changed).
6098 */
6099 if (key.offset >= ekey->offset + left_len)
6100 ret = 1;
6101 else
6102 ret = 0;
6103
6104
6105 out:
6106 btrfs_free_path(path);
6107 return ret;
6108 }
6109
get_last_extent(struct send_ctx * sctx,u64 offset)6110 static int get_last_extent(struct send_ctx *sctx, u64 offset)
6111 {
6112 struct btrfs_path *path;
6113 struct btrfs_root *root = sctx->send_root;
6114 struct btrfs_key key;
6115 int ret;
6116
6117 path = alloc_path_for_send();
6118 if (!path)
6119 return -ENOMEM;
6120
6121 sctx->cur_inode_last_extent = 0;
6122
6123 key.objectid = sctx->cur_ino;
6124 key.type = BTRFS_EXTENT_DATA_KEY;
6125 key.offset = offset;
6126 ret = btrfs_search_slot_for_read(root, &key, path, 0, 1);
6127 if (ret < 0)
6128 goto out;
6129 ret = 0;
6130 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
6131 if (key.objectid != sctx->cur_ino || key.type != BTRFS_EXTENT_DATA_KEY)
6132 goto out;
6133
6134 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6135 out:
6136 btrfs_free_path(path);
6137 return ret;
6138 }
6139
range_is_hole_in_parent(struct send_ctx * sctx,const u64 start,const u64 end)6140 static int range_is_hole_in_parent(struct send_ctx *sctx,
6141 const u64 start,
6142 const u64 end)
6143 {
6144 struct btrfs_path *path;
6145 struct btrfs_key key;
6146 struct btrfs_root *root = sctx->parent_root;
6147 u64 search_start = start;
6148 int ret;
6149
6150 path = alloc_path_for_send();
6151 if (!path)
6152 return -ENOMEM;
6153
6154 key.objectid = sctx->cur_ino;
6155 key.type = BTRFS_EXTENT_DATA_KEY;
6156 key.offset = search_start;
6157 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6158 if (ret < 0)
6159 goto out;
6160 if (ret > 0 && path->slots[0] > 0)
6161 path->slots[0]--;
6162
6163 while (search_start < end) {
6164 struct extent_buffer *leaf = path->nodes[0];
6165 int slot = path->slots[0];
6166 struct btrfs_file_extent_item *fi;
6167 u64 extent_end;
6168
6169 if (slot >= btrfs_header_nritems(leaf)) {
6170 ret = btrfs_next_leaf(root, path);
6171 if (ret < 0)
6172 goto out;
6173 else if (ret > 0)
6174 break;
6175 continue;
6176 }
6177
6178 btrfs_item_key_to_cpu(leaf, &key, slot);
6179 if (key.objectid < sctx->cur_ino ||
6180 key.type < BTRFS_EXTENT_DATA_KEY)
6181 goto next;
6182 if (key.objectid > sctx->cur_ino ||
6183 key.type > BTRFS_EXTENT_DATA_KEY ||
6184 key.offset >= end)
6185 break;
6186
6187 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6188 extent_end = btrfs_file_extent_end(path);
6189 if (extent_end <= start)
6190 goto next;
6191 if (btrfs_file_extent_disk_bytenr(leaf, fi) == 0) {
6192 search_start = extent_end;
6193 goto next;
6194 }
6195 ret = 0;
6196 goto out;
6197 next:
6198 path->slots[0]++;
6199 }
6200 ret = 1;
6201 out:
6202 btrfs_free_path(path);
6203 return ret;
6204 }
6205
maybe_send_hole(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6206 static int maybe_send_hole(struct send_ctx *sctx, struct btrfs_path *path,
6207 struct btrfs_key *key)
6208 {
6209 int ret = 0;
6210
6211 if (sctx->cur_ino != key->objectid || !need_send_hole(sctx))
6212 return 0;
6213
6214 if (sctx->cur_inode_last_extent == (u64)-1) {
6215 ret = get_last_extent(sctx, key->offset - 1);
6216 if (ret)
6217 return ret;
6218 }
6219
6220 if (path->slots[0] == 0 &&
6221 sctx->cur_inode_last_extent < key->offset) {
6222 /*
6223 * We might have skipped entire leafs that contained only
6224 * file extent items for our current inode. These leafs have
6225 * a generation number smaller (older) than the one in the
6226 * current leaf and the leaf our last extent came from, and
6227 * are located between these 2 leafs.
6228 */
6229 ret = get_last_extent(sctx, key->offset - 1);
6230 if (ret)
6231 return ret;
6232 }
6233
6234 if (sctx->cur_inode_last_extent < key->offset) {
6235 ret = range_is_hole_in_parent(sctx,
6236 sctx->cur_inode_last_extent,
6237 key->offset);
6238 if (ret < 0)
6239 return ret;
6240 else if (ret == 0)
6241 ret = send_hole(sctx, key->offset);
6242 else
6243 ret = 0;
6244 }
6245 sctx->cur_inode_last_extent = btrfs_file_extent_end(path);
6246 return ret;
6247 }
6248
process_extent(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6249 static int process_extent(struct send_ctx *sctx,
6250 struct btrfs_path *path,
6251 struct btrfs_key *key)
6252 {
6253 struct clone_root *found_clone = NULL;
6254 int ret = 0;
6255
6256 if (S_ISLNK(sctx->cur_inode_mode))
6257 return 0;
6258
6259 if (sctx->parent_root && !sctx->cur_inode_new) {
6260 ret = is_extent_unchanged(sctx, path, key);
6261 if (ret < 0)
6262 goto out;
6263 if (ret) {
6264 ret = 0;
6265 goto out_hole;
6266 }
6267 } else {
6268 struct btrfs_file_extent_item *ei;
6269 u8 type;
6270
6271 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
6272 struct btrfs_file_extent_item);
6273 type = btrfs_file_extent_type(path->nodes[0], ei);
6274 if (type == BTRFS_FILE_EXTENT_PREALLOC ||
6275 type == BTRFS_FILE_EXTENT_REG) {
6276 /*
6277 * The send spec does not have a prealloc command yet,
6278 * so just leave a hole for prealloc'ed extents until
6279 * we have enough commands queued up to justify rev'ing
6280 * the send spec.
6281 */
6282 if (type == BTRFS_FILE_EXTENT_PREALLOC) {
6283 ret = 0;
6284 goto out;
6285 }
6286
6287 /* Have a hole, just skip it. */
6288 if (btrfs_file_extent_disk_bytenr(path->nodes[0], ei) == 0) {
6289 ret = 0;
6290 goto out;
6291 }
6292 }
6293 }
6294
6295 ret = find_extent_clone(sctx, path, key->objectid, key->offset,
6296 sctx->cur_inode_size, &found_clone);
6297 if (ret != -ENOENT && ret < 0)
6298 goto out;
6299
6300 ret = send_write_or_clone(sctx, path, key, found_clone);
6301 if (ret)
6302 goto out;
6303 out_hole:
6304 ret = maybe_send_hole(sctx, path, key);
6305 out:
6306 return ret;
6307 }
6308
process_all_extents(struct send_ctx * sctx)6309 static int process_all_extents(struct send_ctx *sctx)
6310 {
6311 int ret = 0;
6312 int iter_ret = 0;
6313 struct btrfs_root *root;
6314 struct btrfs_path *path;
6315 struct btrfs_key key;
6316 struct btrfs_key found_key;
6317
6318 root = sctx->send_root;
6319 path = alloc_path_for_send();
6320 if (!path)
6321 return -ENOMEM;
6322
6323 key.objectid = sctx->cmp_key->objectid;
6324 key.type = BTRFS_EXTENT_DATA_KEY;
6325 key.offset = 0;
6326 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) {
6327 if (found_key.objectid != key.objectid ||
6328 found_key.type != key.type) {
6329 ret = 0;
6330 break;
6331 }
6332
6333 ret = process_extent(sctx, path, &found_key);
6334 if (ret < 0)
6335 break;
6336 }
6337 /* Catch error found during iteration */
6338 if (iter_ret < 0)
6339 ret = iter_ret;
6340
6341 btrfs_free_path(path);
6342 return ret;
6343 }
6344
process_recorded_refs_if_needed(struct send_ctx * sctx,int at_end,int * pending_move,int * refs_processed)6345 static int process_recorded_refs_if_needed(struct send_ctx *sctx, int at_end,
6346 int *pending_move,
6347 int *refs_processed)
6348 {
6349 int ret = 0;
6350
6351 if (sctx->cur_ino == 0)
6352 goto out;
6353 if (!at_end && sctx->cur_ino == sctx->cmp_key->objectid &&
6354 sctx->cmp_key->type <= BTRFS_INODE_EXTREF_KEY)
6355 goto out;
6356 if (list_empty(&sctx->new_refs) && list_empty(&sctx->deleted_refs))
6357 goto out;
6358
6359 ret = process_recorded_refs(sctx, pending_move);
6360 if (ret < 0)
6361 goto out;
6362
6363 *refs_processed = 1;
6364 out:
6365 return ret;
6366 }
6367
finish_inode_if_needed(struct send_ctx * sctx,int at_end)6368 static int finish_inode_if_needed(struct send_ctx *sctx, int at_end)
6369 {
6370 int ret = 0;
6371 struct btrfs_inode_info info;
6372 u64 left_mode;
6373 u64 left_uid;
6374 u64 left_gid;
6375 u64 left_fileattr;
6376 u64 right_mode;
6377 u64 right_uid;
6378 u64 right_gid;
6379 u64 right_fileattr;
6380 int need_chmod = 0;
6381 int need_chown = 0;
6382 bool need_fileattr = false;
6383 int need_truncate = 1;
6384 int pending_move = 0;
6385 int refs_processed = 0;
6386
6387 if (sctx->ignore_cur_inode)
6388 return 0;
6389
6390 ret = process_recorded_refs_if_needed(sctx, at_end, &pending_move,
6391 &refs_processed);
6392 if (ret < 0)
6393 goto out;
6394
6395 /*
6396 * We have processed the refs and thus need to advance send_progress.
6397 * Now, calls to get_cur_xxx will take the updated refs of the current
6398 * inode into account.
6399 *
6400 * On the other hand, if our current inode is a directory and couldn't
6401 * be moved/renamed because its parent was renamed/moved too and it has
6402 * a higher inode number, we can only move/rename our current inode
6403 * after we moved/renamed its parent. Therefore in this case operate on
6404 * the old path (pre move/rename) of our current inode, and the
6405 * move/rename will be performed later.
6406 */
6407 if (refs_processed && !pending_move)
6408 sctx->send_progress = sctx->cur_ino + 1;
6409
6410 if (sctx->cur_ino == 0 || sctx->cur_inode_deleted)
6411 goto out;
6412 if (!at_end && sctx->cmp_key->objectid == sctx->cur_ino)
6413 goto out;
6414 ret = get_inode_info(sctx->send_root, sctx->cur_ino, &info);
6415 if (ret < 0)
6416 goto out;
6417 left_mode = info.mode;
6418 left_uid = info.uid;
6419 left_gid = info.gid;
6420 left_fileattr = info.fileattr;
6421
6422 if (!sctx->parent_root || sctx->cur_inode_new) {
6423 need_chown = 1;
6424 if (!S_ISLNK(sctx->cur_inode_mode))
6425 need_chmod = 1;
6426 if (sctx->cur_inode_next_write_offset == sctx->cur_inode_size)
6427 need_truncate = 0;
6428 } else {
6429 u64 old_size;
6430
6431 ret = get_inode_info(sctx->parent_root, sctx->cur_ino, &info);
6432 if (ret < 0)
6433 goto out;
6434 old_size = info.size;
6435 right_mode = info.mode;
6436 right_uid = info.uid;
6437 right_gid = info.gid;
6438 right_fileattr = info.fileattr;
6439
6440 if (left_uid != right_uid || left_gid != right_gid)
6441 need_chown = 1;
6442 if (!S_ISLNK(sctx->cur_inode_mode) && left_mode != right_mode)
6443 need_chmod = 1;
6444 if (!S_ISLNK(sctx->cur_inode_mode) && left_fileattr != right_fileattr)
6445 need_fileattr = true;
6446 if ((old_size == sctx->cur_inode_size) ||
6447 (sctx->cur_inode_size > old_size &&
6448 sctx->cur_inode_next_write_offset == sctx->cur_inode_size))
6449 need_truncate = 0;
6450 }
6451
6452 if (S_ISREG(sctx->cur_inode_mode)) {
6453 if (need_send_hole(sctx)) {
6454 if (sctx->cur_inode_last_extent == (u64)-1 ||
6455 sctx->cur_inode_last_extent <
6456 sctx->cur_inode_size) {
6457 ret = get_last_extent(sctx, (u64)-1);
6458 if (ret)
6459 goto out;
6460 }
6461 if (sctx->cur_inode_last_extent <
6462 sctx->cur_inode_size) {
6463 ret = send_hole(sctx, sctx->cur_inode_size);
6464 if (ret)
6465 goto out;
6466 }
6467 }
6468 if (need_truncate) {
6469 ret = send_truncate(sctx, sctx->cur_ino,
6470 sctx->cur_inode_gen,
6471 sctx->cur_inode_size);
6472 if (ret < 0)
6473 goto out;
6474 }
6475 }
6476
6477 if (need_chown) {
6478 ret = send_chown(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6479 left_uid, left_gid);
6480 if (ret < 0)
6481 goto out;
6482 }
6483 if (need_chmod) {
6484 ret = send_chmod(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6485 left_mode);
6486 if (ret < 0)
6487 goto out;
6488 }
6489 if (need_fileattr) {
6490 ret = send_fileattr(sctx, sctx->cur_ino, sctx->cur_inode_gen,
6491 left_fileattr);
6492 if (ret < 0)
6493 goto out;
6494 }
6495
6496 if (proto_cmd_ok(sctx, BTRFS_SEND_C_ENABLE_VERITY)
6497 && sctx->cur_inode_needs_verity) {
6498 ret = process_verity(sctx);
6499 if (ret < 0)
6500 goto out;
6501 }
6502
6503 ret = send_capabilities(sctx);
6504 if (ret < 0)
6505 goto out;
6506
6507 /*
6508 * If other directory inodes depended on our current directory
6509 * inode's move/rename, now do their move/rename operations.
6510 */
6511 if (!is_waiting_for_move(sctx, sctx->cur_ino)) {
6512 ret = apply_children_dir_moves(sctx);
6513 if (ret)
6514 goto out;
6515 /*
6516 * Need to send that every time, no matter if it actually
6517 * changed between the two trees as we have done changes to
6518 * the inode before. If our inode is a directory and it's
6519 * waiting to be moved/renamed, we will send its utimes when
6520 * it's moved/renamed, therefore we don't need to do it here.
6521 */
6522 sctx->send_progress = sctx->cur_ino + 1;
6523 ret = send_utimes(sctx, sctx->cur_ino, sctx->cur_inode_gen);
6524 if (ret < 0)
6525 goto out;
6526 }
6527
6528 out:
6529 return ret;
6530 }
6531
close_current_inode(struct send_ctx * sctx)6532 static void close_current_inode(struct send_ctx *sctx)
6533 {
6534 u64 i_size;
6535
6536 if (sctx->cur_inode == NULL)
6537 return;
6538
6539 i_size = i_size_read(sctx->cur_inode);
6540
6541 /*
6542 * If we are doing an incremental send, we may have extents between the
6543 * last processed extent and the i_size that have not been processed
6544 * because they haven't changed but we may have read some of their pages
6545 * through readahead, see the comments at send_extent_data().
6546 */
6547 if (sctx->clean_page_cache && sctx->page_cache_clear_start < i_size)
6548 truncate_inode_pages_range(&sctx->cur_inode->i_data,
6549 sctx->page_cache_clear_start,
6550 round_up(i_size, PAGE_SIZE) - 1);
6551
6552 iput(sctx->cur_inode);
6553 sctx->cur_inode = NULL;
6554 }
6555
changed_inode(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6556 static int changed_inode(struct send_ctx *sctx,
6557 enum btrfs_compare_tree_result result)
6558 {
6559 int ret = 0;
6560 struct btrfs_key *key = sctx->cmp_key;
6561 struct btrfs_inode_item *left_ii = NULL;
6562 struct btrfs_inode_item *right_ii = NULL;
6563 u64 left_gen = 0;
6564 u64 right_gen = 0;
6565
6566 close_current_inode(sctx);
6567
6568 sctx->cur_ino = key->objectid;
6569 sctx->cur_inode_new_gen = false;
6570 sctx->cur_inode_last_extent = (u64)-1;
6571 sctx->cur_inode_next_write_offset = 0;
6572 sctx->ignore_cur_inode = false;
6573
6574 /*
6575 * Set send_progress to current inode. This will tell all get_cur_xxx
6576 * functions that the current inode's refs are not updated yet. Later,
6577 * when process_recorded_refs is finished, it is set to cur_ino + 1.
6578 */
6579 sctx->send_progress = sctx->cur_ino;
6580
6581 if (result == BTRFS_COMPARE_TREE_NEW ||
6582 result == BTRFS_COMPARE_TREE_CHANGED) {
6583 left_ii = btrfs_item_ptr(sctx->left_path->nodes[0],
6584 sctx->left_path->slots[0],
6585 struct btrfs_inode_item);
6586 left_gen = btrfs_inode_generation(sctx->left_path->nodes[0],
6587 left_ii);
6588 } else {
6589 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6590 sctx->right_path->slots[0],
6591 struct btrfs_inode_item);
6592 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6593 right_ii);
6594 }
6595 if (result == BTRFS_COMPARE_TREE_CHANGED) {
6596 right_ii = btrfs_item_ptr(sctx->right_path->nodes[0],
6597 sctx->right_path->slots[0],
6598 struct btrfs_inode_item);
6599
6600 right_gen = btrfs_inode_generation(sctx->right_path->nodes[0],
6601 right_ii);
6602
6603 /*
6604 * The cur_ino = root dir case is special here. We can't treat
6605 * the inode as deleted+reused because it would generate a
6606 * stream that tries to delete/mkdir the root dir.
6607 */
6608 if (left_gen != right_gen &&
6609 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6610 sctx->cur_inode_new_gen = true;
6611 }
6612
6613 /*
6614 * Normally we do not find inodes with a link count of zero (orphans)
6615 * because the most common case is to create a snapshot and use it
6616 * for a send operation. However other less common use cases involve
6617 * using a subvolume and send it after turning it to RO mode just
6618 * after deleting all hard links of a file while holding an open
6619 * file descriptor against it or turning a RO snapshot into RW mode,
6620 * keep an open file descriptor against a file, delete it and then
6621 * turn the snapshot back to RO mode before using it for a send
6622 * operation. The former is what the receiver operation does.
6623 * Therefore, if we want to send these snapshots soon after they're
6624 * received, we need to handle orphan inodes as well. Moreover, orphans
6625 * can appear not only in the send snapshot but also in the parent
6626 * snapshot. Here are several cases:
6627 *
6628 * Case 1: BTRFS_COMPARE_TREE_NEW
6629 * | send snapshot | action
6630 * --------------------------------
6631 * nlink | 0 | ignore
6632 *
6633 * Case 2: BTRFS_COMPARE_TREE_DELETED
6634 * | parent snapshot | action
6635 * ----------------------------------
6636 * nlink | 0 | as usual
6637 * Note: No unlinks will be sent because there're no paths for it.
6638 *
6639 * Case 3: BTRFS_COMPARE_TREE_CHANGED
6640 * | | parent snapshot | send snapshot | action
6641 * -----------------------------------------------------------------------
6642 * subcase 1 | nlink | 0 | 0 | ignore
6643 * subcase 2 | nlink | >0 | 0 | new_gen(deletion)
6644 * subcase 3 | nlink | 0 | >0 | new_gen(creation)
6645 *
6646 */
6647 if (result == BTRFS_COMPARE_TREE_NEW) {
6648 if (btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii) == 0) {
6649 sctx->ignore_cur_inode = true;
6650 goto out;
6651 }
6652 sctx->cur_inode_gen = left_gen;
6653 sctx->cur_inode_new = true;
6654 sctx->cur_inode_deleted = false;
6655 sctx->cur_inode_size = btrfs_inode_size(
6656 sctx->left_path->nodes[0], left_ii);
6657 sctx->cur_inode_mode = btrfs_inode_mode(
6658 sctx->left_path->nodes[0], left_ii);
6659 sctx->cur_inode_rdev = btrfs_inode_rdev(
6660 sctx->left_path->nodes[0], left_ii);
6661 if (sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID)
6662 ret = send_create_inode_if_needed(sctx);
6663 } else if (result == BTRFS_COMPARE_TREE_DELETED) {
6664 sctx->cur_inode_gen = right_gen;
6665 sctx->cur_inode_new = false;
6666 sctx->cur_inode_deleted = true;
6667 sctx->cur_inode_size = btrfs_inode_size(
6668 sctx->right_path->nodes[0], right_ii);
6669 sctx->cur_inode_mode = btrfs_inode_mode(
6670 sctx->right_path->nodes[0], right_ii);
6671 } else if (result == BTRFS_COMPARE_TREE_CHANGED) {
6672 u32 new_nlinks, old_nlinks;
6673
6674 new_nlinks = btrfs_inode_nlink(sctx->left_path->nodes[0], left_ii);
6675 old_nlinks = btrfs_inode_nlink(sctx->right_path->nodes[0], right_ii);
6676 if (new_nlinks == 0 && old_nlinks == 0) {
6677 sctx->ignore_cur_inode = true;
6678 goto out;
6679 } else if (new_nlinks == 0 || old_nlinks == 0) {
6680 sctx->cur_inode_new_gen = 1;
6681 }
6682 /*
6683 * We need to do some special handling in case the inode was
6684 * reported as changed with a changed generation number. This
6685 * means that the original inode was deleted and new inode
6686 * reused the same inum. So we have to treat the old inode as
6687 * deleted and the new one as new.
6688 */
6689 if (sctx->cur_inode_new_gen) {
6690 /*
6691 * First, process the inode as if it was deleted.
6692 */
6693 if (old_nlinks > 0) {
6694 sctx->cur_inode_gen = right_gen;
6695 sctx->cur_inode_new = false;
6696 sctx->cur_inode_deleted = true;
6697 sctx->cur_inode_size = btrfs_inode_size(
6698 sctx->right_path->nodes[0], right_ii);
6699 sctx->cur_inode_mode = btrfs_inode_mode(
6700 sctx->right_path->nodes[0], right_ii);
6701 ret = process_all_refs(sctx,
6702 BTRFS_COMPARE_TREE_DELETED);
6703 if (ret < 0)
6704 goto out;
6705 }
6706
6707 /*
6708 * Now process the inode as if it was new.
6709 */
6710 if (new_nlinks > 0) {
6711 sctx->cur_inode_gen = left_gen;
6712 sctx->cur_inode_new = true;
6713 sctx->cur_inode_deleted = false;
6714 sctx->cur_inode_size = btrfs_inode_size(
6715 sctx->left_path->nodes[0],
6716 left_ii);
6717 sctx->cur_inode_mode = btrfs_inode_mode(
6718 sctx->left_path->nodes[0],
6719 left_ii);
6720 sctx->cur_inode_rdev = btrfs_inode_rdev(
6721 sctx->left_path->nodes[0],
6722 left_ii);
6723 ret = send_create_inode_if_needed(sctx);
6724 if (ret < 0)
6725 goto out;
6726
6727 ret = process_all_refs(sctx, BTRFS_COMPARE_TREE_NEW);
6728 if (ret < 0)
6729 goto out;
6730 /*
6731 * Advance send_progress now as we did not get
6732 * into process_recorded_refs_if_needed in the
6733 * new_gen case.
6734 */
6735 sctx->send_progress = sctx->cur_ino + 1;
6736
6737 /*
6738 * Now process all extents and xattrs of the
6739 * inode as if they were all new.
6740 */
6741 ret = process_all_extents(sctx);
6742 if (ret < 0)
6743 goto out;
6744 ret = process_all_new_xattrs(sctx);
6745 if (ret < 0)
6746 goto out;
6747 }
6748 } else {
6749 sctx->cur_inode_gen = left_gen;
6750 sctx->cur_inode_new = false;
6751 sctx->cur_inode_new_gen = false;
6752 sctx->cur_inode_deleted = false;
6753 sctx->cur_inode_size = btrfs_inode_size(
6754 sctx->left_path->nodes[0], left_ii);
6755 sctx->cur_inode_mode = btrfs_inode_mode(
6756 sctx->left_path->nodes[0], left_ii);
6757 }
6758 }
6759
6760 out:
6761 return ret;
6762 }
6763
6764 /*
6765 * We have to process new refs before deleted refs, but compare_trees gives us
6766 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
6767 * first and later process them in process_recorded_refs.
6768 * For the cur_inode_new_gen case, we skip recording completely because
6769 * changed_inode did already initiate processing of refs. The reason for this is
6770 * that in this case, compare_tree actually compares the refs of 2 different
6771 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
6772 * refs of the right tree as deleted and all refs of the left tree as new.
6773 */
changed_ref(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6774 static int changed_ref(struct send_ctx *sctx,
6775 enum btrfs_compare_tree_result result)
6776 {
6777 int ret = 0;
6778
6779 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6780 inconsistent_snapshot_error(sctx, result, "reference");
6781 return -EIO;
6782 }
6783
6784 if (!sctx->cur_inode_new_gen &&
6785 sctx->cur_ino != BTRFS_FIRST_FREE_OBJECTID) {
6786 if (result == BTRFS_COMPARE_TREE_NEW)
6787 ret = record_new_ref(sctx);
6788 else if (result == BTRFS_COMPARE_TREE_DELETED)
6789 ret = record_deleted_ref(sctx);
6790 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6791 ret = record_changed_ref(sctx);
6792 }
6793
6794 return ret;
6795 }
6796
6797 /*
6798 * Process new/deleted/changed xattrs. We skip processing in the
6799 * cur_inode_new_gen case because changed_inode did already initiate processing
6800 * of xattrs. The reason is the same as in changed_ref
6801 */
changed_xattr(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6802 static int changed_xattr(struct send_ctx *sctx,
6803 enum btrfs_compare_tree_result result)
6804 {
6805 int ret = 0;
6806
6807 if (sctx->cur_ino != sctx->cmp_key->objectid) {
6808 inconsistent_snapshot_error(sctx, result, "xattr");
6809 return -EIO;
6810 }
6811
6812 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6813 if (result == BTRFS_COMPARE_TREE_NEW)
6814 ret = process_new_xattr(sctx);
6815 else if (result == BTRFS_COMPARE_TREE_DELETED)
6816 ret = process_deleted_xattr(sctx);
6817 else if (result == BTRFS_COMPARE_TREE_CHANGED)
6818 ret = process_changed_xattr(sctx);
6819 }
6820
6821 return ret;
6822 }
6823
6824 /*
6825 * Process new/deleted/changed extents. We skip processing in the
6826 * cur_inode_new_gen case because changed_inode did already initiate processing
6827 * of extents. The reason is the same as in changed_ref
6828 */
changed_extent(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6829 static int changed_extent(struct send_ctx *sctx,
6830 enum btrfs_compare_tree_result result)
6831 {
6832 int ret = 0;
6833
6834 /*
6835 * We have found an extent item that changed without the inode item
6836 * having changed. This can happen either after relocation (where the
6837 * disk_bytenr of an extent item is replaced at
6838 * relocation.c:replace_file_extents()) or after deduplication into a
6839 * file in both the parent and send snapshots (where an extent item can
6840 * get modified or replaced with a new one). Note that deduplication
6841 * updates the inode item, but it only changes the iversion (sequence
6842 * field in the inode item) of the inode, so if a file is deduplicated
6843 * the same amount of times in both the parent and send snapshots, its
6844 * iversion becomes the same in both snapshots, whence the inode item is
6845 * the same on both snapshots.
6846 */
6847 if (sctx->cur_ino != sctx->cmp_key->objectid)
6848 return 0;
6849
6850 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6851 if (result != BTRFS_COMPARE_TREE_DELETED)
6852 ret = process_extent(sctx, sctx->left_path,
6853 sctx->cmp_key);
6854 }
6855
6856 return ret;
6857 }
6858
changed_verity(struct send_ctx * sctx,enum btrfs_compare_tree_result result)6859 static int changed_verity(struct send_ctx *sctx, enum btrfs_compare_tree_result result)
6860 {
6861 int ret = 0;
6862
6863 if (!sctx->cur_inode_new_gen && !sctx->cur_inode_deleted) {
6864 if (result == BTRFS_COMPARE_TREE_NEW)
6865 sctx->cur_inode_needs_verity = true;
6866 }
6867 return ret;
6868 }
6869
dir_changed(struct send_ctx * sctx,u64 dir)6870 static int dir_changed(struct send_ctx *sctx, u64 dir)
6871 {
6872 u64 orig_gen, new_gen;
6873 int ret;
6874
6875 ret = get_inode_gen(sctx->send_root, dir, &new_gen);
6876 if (ret)
6877 return ret;
6878
6879 ret = get_inode_gen(sctx->parent_root, dir, &orig_gen);
6880 if (ret)
6881 return ret;
6882
6883 return (orig_gen != new_gen) ? 1 : 0;
6884 }
6885
compare_refs(struct send_ctx * sctx,struct btrfs_path * path,struct btrfs_key * key)6886 static int compare_refs(struct send_ctx *sctx, struct btrfs_path *path,
6887 struct btrfs_key *key)
6888 {
6889 struct btrfs_inode_extref *extref;
6890 struct extent_buffer *leaf;
6891 u64 dirid = 0, last_dirid = 0;
6892 unsigned long ptr;
6893 u32 item_size;
6894 u32 cur_offset = 0;
6895 int ref_name_len;
6896 int ret = 0;
6897
6898 /* Easy case, just check this one dirid */
6899 if (key->type == BTRFS_INODE_REF_KEY) {
6900 dirid = key->offset;
6901
6902 ret = dir_changed(sctx, dirid);
6903 goto out;
6904 }
6905
6906 leaf = path->nodes[0];
6907 item_size = btrfs_item_size(leaf, path->slots[0]);
6908 ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
6909 while (cur_offset < item_size) {
6910 extref = (struct btrfs_inode_extref *)(ptr +
6911 cur_offset);
6912 dirid = btrfs_inode_extref_parent(leaf, extref);
6913 ref_name_len = btrfs_inode_extref_name_len(leaf, extref);
6914 cur_offset += ref_name_len + sizeof(*extref);
6915 if (dirid == last_dirid)
6916 continue;
6917 ret = dir_changed(sctx, dirid);
6918 if (ret)
6919 break;
6920 last_dirid = dirid;
6921 }
6922 out:
6923 return ret;
6924 }
6925
6926 /*
6927 * Updates compare related fields in sctx and simply forwards to the actual
6928 * changed_xxx functions.
6929 */
changed_cb(struct btrfs_path * left_path,struct btrfs_path * right_path,struct btrfs_key * key,enum btrfs_compare_tree_result result,struct send_ctx * sctx)6930 static int changed_cb(struct btrfs_path *left_path,
6931 struct btrfs_path *right_path,
6932 struct btrfs_key *key,
6933 enum btrfs_compare_tree_result result,
6934 struct send_ctx *sctx)
6935 {
6936 int ret = 0;
6937
6938 /*
6939 * We can not hold the commit root semaphore here. This is because in
6940 * the case of sending and receiving to the same filesystem, using a
6941 * pipe, could result in a deadlock:
6942 *
6943 * 1) The task running send blocks on the pipe because it's full;
6944 *
6945 * 2) The task running receive, which is the only consumer of the pipe,
6946 * is waiting for a transaction commit (for example due to a space
6947 * reservation when doing a write or triggering a transaction commit
6948 * when creating a subvolume);
6949 *
6950 * 3) The transaction is waiting to write lock the commit root semaphore,
6951 * but can not acquire it since it's being held at 1).
6952 *
6953 * Down this call chain we write to the pipe through kernel_write().
6954 * The same type of problem can also happen when sending to a file that
6955 * is stored in the same filesystem - when reserving space for a write
6956 * into the file, we can trigger a transaction commit.
6957 *
6958 * Our caller has supplied us with clones of leaves from the send and
6959 * parent roots, so we're safe here from a concurrent relocation and
6960 * further reallocation of metadata extents while we are here. Below we
6961 * also assert that the leaves are clones.
6962 */
6963 lockdep_assert_not_held(&sctx->send_root->fs_info->commit_root_sem);
6964
6965 /*
6966 * We always have a send root, so left_path is never NULL. We will not
6967 * have a leaf when we have reached the end of the send root but have
6968 * not yet reached the end of the parent root.
6969 */
6970 if (left_path->nodes[0])
6971 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
6972 &left_path->nodes[0]->bflags));
6973 /*
6974 * When doing a full send we don't have a parent root, so right_path is
6975 * NULL. When doing an incremental send, we may have reached the end of
6976 * the parent root already, so we don't have a leaf at right_path.
6977 */
6978 if (right_path && right_path->nodes[0])
6979 ASSERT(test_bit(EXTENT_BUFFER_UNMAPPED,
6980 &right_path->nodes[0]->bflags));
6981
6982 if (result == BTRFS_COMPARE_TREE_SAME) {
6983 if (key->type == BTRFS_INODE_REF_KEY ||
6984 key->type == BTRFS_INODE_EXTREF_KEY) {
6985 ret = compare_refs(sctx, left_path, key);
6986 if (!ret)
6987 return 0;
6988 if (ret < 0)
6989 return ret;
6990 } else if (key->type == BTRFS_EXTENT_DATA_KEY) {
6991 return maybe_send_hole(sctx, left_path, key);
6992 } else {
6993 return 0;
6994 }
6995 result = BTRFS_COMPARE_TREE_CHANGED;
6996 ret = 0;
6997 }
6998
6999 sctx->left_path = left_path;
7000 sctx->right_path = right_path;
7001 sctx->cmp_key = key;
7002
7003 ret = finish_inode_if_needed(sctx, 0);
7004 if (ret < 0)
7005 goto out;
7006
7007 /* Ignore non-FS objects */
7008 if (key->objectid == BTRFS_FREE_INO_OBJECTID ||
7009 key->objectid == BTRFS_FREE_SPACE_OBJECTID)
7010 goto out;
7011
7012 if (key->type == BTRFS_INODE_ITEM_KEY) {
7013 ret = changed_inode(sctx, result);
7014 } else if (!sctx->ignore_cur_inode) {
7015 if (key->type == BTRFS_INODE_REF_KEY ||
7016 key->type == BTRFS_INODE_EXTREF_KEY)
7017 ret = changed_ref(sctx, result);
7018 else if (key->type == BTRFS_XATTR_ITEM_KEY)
7019 ret = changed_xattr(sctx, result);
7020 else if (key->type == BTRFS_EXTENT_DATA_KEY)
7021 ret = changed_extent(sctx, result);
7022 else if (key->type == BTRFS_VERITY_DESC_ITEM_KEY &&
7023 key->offset == 0)
7024 ret = changed_verity(sctx, result);
7025 }
7026
7027 out:
7028 return ret;
7029 }
7030
search_key_again(const struct send_ctx * sctx,struct btrfs_root * root,struct btrfs_path * path,const struct btrfs_key * key)7031 static int search_key_again(const struct send_ctx *sctx,
7032 struct btrfs_root *root,
7033 struct btrfs_path *path,
7034 const struct btrfs_key *key)
7035 {
7036 int ret;
7037
7038 if (!path->need_commit_sem)
7039 lockdep_assert_held_read(&root->fs_info->commit_root_sem);
7040
7041 /*
7042 * Roots used for send operations are readonly and no one can add,
7043 * update or remove keys from them, so we should be able to find our
7044 * key again. The only exception is deduplication, which can operate on
7045 * readonly roots and add, update or remove keys to/from them - but at
7046 * the moment we don't allow it to run in parallel with send.
7047 */
7048 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
7049 ASSERT(ret <= 0);
7050 if (ret > 0) {
7051 btrfs_print_tree(path->nodes[path->lowest_level], false);
7052 btrfs_err(root->fs_info,
7053 "send: key (%llu %u %llu) not found in %s root %llu, lowest_level %d, slot %d",
7054 key->objectid, key->type, key->offset,
7055 (root == sctx->parent_root ? "parent" : "send"),
7056 root->root_key.objectid, path->lowest_level,
7057 path->slots[path->lowest_level]);
7058 return -EUCLEAN;
7059 }
7060
7061 return ret;
7062 }
7063
full_send_tree(struct send_ctx * sctx)7064 static int full_send_tree(struct send_ctx *sctx)
7065 {
7066 int ret;
7067 struct btrfs_root *send_root = sctx->send_root;
7068 struct btrfs_key key;
7069 struct btrfs_fs_info *fs_info = send_root->fs_info;
7070 struct btrfs_path *path;
7071
7072 path = alloc_path_for_send();
7073 if (!path)
7074 return -ENOMEM;
7075 path->reada = READA_FORWARD_ALWAYS;
7076
7077 key.objectid = BTRFS_FIRST_FREE_OBJECTID;
7078 key.type = BTRFS_INODE_ITEM_KEY;
7079 key.offset = 0;
7080
7081 down_read(&fs_info->commit_root_sem);
7082 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7083 up_read(&fs_info->commit_root_sem);
7084
7085 ret = btrfs_search_slot_for_read(send_root, &key, path, 1, 0);
7086 if (ret < 0)
7087 goto out;
7088 if (ret)
7089 goto out_finish;
7090
7091 while (1) {
7092 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
7093
7094 ret = changed_cb(path, NULL, &key,
7095 BTRFS_COMPARE_TREE_NEW, sctx);
7096 if (ret < 0)
7097 goto out;
7098
7099 down_read(&fs_info->commit_root_sem);
7100 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7101 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7102 up_read(&fs_info->commit_root_sem);
7103 /*
7104 * A transaction used for relocating a block group was
7105 * committed or is about to finish its commit. Release
7106 * our path (leaf) and restart the search, so that we
7107 * avoid operating on any file extent items that are
7108 * stale, with a disk_bytenr that reflects a pre
7109 * relocation value. This way we avoid as much as
7110 * possible to fallback to regular writes when checking
7111 * if we can clone file ranges.
7112 */
7113 btrfs_release_path(path);
7114 ret = search_key_again(sctx, send_root, path, &key);
7115 if (ret < 0)
7116 goto out;
7117 } else {
7118 up_read(&fs_info->commit_root_sem);
7119 }
7120
7121 ret = btrfs_next_item(send_root, path);
7122 if (ret < 0)
7123 goto out;
7124 if (ret) {
7125 ret = 0;
7126 break;
7127 }
7128 }
7129
7130 out_finish:
7131 ret = finish_inode_if_needed(sctx, 1);
7132
7133 out:
7134 btrfs_free_path(path);
7135 return ret;
7136 }
7137
replace_node_with_clone(struct btrfs_path * path,int level)7138 static int replace_node_with_clone(struct btrfs_path *path, int level)
7139 {
7140 struct extent_buffer *clone;
7141
7142 clone = btrfs_clone_extent_buffer(path->nodes[level]);
7143 if (!clone)
7144 return -ENOMEM;
7145
7146 free_extent_buffer(path->nodes[level]);
7147 path->nodes[level] = clone;
7148
7149 return 0;
7150 }
7151
tree_move_down(struct btrfs_path * path,int * level,u64 reada_min_gen)7152 static int tree_move_down(struct btrfs_path *path, int *level, u64 reada_min_gen)
7153 {
7154 struct extent_buffer *eb;
7155 struct extent_buffer *parent = path->nodes[*level];
7156 int slot = path->slots[*level];
7157 const int nritems = btrfs_header_nritems(parent);
7158 u64 reada_max;
7159 u64 reada_done = 0;
7160
7161 lockdep_assert_held_read(&parent->fs_info->commit_root_sem);
7162
7163 BUG_ON(*level == 0);
7164 eb = btrfs_read_node_slot(parent, slot);
7165 if (IS_ERR(eb))
7166 return PTR_ERR(eb);
7167
7168 /*
7169 * Trigger readahead for the next leaves we will process, so that it is
7170 * very likely that when we need them they are already in memory and we
7171 * will not block on disk IO. For nodes we only do readahead for one,
7172 * since the time window between processing nodes is typically larger.
7173 */
7174 reada_max = (*level == 1 ? SZ_128K : eb->fs_info->nodesize);
7175
7176 for (slot++; slot < nritems && reada_done < reada_max; slot++) {
7177 if (btrfs_node_ptr_generation(parent, slot) > reada_min_gen) {
7178 btrfs_readahead_node_child(parent, slot);
7179 reada_done += eb->fs_info->nodesize;
7180 }
7181 }
7182
7183 path->nodes[*level - 1] = eb;
7184 path->slots[*level - 1] = 0;
7185 (*level)--;
7186
7187 if (*level == 0)
7188 return replace_node_with_clone(path, 0);
7189
7190 return 0;
7191 }
7192
tree_move_next_or_upnext(struct btrfs_path * path,int * level,int root_level)7193 static int tree_move_next_or_upnext(struct btrfs_path *path,
7194 int *level, int root_level)
7195 {
7196 int ret = 0;
7197 int nritems;
7198 nritems = btrfs_header_nritems(path->nodes[*level]);
7199
7200 path->slots[*level]++;
7201
7202 while (path->slots[*level] >= nritems) {
7203 if (*level == root_level) {
7204 path->slots[*level] = nritems - 1;
7205 return -1;
7206 }
7207
7208 /* move upnext */
7209 path->slots[*level] = 0;
7210 free_extent_buffer(path->nodes[*level]);
7211 path->nodes[*level] = NULL;
7212 (*level)++;
7213 path->slots[*level]++;
7214
7215 nritems = btrfs_header_nritems(path->nodes[*level]);
7216 ret = 1;
7217 }
7218 return ret;
7219 }
7220
7221 /*
7222 * Returns 1 if it had to move up and next. 0 is returned if it moved only next
7223 * or down.
7224 */
tree_advance(struct btrfs_path * path,int * level,int root_level,int allow_down,struct btrfs_key * key,u64 reada_min_gen)7225 static int tree_advance(struct btrfs_path *path,
7226 int *level, int root_level,
7227 int allow_down,
7228 struct btrfs_key *key,
7229 u64 reada_min_gen)
7230 {
7231 int ret;
7232
7233 if (*level == 0 || !allow_down) {
7234 ret = tree_move_next_or_upnext(path, level, root_level);
7235 } else {
7236 ret = tree_move_down(path, level, reada_min_gen);
7237 }
7238
7239 /*
7240 * Even if we have reached the end of a tree, ret is -1, update the key
7241 * anyway, so that in case we need to restart due to a block group
7242 * relocation, we can assert that the last key of the root node still
7243 * exists in the tree.
7244 */
7245 if (*level == 0)
7246 btrfs_item_key_to_cpu(path->nodes[*level], key,
7247 path->slots[*level]);
7248 else
7249 btrfs_node_key_to_cpu(path->nodes[*level], key,
7250 path->slots[*level]);
7251
7252 return ret;
7253 }
7254
tree_compare_item(struct btrfs_path * left_path,struct btrfs_path * right_path,char * tmp_buf)7255 static int tree_compare_item(struct btrfs_path *left_path,
7256 struct btrfs_path *right_path,
7257 char *tmp_buf)
7258 {
7259 int cmp;
7260 int len1, len2;
7261 unsigned long off1, off2;
7262
7263 len1 = btrfs_item_size(left_path->nodes[0], left_path->slots[0]);
7264 len2 = btrfs_item_size(right_path->nodes[0], right_path->slots[0]);
7265 if (len1 != len2)
7266 return 1;
7267
7268 off1 = btrfs_item_ptr_offset(left_path->nodes[0], left_path->slots[0]);
7269 off2 = btrfs_item_ptr_offset(right_path->nodes[0],
7270 right_path->slots[0]);
7271
7272 read_extent_buffer(left_path->nodes[0], tmp_buf, off1, len1);
7273
7274 cmp = memcmp_extent_buffer(right_path->nodes[0], tmp_buf, off2, len1);
7275 if (cmp)
7276 return 1;
7277 return 0;
7278 }
7279
7280 /*
7281 * A transaction used for relocating a block group was committed or is about to
7282 * finish its commit. Release our paths and restart the search, so that we are
7283 * not using stale extent buffers:
7284 *
7285 * 1) For levels > 0, we are only holding references of extent buffers, without
7286 * any locks on them, which does not prevent them from having been relocated
7287 * and reallocated after the last time we released the commit root semaphore.
7288 * The exception are the root nodes, for which we always have a clone, see
7289 * the comment at btrfs_compare_trees();
7290 *
7291 * 2) For leaves, level 0, we are holding copies (clones) of extent buffers, so
7292 * we are safe from the concurrent relocation and reallocation. However they
7293 * can have file extent items with a pre relocation disk_bytenr value, so we
7294 * restart the start from the current commit roots and clone the new leaves so
7295 * that we get the post relocation disk_bytenr values. Not doing so, could
7296 * make us clone the wrong data in case there are new extents using the old
7297 * disk_bytenr that happen to be shared.
7298 */
restart_after_relocation(struct btrfs_path * left_path,struct btrfs_path * right_path,const struct btrfs_key * left_key,const struct btrfs_key * right_key,int left_level,int right_level,const struct send_ctx * sctx)7299 static int restart_after_relocation(struct btrfs_path *left_path,
7300 struct btrfs_path *right_path,
7301 const struct btrfs_key *left_key,
7302 const struct btrfs_key *right_key,
7303 int left_level,
7304 int right_level,
7305 const struct send_ctx *sctx)
7306 {
7307 int root_level;
7308 int ret;
7309
7310 lockdep_assert_held_read(&sctx->send_root->fs_info->commit_root_sem);
7311
7312 btrfs_release_path(left_path);
7313 btrfs_release_path(right_path);
7314
7315 /*
7316 * Since keys can not be added or removed to/from our roots because they
7317 * are readonly and we do not allow deduplication to run in parallel
7318 * (which can add, remove or change keys), the layout of the trees should
7319 * not change.
7320 */
7321 left_path->lowest_level = left_level;
7322 ret = search_key_again(sctx, sctx->send_root, left_path, left_key);
7323 if (ret < 0)
7324 return ret;
7325
7326 right_path->lowest_level = right_level;
7327 ret = search_key_again(sctx, sctx->parent_root, right_path, right_key);
7328 if (ret < 0)
7329 return ret;
7330
7331 /*
7332 * If the lowest level nodes are leaves, clone them so that they can be
7333 * safely used by changed_cb() while not under the protection of the
7334 * commit root semaphore, even if relocation and reallocation happens in
7335 * parallel.
7336 */
7337 if (left_level == 0) {
7338 ret = replace_node_with_clone(left_path, 0);
7339 if (ret < 0)
7340 return ret;
7341 }
7342
7343 if (right_level == 0) {
7344 ret = replace_node_with_clone(right_path, 0);
7345 if (ret < 0)
7346 return ret;
7347 }
7348
7349 /*
7350 * Now clone the root nodes (unless they happen to be the leaves we have
7351 * already cloned). This is to protect against concurrent snapshotting of
7352 * the send and parent roots (see the comment at btrfs_compare_trees()).
7353 */
7354 root_level = btrfs_header_level(sctx->send_root->commit_root);
7355 if (root_level > 0) {
7356 ret = replace_node_with_clone(left_path, root_level);
7357 if (ret < 0)
7358 return ret;
7359 }
7360
7361 root_level = btrfs_header_level(sctx->parent_root->commit_root);
7362 if (root_level > 0) {
7363 ret = replace_node_with_clone(right_path, root_level);
7364 if (ret < 0)
7365 return ret;
7366 }
7367
7368 return 0;
7369 }
7370
7371 /*
7372 * This function compares two trees and calls the provided callback for
7373 * every changed/new/deleted item it finds.
7374 * If shared tree blocks are encountered, whole subtrees are skipped, making
7375 * the compare pretty fast on snapshotted subvolumes.
7376 *
7377 * This currently works on commit roots only. As commit roots are read only,
7378 * we don't do any locking. The commit roots are protected with transactions.
7379 * Transactions are ended and rejoined when a commit is tried in between.
7380 *
7381 * This function checks for modifications done to the trees while comparing.
7382 * If it detects a change, it aborts immediately.
7383 */
btrfs_compare_trees(struct btrfs_root * left_root,struct btrfs_root * right_root,struct send_ctx * sctx)7384 static int btrfs_compare_trees(struct btrfs_root *left_root,
7385 struct btrfs_root *right_root, struct send_ctx *sctx)
7386 {
7387 struct btrfs_fs_info *fs_info = left_root->fs_info;
7388 int ret;
7389 int cmp;
7390 struct btrfs_path *left_path = NULL;
7391 struct btrfs_path *right_path = NULL;
7392 struct btrfs_key left_key;
7393 struct btrfs_key right_key;
7394 char *tmp_buf = NULL;
7395 int left_root_level;
7396 int right_root_level;
7397 int left_level;
7398 int right_level;
7399 int left_end_reached = 0;
7400 int right_end_reached = 0;
7401 int advance_left = 0;
7402 int advance_right = 0;
7403 u64 left_blockptr;
7404 u64 right_blockptr;
7405 u64 left_gen;
7406 u64 right_gen;
7407 u64 reada_min_gen;
7408
7409 left_path = btrfs_alloc_path();
7410 if (!left_path) {
7411 ret = -ENOMEM;
7412 goto out;
7413 }
7414 right_path = btrfs_alloc_path();
7415 if (!right_path) {
7416 ret = -ENOMEM;
7417 goto out;
7418 }
7419
7420 tmp_buf = kvmalloc(fs_info->nodesize, GFP_KERNEL);
7421 if (!tmp_buf) {
7422 ret = -ENOMEM;
7423 goto out;
7424 }
7425
7426 left_path->search_commit_root = 1;
7427 left_path->skip_locking = 1;
7428 right_path->search_commit_root = 1;
7429 right_path->skip_locking = 1;
7430
7431 /*
7432 * Strategy: Go to the first items of both trees. Then do
7433 *
7434 * If both trees are at level 0
7435 * Compare keys of current items
7436 * If left < right treat left item as new, advance left tree
7437 * and repeat
7438 * If left > right treat right item as deleted, advance right tree
7439 * and repeat
7440 * If left == right do deep compare of items, treat as changed if
7441 * needed, advance both trees and repeat
7442 * If both trees are at the same level but not at level 0
7443 * Compare keys of current nodes/leafs
7444 * If left < right advance left tree and repeat
7445 * If left > right advance right tree and repeat
7446 * If left == right compare blockptrs of the next nodes/leafs
7447 * If they match advance both trees but stay at the same level
7448 * and repeat
7449 * If they don't match advance both trees while allowing to go
7450 * deeper and repeat
7451 * If tree levels are different
7452 * Advance the tree that needs it and repeat
7453 *
7454 * Advancing a tree means:
7455 * If we are at level 0, try to go to the next slot. If that's not
7456 * possible, go one level up and repeat. Stop when we found a level
7457 * where we could go to the next slot. We may at this point be on a
7458 * node or a leaf.
7459 *
7460 * If we are not at level 0 and not on shared tree blocks, go one
7461 * level deeper.
7462 *
7463 * If we are not at level 0 and on shared tree blocks, go one slot to
7464 * the right if possible or go up and right.
7465 */
7466
7467 down_read(&fs_info->commit_root_sem);
7468 left_level = btrfs_header_level(left_root->commit_root);
7469 left_root_level = left_level;
7470 /*
7471 * We clone the root node of the send and parent roots to prevent races
7472 * with snapshot creation of these roots. Snapshot creation COWs the
7473 * root node of a tree, so after the transaction is committed the old
7474 * extent can be reallocated while this send operation is still ongoing.
7475 * So we clone them, under the commit root semaphore, to be race free.
7476 */
7477 left_path->nodes[left_level] =
7478 btrfs_clone_extent_buffer(left_root->commit_root);
7479 if (!left_path->nodes[left_level]) {
7480 ret = -ENOMEM;
7481 goto out_unlock;
7482 }
7483
7484 right_level = btrfs_header_level(right_root->commit_root);
7485 right_root_level = right_level;
7486 right_path->nodes[right_level] =
7487 btrfs_clone_extent_buffer(right_root->commit_root);
7488 if (!right_path->nodes[right_level]) {
7489 ret = -ENOMEM;
7490 goto out_unlock;
7491 }
7492 /*
7493 * Our right root is the parent root, while the left root is the "send"
7494 * root. We know that all new nodes/leaves in the left root must have
7495 * a generation greater than the right root's generation, so we trigger
7496 * readahead for those nodes and leaves of the left root, as we know we
7497 * will need to read them at some point.
7498 */
7499 reada_min_gen = btrfs_header_generation(right_root->commit_root);
7500
7501 if (left_level == 0)
7502 btrfs_item_key_to_cpu(left_path->nodes[left_level],
7503 &left_key, left_path->slots[left_level]);
7504 else
7505 btrfs_node_key_to_cpu(left_path->nodes[left_level],
7506 &left_key, left_path->slots[left_level]);
7507 if (right_level == 0)
7508 btrfs_item_key_to_cpu(right_path->nodes[right_level],
7509 &right_key, right_path->slots[right_level]);
7510 else
7511 btrfs_node_key_to_cpu(right_path->nodes[right_level],
7512 &right_key, right_path->slots[right_level]);
7513
7514 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7515
7516 while (1) {
7517 if (need_resched() ||
7518 rwsem_is_contended(&fs_info->commit_root_sem)) {
7519 up_read(&fs_info->commit_root_sem);
7520 cond_resched();
7521 down_read(&fs_info->commit_root_sem);
7522 }
7523
7524 if (fs_info->last_reloc_trans > sctx->last_reloc_trans) {
7525 ret = restart_after_relocation(left_path, right_path,
7526 &left_key, &right_key,
7527 left_level, right_level,
7528 sctx);
7529 if (ret < 0)
7530 goto out_unlock;
7531 sctx->last_reloc_trans = fs_info->last_reloc_trans;
7532 }
7533
7534 if (advance_left && !left_end_reached) {
7535 ret = tree_advance(left_path, &left_level,
7536 left_root_level,
7537 advance_left != ADVANCE_ONLY_NEXT,
7538 &left_key, reada_min_gen);
7539 if (ret == -1)
7540 left_end_reached = ADVANCE;
7541 else if (ret < 0)
7542 goto out_unlock;
7543 advance_left = 0;
7544 }
7545 if (advance_right && !right_end_reached) {
7546 ret = tree_advance(right_path, &right_level,
7547 right_root_level,
7548 advance_right != ADVANCE_ONLY_NEXT,
7549 &right_key, reada_min_gen);
7550 if (ret == -1)
7551 right_end_reached = ADVANCE;
7552 else if (ret < 0)
7553 goto out_unlock;
7554 advance_right = 0;
7555 }
7556
7557 if (left_end_reached && right_end_reached) {
7558 ret = 0;
7559 goto out_unlock;
7560 } else if (left_end_reached) {
7561 if (right_level == 0) {
7562 up_read(&fs_info->commit_root_sem);
7563 ret = changed_cb(left_path, right_path,
7564 &right_key,
7565 BTRFS_COMPARE_TREE_DELETED,
7566 sctx);
7567 if (ret < 0)
7568 goto out;
7569 down_read(&fs_info->commit_root_sem);
7570 }
7571 advance_right = ADVANCE;
7572 continue;
7573 } else if (right_end_reached) {
7574 if (left_level == 0) {
7575 up_read(&fs_info->commit_root_sem);
7576 ret = changed_cb(left_path, right_path,
7577 &left_key,
7578 BTRFS_COMPARE_TREE_NEW,
7579 sctx);
7580 if (ret < 0)
7581 goto out;
7582 down_read(&fs_info->commit_root_sem);
7583 }
7584 advance_left = ADVANCE;
7585 continue;
7586 }
7587
7588 if (left_level == 0 && right_level == 0) {
7589 up_read(&fs_info->commit_root_sem);
7590 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7591 if (cmp < 0) {
7592 ret = changed_cb(left_path, right_path,
7593 &left_key,
7594 BTRFS_COMPARE_TREE_NEW,
7595 sctx);
7596 advance_left = ADVANCE;
7597 } else if (cmp > 0) {
7598 ret = changed_cb(left_path, right_path,
7599 &right_key,
7600 BTRFS_COMPARE_TREE_DELETED,
7601 sctx);
7602 advance_right = ADVANCE;
7603 } else {
7604 enum btrfs_compare_tree_result result;
7605
7606 WARN_ON(!extent_buffer_uptodate(left_path->nodes[0]));
7607 ret = tree_compare_item(left_path, right_path,
7608 tmp_buf);
7609 if (ret)
7610 result = BTRFS_COMPARE_TREE_CHANGED;
7611 else
7612 result = BTRFS_COMPARE_TREE_SAME;
7613 ret = changed_cb(left_path, right_path,
7614 &left_key, result, sctx);
7615 advance_left = ADVANCE;
7616 advance_right = ADVANCE;
7617 }
7618
7619 if (ret < 0)
7620 goto out;
7621 down_read(&fs_info->commit_root_sem);
7622 } else if (left_level == right_level) {
7623 cmp = btrfs_comp_cpu_keys(&left_key, &right_key);
7624 if (cmp < 0) {
7625 advance_left = ADVANCE;
7626 } else if (cmp > 0) {
7627 advance_right = ADVANCE;
7628 } else {
7629 left_blockptr = btrfs_node_blockptr(
7630 left_path->nodes[left_level],
7631 left_path->slots[left_level]);
7632 right_blockptr = btrfs_node_blockptr(
7633 right_path->nodes[right_level],
7634 right_path->slots[right_level]);
7635 left_gen = btrfs_node_ptr_generation(
7636 left_path->nodes[left_level],
7637 left_path->slots[left_level]);
7638 right_gen = btrfs_node_ptr_generation(
7639 right_path->nodes[right_level],
7640 right_path->slots[right_level]);
7641 if (left_blockptr == right_blockptr &&
7642 left_gen == right_gen) {
7643 /*
7644 * As we're on a shared block, don't
7645 * allow to go deeper.
7646 */
7647 advance_left = ADVANCE_ONLY_NEXT;
7648 advance_right = ADVANCE_ONLY_NEXT;
7649 } else {
7650 advance_left = ADVANCE;
7651 advance_right = ADVANCE;
7652 }
7653 }
7654 } else if (left_level < right_level) {
7655 advance_right = ADVANCE;
7656 } else {
7657 advance_left = ADVANCE;
7658 }
7659 }
7660
7661 out_unlock:
7662 up_read(&fs_info->commit_root_sem);
7663 out:
7664 btrfs_free_path(left_path);
7665 btrfs_free_path(right_path);
7666 kvfree(tmp_buf);
7667 return ret;
7668 }
7669
send_subvol(struct send_ctx * sctx)7670 static int send_subvol(struct send_ctx *sctx)
7671 {
7672 int ret;
7673
7674 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_STREAM_HEADER)) {
7675 ret = send_header(sctx);
7676 if (ret < 0)
7677 goto out;
7678 }
7679
7680 ret = send_subvol_begin(sctx);
7681 if (ret < 0)
7682 goto out;
7683
7684 if (sctx->parent_root) {
7685 ret = btrfs_compare_trees(sctx->send_root, sctx->parent_root, sctx);
7686 if (ret < 0)
7687 goto out;
7688 ret = finish_inode_if_needed(sctx, 1);
7689 if (ret < 0)
7690 goto out;
7691 } else {
7692 ret = full_send_tree(sctx);
7693 if (ret < 0)
7694 goto out;
7695 }
7696
7697 out:
7698 free_recorded_refs(sctx);
7699 return ret;
7700 }
7701
7702 /*
7703 * If orphan cleanup did remove any orphans from a root, it means the tree
7704 * was modified and therefore the commit root is not the same as the current
7705 * root anymore. This is a problem, because send uses the commit root and
7706 * therefore can see inode items that don't exist in the current root anymore,
7707 * and for example make calls to btrfs_iget, which will do tree lookups based
7708 * on the current root and not on the commit root. Those lookups will fail,
7709 * returning a -ESTALE error, and making send fail with that error. So make
7710 * sure a send does not see any orphans we have just removed, and that it will
7711 * see the same inodes regardless of whether a transaction commit happened
7712 * before it started (meaning that the commit root will be the same as the
7713 * current root) or not.
7714 */
ensure_commit_roots_uptodate(struct send_ctx * sctx)7715 static int ensure_commit_roots_uptodate(struct send_ctx *sctx)
7716 {
7717 int i;
7718 struct btrfs_trans_handle *trans = NULL;
7719
7720 again:
7721 if (sctx->parent_root &&
7722 sctx->parent_root->node != sctx->parent_root->commit_root)
7723 goto commit_trans;
7724
7725 for (i = 0; i < sctx->clone_roots_cnt; i++)
7726 if (sctx->clone_roots[i].root->node !=
7727 sctx->clone_roots[i].root->commit_root)
7728 goto commit_trans;
7729
7730 if (trans)
7731 return btrfs_end_transaction(trans);
7732
7733 return 0;
7734
7735 commit_trans:
7736 /* Use any root, all fs roots will get their commit roots updated. */
7737 if (!trans) {
7738 trans = btrfs_join_transaction(sctx->send_root);
7739 if (IS_ERR(trans))
7740 return PTR_ERR(trans);
7741 goto again;
7742 }
7743
7744 return btrfs_commit_transaction(trans);
7745 }
7746
7747 /*
7748 * Make sure any existing dellaloc is flushed for any root used by a send
7749 * operation so that we do not miss any data and we do not race with writeback
7750 * finishing and changing a tree while send is using the tree. This could
7751 * happen if a subvolume is in RW mode, has delalloc, is turned to RO mode and
7752 * a send operation then uses the subvolume.
7753 * After flushing delalloc ensure_commit_roots_uptodate() must be called.
7754 */
flush_delalloc_roots(struct send_ctx * sctx)7755 static int flush_delalloc_roots(struct send_ctx *sctx)
7756 {
7757 struct btrfs_root *root = sctx->parent_root;
7758 int ret;
7759 int i;
7760
7761 if (root) {
7762 ret = btrfs_start_delalloc_snapshot(root, false);
7763 if (ret)
7764 return ret;
7765 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7766 }
7767
7768 for (i = 0; i < sctx->clone_roots_cnt; i++) {
7769 root = sctx->clone_roots[i].root;
7770 ret = btrfs_start_delalloc_snapshot(root, false);
7771 if (ret)
7772 return ret;
7773 btrfs_wait_ordered_extents(root, U64_MAX, 0, U64_MAX);
7774 }
7775
7776 return 0;
7777 }
7778
btrfs_root_dec_send_in_progress(struct btrfs_root * root)7779 static void btrfs_root_dec_send_in_progress(struct btrfs_root* root)
7780 {
7781 spin_lock(&root->root_item_lock);
7782 root->send_in_progress--;
7783 /*
7784 * Not much left to do, we don't know why it's unbalanced and
7785 * can't blindly reset it to 0.
7786 */
7787 if (root->send_in_progress < 0)
7788 btrfs_err(root->fs_info,
7789 "send_in_progress unbalanced %d root %llu",
7790 root->send_in_progress, root->root_key.objectid);
7791 spin_unlock(&root->root_item_lock);
7792 }
7793
dedupe_in_progress_warn(const struct btrfs_root * root)7794 static void dedupe_in_progress_warn(const struct btrfs_root *root)
7795 {
7796 btrfs_warn_rl(root->fs_info,
7797 "cannot use root %llu for send while deduplications on it are in progress (%d in progress)",
7798 root->root_key.objectid, root->dedupe_in_progress);
7799 }
7800
btrfs_ioctl_send(struct inode * inode,struct btrfs_ioctl_send_args * arg)7801 long btrfs_ioctl_send(struct inode *inode, struct btrfs_ioctl_send_args *arg)
7802 {
7803 int ret = 0;
7804 struct btrfs_root *send_root = BTRFS_I(inode)->root;
7805 struct btrfs_fs_info *fs_info = send_root->fs_info;
7806 struct btrfs_root *clone_root;
7807 struct send_ctx *sctx = NULL;
7808 u32 i;
7809 u64 *clone_sources_tmp = NULL;
7810 int clone_sources_to_rollback = 0;
7811 size_t alloc_size;
7812 int sort_clone_roots = 0;
7813
7814 if (!capable(CAP_SYS_ADMIN))
7815 return -EPERM;
7816
7817 /*
7818 * The subvolume must remain read-only during send, protect against
7819 * making it RW. This also protects against deletion.
7820 */
7821 spin_lock(&send_root->root_item_lock);
7822 if (btrfs_root_readonly(send_root) && send_root->dedupe_in_progress) {
7823 dedupe_in_progress_warn(send_root);
7824 spin_unlock(&send_root->root_item_lock);
7825 return -EAGAIN;
7826 }
7827 send_root->send_in_progress++;
7828 spin_unlock(&send_root->root_item_lock);
7829
7830 /*
7831 * Userspace tools do the checks and warn the user if it's
7832 * not RO.
7833 */
7834 if (!btrfs_root_readonly(send_root)) {
7835 ret = -EPERM;
7836 goto out;
7837 }
7838
7839 /*
7840 * Check that we don't overflow at later allocations, we request
7841 * clone_sources_count + 1 items, and compare to unsigned long inside
7842 * access_ok.
7843 */
7844 if (arg->clone_sources_count >
7845 ULONG_MAX / sizeof(struct clone_root) - 1) {
7846 ret = -EINVAL;
7847 goto out;
7848 }
7849
7850 if (arg->flags & ~BTRFS_SEND_FLAG_MASK) {
7851 ret = -EINVAL;
7852 goto out;
7853 }
7854
7855 sctx = kzalloc(sizeof(struct send_ctx), GFP_KERNEL);
7856 if (!sctx) {
7857 ret = -ENOMEM;
7858 goto out;
7859 }
7860
7861 INIT_LIST_HEAD(&sctx->new_refs);
7862 INIT_LIST_HEAD(&sctx->deleted_refs);
7863 INIT_RADIX_TREE(&sctx->name_cache, GFP_KERNEL);
7864 INIT_LIST_HEAD(&sctx->name_cache_list);
7865
7866 sctx->flags = arg->flags;
7867
7868 if (arg->flags & BTRFS_SEND_FLAG_VERSION) {
7869 if (arg->version > BTRFS_SEND_STREAM_VERSION) {
7870 ret = -EPROTO;
7871 goto out;
7872 }
7873 /* Zero means "use the highest version" */
7874 sctx->proto = arg->version ?: BTRFS_SEND_STREAM_VERSION;
7875 } else {
7876 sctx->proto = 1;
7877 }
7878 if ((arg->flags & BTRFS_SEND_FLAG_COMPRESSED) && sctx->proto < 2) {
7879 ret = -EINVAL;
7880 goto out;
7881 }
7882
7883 sctx->send_filp = fget(arg->send_fd);
7884 if (!sctx->send_filp) {
7885 ret = -EBADF;
7886 goto out;
7887 }
7888
7889 sctx->send_root = send_root;
7890 /*
7891 * Unlikely but possible, if the subvolume is marked for deletion but
7892 * is slow to remove the directory entry, send can still be started
7893 */
7894 if (btrfs_root_dead(sctx->send_root)) {
7895 ret = -EPERM;
7896 goto out;
7897 }
7898
7899 sctx->clone_roots_cnt = arg->clone_sources_count;
7900
7901 if (sctx->proto >= 2) {
7902 u32 send_buf_num_pages;
7903
7904 sctx->send_max_size = ALIGN(SZ_16K + BTRFS_MAX_COMPRESSED, PAGE_SIZE);
7905 sctx->send_buf = vmalloc(sctx->send_max_size);
7906 if (!sctx->send_buf) {
7907 ret = -ENOMEM;
7908 goto out;
7909 }
7910 send_buf_num_pages = sctx->send_max_size >> PAGE_SHIFT;
7911 sctx->send_buf_pages = kcalloc(send_buf_num_pages,
7912 sizeof(*sctx->send_buf_pages),
7913 GFP_KERNEL);
7914 if (!sctx->send_buf_pages) {
7915 ret = -ENOMEM;
7916 goto out;
7917 }
7918 for (i = 0; i < send_buf_num_pages; i++) {
7919 sctx->send_buf_pages[i] =
7920 vmalloc_to_page(sctx->send_buf + (i << PAGE_SHIFT));
7921 }
7922 } else {
7923 sctx->send_max_size = BTRFS_SEND_BUF_SIZE_V1;
7924 sctx->send_buf = kvmalloc(sctx->send_max_size, GFP_KERNEL);
7925 }
7926 if (!sctx->send_buf) {
7927 ret = -ENOMEM;
7928 goto out;
7929 }
7930
7931 sctx->pending_dir_moves = RB_ROOT;
7932 sctx->waiting_dir_moves = RB_ROOT;
7933 sctx->orphan_dirs = RB_ROOT;
7934 sctx->rbtree_new_refs = RB_ROOT;
7935 sctx->rbtree_deleted_refs = RB_ROOT;
7936
7937 sctx->clone_roots = kvcalloc(sizeof(*sctx->clone_roots),
7938 arg->clone_sources_count + 1,
7939 GFP_KERNEL);
7940 if (!sctx->clone_roots) {
7941 ret = -ENOMEM;
7942 goto out;
7943 }
7944
7945 alloc_size = array_size(sizeof(*arg->clone_sources),
7946 arg->clone_sources_count);
7947
7948 if (arg->clone_sources_count) {
7949 clone_sources_tmp = kvmalloc(alloc_size, GFP_KERNEL);
7950 if (!clone_sources_tmp) {
7951 ret = -ENOMEM;
7952 goto out;
7953 }
7954
7955 ret = copy_from_user(clone_sources_tmp, arg->clone_sources,
7956 alloc_size);
7957 if (ret) {
7958 ret = -EFAULT;
7959 goto out;
7960 }
7961
7962 for (i = 0; i < arg->clone_sources_count; i++) {
7963 clone_root = btrfs_get_fs_root(fs_info,
7964 clone_sources_tmp[i], true);
7965 if (IS_ERR(clone_root)) {
7966 ret = PTR_ERR(clone_root);
7967 goto out;
7968 }
7969 spin_lock(&clone_root->root_item_lock);
7970 if (!btrfs_root_readonly(clone_root) ||
7971 btrfs_root_dead(clone_root)) {
7972 spin_unlock(&clone_root->root_item_lock);
7973 btrfs_put_root(clone_root);
7974 ret = -EPERM;
7975 goto out;
7976 }
7977 if (clone_root->dedupe_in_progress) {
7978 dedupe_in_progress_warn(clone_root);
7979 spin_unlock(&clone_root->root_item_lock);
7980 btrfs_put_root(clone_root);
7981 ret = -EAGAIN;
7982 goto out;
7983 }
7984 clone_root->send_in_progress++;
7985 spin_unlock(&clone_root->root_item_lock);
7986
7987 sctx->clone_roots[i].root = clone_root;
7988 clone_sources_to_rollback = i + 1;
7989 }
7990 kvfree(clone_sources_tmp);
7991 clone_sources_tmp = NULL;
7992 }
7993
7994 if (arg->parent_root) {
7995 sctx->parent_root = btrfs_get_fs_root(fs_info, arg->parent_root,
7996 true);
7997 if (IS_ERR(sctx->parent_root)) {
7998 ret = PTR_ERR(sctx->parent_root);
7999 goto out;
8000 }
8001
8002 spin_lock(&sctx->parent_root->root_item_lock);
8003 sctx->parent_root->send_in_progress++;
8004 if (!btrfs_root_readonly(sctx->parent_root) ||
8005 btrfs_root_dead(sctx->parent_root)) {
8006 spin_unlock(&sctx->parent_root->root_item_lock);
8007 ret = -EPERM;
8008 goto out;
8009 }
8010 if (sctx->parent_root->dedupe_in_progress) {
8011 dedupe_in_progress_warn(sctx->parent_root);
8012 spin_unlock(&sctx->parent_root->root_item_lock);
8013 ret = -EAGAIN;
8014 goto out;
8015 }
8016 spin_unlock(&sctx->parent_root->root_item_lock);
8017 }
8018
8019 /*
8020 * Clones from send_root are allowed, but only if the clone source
8021 * is behind the current send position. This is checked while searching
8022 * for possible clone sources.
8023 */
8024 sctx->clone_roots[sctx->clone_roots_cnt++].root =
8025 btrfs_grab_root(sctx->send_root);
8026
8027 /* We do a bsearch later */
8028 sort(sctx->clone_roots, sctx->clone_roots_cnt,
8029 sizeof(*sctx->clone_roots), __clone_root_cmp_sort,
8030 NULL);
8031 sort_clone_roots = 1;
8032
8033 ret = flush_delalloc_roots(sctx);
8034 if (ret)
8035 goto out;
8036
8037 ret = ensure_commit_roots_uptodate(sctx);
8038 if (ret)
8039 goto out;
8040
8041 ret = send_subvol(sctx);
8042 if (ret < 0)
8043 goto out;
8044
8045 if (!(sctx->flags & BTRFS_SEND_FLAG_OMIT_END_CMD)) {
8046 ret = begin_cmd(sctx, BTRFS_SEND_C_END);
8047 if (ret < 0)
8048 goto out;
8049 ret = send_cmd(sctx);
8050 if (ret < 0)
8051 goto out;
8052 }
8053
8054 out:
8055 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->pending_dir_moves));
8056 while (sctx && !RB_EMPTY_ROOT(&sctx->pending_dir_moves)) {
8057 struct rb_node *n;
8058 struct pending_dir_move *pm;
8059
8060 n = rb_first(&sctx->pending_dir_moves);
8061 pm = rb_entry(n, struct pending_dir_move, node);
8062 while (!list_empty(&pm->list)) {
8063 struct pending_dir_move *pm2;
8064
8065 pm2 = list_first_entry(&pm->list,
8066 struct pending_dir_move, list);
8067 free_pending_move(sctx, pm2);
8068 }
8069 free_pending_move(sctx, pm);
8070 }
8071
8072 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves));
8073 while (sctx && !RB_EMPTY_ROOT(&sctx->waiting_dir_moves)) {
8074 struct rb_node *n;
8075 struct waiting_dir_move *dm;
8076
8077 n = rb_first(&sctx->waiting_dir_moves);
8078 dm = rb_entry(n, struct waiting_dir_move, node);
8079 rb_erase(&dm->node, &sctx->waiting_dir_moves);
8080 kfree(dm);
8081 }
8082
8083 WARN_ON(sctx && !ret && !RB_EMPTY_ROOT(&sctx->orphan_dirs));
8084 while (sctx && !RB_EMPTY_ROOT(&sctx->orphan_dirs)) {
8085 struct rb_node *n;
8086 struct orphan_dir_info *odi;
8087
8088 n = rb_first(&sctx->orphan_dirs);
8089 odi = rb_entry(n, struct orphan_dir_info, node);
8090 free_orphan_dir_info(sctx, odi);
8091 }
8092
8093 if (sort_clone_roots) {
8094 for (i = 0; i < sctx->clone_roots_cnt; i++) {
8095 btrfs_root_dec_send_in_progress(
8096 sctx->clone_roots[i].root);
8097 btrfs_put_root(sctx->clone_roots[i].root);
8098 }
8099 } else {
8100 for (i = 0; sctx && i < clone_sources_to_rollback; i++) {
8101 btrfs_root_dec_send_in_progress(
8102 sctx->clone_roots[i].root);
8103 btrfs_put_root(sctx->clone_roots[i].root);
8104 }
8105
8106 btrfs_root_dec_send_in_progress(send_root);
8107 }
8108 if (sctx && !IS_ERR_OR_NULL(sctx->parent_root)) {
8109 btrfs_root_dec_send_in_progress(sctx->parent_root);
8110 btrfs_put_root(sctx->parent_root);
8111 }
8112
8113 kvfree(clone_sources_tmp);
8114
8115 if (sctx) {
8116 if (sctx->send_filp)
8117 fput(sctx->send_filp);
8118
8119 kvfree(sctx->clone_roots);
8120 kfree(sctx->send_buf_pages);
8121 kvfree(sctx->send_buf);
8122 kvfree(sctx->verity_descriptor);
8123
8124 name_cache_free(sctx);
8125
8126 close_current_inode(sctx);
8127
8128 kfree(sctx);
8129 }
8130
8131 return ret;
8132 }
8133