1 /*
2 * Copyright (c) 2004 Topspin Communications. All rights reserved.
3 * Copyright (c) 2005 Intel Corporation. All rights reserved.
4 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
5 * Copyright (c) 2005 Voltaire, Inc. All rights reserved.
6 *
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
12 *
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
15 * conditions are met:
16 *
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer.
20 *
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
25 *
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 * SOFTWARE.
34 */
35
36 #include <linux/if_vlan.h>
37 #include <linux/errno.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/netdevice.h>
41 #include <net/addrconf.h>
42
43 #include <rdma/ib_cache.h>
44
45 #include "core_priv.h"
46
47 struct ib_pkey_cache {
48 int table_len;
49 u16 table[];
50 };
51
52 struct ib_update_work {
53 struct work_struct work;
54 struct ib_event event;
55 bool enforce_security;
56 };
57
58 union ib_gid zgid;
59 EXPORT_SYMBOL(zgid);
60
61 enum gid_attr_find_mask {
62 GID_ATTR_FIND_MASK_GID = 1UL << 0,
63 GID_ATTR_FIND_MASK_NETDEV = 1UL << 1,
64 GID_ATTR_FIND_MASK_DEFAULT = 1UL << 2,
65 GID_ATTR_FIND_MASK_GID_TYPE = 1UL << 3,
66 };
67
68 enum gid_table_entry_state {
69 GID_TABLE_ENTRY_INVALID = 1,
70 GID_TABLE_ENTRY_VALID = 2,
71 /*
72 * Indicates that entry is pending to be removed, there may
73 * be active users of this GID entry.
74 * When last user of the GID entry releases reference to it,
75 * GID entry is detached from the table.
76 */
77 GID_TABLE_ENTRY_PENDING_DEL = 3,
78 };
79
80 struct roce_gid_ndev_storage {
81 struct rcu_head rcu_head;
82 struct net_device *ndev;
83 };
84
85 struct ib_gid_table_entry {
86 struct kref kref;
87 struct work_struct del_work;
88 struct ib_gid_attr attr;
89 void *context;
90 /* Store the ndev pointer to release reference later on in
91 * call_rcu context because by that time gid_table_entry
92 * and attr might be already freed. So keep a copy of it.
93 * ndev_storage is freed by rcu callback.
94 */
95 struct roce_gid_ndev_storage *ndev_storage;
96 enum gid_table_entry_state state;
97 };
98
99 struct ib_gid_table {
100 int sz;
101 /* In RoCE, adding a GID to the table requires:
102 * (a) Find if this GID is already exists.
103 * (b) Find a free space.
104 * (c) Write the new GID
105 *
106 * Delete requires different set of operations:
107 * (a) Find the GID
108 * (b) Delete it.
109 *
110 **/
111 /* Any writer to data_vec must hold this lock and the write side of
112 * rwlock. Readers must hold only rwlock. All writers must be in a
113 * sleepable context.
114 */
115 struct mutex lock;
116 /* rwlock protects data_vec[ix]->state and entry pointer.
117 */
118 rwlock_t rwlock;
119 struct ib_gid_table_entry **data_vec;
120 /* bit field, each bit indicates the index of default GID */
121 u32 default_gid_indices;
122 };
123
dispatch_gid_change_event(struct ib_device * ib_dev,u32 port)124 static void dispatch_gid_change_event(struct ib_device *ib_dev, u32 port)
125 {
126 struct ib_event event;
127
128 event.device = ib_dev;
129 event.element.port_num = port;
130 event.event = IB_EVENT_GID_CHANGE;
131
132 ib_dispatch_event_clients(&event);
133 }
134
135 static const char * const gid_type_str[] = {
136 /* IB/RoCE v1 value is set for IB_GID_TYPE_IB and IB_GID_TYPE_ROCE for
137 * user space compatibility reasons.
138 */
139 [IB_GID_TYPE_IB] = "IB/RoCE v1",
140 [IB_GID_TYPE_ROCE] = "IB/RoCE v1",
141 [IB_GID_TYPE_ROCE_UDP_ENCAP] = "RoCE v2",
142 };
143
ib_cache_gid_type_str(enum ib_gid_type gid_type)144 const char *ib_cache_gid_type_str(enum ib_gid_type gid_type)
145 {
146 if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type])
147 return gid_type_str[gid_type];
148
149 return "Invalid GID type";
150 }
151 EXPORT_SYMBOL(ib_cache_gid_type_str);
152
153 /** rdma_is_zero_gid - Check if given GID is zero or not.
154 * @gid: GID to check
155 * Returns true if given GID is zero, returns false otherwise.
156 */
rdma_is_zero_gid(const union ib_gid * gid)157 bool rdma_is_zero_gid(const union ib_gid *gid)
158 {
159 return !memcmp(gid, &zgid, sizeof(*gid));
160 }
161 EXPORT_SYMBOL(rdma_is_zero_gid);
162
163 /** is_gid_index_default - Check if a given index belongs to
164 * reserved default GIDs or not.
165 * @table: GID table pointer
166 * @index: Index to check in GID table
167 * Returns true if index is one of the reserved default GID index otherwise
168 * returns false.
169 */
is_gid_index_default(const struct ib_gid_table * table,unsigned int index)170 static bool is_gid_index_default(const struct ib_gid_table *table,
171 unsigned int index)
172 {
173 return index < 32 && (BIT(index) & table->default_gid_indices);
174 }
175
ib_cache_gid_parse_type_str(const char * buf)176 int ib_cache_gid_parse_type_str(const char *buf)
177 {
178 unsigned int i;
179 size_t len;
180 int err = -EINVAL;
181
182 len = strlen(buf);
183 if (len == 0)
184 return -EINVAL;
185
186 if (buf[len - 1] == '\n')
187 len--;
188
189 for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i)
190 if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) &&
191 len == strlen(gid_type_str[i])) {
192 err = i;
193 break;
194 }
195
196 return err;
197 }
198 EXPORT_SYMBOL(ib_cache_gid_parse_type_str);
199
rdma_gid_table(struct ib_device * device,u32 port)200 static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u32 port)
201 {
202 return device->port_data[port].cache.gid;
203 }
204
is_gid_entry_free(const struct ib_gid_table_entry * entry)205 static bool is_gid_entry_free(const struct ib_gid_table_entry *entry)
206 {
207 return !entry;
208 }
209
is_gid_entry_valid(const struct ib_gid_table_entry * entry)210 static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry)
211 {
212 return entry && entry->state == GID_TABLE_ENTRY_VALID;
213 }
214
schedule_free_gid(struct kref * kref)215 static void schedule_free_gid(struct kref *kref)
216 {
217 struct ib_gid_table_entry *entry =
218 container_of(kref, struct ib_gid_table_entry, kref);
219
220 queue_work(ib_wq, &entry->del_work);
221 }
222
put_gid_ndev(struct rcu_head * head)223 static void put_gid_ndev(struct rcu_head *head)
224 {
225 struct roce_gid_ndev_storage *storage =
226 container_of(head, struct roce_gid_ndev_storage, rcu_head);
227
228 WARN_ON(!storage->ndev);
229 /* At this point its safe to release netdev reference,
230 * as all callers working on gid_attr->ndev are done
231 * using this netdev.
232 */
233 dev_put(storage->ndev);
234 kfree(storage);
235 }
236
free_gid_entry_locked(struct ib_gid_table_entry * entry)237 static void free_gid_entry_locked(struct ib_gid_table_entry *entry)
238 {
239 struct ib_device *device = entry->attr.device;
240 u32 port_num = entry->attr.port_num;
241 struct ib_gid_table *table = rdma_gid_table(device, port_num);
242
243 dev_dbg(&device->dev, "%s port=%u index=%u gid %pI6\n", __func__,
244 port_num, entry->attr.index, entry->attr.gid.raw);
245
246 write_lock_irq(&table->rwlock);
247
248 /*
249 * The only way to avoid overwriting NULL in table is
250 * by comparing if it is same entry in table or not!
251 * If new entry in table is added by the time we free here,
252 * don't overwrite the table entry.
253 */
254 if (entry == table->data_vec[entry->attr.index])
255 table->data_vec[entry->attr.index] = NULL;
256 /* Now this index is ready to be allocated */
257 write_unlock_irq(&table->rwlock);
258
259 if (entry->ndev_storage)
260 call_rcu(&entry->ndev_storage->rcu_head, put_gid_ndev);
261 kfree(entry);
262 }
263
free_gid_entry(struct kref * kref)264 static void free_gid_entry(struct kref *kref)
265 {
266 struct ib_gid_table_entry *entry =
267 container_of(kref, struct ib_gid_table_entry, kref);
268
269 free_gid_entry_locked(entry);
270 }
271
272 /**
273 * free_gid_work - Release reference to the GID entry
274 * @work: Work structure to refer to GID entry which needs to be
275 * deleted.
276 *
277 * free_gid_work() frees the entry from the HCA's hardware table
278 * if provider supports it. It releases reference to netdevice.
279 */
free_gid_work(struct work_struct * work)280 static void free_gid_work(struct work_struct *work)
281 {
282 struct ib_gid_table_entry *entry =
283 container_of(work, struct ib_gid_table_entry, del_work);
284 struct ib_device *device = entry->attr.device;
285 u32 port_num = entry->attr.port_num;
286 struct ib_gid_table *table = rdma_gid_table(device, port_num);
287
288 mutex_lock(&table->lock);
289 free_gid_entry_locked(entry);
290 mutex_unlock(&table->lock);
291 }
292
293 static struct ib_gid_table_entry *
alloc_gid_entry(const struct ib_gid_attr * attr)294 alloc_gid_entry(const struct ib_gid_attr *attr)
295 {
296 struct ib_gid_table_entry *entry;
297 struct net_device *ndev;
298
299 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
300 if (!entry)
301 return NULL;
302
303 ndev = rcu_dereference_protected(attr->ndev, 1);
304 if (ndev) {
305 entry->ndev_storage = kzalloc(sizeof(*entry->ndev_storage),
306 GFP_KERNEL);
307 if (!entry->ndev_storage) {
308 kfree(entry);
309 return NULL;
310 }
311 dev_hold(ndev);
312 entry->ndev_storage->ndev = ndev;
313 }
314 kref_init(&entry->kref);
315 memcpy(&entry->attr, attr, sizeof(*attr));
316 INIT_WORK(&entry->del_work, free_gid_work);
317 entry->state = GID_TABLE_ENTRY_INVALID;
318 return entry;
319 }
320
store_gid_entry(struct ib_gid_table * table,struct ib_gid_table_entry * entry)321 static void store_gid_entry(struct ib_gid_table *table,
322 struct ib_gid_table_entry *entry)
323 {
324 entry->state = GID_TABLE_ENTRY_VALID;
325
326 dev_dbg(&entry->attr.device->dev, "%s port=%u index=%u gid %pI6\n",
327 __func__, entry->attr.port_num, entry->attr.index,
328 entry->attr.gid.raw);
329
330 lockdep_assert_held(&table->lock);
331 write_lock_irq(&table->rwlock);
332 table->data_vec[entry->attr.index] = entry;
333 write_unlock_irq(&table->rwlock);
334 }
335
get_gid_entry(struct ib_gid_table_entry * entry)336 static void get_gid_entry(struct ib_gid_table_entry *entry)
337 {
338 kref_get(&entry->kref);
339 }
340
put_gid_entry(struct ib_gid_table_entry * entry)341 static void put_gid_entry(struct ib_gid_table_entry *entry)
342 {
343 kref_put(&entry->kref, schedule_free_gid);
344 }
345
put_gid_entry_locked(struct ib_gid_table_entry * entry)346 static void put_gid_entry_locked(struct ib_gid_table_entry *entry)
347 {
348 kref_put(&entry->kref, free_gid_entry);
349 }
350
add_roce_gid(struct ib_gid_table_entry * entry)351 static int add_roce_gid(struct ib_gid_table_entry *entry)
352 {
353 const struct ib_gid_attr *attr = &entry->attr;
354 int ret;
355
356 if (!attr->ndev) {
357 dev_err(&attr->device->dev, "%s NULL netdev port=%u index=%u\n",
358 __func__, attr->port_num, attr->index);
359 return -EINVAL;
360 }
361 if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) {
362 ret = attr->device->ops.add_gid(attr, &entry->context);
363 if (ret) {
364 dev_err(&attr->device->dev,
365 "%s GID add failed port=%u index=%u\n",
366 __func__, attr->port_num, attr->index);
367 return ret;
368 }
369 }
370 return 0;
371 }
372
373 /**
374 * del_gid - Delete GID table entry
375 *
376 * @ib_dev: IB device whose GID entry to be deleted
377 * @port: Port number of the IB device
378 * @table: GID table of the IB device for a port
379 * @ix: GID entry index to delete
380 *
381 */
del_gid(struct ib_device * ib_dev,u32 port,struct ib_gid_table * table,int ix)382 static void del_gid(struct ib_device *ib_dev, u32 port,
383 struct ib_gid_table *table, int ix)
384 {
385 struct roce_gid_ndev_storage *ndev_storage;
386 struct ib_gid_table_entry *entry;
387
388 lockdep_assert_held(&table->lock);
389
390 dev_dbg(&ib_dev->dev, "%s port=%u index=%d gid %pI6\n", __func__, port,
391 ix, table->data_vec[ix]->attr.gid.raw);
392
393 write_lock_irq(&table->rwlock);
394 entry = table->data_vec[ix];
395 entry->state = GID_TABLE_ENTRY_PENDING_DEL;
396 /*
397 * For non RoCE protocol, GID entry slot is ready to use.
398 */
399 if (!rdma_protocol_roce(ib_dev, port))
400 table->data_vec[ix] = NULL;
401 write_unlock_irq(&table->rwlock);
402
403 ndev_storage = entry->ndev_storage;
404 if (ndev_storage) {
405 entry->ndev_storage = NULL;
406 rcu_assign_pointer(entry->attr.ndev, NULL);
407 call_rcu(&ndev_storage->rcu_head, put_gid_ndev);
408 }
409
410 if (rdma_cap_roce_gid_table(ib_dev, port))
411 ib_dev->ops.del_gid(&entry->attr, &entry->context);
412
413 put_gid_entry_locked(entry);
414 }
415
416 /**
417 * add_modify_gid - Add or modify GID table entry
418 *
419 * @table: GID table in which GID to be added or modified
420 * @attr: Attributes of the GID
421 *
422 * Returns 0 on success or appropriate error code. It accepts zero
423 * GID addition for non RoCE ports for HCA's who report them as valid
424 * GID. However such zero GIDs are not added to the cache.
425 */
add_modify_gid(struct ib_gid_table * table,const struct ib_gid_attr * attr)426 static int add_modify_gid(struct ib_gid_table *table,
427 const struct ib_gid_attr *attr)
428 {
429 struct ib_gid_table_entry *entry;
430 int ret = 0;
431
432 /*
433 * Invalidate any old entry in the table to make it safe to write to
434 * this index.
435 */
436 if (is_gid_entry_valid(table->data_vec[attr->index]))
437 del_gid(attr->device, attr->port_num, table, attr->index);
438
439 /*
440 * Some HCA's report multiple GID entries with only one valid GID, and
441 * leave other unused entries as the zero GID. Convert zero GIDs to
442 * empty table entries instead of storing them.
443 */
444 if (rdma_is_zero_gid(&attr->gid))
445 return 0;
446
447 entry = alloc_gid_entry(attr);
448 if (!entry)
449 return -ENOMEM;
450
451 if (rdma_protocol_roce(attr->device, attr->port_num)) {
452 ret = add_roce_gid(entry);
453 if (ret)
454 goto done;
455 }
456
457 store_gid_entry(table, entry);
458 return 0;
459
460 done:
461 put_gid_entry(entry);
462 return ret;
463 }
464
465 /* rwlock should be read locked, or lock should be held */
find_gid(struct ib_gid_table * table,const union ib_gid * gid,const struct ib_gid_attr * val,bool default_gid,unsigned long mask,int * pempty)466 static int find_gid(struct ib_gid_table *table, const union ib_gid *gid,
467 const struct ib_gid_attr *val, bool default_gid,
468 unsigned long mask, int *pempty)
469 {
470 int i = 0;
471 int found = -1;
472 int empty = pempty ? -1 : 0;
473
474 while (i < table->sz && (found < 0 || empty < 0)) {
475 struct ib_gid_table_entry *data = table->data_vec[i];
476 struct ib_gid_attr *attr;
477 int curr_index = i;
478
479 i++;
480
481 /* find_gid() is used during GID addition where it is expected
482 * to return a free entry slot which is not duplicate.
483 * Free entry slot is requested and returned if pempty is set,
484 * so lookup free slot only if requested.
485 */
486 if (pempty && empty < 0) {
487 if (is_gid_entry_free(data) &&
488 default_gid ==
489 is_gid_index_default(table, curr_index)) {
490 /*
491 * Found an invalid (free) entry; allocate it.
492 * If default GID is requested, then our
493 * found slot must be one of the DEFAULT
494 * reserved slots or we fail.
495 * This ensures that only DEFAULT reserved
496 * slots are used for default property GIDs.
497 */
498 empty = curr_index;
499 }
500 }
501
502 /*
503 * Additionally find_gid() is used to find valid entry during
504 * lookup operation; so ignore the entries which are marked as
505 * pending for removal and the entries which are marked as
506 * invalid.
507 */
508 if (!is_gid_entry_valid(data))
509 continue;
510
511 if (found >= 0)
512 continue;
513
514 attr = &data->attr;
515 if (mask & GID_ATTR_FIND_MASK_GID_TYPE &&
516 attr->gid_type != val->gid_type)
517 continue;
518
519 if (mask & GID_ATTR_FIND_MASK_GID &&
520 memcmp(gid, &data->attr.gid, sizeof(*gid)))
521 continue;
522
523 if (mask & GID_ATTR_FIND_MASK_NETDEV &&
524 attr->ndev != val->ndev)
525 continue;
526
527 if (mask & GID_ATTR_FIND_MASK_DEFAULT &&
528 is_gid_index_default(table, curr_index) != default_gid)
529 continue;
530
531 found = curr_index;
532 }
533
534 if (pempty)
535 *pempty = empty;
536
537 return found;
538 }
539
make_default_gid(struct net_device * dev,union ib_gid * gid)540 static void make_default_gid(struct net_device *dev, union ib_gid *gid)
541 {
542 gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL);
543 addrconf_ifid_eui48(&gid->raw[8], dev);
544 }
545
__ib_cache_gid_add(struct ib_device * ib_dev,u32 port,union ib_gid * gid,struct ib_gid_attr * attr,unsigned long mask,bool default_gid)546 static int __ib_cache_gid_add(struct ib_device *ib_dev, u32 port,
547 union ib_gid *gid, struct ib_gid_attr *attr,
548 unsigned long mask, bool default_gid)
549 {
550 struct ib_gid_table *table;
551 int ret = 0;
552 int empty;
553 int ix;
554
555 /* Do not allow adding zero GID in support of
556 * IB spec version 1.3 section 4.1.1 point (6) and
557 * section 12.7.10 and section 12.7.20
558 */
559 if (rdma_is_zero_gid(gid))
560 return -EINVAL;
561
562 table = rdma_gid_table(ib_dev, port);
563
564 mutex_lock(&table->lock);
565
566 ix = find_gid(table, gid, attr, default_gid, mask, &empty);
567 if (ix >= 0)
568 goto out_unlock;
569
570 if (empty < 0) {
571 ret = -ENOSPC;
572 goto out_unlock;
573 }
574 attr->device = ib_dev;
575 attr->index = empty;
576 attr->port_num = port;
577 attr->gid = *gid;
578 ret = add_modify_gid(table, attr);
579 if (!ret)
580 dispatch_gid_change_event(ib_dev, port);
581
582 out_unlock:
583 mutex_unlock(&table->lock);
584 if (ret)
585 pr_warn("%s: unable to add gid %pI6 error=%d\n",
586 __func__, gid->raw, ret);
587 return ret;
588 }
589
ib_cache_gid_add(struct ib_device * ib_dev,u32 port,union ib_gid * gid,struct ib_gid_attr * attr)590 int ib_cache_gid_add(struct ib_device *ib_dev, u32 port,
591 union ib_gid *gid, struct ib_gid_attr *attr)
592 {
593 unsigned long mask = GID_ATTR_FIND_MASK_GID |
594 GID_ATTR_FIND_MASK_GID_TYPE |
595 GID_ATTR_FIND_MASK_NETDEV;
596
597 return __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false);
598 }
599
600 static int
_ib_cache_gid_del(struct ib_device * ib_dev,u32 port,union ib_gid * gid,struct ib_gid_attr * attr,unsigned long mask,bool default_gid)601 _ib_cache_gid_del(struct ib_device *ib_dev, u32 port,
602 union ib_gid *gid, struct ib_gid_attr *attr,
603 unsigned long mask, bool default_gid)
604 {
605 struct ib_gid_table *table;
606 int ret = 0;
607 int ix;
608
609 table = rdma_gid_table(ib_dev, port);
610
611 mutex_lock(&table->lock);
612
613 ix = find_gid(table, gid, attr, default_gid, mask, NULL);
614 if (ix < 0) {
615 ret = -EINVAL;
616 goto out_unlock;
617 }
618
619 del_gid(ib_dev, port, table, ix);
620 dispatch_gid_change_event(ib_dev, port);
621
622 out_unlock:
623 mutex_unlock(&table->lock);
624 if (ret)
625 pr_debug("%s: can't delete gid %pI6 error=%d\n",
626 __func__, gid->raw, ret);
627 return ret;
628 }
629
ib_cache_gid_del(struct ib_device * ib_dev,u32 port,union ib_gid * gid,struct ib_gid_attr * attr)630 int ib_cache_gid_del(struct ib_device *ib_dev, u32 port,
631 union ib_gid *gid, struct ib_gid_attr *attr)
632 {
633 unsigned long mask = GID_ATTR_FIND_MASK_GID |
634 GID_ATTR_FIND_MASK_GID_TYPE |
635 GID_ATTR_FIND_MASK_DEFAULT |
636 GID_ATTR_FIND_MASK_NETDEV;
637
638 return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false);
639 }
640
ib_cache_gid_del_all_netdev_gids(struct ib_device * ib_dev,u32 port,struct net_device * ndev)641 int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u32 port,
642 struct net_device *ndev)
643 {
644 struct ib_gid_table *table;
645 int ix;
646 bool deleted = false;
647
648 table = rdma_gid_table(ib_dev, port);
649
650 mutex_lock(&table->lock);
651
652 for (ix = 0; ix < table->sz; ix++) {
653 if (is_gid_entry_valid(table->data_vec[ix]) &&
654 table->data_vec[ix]->attr.ndev == ndev) {
655 del_gid(ib_dev, port, table, ix);
656 deleted = true;
657 }
658 }
659
660 mutex_unlock(&table->lock);
661
662 if (deleted)
663 dispatch_gid_change_event(ib_dev, port);
664
665 return 0;
666 }
667
668 /**
669 * rdma_find_gid_by_port - Returns the GID entry attributes when it finds
670 * a valid GID entry for given search parameters. It searches for the specified
671 * GID value in the local software cache.
672 * @ib_dev: The device to query.
673 * @gid: The GID value to search for.
674 * @gid_type: The GID type to search for.
675 * @port: The port number of the device where the GID value should be searched.
676 * @ndev: In RoCE, the net device of the device. NULL means ignore.
677 *
678 * Returns sgid attributes if the GID is found with valid reference or
679 * returns ERR_PTR for the error.
680 * The caller must invoke rdma_put_gid_attr() to release the reference.
681 */
682 const struct ib_gid_attr *
rdma_find_gid_by_port(struct ib_device * ib_dev,const union ib_gid * gid,enum ib_gid_type gid_type,u32 port,struct net_device * ndev)683 rdma_find_gid_by_port(struct ib_device *ib_dev,
684 const union ib_gid *gid,
685 enum ib_gid_type gid_type,
686 u32 port, struct net_device *ndev)
687 {
688 int local_index;
689 struct ib_gid_table *table;
690 unsigned long mask = GID_ATTR_FIND_MASK_GID |
691 GID_ATTR_FIND_MASK_GID_TYPE;
692 struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type};
693 const struct ib_gid_attr *attr;
694 unsigned long flags;
695
696 if (!rdma_is_port_valid(ib_dev, port))
697 return ERR_PTR(-ENOENT);
698
699 table = rdma_gid_table(ib_dev, port);
700
701 if (ndev)
702 mask |= GID_ATTR_FIND_MASK_NETDEV;
703
704 read_lock_irqsave(&table->rwlock, flags);
705 local_index = find_gid(table, gid, &val, false, mask, NULL);
706 if (local_index >= 0) {
707 get_gid_entry(table->data_vec[local_index]);
708 attr = &table->data_vec[local_index]->attr;
709 read_unlock_irqrestore(&table->rwlock, flags);
710 return attr;
711 }
712
713 read_unlock_irqrestore(&table->rwlock, flags);
714 return ERR_PTR(-ENOENT);
715 }
716 EXPORT_SYMBOL(rdma_find_gid_by_port);
717
718 /**
719 * rdma_find_gid_by_filter - Returns the GID table attribute where a
720 * specified GID value occurs
721 * @ib_dev: The device to query.
722 * @gid: The GID value to search for.
723 * @port: The port number of the device where the GID value could be
724 * searched.
725 * @filter: The filter function is executed on any matching GID in the table.
726 * If the filter function returns true, the corresponding index is returned,
727 * otherwise, we continue searching the GID table. It's guaranteed that
728 * while filter is executed, ndev field is valid and the structure won't
729 * change. filter is executed in an atomic context. filter must not be NULL.
730 * @context: Private data to pass into the call-back.
731 *
732 * rdma_find_gid_by_filter() searches for the specified GID value
733 * of which the filter function returns true in the port's GID table.
734 *
735 */
rdma_find_gid_by_filter(struct ib_device * ib_dev,const union ib_gid * gid,u32 port,bool (* filter)(const union ib_gid * gid,const struct ib_gid_attr *,void *),void * context)736 const struct ib_gid_attr *rdma_find_gid_by_filter(
737 struct ib_device *ib_dev, const union ib_gid *gid, u32 port,
738 bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *,
739 void *),
740 void *context)
741 {
742 const struct ib_gid_attr *res = ERR_PTR(-ENOENT);
743 struct ib_gid_table *table;
744 unsigned long flags;
745 unsigned int i;
746
747 if (!rdma_is_port_valid(ib_dev, port))
748 return ERR_PTR(-EINVAL);
749
750 table = rdma_gid_table(ib_dev, port);
751
752 read_lock_irqsave(&table->rwlock, flags);
753 for (i = 0; i < table->sz; i++) {
754 struct ib_gid_table_entry *entry = table->data_vec[i];
755
756 if (!is_gid_entry_valid(entry))
757 continue;
758
759 if (memcmp(gid, &entry->attr.gid, sizeof(*gid)))
760 continue;
761
762 if (filter(gid, &entry->attr, context)) {
763 get_gid_entry(entry);
764 res = &entry->attr;
765 break;
766 }
767 }
768 read_unlock_irqrestore(&table->rwlock, flags);
769 return res;
770 }
771
alloc_gid_table(int sz)772 static struct ib_gid_table *alloc_gid_table(int sz)
773 {
774 struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL);
775
776 if (!table)
777 return NULL;
778
779 table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL);
780 if (!table->data_vec)
781 goto err_free_table;
782
783 mutex_init(&table->lock);
784
785 table->sz = sz;
786 rwlock_init(&table->rwlock);
787 return table;
788
789 err_free_table:
790 kfree(table);
791 return NULL;
792 }
793
release_gid_table(struct ib_device * device,struct ib_gid_table * table)794 static void release_gid_table(struct ib_device *device,
795 struct ib_gid_table *table)
796 {
797 bool leak = false;
798 int i;
799
800 if (!table)
801 return;
802
803 for (i = 0; i < table->sz; i++) {
804 if (is_gid_entry_free(table->data_vec[i]))
805 continue;
806 if (kref_read(&table->data_vec[i]->kref) > 1) {
807 dev_err(&device->dev,
808 "GID entry ref leak for index %d ref=%u\n", i,
809 kref_read(&table->data_vec[i]->kref));
810 leak = true;
811 }
812 }
813 if (leak)
814 return;
815
816 mutex_destroy(&table->lock);
817 kfree(table->data_vec);
818 kfree(table);
819 }
820
cleanup_gid_table_port(struct ib_device * ib_dev,u32 port,struct ib_gid_table * table)821 static void cleanup_gid_table_port(struct ib_device *ib_dev, u32 port,
822 struct ib_gid_table *table)
823 {
824 int i;
825
826 if (!table)
827 return;
828
829 mutex_lock(&table->lock);
830 for (i = 0; i < table->sz; ++i) {
831 if (is_gid_entry_valid(table->data_vec[i]))
832 del_gid(ib_dev, port, table, i);
833 }
834 mutex_unlock(&table->lock);
835 }
836
ib_cache_gid_set_default_gid(struct ib_device * ib_dev,u32 port,struct net_device * ndev,unsigned long gid_type_mask,enum ib_cache_gid_default_mode mode)837 void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u32 port,
838 struct net_device *ndev,
839 unsigned long gid_type_mask,
840 enum ib_cache_gid_default_mode mode)
841 {
842 union ib_gid gid = { };
843 struct ib_gid_attr gid_attr;
844 unsigned int gid_type;
845 unsigned long mask;
846
847 mask = GID_ATTR_FIND_MASK_GID_TYPE |
848 GID_ATTR_FIND_MASK_DEFAULT |
849 GID_ATTR_FIND_MASK_NETDEV;
850 memset(&gid_attr, 0, sizeof(gid_attr));
851 gid_attr.ndev = ndev;
852
853 for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) {
854 if (1UL << gid_type & ~gid_type_mask)
855 continue;
856
857 gid_attr.gid_type = gid_type;
858
859 if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) {
860 make_default_gid(ndev, &gid);
861 __ib_cache_gid_add(ib_dev, port, &gid,
862 &gid_attr, mask, true);
863 } else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) {
864 _ib_cache_gid_del(ib_dev, port, &gid,
865 &gid_attr, mask, true);
866 }
867 }
868 }
869
gid_table_reserve_default(struct ib_device * ib_dev,u32 port,struct ib_gid_table * table)870 static void gid_table_reserve_default(struct ib_device *ib_dev, u32 port,
871 struct ib_gid_table *table)
872 {
873 unsigned int i;
874 unsigned long roce_gid_type_mask;
875 unsigned int num_default_gids;
876
877 roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port);
878 num_default_gids = hweight_long(roce_gid_type_mask);
879 /* Reserve starting indices for default GIDs */
880 for (i = 0; i < num_default_gids && i < table->sz; i++)
881 table->default_gid_indices |= BIT(i);
882 }
883
884
gid_table_release_one(struct ib_device * ib_dev)885 static void gid_table_release_one(struct ib_device *ib_dev)
886 {
887 u32 p;
888
889 rdma_for_each_port (ib_dev, p) {
890 release_gid_table(ib_dev, ib_dev->port_data[p].cache.gid);
891 ib_dev->port_data[p].cache.gid = NULL;
892 }
893 }
894
_gid_table_setup_one(struct ib_device * ib_dev)895 static int _gid_table_setup_one(struct ib_device *ib_dev)
896 {
897 struct ib_gid_table *table;
898 u32 rdma_port;
899
900 rdma_for_each_port (ib_dev, rdma_port) {
901 table = alloc_gid_table(
902 ib_dev->port_data[rdma_port].immutable.gid_tbl_len);
903 if (!table)
904 goto rollback_table_setup;
905
906 gid_table_reserve_default(ib_dev, rdma_port, table);
907 ib_dev->port_data[rdma_port].cache.gid = table;
908 }
909 return 0;
910
911 rollback_table_setup:
912 gid_table_release_one(ib_dev);
913 return -ENOMEM;
914 }
915
gid_table_cleanup_one(struct ib_device * ib_dev)916 static void gid_table_cleanup_one(struct ib_device *ib_dev)
917 {
918 u32 p;
919
920 rdma_for_each_port (ib_dev, p)
921 cleanup_gid_table_port(ib_dev, p,
922 ib_dev->port_data[p].cache.gid);
923 }
924
gid_table_setup_one(struct ib_device * ib_dev)925 static int gid_table_setup_one(struct ib_device *ib_dev)
926 {
927 int err;
928
929 err = _gid_table_setup_one(ib_dev);
930
931 if (err)
932 return err;
933
934 rdma_roce_rescan_device(ib_dev);
935
936 return err;
937 }
938
939 /**
940 * rdma_query_gid - Read the GID content from the GID software cache
941 * @device: Device to query the GID
942 * @port_num: Port number of the device
943 * @index: Index of the GID table entry to read
944 * @gid: Pointer to GID where to store the entry's GID
945 *
946 * rdma_query_gid() only reads the GID entry content for requested device,
947 * port and index. It reads for IB, RoCE and iWarp link layers. It doesn't
948 * hold any reference to the GID table entry in the HCA or software cache.
949 *
950 * Returns 0 on success or appropriate error code.
951 *
952 */
rdma_query_gid(struct ib_device * device,u32 port_num,int index,union ib_gid * gid)953 int rdma_query_gid(struct ib_device *device, u32 port_num,
954 int index, union ib_gid *gid)
955 {
956 struct ib_gid_table *table;
957 unsigned long flags;
958 int res;
959
960 if (!rdma_is_port_valid(device, port_num))
961 return -EINVAL;
962
963 table = rdma_gid_table(device, port_num);
964 read_lock_irqsave(&table->rwlock, flags);
965
966 if (index < 0 || index >= table->sz) {
967 res = -EINVAL;
968 goto done;
969 }
970
971 if (!is_gid_entry_valid(table->data_vec[index])) {
972 res = -ENOENT;
973 goto done;
974 }
975
976 memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid));
977 res = 0;
978
979 done:
980 read_unlock_irqrestore(&table->rwlock, flags);
981 return res;
982 }
983 EXPORT_SYMBOL(rdma_query_gid);
984
985 /**
986 * rdma_read_gid_hw_context - Read the HW GID context from GID attribute
987 * @attr: Potinter to the GID attribute
988 *
989 * rdma_read_gid_hw_context() reads the drivers GID HW context corresponding
990 * to the SGID attr. Callers are required to already be holding the reference
991 * to an existing GID entry.
992 *
993 * Returns the HW GID context
994 *
995 */
rdma_read_gid_hw_context(const struct ib_gid_attr * attr)996 void *rdma_read_gid_hw_context(const struct ib_gid_attr *attr)
997 {
998 return container_of(attr, struct ib_gid_table_entry, attr)->context;
999 }
1000 EXPORT_SYMBOL(rdma_read_gid_hw_context);
1001
1002 /**
1003 * rdma_find_gid - Returns SGID attributes if the matching GID is found.
1004 * @device: The device to query.
1005 * @gid: The GID value to search for.
1006 * @gid_type: The GID type to search for.
1007 * @ndev: In RoCE, the net device of the device. NULL means ignore.
1008 *
1009 * rdma_find_gid() searches for the specified GID value in the software cache.
1010 *
1011 * Returns GID attributes if a valid GID is found or returns ERR_PTR for the
1012 * error. The caller must invoke rdma_put_gid_attr() to release the reference.
1013 *
1014 */
rdma_find_gid(struct ib_device * device,const union ib_gid * gid,enum ib_gid_type gid_type,struct net_device * ndev)1015 const struct ib_gid_attr *rdma_find_gid(struct ib_device *device,
1016 const union ib_gid *gid,
1017 enum ib_gid_type gid_type,
1018 struct net_device *ndev)
1019 {
1020 unsigned long mask = GID_ATTR_FIND_MASK_GID |
1021 GID_ATTR_FIND_MASK_GID_TYPE;
1022 struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type};
1023 u32 p;
1024
1025 if (ndev)
1026 mask |= GID_ATTR_FIND_MASK_NETDEV;
1027
1028 rdma_for_each_port(device, p) {
1029 struct ib_gid_table *table;
1030 unsigned long flags;
1031 int index;
1032
1033 table = device->port_data[p].cache.gid;
1034 read_lock_irqsave(&table->rwlock, flags);
1035 index = find_gid(table, gid, &gid_attr_val, false, mask, NULL);
1036 if (index >= 0) {
1037 const struct ib_gid_attr *attr;
1038
1039 get_gid_entry(table->data_vec[index]);
1040 attr = &table->data_vec[index]->attr;
1041 read_unlock_irqrestore(&table->rwlock, flags);
1042 return attr;
1043 }
1044 read_unlock_irqrestore(&table->rwlock, flags);
1045 }
1046
1047 return ERR_PTR(-ENOENT);
1048 }
1049 EXPORT_SYMBOL(rdma_find_gid);
1050
ib_get_cached_pkey(struct ib_device * device,u32 port_num,int index,u16 * pkey)1051 int ib_get_cached_pkey(struct ib_device *device,
1052 u32 port_num,
1053 int index,
1054 u16 *pkey)
1055 {
1056 struct ib_pkey_cache *cache;
1057 unsigned long flags;
1058 int ret = 0;
1059
1060 if (!rdma_is_port_valid(device, port_num))
1061 return -EINVAL;
1062
1063 read_lock_irqsave(&device->cache_lock, flags);
1064
1065 cache = device->port_data[port_num].cache.pkey;
1066
1067 if (!cache || index < 0 || index >= cache->table_len)
1068 ret = -EINVAL;
1069 else
1070 *pkey = cache->table[index];
1071
1072 read_unlock_irqrestore(&device->cache_lock, flags);
1073
1074 return ret;
1075 }
1076 EXPORT_SYMBOL(ib_get_cached_pkey);
1077
ib_get_cached_subnet_prefix(struct ib_device * device,u32 port_num,u64 * sn_pfx)1078 void ib_get_cached_subnet_prefix(struct ib_device *device, u32 port_num,
1079 u64 *sn_pfx)
1080 {
1081 unsigned long flags;
1082
1083 read_lock_irqsave(&device->cache_lock, flags);
1084 *sn_pfx = device->port_data[port_num].cache.subnet_prefix;
1085 read_unlock_irqrestore(&device->cache_lock, flags);
1086 }
1087 EXPORT_SYMBOL(ib_get_cached_subnet_prefix);
1088
ib_find_cached_pkey(struct ib_device * device,u32 port_num,u16 pkey,u16 * index)1089 int ib_find_cached_pkey(struct ib_device *device, u32 port_num,
1090 u16 pkey, u16 *index)
1091 {
1092 struct ib_pkey_cache *cache;
1093 unsigned long flags;
1094 int i;
1095 int ret = -ENOENT;
1096 int partial_ix = -1;
1097
1098 if (!rdma_is_port_valid(device, port_num))
1099 return -EINVAL;
1100
1101 read_lock_irqsave(&device->cache_lock, flags);
1102
1103 cache = device->port_data[port_num].cache.pkey;
1104 if (!cache) {
1105 ret = -EINVAL;
1106 goto err;
1107 }
1108
1109 *index = -1;
1110
1111 for (i = 0; i < cache->table_len; ++i)
1112 if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) {
1113 if (cache->table[i] & 0x8000) {
1114 *index = i;
1115 ret = 0;
1116 break;
1117 } else {
1118 partial_ix = i;
1119 }
1120 }
1121
1122 if (ret && partial_ix >= 0) {
1123 *index = partial_ix;
1124 ret = 0;
1125 }
1126
1127 err:
1128 read_unlock_irqrestore(&device->cache_lock, flags);
1129
1130 return ret;
1131 }
1132 EXPORT_SYMBOL(ib_find_cached_pkey);
1133
ib_find_exact_cached_pkey(struct ib_device * device,u32 port_num,u16 pkey,u16 * index)1134 int ib_find_exact_cached_pkey(struct ib_device *device, u32 port_num,
1135 u16 pkey, u16 *index)
1136 {
1137 struct ib_pkey_cache *cache;
1138 unsigned long flags;
1139 int i;
1140 int ret = -ENOENT;
1141
1142 if (!rdma_is_port_valid(device, port_num))
1143 return -EINVAL;
1144
1145 read_lock_irqsave(&device->cache_lock, flags);
1146
1147 cache = device->port_data[port_num].cache.pkey;
1148 if (!cache) {
1149 ret = -EINVAL;
1150 goto err;
1151 }
1152
1153 *index = -1;
1154
1155 for (i = 0; i < cache->table_len; ++i)
1156 if (cache->table[i] == pkey) {
1157 *index = i;
1158 ret = 0;
1159 break;
1160 }
1161
1162 err:
1163 read_unlock_irqrestore(&device->cache_lock, flags);
1164
1165 return ret;
1166 }
1167 EXPORT_SYMBOL(ib_find_exact_cached_pkey);
1168
ib_get_cached_lmc(struct ib_device * device,u32 port_num,u8 * lmc)1169 int ib_get_cached_lmc(struct ib_device *device, u32 port_num, u8 *lmc)
1170 {
1171 unsigned long flags;
1172 int ret = 0;
1173
1174 if (!rdma_is_port_valid(device, port_num))
1175 return -EINVAL;
1176
1177 read_lock_irqsave(&device->cache_lock, flags);
1178 *lmc = device->port_data[port_num].cache.lmc;
1179 read_unlock_irqrestore(&device->cache_lock, flags);
1180
1181 return ret;
1182 }
1183 EXPORT_SYMBOL(ib_get_cached_lmc);
1184
ib_get_cached_port_state(struct ib_device * device,u32 port_num,enum ib_port_state * port_state)1185 int ib_get_cached_port_state(struct ib_device *device, u32 port_num,
1186 enum ib_port_state *port_state)
1187 {
1188 unsigned long flags;
1189 int ret = 0;
1190
1191 if (!rdma_is_port_valid(device, port_num))
1192 return -EINVAL;
1193
1194 read_lock_irqsave(&device->cache_lock, flags);
1195 *port_state = device->port_data[port_num].cache.port_state;
1196 read_unlock_irqrestore(&device->cache_lock, flags);
1197
1198 return ret;
1199 }
1200 EXPORT_SYMBOL(ib_get_cached_port_state);
1201
1202 /**
1203 * rdma_get_gid_attr - Returns GID attributes for a port of a device
1204 * at a requested gid_index, if a valid GID entry exists.
1205 * @device: The device to query.
1206 * @port_num: The port number on the device where the GID value
1207 * is to be queried.
1208 * @index: Index of the GID table entry whose attributes are to
1209 * be queried.
1210 *
1211 * rdma_get_gid_attr() acquires reference count of gid attributes from the
1212 * cached GID table. Caller must invoke rdma_put_gid_attr() to release
1213 * reference to gid attribute regardless of link layer.
1214 *
1215 * Returns pointer to valid gid attribute or ERR_PTR for the appropriate error
1216 * code.
1217 */
1218 const struct ib_gid_attr *
rdma_get_gid_attr(struct ib_device * device,u32 port_num,int index)1219 rdma_get_gid_attr(struct ib_device *device, u32 port_num, int index)
1220 {
1221 const struct ib_gid_attr *attr = ERR_PTR(-ENODATA);
1222 struct ib_gid_table *table;
1223 unsigned long flags;
1224
1225 if (!rdma_is_port_valid(device, port_num))
1226 return ERR_PTR(-EINVAL);
1227
1228 table = rdma_gid_table(device, port_num);
1229 if (index < 0 || index >= table->sz)
1230 return ERR_PTR(-EINVAL);
1231
1232 read_lock_irqsave(&table->rwlock, flags);
1233 if (!is_gid_entry_valid(table->data_vec[index]))
1234 goto done;
1235
1236 get_gid_entry(table->data_vec[index]);
1237 attr = &table->data_vec[index]->attr;
1238 done:
1239 read_unlock_irqrestore(&table->rwlock, flags);
1240 return attr;
1241 }
1242 EXPORT_SYMBOL(rdma_get_gid_attr);
1243
1244 /**
1245 * rdma_query_gid_table - Reads GID table entries of all the ports of a device up to max_entries.
1246 * @device: The device to query.
1247 * @entries: Entries where GID entries are returned.
1248 * @max_entries: Maximum number of entries that can be returned.
1249 * Entries array must be allocated to hold max_entries number of entries.
1250 *
1251 * Returns number of entries on success or appropriate error code.
1252 */
rdma_query_gid_table(struct ib_device * device,struct ib_uverbs_gid_entry * entries,size_t max_entries)1253 ssize_t rdma_query_gid_table(struct ib_device *device,
1254 struct ib_uverbs_gid_entry *entries,
1255 size_t max_entries)
1256 {
1257 const struct ib_gid_attr *gid_attr;
1258 ssize_t num_entries = 0, ret;
1259 struct ib_gid_table *table;
1260 u32 port_num, i;
1261 struct net_device *ndev;
1262 unsigned long flags;
1263
1264 rdma_for_each_port(device, port_num) {
1265 table = rdma_gid_table(device, port_num);
1266 read_lock_irqsave(&table->rwlock, flags);
1267 for (i = 0; i < table->sz; i++) {
1268 if (!is_gid_entry_valid(table->data_vec[i]))
1269 continue;
1270 if (num_entries >= max_entries) {
1271 ret = -EINVAL;
1272 goto err;
1273 }
1274
1275 gid_attr = &table->data_vec[i]->attr;
1276
1277 memcpy(&entries->gid, &gid_attr->gid,
1278 sizeof(gid_attr->gid));
1279 entries->gid_index = gid_attr->index;
1280 entries->port_num = gid_attr->port_num;
1281 entries->gid_type = gid_attr->gid_type;
1282 ndev = rcu_dereference_protected(
1283 gid_attr->ndev,
1284 lockdep_is_held(&table->rwlock));
1285 if (ndev)
1286 entries->netdev_ifindex = ndev->ifindex;
1287
1288 num_entries++;
1289 entries++;
1290 }
1291 read_unlock_irqrestore(&table->rwlock, flags);
1292 }
1293
1294 return num_entries;
1295 err:
1296 read_unlock_irqrestore(&table->rwlock, flags);
1297 return ret;
1298 }
1299 EXPORT_SYMBOL(rdma_query_gid_table);
1300
1301 /**
1302 * rdma_put_gid_attr - Release reference to the GID attribute
1303 * @attr: Pointer to the GID attribute whose reference
1304 * needs to be released.
1305 *
1306 * rdma_put_gid_attr() must be used to release reference whose
1307 * reference is acquired using rdma_get_gid_attr() or any APIs
1308 * which returns a pointer to the ib_gid_attr regardless of link layer
1309 * of IB or RoCE.
1310 *
1311 */
rdma_put_gid_attr(const struct ib_gid_attr * attr)1312 void rdma_put_gid_attr(const struct ib_gid_attr *attr)
1313 {
1314 struct ib_gid_table_entry *entry =
1315 container_of(attr, struct ib_gid_table_entry, attr);
1316
1317 put_gid_entry(entry);
1318 }
1319 EXPORT_SYMBOL(rdma_put_gid_attr);
1320
1321 /**
1322 * rdma_hold_gid_attr - Get reference to existing GID attribute
1323 *
1324 * @attr: Pointer to the GID attribute whose reference
1325 * needs to be taken.
1326 *
1327 * Increase the reference count to a GID attribute to keep it from being
1328 * freed. Callers are required to already be holding a reference to attribute.
1329 *
1330 */
rdma_hold_gid_attr(const struct ib_gid_attr * attr)1331 void rdma_hold_gid_attr(const struct ib_gid_attr *attr)
1332 {
1333 struct ib_gid_table_entry *entry =
1334 container_of(attr, struct ib_gid_table_entry, attr);
1335
1336 get_gid_entry(entry);
1337 }
1338 EXPORT_SYMBOL(rdma_hold_gid_attr);
1339
1340 /**
1341 * rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice
1342 * which must be in UP state.
1343 *
1344 * @attr:Pointer to the GID attribute
1345 *
1346 * Returns pointer to netdevice if the netdevice was attached to GID and
1347 * netdevice is in UP state. Caller must hold RCU lock as this API
1348 * reads the netdev flags which can change while netdevice migrates to
1349 * different net namespace. Returns ERR_PTR with error code otherwise.
1350 *
1351 */
rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr * attr)1352 struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr)
1353 {
1354 struct ib_gid_table_entry *entry =
1355 container_of(attr, struct ib_gid_table_entry, attr);
1356 struct ib_device *device = entry->attr.device;
1357 struct net_device *ndev = ERR_PTR(-EINVAL);
1358 u32 port_num = entry->attr.port_num;
1359 struct ib_gid_table *table;
1360 unsigned long flags;
1361 bool valid;
1362
1363 table = rdma_gid_table(device, port_num);
1364
1365 read_lock_irqsave(&table->rwlock, flags);
1366 valid = is_gid_entry_valid(table->data_vec[attr->index]);
1367 if (valid) {
1368 ndev = rcu_dereference(attr->ndev);
1369 if (!ndev)
1370 ndev = ERR_PTR(-ENODEV);
1371 }
1372 read_unlock_irqrestore(&table->rwlock, flags);
1373 return ndev;
1374 }
1375 EXPORT_SYMBOL(rdma_read_gid_attr_ndev_rcu);
1376
get_lower_dev_vlan(struct net_device * lower_dev,struct netdev_nested_priv * priv)1377 static int get_lower_dev_vlan(struct net_device *lower_dev,
1378 struct netdev_nested_priv *priv)
1379 {
1380 u16 *vlan_id = (u16 *)priv->data;
1381
1382 if (is_vlan_dev(lower_dev))
1383 *vlan_id = vlan_dev_vlan_id(lower_dev);
1384
1385 /* We are interested only in first level vlan device, so
1386 * always return 1 to stop iterating over next level devices.
1387 */
1388 return 1;
1389 }
1390
1391 /**
1392 * rdma_read_gid_l2_fields - Read the vlan ID and source MAC address
1393 * of a GID entry.
1394 *
1395 * @attr: GID attribute pointer whose L2 fields to be read
1396 * @vlan_id: Pointer to vlan id to fill up if the GID entry has
1397 * vlan id. It is optional.
1398 * @smac: Pointer to smac to fill up for a GID entry. It is optional.
1399 *
1400 * rdma_read_gid_l2_fields() returns 0 on success and returns vlan id
1401 * (if gid entry has vlan) and source MAC, or returns error.
1402 */
rdma_read_gid_l2_fields(const struct ib_gid_attr * attr,u16 * vlan_id,u8 * smac)1403 int rdma_read_gid_l2_fields(const struct ib_gid_attr *attr,
1404 u16 *vlan_id, u8 *smac)
1405 {
1406 struct netdev_nested_priv priv = {
1407 .data = (void *)vlan_id,
1408 };
1409 struct net_device *ndev;
1410
1411 rcu_read_lock();
1412 ndev = rcu_dereference(attr->ndev);
1413 if (!ndev) {
1414 rcu_read_unlock();
1415 return -ENODEV;
1416 }
1417 if (smac)
1418 ether_addr_copy(smac, ndev->dev_addr);
1419 if (vlan_id) {
1420 *vlan_id = 0xffff;
1421 if (is_vlan_dev(ndev)) {
1422 *vlan_id = vlan_dev_vlan_id(ndev);
1423 } else {
1424 /* If the netdev is upper device and if it's lower
1425 * device is vlan device, consider vlan id of the
1426 * the lower vlan device for this gid entry.
1427 */
1428 netdev_walk_all_lower_dev_rcu(attr->ndev,
1429 get_lower_dev_vlan, &priv);
1430 }
1431 }
1432 rcu_read_unlock();
1433 return 0;
1434 }
1435 EXPORT_SYMBOL(rdma_read_gid_l2_fields);
1436
config_non_roce_gid_cache(struct ib_device * device,u32 port,struct ib_port_attr * tprops)1437 static int config_non_roce_gid_cache(struct ib_device *device,
1438 u32 port, struct ib_port_attr *tprops)
1439 {
1440 struct ib_gid_attr gid_attr = {};
1441 struct ib_gid_table *table;
1442 int ret = 0;
1443 int i;
1444
1445 gid_attr.device = device;
1446 gid_attr.port_num = port;
1447 table = rdma_gid_table(device, port);
1448
1449 mutex_lock(&table->lock);
1450 for (i = 0; i < tprops->gid_tbl_len; ++i) {
1451 if (!device->ops.query_gid)
1452 continue;
1453 ret = device->ops.query_gid(device, port, i, &gid_attr.gid);
1454 if (ret) {
1455 dev_warn(&device->dev,
1456 "query_gid failed (%d) for index %d\n", ret,
1457 i);
1458 goto err;
1459 }
1460 gid_attr.index = i;
1461 tprops->subnet_prefix =
1462 be64_to_cpu(gid_attr.gid.global.subnet_prefix);
1463 add_modify_gid(table, &gid_attr);
1464 }
1465 err:
1466 mutex_unlock(&table->lock);
1467 return ret;
1468 }
1469
1470 static int
ib_cache_update(struct ib_device * device,u32 port,bool update_gids,bool update_pkeys,bool enforce_security)1471 ib_cache_update(struct ib_device *device, u32 port, bool update_gids,
1472 bool update_pkeys, bool enforce_security)
1473 {
1474 struct ib_port_attr *tprops = NULL;
1475 struct ib_pkey_cache *pkey_cache = NULL;
1476 struct ib_pkey_cache *old_pkey_cache = NULL;
1477 int i;
1478 int ret;
1479
1480 if (!rdma_is_port_valid(device, port))
1481 return -EINVAL;
1482
1483 tprops = kmalloc(sizeof *tprops, GFP_KERNEL);
1484 if (!tprops)
1485 return -ENOMEM;
1486
1487 ret = ib_query_port(device, port, tprops);
1488 if (ret) {
1489 dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret);
1490 goto err;
1491 }
1492
1493 if (!rdma_protocol_roce(device, port) && update_gids) {
1494 ret = config_non_roce_gid_cache(device, port,
1495 tprops);
1496 if (ret)
1497 goto err;
1498 }
1499
1500 update_pkeys &= !!tprops->pkey_tbl_len;
1501
1502 if (update_pkeys) {
1503 pkey_cache = kmalloc(struct_size(pkey_cache, table,
1504 tprops->pkey_tbl_len),
1505 GFP_KERNEL);
1506 if (!pkey_cache) {
1507 ret = -ENOMEM;
1508 goto err;
1509 }
1510
1511 pkey_cache->table_len = tprops->pkey_tbl_len;
1512
1513 for (i = 0; i < pkey_cache->table_len; ++i) {
1514 ret = ib_query_pkey(device, port, i,
1515 pkey_cache->table + i);
1516 if (ret) {
1517 dev_warn(&device->dev,
1518 "ib_query_pkey failed (%d) for index %d\n",
1519 ret, i);
1520 goto err;
1521 }
1522 }
1523 }
1524
1525 write_lock_irq(&device->cache_lock);
1526
1527 if (update_pkeys) {
1528 old_pkey_cache = device->port_data[port].cache.pkey;
1529 device->port_data[port].cache.pkey = pkey_cache;
1530 }
1531 device->port_data[port].cache.lmc = tprops->lmc;
1532 device->port_data[port].cache.port_state = tprops->state;
1533
1534 device->port_data[port].cache.subnet_prefix = tprops->subnet_prefix;
1535 write_unlock_irq(&device->cache_lock);
1536
1537 if (enforce_security)
1538 ib_security_cache_change(device,
1539 port,
1540 tprops->subnet_prefix);
1541
1542 kfree(old_pkey_cache);
1543 kfree(tprops);
1544 return 0;
1545
1546 err:
1547 kfree(pkey_cache);
1548 kfree(tprops);
1549 return ret;
1550 }
1551
ib_cache_event_task(struct work_struct * _work)1552 static void ib_cache_event_task(struct work_struct *_work)
1553 {
1554 struct ib_update_work *work =
1555 container_of(_work, struct ib_update_work, work);
1556 int ret;
1557
1558 /* Before distributing the cache update event, first sync
1559 * the cache.
1560 */
1561 ret = ib_cache_update(work->event.device, work->event.element.port_num,
1562 work->event.event == IB_EVENT_GID_CHANGE,
1563 work->event.event == IB_EVENT_PKEY_CHANGE,
1564 work->enforce_security);
1565
1566 /* GID event is notified already for individual GID entries by
1567 * dispatch_gid_change_event(). Hence, notifiy for rest of the
1568 * events.
1569 */
1570 if (!ret && work->event.event != IB_EVENT_GID_CHANGE)
1571 ib_dispatch_event_clients(&work->event);
1572
1573 kfree(work);
1574 }
1575
ib_generic_event_task(struct work_struct * _work)1576 static void ib_generic_event_task(struct work_struct *_work)
1577 {
1578 struct ib_update_work *work =
1579 container_of(_work, struct ib_update_work, work);
1580
1581 ib_dispatch_event_clients(&work->event);
1582 kfree(work);
1583 }
1584
is_cache_update_event(const struct ib_event * event)1585 static bool is_cache_update_event(const struct ib_event *event)
1586 {
1587 return (event->event == IB_EVENT_PORT_ERR ||
1588 event->event == IB_EVENT_PORT_ACTIVE ||
1589 event->event == IB_EVENT_LID_CHANGE ||
1590 event->event == IB_EVENT_PKEY_CHANGE ||
1591 event->event == IB_EVENT_CLIENT_REREGISTER ||
1592 event->event == IB_EVENT_GID_CHANGE);
1593 }
1594
1595 /**
1596 * ib_dispatch_event - Dispatch an asynchronous event
1597 * @event:Event to dispatch
1598 *
1599 * Low-level drivers must call ib_dispatch_event() to dispatch the
1600 * event to all registered event handlers when an asynchronous event
1601 * occurs.
1602 */
ib_dispatch_event(const struct ib_event * event)1603 void ib_dispatch_event(const struct ib_event *event)
1604 {
1605 struct ib_update_work *work;
1606
1607 work = kzalloc(sizeof(*work), GFP_ATOMIC);
1608 if (!work)
1609 return;
1610
1611 if (is_cache_update_event(event))
1612 INIT_WORK(&work->work, ib_cache_event_task);
1613 else
1614 INIT_WORK(&work->work, ib_generic_event_task);
1615
1616 work->event = *event;
1617 if (event->event == IB_EVENT_PKEY_CHANGE ||
1618 event->event == IB_EVENT_GID_CHANGE)
1619 work->enforce_security = true;
1620
1621 queue_work(ib_wq, &work->work);
1622 }
1623 EXPORT_SYMBOL(ib_dispatch_event);
1624
ib_cache_setup_one(struct ib_device * device)1625 int ib_cache_setup_one(struct ib_device *device)
1626 {
1627 u32 p;
1628 int err;
1629
1630 err = gid_table_setup_one(device);
1631 if (err)
1632 return err;
1633
1634 rdma_for_each_port (device, p) {
1635 err = ib_cache_update(device, p, true, true, true);
1636 if (err)
1637 return err;
1638 }
1639
1640 return 0;
1641 }
1642
ib_cache_release_one(struct ib_device * device)1643 void ib_cache_release_one(struct ib_device *device)
1644 {
1645 u32 p;
1646
1647 /*
1648 * The release function frees all the cache elements.
1649 * This function should be called as part of freeing
1650 * all the device's resources when the cache could no
1651 * longer be accessed.
1652 */
1653 rdma_for_each_port (device, p)
1654 kfree(device->port_data[p].cache.pkey);
1655
1656 gid_table_release_one(device);
1657 }
1658
ib_cache_cleanup_one(struct ib_device * device)1659 void ib_cache_cleanup_one(struct ib_device *device)
1660 {
1661 /* The cleanup function waits for all in-progress workqueue
1662 * elements and cleans up the GID cache. This function should be
1663 * called after the device was removed from the devices list and
1664 * all clients were removed, so the cache exists but is
1665 * non-functional and shouldn't be updated anymore.
1666 */
1667 flush_workqueue(ib_wq);
1668 gid_table_cleanup_one(device);
1669
1670 /*
1671 * Flush the wq second time for any pending GID delete work.
1672 */
1673 flush_workqueue(ib_wq);
1674 }
1675