1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * acpi_pad.c ACPI Processor Aggregator Driver
4 *
5 * Copyright (c) 2009, Intel Corporation.
6 */
7
8 #include <linux/kernel.h>
9 #include <linux/cpumask.h>
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/types.h>
13 #include <linux/kthread.h>
14 #include <uapi/linux/sched/types.h>
15 #include <linux/freezer.h>
16 #include <linux/cpu.h>
17 #include <linux/tick.h>
18 #include <linux/slab.h>
19 #include <linux/acpi.h>
20 #include <linux/perf_event.h>
21 #include <asm/mwait.h>
22 #include <xen/xen.h>
23
24 #define ACPI_PROCESSOR_AGGREGATOR_CLASS "acpi_pad"
25 #define ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME "Processor Aggregator"
26 #define ACPI_PROCESSOR_AGGREGATOR_NOTIFY 0x80
27 static DEFINE_MUTEX(isolated_cpus_lock);
28 static DEFINE_MUTEX(round_robin_lock);
29
30 static unsigned long power_saving_mwait_eax;
31
32 static unsigned char tsc_detected_unstable;
33 static unsigned char tsc_marked_unstable;
34
power_saving_mwait_init(void)35 static void power_saving_mwait_init(void)
36 {
37 unsigned int eax, ebx, ecx, edx;
38 unsigned int highest_cstate = 0;
39 unsigned int highest_subcstate = 0;
40 int i;
41
42 if (!boot_cpu_has(X86_FEATURE_MWAIT))
43 return;
44 if (boot_cpu_data.cpuid_level < CPUID_MWAIT_LEAF)
45 return;
46
47 cpuid(CPUID_MWAIT_LEAF, &eax, &ebx, &ecx, &edx);
48
49 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED) ||
50 !(ecx & CPUID5_ECX_INTERRUPT_BREAK))
51 return;
52
53 edx >>= MWAIT_SUBSTATE_SIZE;
54 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
55 if (edx & MWAIT_SUBSTATE_MASK) {
56 highest_cstate = i;
57 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
58 }
59 }
60 power_saving_mwait_eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
61 (highest_subcstate - 1);
62
63 #if defined(CONFIG_X86)
64 switch (boot_cpu_data.x86_vendor) {
65 case X86_VENDOR_HYGON:
66 case X86_VENDOR_AMD:
67 case X86_VENDOR_INTEL:
68 case X86_VENDOR_ZHAOXIN:
69 /*
70 * AMD Fam10h TSC will tick in all
71 * C/P/S0/S1 states when this bit is set.
72 */
73 if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
74 tsc_detected_unstable = 1;
75 break;
76 default:
77 /* TSC could halt in idle */
78 tsc_detected_unstable = 1;
79 }
80 #endif
81 }
82
83 static unsigned long cpu_weight[NR_CPUS];
84 static int tsk_in_cpu[NR_CPUS] = {[0 ... NR_CPUS-1] = -1};
85 static DECLARE_BITMAP(pad_busy_cpus_bits, NR_CPUS);
round_robin_cpu(unsigned int tsk_index)86 static void round_robin_cpu(unsigned int tsk_index)
87 {
88 struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
89 cpumask_var_t tmp;
90 int cpu;
91 unsigned long min_weight = -1;
92 unsigned long preferred_cpu;
93
94 if (!alloc_cpumask_var(&tmp, GFP_KERNEL))
95 return;
96
97 mutex_lock(&round_robin_lock);
98 cpumask_clear(tmp);
99 for_each_cpu(cpu, pad_busy_cpus)
100 cpumask_or(tmp, tmp, topology_sibling_cpumask(cpu));
101 cpumask_andnot(tmp, cpu_online_mask, tmp);
102 /* avoid HT sibilings if possible */
103 if (cpumask_empty(tmp))
104 cpumask_andnot(tmp, cpu_online_mask, pad_busy_cpus);
105 if (cpumask_empty(tmp)) {
106 mutex_unlock(&round_robin_lock);
107 free_cpumask_var(tmp);
108 return;
109 }
110 for_each_cpu(cpu, tmp) {
111 if (cpu_weight[cpu] < min_weight) {
112 min_weight = cpu_weight[cpu];
113 preferred_cpu = cpu;
114 }
115 }
116
117 if (tsk_in_cpu[tsk_index] != -1)
118 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
119 tsk_in_cpu[tsk_index] = preferred_cpu;
120 cpumask_set_cpu(preferred_cpu, pad_busy_cpus);
121 cpu_weight[preferred_cpu]++;
122 mutex_unlock(&round_robin_lock);
123
124 set_cpus_allowed_ptr(current, cpumask_of(preferred_cpu));
125
126 free_cpumask_var(tmp);
127 }
128
exit_round_robin(unsigned int tsk_index)129 static void exit_round_robin(unsigned int tsk_index)
130 {
131 struct cpumask *pad_busy_cpus = to_cpumask(pad_busy_cpus_bits);
132
133 cpumask_clear_cpu(tsk_in_cpu[tsk_index], pad_busy_cpus);
134 tsk_in_cpu[tsk_index] = -1;
135 }
136
137 static unsigned int idle_pct = 5; /* percentage */
138 static unsigned int round_robin_time = 1; /* second */
power_saving_thread(void * data)139 static int power_saving_thread(void *data)
140 {
141 int do_sleep;
142 unsigned int tsk_index = (unsigned long)data;
143 u64 last_jiffies = 0;
144
145 sched_set_fifo_low(current);
146
147 while (!kthread_should_stop()) {
148 unsigned long expire_time;
149
150 /* round robin to cpus */
151 expire_time = last_jiffies + round_robin_time * HZ;
152 if (time_before(expire_time, jiffies)) {
153 last_jiffies = jiffies;
154 round_robin_cpu(tsk_index);
155 }
156
157 do_sleep = 0;
158
159 expire_time = jiffies + HZ * (100 - idle_pct) / 100;
160
161 while (!need_resched()) {
162 if (tsc_detected_unstable && !tsc_marked_unstable) {
163 /* TSC could halt in idle, so notify users */
164 mark_tsc_unstable("TSC halts in idle");
165 tsc_marked_unstable = 1;
166 }
167 local_irq_disable();
168
169 perf_lopwr_cb(true);
170
171 tick_broadcast_enable();
172 tick_broadcast_enter();
173 stop_critical_timings();
174
175 mwait_idle_with_hints(power_saving_mwait_eax, 1);
176
177 start_critical_timings();
178 tick_broadcast_exit();
179
180 perf_lopwr_cb(false);
181
182 local_irq_enable();
183
184 if (time_before(expire_time, jiffies)) {
185 do_sleep = 1;
186 break;
187 }
188 }
189
190 /*
191 * current sched_rt has threshold for rt task running time.
192 * When a rt task uses 95% CPU time, the rt thread will be
193 * scheduled out for 5% CPU time to not starve other tasks. But
194 * the mechanism only works when all CPUs have RT task running,
195 * as if one CPU hasn't RT task, RT task from other CPUs will
196 * borrow CPU time from this CPU and cause RT task use > 95%
197 * CPU time. To make 'avoid starvation' work, takes a nap here.
198 */
199 if (unlikely(do_sleep))
200 schedule_timeout_killable(HZ * idle_pct / 100);
201
202 /* If an external event has set the need_resched flag, then
203 * we need to deal with it, or this loop will continue to
204 * spin without calling __mwait().
205 */
206 if (unlikely(need_resched()))
207 schedule();
208 }
209
210 exit_round_robin(tsk_index);
211 return 0;
212 }
213
214 static struct task_struct *ps_tsks[NR_CPUS];
215 static unsigned int ps_tsk_num;
create_power_saving_task(void)216 static int create_power_saving_task(void)
217 {
218 int rc;
219
220 ps_tsks[ps_tsk_num] = kthread_run(power_saving_thread,
221 (void *)(unsigned long)ps_tsk_num,
222 "acpi_pad/%d", ps_tsk_num);
223
224 if (IS_ERR(ps_tsks[ps_tsk_num])) {
225 rc = PTR_ERR(ps_tsks[ps_tsk_num]);
226 ps_tsks[ps_tsk_num] = NULL;
227 } else {
228 rc = 0;
229 ps_tsk_num++;
230 }
231
232 return rc;
233 }
234
destroy_power_saving_task(void)235 static void destroy_power_saving_task(void)
236 {
237 if (ps_tsk_num > 0) {
238 ps_tsk_num--;
239 kthread_stop(ps_tsks[ps_tsk_num]);
240 ps_tsks[ps_tsk_num] = NULL;
241 }
242 }
243
set_power_saving_task_num(unsigned int num)244 static void set_power_saving_task_num(unsigned int num)
245 {
246 if (num > ps_tsk_num) {
247 while (ps_tsk_num < num) {
248 if (create_power_saving_task())
249 return;
250 }
251 } else if (num < ps_tsk_num) {
252 while (ps_tsk_num > num)
253 destroy_power_saving_task();
254 }
255 }
256
acpi_pad_idle_cpus(unsigned int num_cpus)257 static void acpi_pad_idle_cpus(unsigned int num_cpus)
258 {
259 cpus_read_lock();
260
261 num_cpus = min_t(unsigned int, num_cpus, num_online_cpus());
262 set_power_saving_task_num(num_cpus);
263
264 cpus_read_unlock();
265 }
266
acpi_pad_idle_cpus_num(void)267 static uint32_t acpi_pad_idle_cpus_num(void)
268 {
269 return ps_tsk_num;
270 }
271
rrtime_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)272 static ssize_t rrtime_store(struct device *dev,
273 struct device_attribute *attr, const char *buf, size_t count)
274 {
275 unsigned long num;
276
277 if (kstrtoul(buf, 0, &num))
278 return -EINVAL;
279 if (num < 1 || num >= 100)
280 return -EINVAL;
281 mutex_lock(&isolated_cpus_lock);
282 round_robin_time = num;
283 mutex_unlock(&isolated_cpus_lock);
284 return count;
285 }
286
rrtime_show(struct device * dev,struct device_attribute * attr,char * buf)287 static ssize_t rrtime_show(struct device *dev,
288 struct device_attribute *attr, char *buf)
289 {
290 return scnprintf(buf, PAGE_SIZE, "%d\n", round_robin_time);
291 }
292 static DEVICE_ATTR_RW(rrtime);
293
idlepct_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)294 static ssize_t idlepct_store(struct device *dev,
295 struct device_attribute *attr, const char *buf, size_t count)
296 {
297 unsigned long num;
298
299 if (kstrtoul(buf, 0, &num))
300 return -EINVAL;
301 if (num < 1 || num >= 100)
302 return -EINVAL;
303 mutex_lock(&isolated_cpus_lock);
304 idle_pct = num;
305 mutex_unlock(&isolated_cpus_lock);
306 return count;
307 }
308
idlepct_show(struct device * dev,struct device_attribute * attr,char * buf)309 static ssize_t idlepct_show(struct device *dev,
310 struct device_attribute *attr, char *buf)
311 {
312 return scnprintf(buf, PAGE_SIZE, "%d\n", idle_pct);
313 }
314 static DEVICE_ATTR_RW(idlepct);
315
idlecpus_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)316 static ssize_t idlecpus_store(struct device *dev,
317 struct device_attribute *attr, const char *buf, size_t count)
318 {
319 unsigned long num;
320
321 if (kstrtoul(buf, 0, &num))
322 return -EINVAL;
323 mutex_lock(&isolated_cpus_lock);
324 acpi_pad_idle_cpus(num);
325 mutex_unlock(&isolated_cpus_lock);
326 return count;
327 }
328
idlecpus_show(struct device * dev,struct device_attribute * attr,char * buf)329 static ssize_t idlecpus_show(struct device *dev,
330 struct device_attribute *attr, char *buf)
331 {
332 return cpumap_print_to_pagebuf(false, buf,
333 to_cpumask(pad_busy_cpus_bits));
334 }
335
336 static DEVICE_ATTR_RW(idlecpus);
337
acpi_pad_add_sysfs(struct acpi_device * device)338 static int acpi_pad_add_sysfs(struct acpi_device *device)
339 {
340 int result;
341
342 result = device_create_file(&device->dev, &dev_attr_idlecpus);
343 if (result)
344 return -ENODEV;
345 result = device_create_file(&device->dev, &dev_attr_idlepct);
346 if (result) {
347 device_remove_file(&device->dev, &dev_attr_idlecpus);
348 return -ENODEV;
349 }
350 result = device_create_file(&device->dev, &dev_attr_rrtime);
351 if (result) {
352 device_remove_file(&device->dev, &dev_attr_idlecpus);
353 device_remove_file(&device->dev, &dev_attr_idlepct);
354 return -ENODEV;
355 }
356 return 0;
357 }
358
acpi_pad_remove_sysfs(struct acpi_device * device)359 static void acpi_pad_remove_sysfs(struct acpi_device *device)
360 {
361 device_remove_file(&device->dev, &dev_attr_idlecpus);
362 device_remove_file(&device->dev, &dev_attr_idlepct);
363 device_remove_file(&device->dev, &dev_attr_rrtime);
364 }
365
366 /*
367 * Query firmware how many CPUs should be idle
368 * return -1 on failure
369 */
acpi_pad_pur(acpi_handle handle)370 static int acpi_pad_pur(acpi_handle handle)
371 {
372 struct acpi_buffer buffer = {ACPI_ALLOCATE_BUFFER, NULL};
373 union acpi_object *package;
374 int num = -1;
375
376 if (ACPI_FAILURE(acpi_evaluate_object(handle, "_PUR", NULL, &buffer)))
377 return num;
378
379 if (!buffer.length || !buffer.pointer)
380 return num;
381
382 package = buffer.pointer;
383
384 if (package->type == ACPI_TYPE_PACKAGE &&
385 package->package.count == 2 &&
386 package->package.elements[0].integer.value == 1) /* rev 1 */
387
388 num = package->package.elements[1].integer.value;
389
390 kfree(buffer.pointer);
391 return num;
392 }
393
acpi_pad_handle_notify(acpi_handle handle)394 static void acpi_pad_handle_notify(acpi_handle handle)
395 {
396 int num_cpus;
397 uint32_t idle_cpus;
398 struct acpi_buffer param = {
399 .length = 4,
400 .pointer = (void *)&idle_cpus,
401 };
402
403 mutex_lock(&isolated_cpus_lock);
404 num_cpus = acpi_pad_pur(handle);
405 if (num_cpus < 0) {
406 mutex_unlock(&isolated_cpus_lock);
407 return;
408 }
409 acpi_pad_idle_cpus(num_cpus);
410 idle_cpus = acpi_pad_idle_cpus_num();
411 acpi_evaluate_ost(handle, ACPI_PROCESSOR_AGGREGATOR_NOTIFY, 0, ¶m);
412 mutex_unlock(&isolated_cpus_lock);
413 }
414
acpi_pad_notify(acpi_handle handle,u32 event,void * data)415 static void acpi_pad_notify(acpi_handle handle, u32 event,
416 void *data)
417 {
418 struct acpi_device *device = data;
419
420 switch (event) {
421 case ACPI_PROCESSOR_AGGREGATOR_NOTIFY:
422 acpi_pad_handle_notify(handle);
423 acpi_bus_generate_netlink_event(device->pnp.device_class,
424 dev_name(&device->dev), event, 0);
425 break;
426 default:
427 pr_warn("Unsupported event [0x%x]\n", event);
428 break;
429 }
430 }
431
acpi_pad_add(struct acpi_device * device)432 static int acpi_pad_add(struct acpi_device *device)
433 {
434 acpi_status status;
435
436 strcpy(acpi_device_name(device), ACPI_PROCESSOR_AGGREGATOR_DEVICE_NAME);
437 strcpy(acpi_device_class(device), ACPI_PROCESSOR_AGGREGATOR_CLASS);
438
439 if (acpi_pad_add_sysfs(device))
440 return -ENODEV;
441
442 status = acpi_install_notify_handler(device->handle,
443 ACPI_DEVICE_NOTIFY, acpi_pad_notify, device);
444 if (ACPI_FAILURE(status)) {
445 acpi_pad_remove_sysfs(device);
446 return -ENODEV;
447 }
448
449 return 0;
450 }
451
acpi_pad_remove(struct acpi_device * device)452 static int acpi_pad_remove(struct acpi_device *device)
453 {
454 mutex_lock(&isolated_cpus_lock);
455 acpi_pad_idle_cpus(0);
456 mutex_unlock(&isolated_cpus_lock);
457
458 acpi_remove_notify_handler(device->handle,
459 ACPI_DEVICE_NOTIFY, acpi_pad_notify);
460 acpi_pad_remove_sysfs(device);
461 return 0;
462 }
463
464 static const struct acpi_device_id pad_device_ids[] = {
465 {"ACPI000C", 0},
466 {"", 0},
467 };
468 MODULE_DEVICE_TABLE(acpi, pad_device_ids);
469
470 static struct acpi_driver acpi_pad_driver = {
471 .name = "processor_aggregator",
472 .class = ACPI_PROCESSOR_AGGREGATOR_CLASS,
473 .ids = pad_device_ids,
474 .ops = {
475 .add = acpi_pad_add,
476 .remove = acpi_pad_remove,
477 },
478 };
479
acpi_pad_init(void)480 static int __init acpi_pad_init(void)
481 {
482 /* Xen ACPI PAD is used when running as Xen Dom0. */
483 if (xen_initial_domain())
484 return -ENODEV;
485
486 power_saving_mwait_init();
487 if (power_saving_mwait_eax == 0)
488 return -EINVAL;
489
490 return acpi_bus_register_driver(&acpi_pad_driver);
491 }
492
acpi_pad_exit(void)493 static void __exit acpi_pad_exit(void)
494 {
495 acpi_bus_unregister_driver(&acpi_pad_driver);
496 }
497
498 module_init(acpi_pad_init);
499 module_exit(acpi_pad_exit);
500 MODULE_AUTHOR("Shaohua Li<shaohua.li@intel.com>");
501 MODULE_DESCRIPTION("ACPI Processor Aggregator Driver");
502 MODULE_LICENSE("GPL");
503