1 /* CPU control.
2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
3 *
4 * This code is licenced under the GPL.
5 */
6 #include <linux/sched/mm.h>
7 #include <linux/proc_fs.h>
8 #include <linux/smp.h>
9 #include <linux/init.h>
10 #include <linux/notifier.h>
11 #include <linux/sched/signal.h>
12 #include <linux/sched/hotplug.h>
13 #include <linux/sched/isolation.h>
14 #include <linux/sched/task.h>
15 #include <linux/sched/smt.h>
16 #include <linux/unistd.h>
17 #include <linux/cpu.h>
18 #include <linux/oom.h>
19 #include <linux/rcupdate.h>
20 #include <linux/export.h>
21 #include <linux/bug.h>
22 #include <linux/kthread.h>
23 #include <linux/stop_machine.h>
24 #include <linux/mutex.h>
25 #include <linux/gfp.h>
26 #include <linux/suspend.h>
27 #include <linux/lockdep.h>
28 #include <linux/tick.h>
29 #include <linux/irq.h>
30 #include <linux/nmi.h>
31 #include <linux/smpboot.h>
32 #include <linux/relay.h>
33 #include <linux/slab.h>
34 #include <linux/scs.h>
35 #include <linux/percpu-rwsem.h>
36 #include <linux/cpuset.h>
37 #include <linux/random.h>
38 #include <linux/cc_platform.h>
39
40 #include <trace/events/power.h>
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/cpuhp.h>
43
44 #include "smpboot.h"
45
46 /**
47 * struct cpuhp_cpu_state - Per cpu hotplug state storage
48 * @state: The current cpu state
49 * @target: The target state
50 * @fail: Current CPU hotplug callback state
51 * @thread: Pointer to the hotplug thread
52 * @should_run: Thread should execute
53 * @rollback: Perform a rollback
54 * @single: Single callback invocation
55 * @bringup: Single callback bringup or teardown selector
56 * @cpu: CPU number
57 * @node: Remote CPU node; for multi-instance, do a
58 * single entry callback for install/remove
59 * @last: For multi-instance rollback, remember how far we got
60 * @cb_state: The state for a single callback (install/uninstall)
61 * @result: Result of the operation
62 * @done_up: Signal completion to the issuer of the task for cpu-up
63 * @done_down: Signal completion to the issuer of the task for cpu-down
64 */
65 struct cpuhp_cpu_state {
66 enum cpuhp_state state;
67 enum cpuhp_state target;
68 enum cpuhp_state fail;
69 #ifdef CONFIG_SMP
70 struct task_struct *thread;
71 bool should_run;
72 bool rollback;
73 bool single;
74 bool bringup;
75 struct hlist_node *node;
76 struct hlist_node *last;
77 enum cpuhp_state cb_state;
78 int result;
79 struct completion done_up;
80 struct completion done_down;
81 #endif
82 };
83
84 static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
85 .fail = CPUHP_INVALID,
86 };
87
88 #ifdef CONFIG_SMP
89 cpumask_t cpus_booted_once_mask;
90 #endif
91
92 #if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
93 static struct lockdep_map cpuhp_state_up_map =
94 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
95 static struct lockdep_map cpuhp_state_down_map =
96 STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
97
98
cpuhp_lock_acquire(bool bringup)99 static inline void cpuhp_lock_acquire(bool bringup)
100 {
101 lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
102 }
103
cpuhp_lock_release(bool bringup)104 static inline void cpuhp_lock_release(bool bringup)
105 {
106 lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
107 }
108 #else
109
cpuhp_lock_acquire(bool bringup)110 static inline void cpuhp_lock_acquire(bool bringup) { }
cpuhp_lock_release(bool bringup)111 static inline void cpuhp_lock_release(bool bringup) { }
112
113 #endif
114
115 /**
116 * struct cpuhp_step - Hotplug state machine step
117 * @name: Name of the step
118 * @startup: Startup function of the step
119 * @teardown: Teardown function of the step
120 * @cant_stop: Bringup/teardown can't be stopped at this step
121 * @multi_instance: State has multiple instances which get added afterwards
122 */
123 struct cpuhp_step {
124 const char *name;
125 union {
126 int (*single)(unsigned int cpu);
127 int (*multi)(unsigned int cpu,
128 struct hlist_node *node);
129 } startup;
130 union {
131 int (*single)(unsigned int cpu);
132 int (*multi)(unsigned int cpu,
133 struct hlist_node *node);
134 } teardown;
135 /* private: */
136 struct hlist_head list;
137 /* public: */
138 bool cant_stop;
139 bool multi_instance;
140 };
141
142 static DEFINE_MUTEX(cpuhp_state_mutex);
143 static struct cpuhp_step cpuhp_hp_states[];
144
cpuhp_get_step(enum cpuhp_state state)145 static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
146 {
147 return cpuhp_hp_states + state;
148 }
149
cpuhp_step_empty(bool bringup,struct cpuhp_step * step)150 static bool cpuhp_step_empty(bool bringup, struct cpuhp_step *step)
151 {
152 return bringup ? !step->startup.single : !step->teardown.single;
153 }
154
155 /**
156 * cpuhp_invoke_callback - Invoke the callbacks for a given state
157 * @cpu: The cpu for which the callback should be invoked
158 * @state: The state to do callbacks for
159 * @bringup: True if the bringup callback should be invoked
160 * @node: For multi-instance, do a single entry callback for install/remove
161 * @lastp: For multi-instance rollback, remember how far we got
162 *
163 * Called from cpu hotplug and from the state register machinery.
164 *
165 * Return: %0 on success or a negative errno code
166 */
cpuhp_invoke_callback(unsigned int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node,struct hlist_node ** lastp)167 static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
168 bool bringup, struct hlist_node *node,
169 struct hlist_node **lastp)
170 {
171 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
172 struct cpuhp_step *step = cpuhp_get_step(state);
173 int (*cbm)(unsigned int cpu, struct hlist_node *node);
174 int (*cb)(unsigned int cpu);
175 int ret, cnt;
176
177 if (st->fail == state) {
178 st->fail = CPUHP_INVALID;
179 return -EAGAIN;
180 }
181
182 if (cpuhp_step_empty(bringup, step)) {
183 WARN_ON_ONCE(1);
184 return 0;
185 }
186
187 if (!step->multi_instance) {
188 WARN_ON_ONCE(lastp && *lastp);
189 cb = bringup ? step->startup.single : step->teardown.single;
190
191 trace_cpuhp_enter(cpu, st->target, state, cb);
192 ret = cb(cpu);
193 trace_cpuhp_exit(cpu, st->state, state, ret);
194 return ret;
195 }
196 cbm = bringup ? step->startup.multi : step->teardown.multi;
197
198 /* Single invocation for instance add/remove */
199 if (node) {
200 WARN_ON_ONCE(lastp && *lastp);
201 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
202 ret = cbm(cpu, node);
203 trace_cpuhp_exit(cpu, st->state, state, ret);
204 return ret;
205 }
206
207 /* State transition. Invoke on all instances */
208 cnt = 0;
209 hlist_for_each(node, &step->list) {
210 if (lastp && node == *lastp)
211 break;
212
213 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
214 ret = cbm(cpu, node);
215 trace_cpuhp_exit(cpu, st->state, state, ret);
216 if (ret) {
217 if (!lastp)
218 goto err;
219
220 *lastp = node;
221 return ret;
222 }
223 cnt++;
224 }
225 if (lastp)
226 *lastp = NULL;
227 return 0;
228 err:
229 /* Rollback the instances if one failed */
230 cbm = !bringup ? step->startup.multi : step->teardown.multi;
231 if (!cbm)
232 return ret;
233
234 hlist_for_each(node, &step->list) {
235 if (!cnt--)
236 break;
237
238 trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
239 ret = cbm(cpu, node);
240 trace_cpuhp_exit(cpu, st->state, state, ret);
241 /*
242 * Rollback must not fail,
243 */
244 WARN_ON_ONCE(ret);
245 }
246 return ret;
247 }
248
249 #ifdef CONFIG_SMP
cpuhp_is_ap_state(enum cpuhp_state state)250 static bool cpuhp_is_ap_state(enum cpuhp_state state)
251 {
252 /*
253 * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
254 * purposes as that state is handled explicitly in cpu_down.
255 */
256 return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
257 }
258
wait_for_ap_thread(struct cpuhp_cpu_state * st,bool bringup)259 static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
260 {
261 struct completion *done = bringup ? &st->done_up : &st->done_down;
262 wait_for_completion(done);
263 }
264
complete_ap_thread(struct cpuhp_cpu_state * st,bool bringup)265 static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
266 {
267 struct completion *done = bringup ? &st->done_up : &st->done_down;
268 complete(done);
269 }
270
271 /*
272 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
273 */
cpuhp_is_atomic_state(enum cpuhp_state state)274 static bool cpuhp_is_atomic_state(enum cpuhp_state state)
275 {
276 return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
277 }
278
279 /* Serializes the updates to cpu_online_mask, cpu_present_mask */
280 static DEFINE_MUTEX(cpu_add_remove_lock);
281 bool cpuhp_tasks_frozen;
282 EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
283
284 /*
285 * The following two APIs (cpu_maps_update_begin/done) must be used when
286 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
287 */
cpu_maps_update_begin(void)288 void cpu_maps_update_begin(void)
289 {
290 mutex_lock(&cpu_add_remove_lock);
291 }
292
cpu_maps_update_done(void)293 void cpu_maps_update_done(void)
294 {
295 mutex_unlock(&cpu_add_remove_lock);
296 }
297
298 /*
299 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
300 * Should always be manipulated under cpu_add_remove_lock
301 */
302 static int cpu_hotplug_disabled;
303
304 #ifdef CONFIG_HOTPLUG_CPU
305
306 DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
307
cpus_read_lock(void)308 void cpus_read_lock(void)
309 {
310 percpu_down_read(&cpu_hotplug_lock);
311 }
312 EXPORT_SYMBOL_GPL(cpus_read_lock);
313
cpus_read_trylock(void)314 int cpus_read_trylock(void)
315 {
316 return percpu_down_read_trylock(&cpu_hotplug_lock);
317 }
318 EXPORT_SYMBOL_GPL(cpus_read_trylock);
319
cpus_read_unlock(void)320 void cpus_read_unlock(void)
321 {
322 percpu_up_read(&cpu_hotplug_lock);
323 }
324 EXPORT_SYMBOL_GPL(cpus_read_unlock);
325
cpus_write_lock(void)326 void cpus_write_lock(void)
327 {
328 percpu_down_write(&cpu_hotplug_lock);
329 }
330
cpus_write_unlock(void)331 void cpus_write_unlock(void)
332 {
333 percpu_up_write(&cpu_hotplug_lock);
334 }
335
lockdep_assert_cpus_held(void)336 void lockdep_assert_cpus_held(void)
337 {
338 /*
339 * We can't have hotplug operations before userspace starts running,
340 * and some init codepaths will knowingly not take the hotplug lock.
341 * This is all valid, so mute lockdep until it makes sense to report
342 * unheld locks.
343 */
344 if (system_state < SYSTEM_RUNNING)
345 return;
346
347 percpu_rwsem_assert_held(&cpu_hotplug_lock);
348 }
349
350 #ifdef CONFIG_LOCKDEP
lockdep_is_cpus_held(void)351 int lockdep_is_cpus_held(void)
352 {
353 return percpu_rwsem_is_held(&cpu_hotplug_lock);
354 }
355 #endif
356
lockdep_acquire_cpus_lock(void)357 static void lockdep_acquire_cpus_lock(void)
358 {
359 rwsem_acquire(&cpu_hotplug_lock.dep_map, 0, 0, _THIS_IP_);
360 }
361
lockdep_release_cpus_lock(void)362 static void lockdep_release_cpus_lock(void)
363 {
364 rwsem_release(&cpu_hotplug_lock.dep_map, _THIS_IP_);
365 }
366
367 /*
368 * Wait for currently running CPU hotplug operations to complete (if any) and
369 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
370 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
371 * hotplug path before performing hotplug operations. So acquiring that lock
372 * guarantees mutual exclusion from any currently running hotplug operations.
373 */
cpu_hotplug_disable(void)374 void cpu_hotplug_disable(void)
375 {
376 cpu_maps_update_begin();
377 cpu_hotplug_disabled++;
378 cpu_maps_update_done();
379 }
380 EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
381
__cpu_hotplug_enable(void)382 static void __cpu_hotplug_enable(void)
383 {
384 if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
385 return;
386 cpu_hotplug_disabled--;
387 }
388
cpu_hotplug_enable(void)389 void cpu_hotplug_enable(void)
390 {
391 cpu_maps_update_begin();
392 __cpu_hotplug_enable();
393 cpu_maps_update_done();
394 }
395 EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
396
397 #else
398
lockdep_acquire_cpus_lock(void)399 static void lockdep_acquire_cpus_lock(void)
400 {
401 }
402
lockdep_release_cpus_lock(void)403 static void lockdep_release_cpus_lock(void)
404 {
405 }
406
407 #endif /* CONFIG_HOTPLUG_CPU */
408
409 /*
410 * Architectures that need SMT-specific errata handling during SMT hotplug
411 * should override this.
412 */
arch_smt_update(void)413 void __weak arch_smt_update(void) { }
414
415 #ifdef CONFIG_HOTPLUG_SMT
416 enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
417
cpu_smt_disable(bool force)418 void __init cpu_smt_disable(bool force)
419 {
420 if (!cpu_smt_possible())
421 return;
422
423 if (force) {
424 pr_info("SMT: Force disabled\n");
425 cpu_smt_control = CPU_SMT_FORCE_DISABLED;
426 } else {
427 pr_info("SMT: disabled\n");
428 cpu_smt_control = CPU_SMT_DISABLED;
429 }
430 }
431
432 /*
433 * The decision whether SMT is supported can only be done after the full
434 * CPU identification. Called from architecture code.
435 */
cpu_smt_check_topology(void)436 void __init cpu_smt_check_topology(void)
437 {
438 if (!topology_smt_supported())
439 cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
440 }
441
smt_cmdline_disable(char * str)442 static int __init smt_cmdline_disable(char *str)
443 {
444 cpu_smt_disable(str && !strcmp(str, "force"));
445 return 0;
446 }
447 early_param("nosmt", smt_cmdline_disable);
448
cpu_smt_allowed(unsigned int cpu)449 static inline bool cpu_smt_allowed(unsigned int cpu)
450 {
451 if (cpu_smt_control == CPU_SMT_ENABLED)
452 return true;
453
454 if (topology_is_primary_thread(cpu))
455 return true;
456
457 /*
458 * On x86 it's required to boot all logical CPUs at least once so
459 * that the init code can get a chance to set CR4.MCE on each
460 * CPU. Otherwise, a broadcasted MCE observing CR4.MCE=0b on any
461 * core will shutdown the machine.
462 */
463 return !cpumask_test_cpu(cpu, &cpus_booted_once_mask);
464 }
465
466 /* Returns true if SMT is not supported of forcefully (irreversibly) disabled */
cpu_smt_possible(void)467 bool cpu_smt_possible(void)
468 {
469 return cpu_smt_control != CPU_SMT_FORCE_DISABLED &&
470 cpu_smt_control != CPU_SMT_NOT_SUPPORTED;
471 }
472 EXPORT_SYMBOL_GPL(cpu_smt_possible);
473 #else
cpu_smt_allowed(unsigned int cpu)474 static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
475 #endif
476
477 static inline enum cpuhp_state
cpuhp_set_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)478 cpuhp_set_state(int cpu, struct cpuhp_cpu_state *st, enum cpuhp_state target)
479 {
480 enum cpuhp_state prev_state = st->state;
481 bool bringup = st->state < target;
482
483 st->rollback = false;
484 st->last = NULL;
485
486 st->target = target;
487 st->single = false;
488 st->bringup = bringup;
489 if (cpu_dying(cpu) != !bringup)
490 set_cpu_dying(cpu, !bringup);
491
492 return prev_state;
493 }
494
495 static inline void
cpuhp_reset_state(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state prev_state)496 cpuhp_reset_state(int cpu, struct cpuhp_cpu_state *st,
497 enum cpuhp_state prev_state)
498 {
499 bool bringup = !st->bringup;
500
501 st->target = prev_state;
502
503 /*
504 * Already rolling back. No need invert the bringup value or to change
505 * the current state.
506 */
507 if (st->rollback)
508 return;
509
510 st->rollback = true;
511
512 /*
513 * If we have st->last we need to undo partial multi_instance of this
514 * state first. Otherwise start undo at the previous state.
515 */
516 if (!st->last) {
517 if (st->bringup)
518 st->state--;
519 else
520 st->state++;
521 }
522
523 st->bringup = bringup;
524 if (cpu_dying(cpu) != !bringup)
525 set_cpu_dying(cpu, !bringup);
526 }
527
528 /* Regular hotplug invocation of the AP hotplug thread */
__cpuhp_kick_ap(struct cpuhp_cpu_state * st)529 static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
530 {
531 if (!st->single && st->state == st->target)
532 return;
533
534 st->result = 0;
535 /*
536 * Make sure the above stores are visible before should_run becomes
537 * true. Paired with the mb() above in cpuhp_thread_fun()
538 */
539 smp_mb();
540 st->should_run = true;
541 wake_up_process(st->thread);
542 wait_for_ap_thread(st, st->bringup);
543 }
544
cpuhp_kick_ap(int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)545 static int cpuhp_kick_ap(int cpu, struct cpuhp_cpu_state *st,
546 enum cpuhp_state target)
547 {
548 enum cpuhp_state prev_state;
549 int ret;
550
551 prev_state = cpuhp_set_state(cpu, st, target);
552 __cpuhp_kick_ap(st);
553 if ((ret = st->result)) {
554 cpuhp_reset_state(cpu, st, prev_state);
555 __cpuhp_kick_ap(st);
556 }
557
558 return ret;
559 }
560
bringup_wait_for_ap(unsigned int cpu)561 static int bringup_wait_for_ap(unsigned int cpu)
562 {
563 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
564
565 /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
566 wait_for_ap_thread(st, true);
567 if (WARN_ON_ONCE((!cpu_online(cpu))))
568 return -ECANCELED;
569
570 /* Unpark the hotplug thread of the target cpu */
571 kthread_unpark(st->thread);
572
573 /*
574 * SMT soft disabling on X86 requires to bring the CPU out of the
575 * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit. The
576 * CPU marked itself as booted_once in notify_cpu_starting() so the
577 * cpu_smt_allowed() check will now return false if this is not the
578 * primary sibling.
579 */
580 if (!cpu_smt_allowed(cpu))
581 return -ECANCELED;
582
583 if (st->target <= CPUHP_AP_ONLINE_IDLE)
584 return 0;
585
586 return cpuhp_kick_ap(cpu, st, st->target);
587 }
588
bringup_cpu(unsigned int cpu)589 static int bringup_cpu(unsigned int cpu)
590 {
591 struct task_struct *idle = idle_thread_get(cpu);
592 int ret;
593
594 /*
595 * Reset stale stack state from the last time this CPU was online.
596 */
597 scs_task_reset(idle);
598 kasan_unpoison_task_stack(idle);
599
600 /*
601 * Some architectures have to walk the irq descriptors to
602 * setup the vector space for the cpu which comes online.
603 * Prevent irq alloc/free across the bringup.
604 */
605 irq_lock_sparse();
606
607 /* Arch-specific enabling code. */
608 ret = __cpu_up(cpu, idle);
609 irq_unlock_sparse();
610 if (ret)
611 return ret;
612 return bringup_wait_for_ap(cpu);
613 }
614
finish_cpu(unsigned int cpu)615 static int finish_cpu(unsigned int cpu)
616 {
617 struct task_struct *idle = idle_thread_get(cpu);
618 struct mm_struct *mm = idle->active_mm;
619
620 /*
621 * idle_task_exit() will have switched to &init_mm, now
622 * clean up any remaining active_mm state.
623 */
624 if (mm != &init_mm)
625 idle->active_mm = &init_mm;
626 mmdrop(mm);
627 return 0;
628 }
629
630 /*
631 * Hotplug state machine related functions
632 */
633
634 /*
635 * Get the next state to run. Empty ones will be skipped. Returns true if a
636 * state must be run.
637 *
638 * st->state will be modified ahead of time, to match state_to_run, as if it
639 * has already ran.
640 */
cpuhp_next_state(bool bringup,enum cpuhp_state * state_to_run,struct cpuhp_cpu_state * st,enum cpuhp_state target)641 static bool cpuhp_next_state(bool bringup,
642 enum cpuhp_state *state_to_run,
643 struct cpuhp_cpu_state *st,
644 enum cpuhp_state target)
645 {
646 do {
647 if (bringup) {
648 if (st->state >= target)
649 return false;
650
651 *state_to_run = ++st->state;
652 } else {
653 if (st->state <= target)
654 return false;
655
656 *state_to_run = st->state--;
657 }
658
659 if (!cpuhp_step_empty(bringup, cpuhp_get_step(*state_to_run)))
660 break;
661 } while (true);
662
663 return true;
664 }
665
__cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target,bool nofail)666 static int __cpuhp_invoke_callback_range(bool bringup,
667 unsigned int cpu,
668 struct cpuhp_cpu_state *st,
669 enum cpuhp_state target,
670 bool nofail)
671 {
672 enum cpuhp_state state;
673 int ret = 0;
674
675 while (cpuhp_next_state(bringup, &state, st, target)) {
676 int err;
677
678 err = cpuhp_invoke_callback(cpu, state, bringup, NULL, NULL);
679 if (!err)
680 continue;
681
682 if (nofail) {
683 pr_warn("CPU %u %s state %s (%d) failed (%d)\n",
684 cpu, bringup ? "UP" : "DOWN",
685 cpuhp_get_step(st->state)->name,
686 st->state, err);
687 ret = -1;
688 } else {
689 ret = err;
690 break;
691 }
692 }
693
694 return ret;
695 }
696
cpuhp_invoke_callback_range(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)697 static inline int cpuhp_invoke_callback_range(bool bringup,
698 unsigned int cpu,
699 struct cpuhp_cpu_state *st,
700 enum cpuhp_state target)
701 {
702 return __cpuhp_invoke_callback_range(bringup, cpu, st, target, false);
703 }
704
cpuhp_invoke_callback_range_nofail(bool bringup,unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)705 static inline void cpuhp_invoke_callback_range_nofail(bool bringup,
706 unsigned int cpu,
707 struct cpuhp_cpu_state *st,
708 enum cpuhp_state target)
709 {
710 __cpuhp_invoke_callback_range(bringup, cpu, st, target, true);
711 }
712
can_rollback_cpu(struct cpuhp_cpu_state * st)713 static inline bool can_rollback_cpu(struct cpuhp_cpu_state *st)
714 {
715 if (IS_ENABLED(CONFIG_HOTPLUG_CPU))
716 return true;
717 /*
718 * When CPU hotplug is disabled, then taking the CPU down is not
719 * possible because takedown_cpu() and the architecture and
720 * subsystem specific mechanisms are not available. So the CPU
721 * which would be completely unplugged again needs to stay around
722 * in the current state.
723 */
724 return st->state <= CPUHP_BRINGUP_CPU;
725 }
726
cpuhp_up_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)727 static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
728 enum cpuhp_state target)
729 {
730 enum cpuhp_state prev_state = st->state;
731 int ret = 0;
732
733 ret = cpuhp_invoke_callback_range(true, cpu, st, target);
734 if (ret) {
735 pr_debug("CPU UP failed (%d) CPU %u state %s (%d)\n",
736 ret, cpu, cpuhp_get_step(st->state)->name,
737 st->state);
738
739 cpuhp_reset_state(cpu, st, prev_state);
740 if (can_rollback_cpu(st))
741 WARN_ON(cpuhp_invoke_callback_range(false, cpu, st,
742 prev_state));
743 }
744 return ret;
745 }
746
747 /*
748 * The cpu hotplug threads manage the bringup and teardown of the cpus
749 */
cpuhp_should_run(unsigned int cpu)750 static int cpuhp_should_run(unsigned int cpu)
751 {
752 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
753
754 return st->should_run;
755 }
756
757 /*
758 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
759 * callbacks when a state gets [un]installed at runtime.
760 *
761 * Each invocation of this function by the smpboot thread does a single AP
762 * state callback.
763 *
764 * It has 3 modes of operation:
765 * - single: runs st->cb_state
766 * - up: runs ++st->state, while st->state < st->target
767 * - down: runs st->state--, while st->state > st->target
768 *
769 * When complete or on error, should_run is cleared and the completion is fired.
770 */
cpuhp_thread_fun(unsigned int cpu)771 static void cpuhp_thread_fun(unsigned int cpu)
772 {
773 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
774 bool bringup = st->bringup;
775 enum cpuhp_state state;
776
777 if (WARN_ON_ONCE(!st->should_run))
778 return;
779
780 /*
781 * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
782 * that if we see ->should_run we also see the rest of the state.
783 */
784 smp_mb();
785
786 /*
787 * The BP holds the hotplug lock, but we're now running on the AP,
788 * ensure that anybody asserting the lock is held, will actually find
789 * it so.
790 */
791 lockdep_acquire_cpus_lock();
792 cpuhp_lock_acquire(bringup);
793
794 if (st->single) {
795 state = st->cb_state;
796 st->should_run = false;
797 } else {
798 st->should_run = cpuhp_next_state(bringup, &state, st, st->target);
799 if (!st->should_run)
800 goto end;
801 }
802
803 WARN_ON_ONCE(!cpuhp_is_ap_state(state));
804
805 if (cpuhp_is_atomic_state(state)) {
806 local_irq_disable();
807 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
808 local_irq_enable();
809
810 /*
811 * STARTING/DYING must not fail!
812 */
813 WARN_ON_ONCE(st->result);
814 } else {
815 st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
816 }
817
818 if (st->result) {
819 /*
820 * If we fail on a rollback, we're up a creek without no
821 * paddle, no way forward, no way back. We loose, thanks for
822 * playing.
823 */
824 WARN_ON_ONCE(st->rollback);
825 st->should_run = false;
826 }
827
828 end:
829 cpuhp_lock_release(bringup);
830 lockdep_release_cpus_lock();
831
832 if (!st->should_run)
833 complete_ap_thread(st, bringup);
834 }
835
836 /* Invoke a single callback on a remote cpu */
837 static int
cpuhp_invoke_ap_callback(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)838 cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
839 struct hlist_node *node)
840 {
841 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
842 int ret;
843
844 if (!cpu_online(cpu))
845 return 0;
846
847 cpuhp_lock_acquire(false);
848 cpuhp_lock_release(false);
849
850 cpuhp_lock_acquire(true);
851 cpuhp_lock_release(true);
852
853 /*
854 * If we are up and running, use the hotplug thread. For early calls
855 * we invoke the thread function directly.
856 */
857 if (!st->thread)
858 return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
859
860 st->rollback = false;
861 st->last = NULL;
862
863 st->node = node;
864 st->bringup = bringup;
865 st->cb_state = state;
866 st->single = true;
867
868 __cpuhp_kick_ap(st);
869
870 /*
871 * If we failed and did a partial, do a rollback.
872 */
873 if ((ret = st->result) && st->last) {
874 st->rollback = true;
875 st->bringup = !bringup;
876
877 __cpuhp_kick_ap(st);
878 }
879
880 /*
881 * Clean up the leftovers so the next hotplug operation wont use stale
882 * data.
883 */
884 st->node = st->last = NULL;
885 return ret;
886 }
887
cpuhp_kick_ap_work(unsigned int cpu)888 static int cpuhp_kick_ap_work(unsigned int cpu)
889 {
890 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
891 enum cpuhp_state prev_state = st->state;
892 int ret;
893
894 cpuhp_lock_acquire(false);
895 cpuhp_lock_release(false);
896
897 cpuhp_lock_acquire(true);
898 cpuhp_lock_release(true);
899
900 trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
901 ret = cpuhp_kick_ap(cpu, st, st->target);
902 trace_cpuhp_exit(cpu, st->state, prev_state, ret);
903
904 return ret;
905 }
906
907 static struct smp_hotplug_thread cpuhp_threads = {
908 .store = &cpuhp_state.thread,
909 .thread_should_run = cpuhp_should_run,
910 .thread_fn = cpuhp_thread_fun,
911 .thread_comm = "cpuhp/%u",
912 .selfparking = true,
913 };
914
cpuhp_init_state(void)915 static __init void cpuhp_init_state(void)
916 {
917 struct cpuhp_cpu_state *st;
918 int cpu;
919
920 for_each_possible_cpu(cpu) {
921 st = per_cpu_ptr(&cpuhp_state, cpu);
922 init_completion(&st->done_up);
923 init_completion(&st->done_down);
924 }
925 }
926
cpuhp_threads_init(void)927 void __init cpuhp_threads_init(void)
928 {
929 cpuhp_init_state();
930 BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
931 kthread_unpark(this_cpu_read(cpuhp_state.thread));
932 }
933
934 /*
935 *
936 * Serialize hotplug trainwrecks outside of the cpu_hotplug_lock
937 * protected region.
938 *
939 * The operation is still serialized against concurrent CPU hotplug via
940 * cpu_add_remove_lock, i.e. CPU map protection. But it is _not_
941 * serialized against other hotplug related activity like adding or
942 * removing of state callbacks and state instances, which invoke either the
943 * startup or the teardown callback of the affected state.
944 *
945 * This is required for subsystems which are unfixable vs. CPU hotplug and
946 * evade lock inversion problems by scheduling work which has to be
947 * completed _before_ cpu_up()/_cpu_down() returns.
948 *
949 * Don't even think about adding anything to this for any new code or even
950 * drivers. It's only purpose is to keep existing lock order trainwrecks
951 * working.
952 *
953 * For cpu_down() there might be valid reasons to finish cleanups which are
954 * not required to be done under cpu_hotplug_lock, but that's a different
955 * story and would be not invoked via this.
956 */
cpu_up_down_serialize_trainwrecks(bool tasks_frozen)957 static void cpu_up_down_serialize_trainwrecks(bool tasks_frozen)
958 {
959 /*
960 * cpusets delegate hotplug operations to a worker to "solve" the
961 * lock order problems. Wait for the worker, but only if tasks are
962 * _not_ frozen (suspend, hibernate) as that would wait forever.
963 *
964 * The wait is required because otherwise the hotplug operation
965 * returns with inconsistent state, which could even be observed in
966 * user space when a new CPU is brought up. The CPU plug uevent
967 * would be delivered and user space reacting on it would fail to
968 * move tasks to the newly plugged CPU up to the point where the
969 * work has finished because up to that point the newly plugged CPU
970 * is not assignable in cpusets/cgroups. On unplug that's not
971 * necessarily a visible issue, but it is still inconsistent state,
972 * which is the real problem which needs to be "fixed". This can't
973 * prevent the transient state between scheduling the work and
974 * returning from waiting for it.
975 */
976 if (!tasks_frozen)
977 cpuset_wait_for_hotplug();
978 }
979
980 #ifdef CONFIG_HOTPLUG_CPU
981 #ifndef arch_clear_mm_cpumask_cpu
982 #define arch_clear_mm_cpumask_cpu(cpu, mm) cpumask_clear_cpu(cpu, mm_cpumask(mm))
983 #endif
984
985 /**
986 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
987 * @cpu: a CPU id
988 *
989 * This function walks all processes, finds a valid mm struct for each one and
990 * then clears a corresponding bit in mm's cpumask. While this all sounds
991 * trivial, there are various non-obvious corner cases, which this function
992 * tries to solve in a safe manner.
993 *
994 * Also note that the function uses a somewhat relaxed locking scheme, so it may
995 * be called only for an already offlined CPU.
996 */
clear_tasks_mm_cpumask(int cpu)997 void clear_tasks_mm_cpumask(int cpu)
998 {
999 struct task_struct *p;
1000
1001 /*
1002 * This function is called after the cpu is taken down and marked
1003 * offline, so its not like new tasks will ever get this cpu set in
1004 * their mm mask. -- Peter Zijlstra
1005 * Thus, we may use rcu_read_lock() here, instead of grabbing
1006 * full-fledged tasklist_lock.
1007 */
1008 WARN_ON(cpu_online(cpu));
1009 rcu_read_lock();
1010 for_each_process(p) {
1011 struct task_struct *t;
1012
1013 /*
1014 * Main thread might exit, but other threads may still have
1015 * a valid mm. Find one.
1016 */
1017 t = find_lock_task_mm(p);
1018 if (!t)
1019 continue;
1020 arch_clear_mm_cpumask_cpu(cpu, t->mm);
1021 task_unlock(t);
1022 }
1023 rcu_read_unlock();
1024 }
1025
1026 /* Take this CPU down. */
take_cpu_down(void * _param)1027 static int take_cpu_down(void *_param)
1028 {
1029 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1030 enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
1031 int err, cpu = smp_processor_id();
1032
1033 /* Ensure this CPU doesn't handle any more interrupts. */
1034 err = __cpu_disable();
1035 if (err < 0)
1036 return err;
1037
1038 /*
1039 * Must be called from CPUHP_TEARDOWN_CPU, which means, as we are going
1040 * down, that the current state is CPUHP_TEARDOWN_CPU - 1.
1041 */
1042 WARN_ON(st->state != (CPUHP_TEARDOWN_CPU - 1));
1043
1044 /*
1045 * Invoke the former CPU_DYING callbacks. DYING must not fail!
1046 */
1047 cpuhp_invoke_callback_range_nofail(false, cpu, st, target);
1048
1049 /* Give up timekeeping duties */
1050 tick_handover_do_timer();
1051 /* Remove CPU from timer broadcasting */
1052 tick_offline_cpu(cpu);
1053 /* Park the stopper thread */
1054 stop_machine_park(cpu);
1055 return 0;
1056 }
1057
takedown_cpu(unsigned int cpu)1058 static int takedown_cpu(unsigned int cpu)
1059 {
1060 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1061 int err;
1062
1063 /* Park the smpboot threads */
1064 kthread_park(st->thread);
1065
1066 /*
1067 * Prevent irq alloc/free while the dying cpu reorganizes the
1068 * interrupt affinities.
1069 */
1070 irq_lock_sparse();
1071
1072 /*
1073 * So now all preempt/rcu users must observe !cpu_active().
1074 */
1075 err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
1076 if (err) {
1077 /* CPU refused to die */
1078 irq_unlock_sparse();
1079 /* Unpark the hotplug thread so we can rollback there */
1080 kthread_unpark(st->thread);
1081 return err;
1082 }
1083 BUG_ON(cpu_online(cpu));
1084
1085 /*
1086 * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
1087 * all runnable tasks from the CPU, there's only the idle task left now
1088 * that the migration thread is done doing the stop_machine thing.
1089 *
1090 * Wait for the stop thread to go away.
1091 */
1092 wait_for_ap_thread(st, false);
1093 BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
1094
1095 /* Interrupts are moved away from the dying cpu, reenable alloc/free */
1096 irq_unlock_sparse();
1097
1098 hotplug_cpu__broadcast_tick_pull(cpu);
1099 /* This actually kills the CPU. */
1100 __cpu_die(cpu);
1101
1102 tick_cleanup_dead_cpu(cpu);
1103 rcutree_migrate_callbacks(cpu);
1104 return 0;
1105 }
1106
cpuhp_complete_idle_dead(void * arg)1107 static void cpuhp_complete_idle_dead(void *arg)
1108 {
1109 struct cpuhp_cpu_state *st = arg;
1110
1111 complete_ap_thread(st, false);
1112 }
1113
cpuhp_report_idle_dead(void)1114 void cpuhp_report_idle_dead(void)
1115 {
1116 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1117
1118 BUG_ON(st->state != CPUHP_AP_OFFLINE);
1119 rcu_report_dead(smp_processor_id());
1120 st->state = CPUHP_AP_IDLE_DEAD;
1121 /*
1122 * We cannot call complete after rcu_report_dead() so we delegate it
1123 * to an online cpu.
1124 */
1125 smp_call_function_single(cpumask_first(cpu_online_mask),
1126 cpuhp_complete_idle_dead, st, 0);
1127 }
1128
cpuhp_down_callbacks(unsigned int cpu,struct cpuhp_cpu_state * st,enum cpuhp_state target)1129 static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
1130 enum cpuhp_state target)
1131 {
1132 enum cpuhp_state prev_state = st->state;
1133 int ret = 0;
1134
1135 ret = cpuhp_invoke_callback_range(false, cpu, st, target);
1136 if (ret) {
1137 pr_debug("CPU DOWN failed (%d) CPU %u state %s (%d)\n",
1138 ret, cpu, cpuhp_get_step(st->state)->name,
1139 st->state);
1140
1141 cpuhp_reset_state(cpu, st, prev_state);
1142
1143 if (st->state < prev_state)
1144 WARN_ON(cpuhp_invoke_callback_range(true, cpu, st,
1145 prev_state));
1146 }
1147
1148 return ret;
1149 }
1150
1151 /* Requires cpu_add_remove_lock to be held */
_cpu_down(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1152 static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
1153 enum cpuhp_state target)
1154 {
1155 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1156 int prev_state, ret = 0;
1157
1158 if (num_online_cpus() == 1)
1159 return -EBUSY;
1160
1161 if (!cpu_present(cpu))
1162 return -EINVAL;
1163
1164 cpus_write_lock();
1165
1166 cpuhp_tasks_frozen = tasks_frozen;
1167
1168 prev_state = cpuhp_set_state(cpu, st, target);
1169 /*
1170 * If the current CPU state is in the range of the AP hotplug thread,
1171 * then we need to kick the thread.
1172 */
1173 if (st->state > CPUHP_TEARDOWN_CPU) {
1174 st->target = max((int)target, CPUHP_TEARDOWN_CPU);
1175 ret = cpuhp_kick_ap_work(cpu);
1176 /*
1177 * The AP side has done the error rollback already. Just
1178 * return the error code..
1179 */
1180 if (ret)
1181 goto out;
1182
1183 /*
1184 * We might have stopped still in the range of the AP hotplug
1185 * thread. Nothing to do anymore.
1186 */
1187 if (st->state > CPUHP_TEARDOWN_CPU)
1188 goto out;
1189
1190 st->target = target;
1191 }
1192 /*
1193 * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
1194 * to do the further cleanups.
1195 */
1196 ret = cpuhp_down_callbacks(cpu, st, target);
1197 if (ret && st->state < prev_state) {
1198 if (st->state == CPUHP_TEARDOWN_CPU) {
1199 cpuhp_reset_state(cpu, st, prev_state);
1200 __cpuhp_kick_ap(st);
1201 } else {
1202 WARN(1, "DEAD callback error for CPU%d", cpu);
1203 }
1204 }
1205
1206 out:
1207 cpus_write_unlock();
1208 /*
1209 * Do post unplug cleanup. This is still protected against
1210 * concurrent CPU hotplug via cpu_add_remove_lock.
1211 */
1212 lockup_detector_cleanup();
1213 arch_smt_update();
1214 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1215 return ret;
1216 }
1217
cpu_down_maps_locked(unsigned int cpu,enum cpuhp_state target)1218 static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
1219 {
1220 /*
1221 * If the platform does not support hotplug, report it explicitly to
1222 * differentiate it from a transient offlining failure.
1223 */
1224 if (cc_platform_has(CC_ATTR_HOTPLUG_DISABLED))
1225 return -EOPNOTSUPP;
1226 if (cpu_hotplug_disabled)
1227 return -EBUSY;
1228 return _cpu_down(cpu, 0, target);
1229 }
1230
cpu_down(unsigned int cpu,enum cpuhp_state target)1231 static int cpu_down(unsigned int cpu, enum cpuhp_state target)
1232 {
1233 int err;
1234
1235 cpu_maps_update_begin();
1236 err = cpu_down_maps_locked(cpu, target);
1237 cpu_maps_update_done();
1238 return err;
1239 }
1240
1241 /**
1242 * cpu_device_down - Bring down a cpu device
1243 * @dev: Pointer to the cpu device to offline
1244 *
1245 * This function is meant to be used by device core cpu subsystem only.
1246 *
1247 * Other subsystems should use remove_cpu() instead.
1248 *
1249 * Return: %0 on success or a negative errno code
1250 */
cpu_device_down(struct device * dev)1251 int cpu_device_down(struct device *dev)
1252 {
1253 return cpu_down(dev->id, CPUHP_OFFLINE);
1254 }
1255
remove_cpu(unsigned int cpu)1256 int remove_cpu(unsigned int cpu)
1257 {
1258 int ret;
1259
1260 lock_device_hotplug();
1261 ret = device_offline(get_cpu_device(cpu));
1262 unlock_device_hotplug();
1263
1264 return ret;
1265 }
1266 EXPORT_SYMBOL_GPL(remove_cpu);
1267
smp_shutdown_nonboot_cpus(unsigned int primary_cpu)1268 void smp_shutdown_nonboot_cpus(unsigned int primary_cpu)
1269 {
1270 unsigned int cpu;
1271 int error;
1272
1273 cpu_maps_update_begin();
1274
1275 /*
1276 * Make certain the cpu I'm about to reboot on is online.
1277 *
1278 * This is inline to what migrate_to_reboot_cpu() already do.
1279 */
1280 if (!cpu_online(primary_cpu))
1281 primary_cpu = cpumask_first(cpu_online_mask);
1282
1283 for_each_online_cpu(cpu) {
1284 if (cpu == primary_cpu)
1285 continue;
1286
1287 error = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
1288 if (error) {
1289 pr_err("Failed to offline CPU%d - error=%d",
1290 cpu, error);
1291 break;
1292 }
1293 }
1294
1295 /*
1296 * Ensure all but the reboot CPU are offline.
1297 */
1298 BUG_ON(num_online_cpus() > 1);
1299
1300 /*
1301 * Make sure the CPUs won't be enabled by someone else after this
1302 * point. Kexec will reboot to a new kernel shortly resetting
1303 * everything along the way.
1304 */
1305 cpu_hotplug_disabled++;
1306
1307 cpu_maps_update_done();
1308 }
1309
1310 #else
1311 #define takedown_cpu NULL
1312 #endif /*CONFIG_HOTPLUG_CPU*/
1313
1314 /**
1315 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1316 * @cpu: cpu that just started
1317 *
1318 * It must be called by the arch code on the new cpu, before the new cpu
1319 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1320 */
notify_cpu_starting(unsigned int cpu)1321 void notify_cpu_starting(unsigned int cpu)
1322 {
1323 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1324 enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1325
1326 rcu_cpu_starting(cpu); /* Enables RCU usage on this CPU. */
1327 cpumask_set_cpu(cpu, &cpus_booted_once_mask);
1328
1329 /*
1330 * STARTING must not fail!
1331 */
1332 cpuhp_invoke_callback_range_nofail(true, cpu, st, target);
1333 }
1334
1335 /*
1336 * Called from the idle task. Wake up the controlling task which brings the
1337 * hotplug thread of the upcoming CPU up and then delegates the rest of the
1338 * online bringup to the hotplug thread.
1339 */
cpuhp_online_idle(enum cpuhp_state state)1340 void cpuhp_online_idle(enum cpuhp_state state)
1341 {
1342 struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1343
1344 /* Happens for the boot cpu */
1345 if (state != CPUHP_AP_ONLINE_IDLE)
1346 return;
1347
1348 /*
1349 * Unpart the stopper thread before we start the idle loop (and start
1350 * scheduling); this ensures the stopper task is always available.
1351 */
1352 stop_machine_unpark(smp_processor_id());
1353
1354 st->state = CPUHP_AP_ONLINE_IDLE;
1355 complete_ap_thread(st, true);
1356 }
1357
1358 /* Requires cpu_add_remove_lock to be held */
_cpu_up(unsigned int cpu,int tasks_frozen,enum cpuhp_state target)1359 static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1360 {
1361 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1362 struct task_struct *idle;
1363 int ret = 0;
1364
1365 cpus_write_lock();
1366
1367 if (!cpu_present(cpu)) {
1368 ret = -EINVAL;
1369 goto out;
1370 }
1371
1372 /*
1373 * The caller of cpu_up() might have raced with another
1374 * caller. Nothing to do.
1375 */
1376 if (st->state >= target)
1377 goto out;
1378
1379 if (st->state == CPUHP_OFFLINE) {
1380 /* Let it fail before we try to bring the cpu up */
1381 idle = idle_thread_get(cpu);
1382 if (IS_ERR(idle)) {
1383 ret = PTR_ERR(idle);
1384 goto out;
1385 }
1386 }
1387
1388 cpuhp_tasks_frozen = tasks_frozen;
1389
1390 cpuhp_set_state(cpu, st, target);
1391 /*
1392 * If the current CPU state is in the range of the AP hotplug thread,
1393 * then we need to kick the thread once more.
1394 */
1395 if (st->state > CPUHP_BRINGUP_CPU) {
1396 ret = cpuhp_kick_ap_work(cpu);
1397 /*
1398 * The AP side has done the error rollback already. Just
1399 * return the error code..
1400 */
1401 if (ret)
1402 goto out;
1403 }
1404
1405 /*
1406 * Try to reach the target state. We max out on the BP at
1407 * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1408 * responsible for bringing it up to the target state.
1409 */
1410 target = min((int)target, CPUHP_BRINGUP_CPU);
1411 ret = cpuhp_up_callbacks(cpu, st, target);
1412 out:
1413 cpus_write_unlock();
1414 arch_smt_update();
1415 cpu_up_down_serialize_trainwrecks(tasks_frozen);
1416 return ret;
1417 }
1418
cpu_up(unsigned int cpu,enum cpuhp_state target)1419 static int cpu_up(unsigned int cpu, enum cpuhp_state target)
1420 {
1421 int err = 0;
1422
1423 if (!cpu_possible(cpu)) {
1424 pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1425 cpu);
1426 #if defined(CONFIG_IA64)
1427 pr_err("please check additional_cpus= boot parameter\n");
1428 #endif
1429 return -EINVAL;
1430 }
1431
1432 err = try_online_node(cpu_to_node(cpu));
1433 if (err)
1434 return err;
1435
1436 cpu_maps_update_begin();
1437
1438 if (cpu_hotplug_disabled) {
1439 err = -EBUSY;
1440 goto out;
1441 }
1442 if (!cpu_smt_allowed(cpu)) {
1443 err = -EPERM;
1444 goto out;
1445 }
1446
1447 err = _cpu_up(cpu, 0, target);
1448 out:
1449 cpu_maps_update_done();
1450 return err;
1451 }
1452
1453 /**
1454 * cpu_device_up - Bring up a cpu device
1455 * @dev: Pointer to the cpu device to online
1456 *
1457 * This function is meant to be used by device core cpu subsystem only.
1458 *
1459 * Other subsystems should use add_cpu() instead.
1460 *
1461 * Return: %0 on success or a negative errno code
1462 */
cpu_device_up(struct device * dev)1463 int cpu_device_up(struct device *dev)
1464 {
1465 return cpu_up(dev->id, CPUHP_ONLINE);
1466 }
1467
add_cpu(unsigned int cpu)1468 int add_cpu(unsigned int cpu)
1469 {
1470 int ret;
1471
1472 lock_device_hotplug();
1473 ret = device_online(get_cpu_device(cpu));
1474 unlock_device_hotplug();
1475
1476 return ret;
1477 }
1478 EXPORT_SYMBOL_GPL(add_cpu);
1479
1480 /**
1481 * bringup_hibernate_cpu - Bring up the CPU that we hibernated on
1482 * @sleep_cpu: The cpu we hibernated on and should be brought up.
1483 *
1484 * On some architectures like arm64, we can hibernate on any CPU, but on
1485 * wake up the CPU we hibernated on might be offline as a side effect of
1486 * using maxcpus= for example.
1487 *
1488 * Return: %0 on success or a negative errno code
1489 */
bringup_hibernate_cpu(unsigned int sleep_cpu)1490 int bringup_hibernate_cpu(unsigned int sleep_cpu)
1491 {
1492 int ret;
1493
1494 if (!cpu_online(sleep_cpu)) {
1495 pr_info("Hibernated on a CPU that is offline! Bringing CPU up.\n");
1496 ret = cpu_up(sleep_cpu, CPUHP_ONLINE);
1497 if (ret) {
1498 pr_err("Failed to bring hibernate-CPU up!\n");
1499 return ret;
1500 }
1501 }
1502 return 0;
1503 }
1504
bringup_nonboot_cpus(unsigned int setup_max_cpus)1505 void bringup_nonboot_cpus(unsigned int setup_max_cpus)
1506 {
1507 unsigned int cpu;
1508
1509 for_each_present_cpu(cpu) {
1510 if (num_online_cpus() >= setup_max_cpus)
1511 break;
1512 if (!cpu_online(cpu))
1513 cpu_up(cpu, CPUHP_ONLINE);
1514 }
1515 }
1516
1517 #ifdef CONFIG_PM_SLEEP_SMP
1518 static cpumask_var_t frozen_cpus;
1519
freeze_secondary_cpus(int primary)1520 int freeze_secondary_cpus(int primary)
1521 {
1522 int cpu, error = 0;
1523
1524 cpu_maps_update_begin();
1525 if (primary == -1) {
1526 primary = cpumask_first(cpu_online_mask);
1527 if (!housekeeping_cpu(primary, HK_TYPE_TIMER))
1528 primary = housekeeping_any_cpu(HK_TYPE_TIMER);
1529 } else {
1530 if (!cpu_online(primary))
1531 primary = cpumask_first(cpu_online_mask);
1532 }
1533
1534 /*
1535 * We take down all of the non-boot CPUs in one shot to avoid races
1536 * with the userspace trying to use the CPU hotplug at the same time
1537 */
1538 cpumask_clear(frozen_cpus);
1539
1540 pr_info("Disabling non-boot CPUs ...\n");
1541 for_each_online_cpu(cpu) {
1542 if (cpu == primary)
1543 continue;
1544
1545 if (pm_wakeup_pending()) {
1546 pr_info("Wakeup pending. Abort CPU freeze\n");
1547 error = -EBUSY;
1548 break;
1549 }
1550
1551 trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1552 error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1553 trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1554 if (!error)
1555 cpumask_set_cpu(cpu, frozen_cpus);
1556 else {
1557 pr_err("Error taking CPU%d down: %d\n", cpu, error);
1558 break;
1559 }
1560 }
1561
1562 if (!error)
1563 BUG_ON(num_online_cpus() > 1);
1564 else
1565 pr_err("Non-boot CPUs are not disabled\n");
1566
1567 /*
1568 * Make sure the CPUs won't be enabled by someone else. We need to do
1569 * this even in case of failure as all freeze_secondary_cpus() users are
1570 * supposed to do thaw_secondary_cpus() on the failure path.
1571 */
1572 cpu_hotplug_disabled++;
1573
1574 cpu_maps_update_done();
1575 return error;
1576 }
1577
arch_thaw_secondary_cpus_begin(void)1578 void __weak arch_thaw_secondary_cpus_begin(void)
1579 {
1580 }
1581
arch_thaw_secondary_cpus_end(void)1582 void __weak arch_thaw_secondary_cpus_end(void)
1583 {
1584 }
1585
thaw_secondary_cpus(void)1586 void thaw_secondary_cpus(void)
1587 {
1588 int cpu, error;
1589
1590 /* Allow everyone to use the CPU hotplug again */
1591 cpu_maps_update_begin();
1592 __cpu_hotplug_enable();
1593 if (cpumask_empty(frozen_cpus))
1594 goto out;
1595
1596 pr_info("Enabling non-boot CPUs ...\n");
1597
1598 arch_thaw_secondary_cpus_begin();
1599
1600 for_each_cpu(cpu, frozen_cpus) {
1601 trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1602 error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1603 trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1604 if (!error) {
1605 pr_info("CPU%d is up\n", cpu);
1606 continue;
1607 }
1608 pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1609 }
1610
1611 arch_thaw_secondary_cpus_end();
1612
1613 cpumask_clear(frozen_cpus);
1614 out:
1615 cpu_maps_update_done();
1616 }
1617
alloc_frozen_cpus(void)1618 static int __init alloc_frozen_cpus(void)
1619 {
1620 if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1621 return -ENOMEM;
1622 return 0;
1623 }
1624 core_initcall(alloc_frozen_cpus);
1625
1626 /*
1627 * When callbacks for CPU hotplug notifications are being executed, we must
1628 * ensure that the state of the system with respect to the tasks being frozen
1629 * or not, as reported by the notification, remains unchanged *throughout the
1630 * duration* of the execution of the callbacks.
1631 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1632 *
1633 * This synchronization is implemented by mutually excluding regular CPU
1634 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1635 * Hibernate notifications.
1636 */
1637 static int
cpu_hotplug_pm_callback(struct notifier_block * nb,unsigned long action,void * ptr)1638 cpu_hotplug_pm_callback(struct notifier_block *nb,
1639 unsigned long action, void *ptr)
1640 {
1641 switch (action) {
1642
1643 case PM_SUSPEND_PREPARE:
1644 case PM_HIBERNATION_PREPARE:
1645 cpu_hotplug_disable();
1646 break;
1647
1648 case PM_POST_SUSPEND:
1649 case PM_POST_HIBERNATION:
1650 cpu_hotplug_enable();
1651 break;
1652
1653 default:
1654 return NOTIFY_DONE;
1655 }
1656
1657 return NOTIFY_OK;
1658 }
1659
1660
cpu_hotplug_pm_sync_init(void)1661 static int __init cpu_hotplug_pm_sync_init(void)
1662 {
1663 /*
1664 * cpu_hotplug_pm_callback has higher priority than x86
1665 * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1666 * to disable cpu hotplug to avoid cpu hotplug race.
1667 */
1668 pm_notifier(cpu_hotplug_pm_callback, 0);
1669 return 0;
1670 }
1671 core_initcall(cpu_hotplug_pm_sync_init);
1672
1673 #endif /* CONFIG_PM_SLEEP_SMP */
1674
1675 int __boot_cpu_id;
1676
1677 #endif /* CONFIG_SMP */
1678
1679 /* Boot processor state steps */
1680 static struct cpuhp_step cpuhp_hp_states[] = {
1681 [CPUHP_OFFLINE] = {
1682 .name = "offline",
1683 .startup.single = NULL,
1684 .teardown.single = NULL,
1685 },
1686 #ifdef CONFIG_SMP
1687 [CPUHP_CREATE_THREADS]= {
1688 .name = "threads:prepare",
1689 .startup.single = smpboot_create_threads,
1690 .teardown.single = NULL,
1691 .cant_stop = true,
1692 },
1693 [CPUHP_PERF_PREPARE] = {
1694 .name = "perf:prepare",
1695 .startup.single = perf_event_init_cpu,
1696 .teardown.single = perf_event_exit_cpu,
1697 },
1698 [CPUHP_RANDOM_PREPARE] = {
1699 .name = "random:prepare",
1700 .startup.single = random_prepare_cpu,
1701 .teardown.single = NULL,
1702 },
1703 [CPUHP_WORKQUEUE_PREP] = {
1704 .name = "workqueue:prepare",
1705 .startup.single = workqueue_prepare_cpu,
1706 .teardown.single = NULL,
1707 },
1708 [CPUHP_HRTIMERS_PREPARE] = {
1709 .name = "hrtimers:prepare",
1710 .startup.single = hrtimers_prepare_cpu,
1711 .teardown.single = hrtimers_dead_cpu,
1712 },
1713 [CPUHP_SMPCFD_PREPARE] = {
1714 .name = "smpcfd:prepare",
1715 .startup.single = smpcfd_prepare_cpu,
1716 .teardown.single = smpcfd_dead_cpu,
1717 },
1718 [CPUHP_RELAY_PREPARE] = {
1719 .name = "relay:prepare",
1720 .startup.single = relay_prepare_cpu,
1721 .teardown.single = NULL,
1722 },
1723 [CPUHP_SLAB_PREPARE] = {
1724 .name = "slab:prepare",
1725 .startup.single = slab_prepare_cpu,
1726 .teardown.single = slab_dead_cpu,
1727 },
1728 [CPUHP_RCUTREE_PREP] = {
1729 .name = "RCU/tree:prepare",
1730 .startup.single = rcutree_prepare_cpu,
1731 .teardown.single = rcutree_dead_cpu,
1732 },
1733 /*
1734 * On the tear-down path, timers_dead_cpu() must be invoked
1735 * before blk_mq_queue_reinit_notify() from notify_dead(),
1736 * otherwise a RCU stall occurs.
1737 */
1738 [CPUHP_TIMERS_PREPARE] = {
1739 .name = "timers:prepare",
1740 .startup.single = timers_prepare_cpu,
1741 .teardown.single = timers_dead_cpu,
1742 },
1743 /* Kicks the plugged cpu into life */
1744 [CPUHP_BRINGUP_CPU] = {
1745 .name = "cpu:bringup",
1746 .startup.single = bringup_cpu,
1747 .teardown.single = finish_cpu,
1748 .cant_stop = true,
1749 },
1750 /* Final state before CPU kills itself */
1751 [CPUHP_AP_IDLE_DEAD] = {
1752 .name = "idle:dead",
1753 },
1754 /*
1755 * Last state before CPU enters the idle loop to die. Transient state
1756 * for synchronization.
1757 */
1758 [CPUHP_AP_OFFLINE] = {
1759 .name = "ap:offline",
1760 .cant_stop = true,
1761 },
1762 /* First state is scheduler control. Interrupts are disabled */
1763 [CPUHP_AP_SCHED_STARTING] = {
1764 .name = "sched:starting",
1765 .startup.single = sched_cpu_starting,
1766 .teardown.single = sched_cpu_dying,
1767 },
1768 [CPUHP_AP_RCUTREE_DYING] = {
1769 .name = "RCU/tree:dying",
1770 .startup.single = NULL,
1771 .teardown.single = rcutree_dying_cpu,
1772 },
1773 [CPUHP_AP_SMPCFD_DYING] = {
1774 .name = "smpcfd:dying",
1775 .startup.single = NULL,
1776 .teardown.single = smpcfd_dying_cpu,
1777 },
1778 /* Entry state on starting. Interrupts enabled from here on. Transient
1779 * state for synchronsization */
1780 [CPUHP_AP_ONLINE] = {
1781 .name = "ap:online",
1782 },
1783 /*
1784 * Handled on control processor until the plugged processor manages
1785 * this itself.
1786 */
1787 [CPUHP_TEARDOWN_CPU] = {
1788 .name = "cpu:teardown",
1789 .startup.single = NULL,
1790 .teardown.single = takedown_cpu,
1791 .cant_stop = true,
1792 },
1793
1794 [CPUHP_AP_SCHED_WAIT_EMPTY] = {
1795 .name = "sched:waitempty",
1796 .startup.single = NULL,
1797 .teardown.single = sched_cpu_wait_empty,
1798 },
1799
1800 /* Handle smpboot threads park/unpark */
1801 [CPUHP_AP_SMPBOOT_THREADS] = {
1802 .name = "smpboot/threads:online",
1803 .startup.single = smpboot_unpark_threads,
1804 .teardown.single = smpboot_park_threads,
1805 },
1806 [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1807 .name = "irq/affinity:online",
1808 .startup.single = irq_affinity_online_cpu,
1809 .teardown.single = NULL,
1810 },
1811 [CPUHP_AP_PERF_ONLINE] = {
1812 .name = "perf:online",
1813 .startup.single = perf_event_init_cpu,
1814 .teardown.single = perf_event_exit_cpu,
1815 },
1816 [CPUHP_AP_WATCHDOG_ONLINE] = {
1817 .name = "lockup_detector:online",
1818 .startup.single = lockup_detector_online_cpu,
1819 .teardown.single = lockup_detector_offline_cpu,
1820 },
1821 [CPUHP_AP_WORKQUEUE_ONLINE] = {
1822 .name = "workqueue:online",
1823 .startup.single = workqueue_online_cpu,
1824 .teardown.single = workqueue_offline_cpu,
1825 },
1826 [CPUHP_AP_RANDOM_ONLINE] = {
1827 .name = "random:online",
1828 .startup.single = random_online_cpu,
1829 .teardown.single = NULL,
1830 },
1831 [CPUHP_AP_RCUTREE_ONLINE] = {
1832 .name = "RCU/tree:online",
1833 .startup.single = rcutree_online_cpu,
1834 .teardown.single = rcutree_offline_cpu,
1835 },
1836 #endif
1837 /*
1838 * The dynamically registered state space is here
1839 */
1840
1841 #ifdef CONFIG_SMP
1842 /* Last state is scheduler control setting the cpu active */
1843 [CPUHP_AP_ACTIVE] = {
1844 .name = "sched:active",
1845 .startup.single = sched_cpu_activate,
1846 .teardown.single = sched_cpu_deactivate,
1847 },
1848 #endif
1849
1850 /* CPU is fully up and running. */
1851 [CPUHP_ONLINE] = {
1852 .name = "online",
1853 .startup.single = NULL,
1854 .teardown.single = NULL,
1855 },
1856 };
1857
1858 /* Sanity check for callbacks */
cpuhp_cb_check(enum cpuhp_state state)1859 static int cpuhp_cb_check(enum cpuhp_state state)
1860 {
1861 if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1862 return -EINVAL;
1863 return 0;
1864 }
1865
1866 /*
1867 * Returns a free for dynamic slot assignment of the Online state. The states
1868 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1869 * by having no name assigned.
1870 */
cpuhp_reserve_state(enum cpuhp_state state)1871 static int cpuhp_reserve_state(enum cpuhp_state state)
1872 {
1873 enum cpuhp_state i, end;
1874 struct cpuhp_step *step;
1875
1876 switch (state) {
1877 case CPUHP_AP_ONLINE_DYN:
1878 step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1879 end = CPUHP_AP_ONLINE_DYN_END;
1880 break;
1881 case CPUHP_BP_PREPARE_DYN:
1882 step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1883 end = CPUHP_BP_PREPARE_DYN_END;
1884 break;
1885 default:
1886 return -EINVAL;
1887 }
1888
1889 for (i = state; i <= end; i++, step++) {
1890 if (!step->name)
1891 return i;
1892 }
1893 WARN(1, "No more dynamic states available for CPU hotplug\n");
1894 return -ENOSPC;
1895 }
1896
cpuhp_store_callbacks(enum cpuhp_state state,const char * name,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)1897 static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1898 int (*startup)(unsigned int cpu),
1899 int (*teardown)(unsigned int cpu),
1900 bool multi_instance)
1901 {
1902 /* (Un)Install the callbacks for further cpu hotplug operations */
1903 struct cpuhp_step *sp;
1904 int ret = 0;
1905
1906 /*
1907 * If name is NULL, then the state gets removed.
1908 *
1909 * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1910 * the first allocation from these dynamic ranges, so the removal
1911 * would trigger a new allocation and clear the wrong (already
1912 * empty) state, leaving the callbacks of the to be cleared state
1913 * dangling, which causes wreckage on the next hotplug operation.
1914 */
1915 if (name && (state == CPUHP_AP_ONLINE_DYN ||
1916 state == CPUHP_BP_PREPARE_DYN)) {
1917 ret = cpuhp_reserve_state(state);
1918 if (ret < 0)
1919 return ret;
1920 state = ret;
1921 }
1922 sp = cpuhp_get_step(state);
1923 if (name && sp->name)
1924 return -EBUSY;
1925
1926 sp->startup.single = startup;
1927 sp->teardown.single = teardown;
1928 sp->name = name;
1929 sp->multi_instance = multi_instance;
1930 INIT_HLIST_HEAD(&sp->list);
1931 return ret;
1932 }
1933
cpuhp_get_teardown_cb(enum cpuhp_state state)1934 static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1935 {
1936 return cpuhp_get_step(state)->teardown.single;
1937 }
1938
1939 /*
1940 * Call the startup/teardown function for a step either on the AP or
1941 * on the current CPU.
1942 */
cpuhp_issue_call(int cpu,enum cpuhp_state state,bool bringup,struct hlist_node * node)1943 static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1944 struct hlist_node *node)
1945 {
1946 struct cpuhp_step *sp = cpuhp_get_step(state);
1947 int ret;
1948
1949 /*
1950 * If there's nothing to do, we done.
1951 * Relies on the union for multi_instance.
1952 */
1953 if (cpuhp_step_empty(bringup, sp))
1954 return 0;
1955 /*
1956 * The non AP bound callbacks can fail on bringup. On teardown
1957 * e.g. module removal we crash for now.
1958 */
1959 #ifdef CONFIG_SMP
1960 if (cpuhp_is_ap_state(state))
1961 ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1962 else
1963 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1964 #else
1965 ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1966 #endif
1967 BUG_ON(ret && !bringup);
1968 return ret;
1969 }
1970
1971 /*
1972 * Called from __cpuhp_setup_state on a recoverable failure.
1973 *
1974 * Note: The teardown callbacks for rollback are not allowed to fail!
1975 */
cpuhp_rollback_install(int failedcpu,enum cpuhp_state state,struct hlist_node * node)1976 static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1977 struct hlist_node *node)
1978 {
1979 int cpu;
1980
1981 /* Roll back the already executed steps on the other cpus */
1982 for_each_present_cpu(cpu) {
1983 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1984 int cpustate = st->state;
1985
1986 if (cpu >= failedcpu)
1987 break;
1988
1989 /* Did we invoke the startup call on that cpu ? */
1990 if (cpustate >= state)
1991 cpuhp_issue_call(cpu, state, false, node);
1992 }
1993 }
1994
__cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,struct hlist_node * node,bool invoke)1995 int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1996 struct hlist_node *node,
1997 bool invoke)
1998 {
1999 struct cpuhp_step *sp;
2000 int cpu;
2001 int ret;
2002
2003 lockdep_assert_cpus_held();
2004
2005 sp = cpuhp_get_step(state);
2006 if (sp->multi_instance == false)
2007 return -EINVAL;
2008
2009 mutex_lock(&cpuhp_state_mutex);
2010
2011 if (!invoke || !sp->startup.multi)
2012 goto add_node;
2013
2014 /*
2015 * Try to call the startup callback for each present cpu
2016 * depending on the hotplug state of the cpu.
2017 */
2018 for_each_present_cpu(cpu) {
2019 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2020 int cpustate = st->state;
2021
2022 if (cpustate < state)
2023 continue;
2024
2025 ret = cpuhp_issue_call(cpu, state, true, node);
2026 if (ret) {
2027 if (sp->teardown.multi)
2028 cpuhp_rollback_install(cpu, state, node);
2029 goto unlock;
2030 }
2031 }
2032 add_node:
2033 ret = 0;
2034 hlist_add_head(node, &sp->list);
2035 unlock:
2036 mutex_unlock(&cpuhp_state_mutex);
2037 return ret;
2038 }
2039
__cpuhp_state_add_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2040 int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
2041 bool invoke)
2042 {
2043 int ret;
2044
2045 cpus_read_lock();
2046 ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
2047 cpus_read_unlock();
2048 return ret;
2049 }
2050 EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
2051
2052 /**
2053 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
2054 * @state: The state to setup
2055 * @name: Name of the step
2056 * @invoke: If true, the startup function is invoked for cpus where
2057 * cpu state >= @state
2058 * @startup: startup callback function
2059 * @teardown: teardown callback function
2060 * @multi_instance: State is set up for multiple instances which get
2061 * added afterwards.
2062 *
2063 * The caller needs to hold cpus read locked while calling this function.
2064 * Return:
2065 * On success:
2066 * Positive state number if @state is CPUHP_AP_ONLINE_DYN;
2067 * 0 for all other states
2068 * On failure: proper (negative) error code
2069 */
__cpuhp_setup_state_cpuslocked(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2070 int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
2071 const char *name, bool invoke,
2072 int (*startup)(unsigned int cpu),
2073 int (*teardown)(unsigned int cpu),
2074 bool multi_instance)
2075 {
2076 int cpu, ret = 0;
2077 bool dynstate;
2078
2079 lockdep_assert_cpus_held();
2080
2081 if (cpuhp_cb_check(state) || !name)
2082 return -EINVAL;
2083
2084 mutex_lock(&cpuhp_state_mutex);
2085
2086 ret = cpuhp_store_callbacks(state, name, startup, teardown,
2087 multi_instance);
2088
2089 dynstate = state == CPUHP_AP_ONLINE_DYN;
2090 if (ret > 0 && dynstate) {
2091 state = ret;
2092 ret = 0;
2093 }
2094
2095 if (ret || !invoke || !startup)
2096 goto out;
2097
2098 /*
2099 * Try to call the startup callback for each present cpu
2100 * depending on the hotplug state of the cpu.
2101 */
2102 for_each_present_cpu(cpu) {
2103 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2104 int cpustate = st->state;
2105
2106 if (cpustate < state)
2107 continue;
2108
2109 ret = cpuhp_issue_call(cpu, state, true, NULL);
2110 if (ret) {
2111 if (teardown)
2112 cpuhp_rollback_install(cpu, state, NULL);
2113 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2114 goto out;
2115 }
2116 }
2117 out:
2118 mutex_unlock(&cpuhp_state_mutex);
2119 /*
2120 * If the requested state is CPUHP_AP_ONLINE_DYN, return the
2121 * dynamically allocated state in case of success.
2122 */
2123 if (!ret && dynstate)
2124 return state;
2125 return ret;
2126 }
2127 EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
2128
__cpuhp_setup_state(enum cpuhp_state state,const char * name,bool invoke,int (* startup)(unsigned int cpu),int (* teardown)(unsigned int cpu),bool multi_instance)2129 int __cpuhp_setup_state(enum cpuhp_state state,
2130 const char *name, bool invoke,
2131 int (*startup)(unsigned int cpu),
2132 int (*teardown)(unsigned int cpu),
2133 bool multi_instance)
2134 {
2135 int ret;
2136
2137 cpus_read_lock();
2138 ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
2139 teardown, multi_instance);
2140 cpus_read_unlock();
2141 return ret;
2142 }
2143 EXPORT_SYMBOL(__cpuhp_setup_state);
2144
__cpuhp_state_remove_instance(enum cpuhp_state state,struct hlist_node * node,bool invoke)2145 int __cpuhp_state_remove_instance(enum cpuhp_state state,
2146 struct hlist_node *node, bool invoke)
2147 {
2148 struct cpuhp_step *sp = cpuhp_get_step(state);
2149 int cpu;
2150
2151 BUG_ON(cpuhp_cb_check(state));
2152
2153 if (!sp->multi_instance)
2154 return -EINVAL;
2155
2156 cpus_read_lock();
2157 mutex_lock(&cpuhp_state_mutex);
2158
2159 if (!invoke || !cpuhp_get_teardown_cb(state))
2160 goto remove;
2161 /*
2162 * Call the teardown callback for each present cpu depending
2163 * on the hotplug state of the cpu. This function is not
2164 * allowed to fail currently!
2165 */
2166 for_each_present_cpu(cpu) {
2167 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2168 int cpustate = st->state;
2169
2170 if (cpustate >= state)
2171 cpuhp_issue_call(cpu, state, false, node);
2172 }
2173
2174 remove:
2175 hlist_del(node);
2176 mutex_unlock(&cpuhp_state_mutex);
2177 cpus_read_unlock();
2178
2179 return 0;
2180 }
2181 EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
2182
2183 /**
2184 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
2185 * @state: The state to remove
2186 * @invoke: If true, the teardown function is invoked for cpus where
2187 * cpu state >= @state
2188 *
2189 * The caller needs to hold cpus read locked while calling this function.
2190 * The teardown callback is currently not allowed to fail. Think
2191 * about module removal!
2192 */
__cpuhp_remove_state_cpuslocked(enum cpuhp_state state,bool invoke)2193 void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
2194 {
2195 struct cpuhp_step *sp = cpuhp_get_step(state);
2196 int cpu;
2197
2198 BUG_ON(cpuhp_cb_check(state));
2199
2200 lockdep_assert_cpus_held();
2201
2202 mutex_lock(&cpuhp_state_mutex);
2203 if (sp->multi_instance) {
2204 WARN(!hlist_empty(&sp->list),
2205 "Error: Removing state %d which has instances left.\n",
2206 state);
2207 goto remove;
2208 }
2209
2210 if (!invoke || !cpuhp_get_teardown_cb(state))
2211 goto remove;
2212
2213 /*
2214 * Call the teardown callback for each present cpu depending
2215 * on the hotplug state of the cpu. This function is not
2216 * allowed to fail currently!
2217 */
2218 for_each_present_cpu(cpu) {
2219 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
2220 int cpustate = st->state;
2221
2222 if (cpustate >= state)
2223 cpuhp_issue_call(cpu, state, false, NULL);
2224 }
2225 remove:
2226 cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
2227 mutex_unlock(&cpuhp_state_mutex);
2228 }
2229 EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
2230
__cpuhp_remove_state(enum cpuhp_state state,bool invoke)2231 void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
2232 {
2233 cpus_read_lock();
2234 __cpuhp_remove_state_cpuslocked(state, invoke);
2235 cpus_read_unlock();
2236 }
2237 EXPORT_SYMBOL(__cpuhp_remove_state);
2238
2239 #ifdef CONFIG_HOTPLUG_SMT
cpuhp_offline_cpu_device(unsigned int cpu)2240 static void cpuhp_offline_cpu_device(unsigned int cpu)
2241 {
2242 struct device *dev = get_cpu_device(cpu);
2243
2244 dev->offline = true;
2245 /* Tell user space about the state change */
2246 kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2247 }
2248
cpuhp_online_cpu_device(unsigned int cpu)2249 static void cpuhp_online_cpu_device(unsigned int cpu)
2250 {
2251 struct device *dev = get_cpu_device(cpu);
2252
2253 dev->offline = false;
2254 /* Tell user space about the state change */
2255 kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2256 }
2257
cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)2258 int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2259 {
2260 int cpu, ret = 0;
2261
2262 cpu_maps_update_begin();
2263 for_each_online_cpu(cpu) {
2264 if (topology_is_primary_thread(cpu))
2265 continue;
2266 ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2267 if (ret)
2268 break;
2269 /*
2270 * As this needs to hold the cpu maps lock it's impossible
2271 * to call device_offline() because that ends up calling
2272 * cpu_down() which takes cpu maps lock. cpu maps lock
2273 * needs to be held as this might race against in kernel
2274 * abusers of the hotplug machinery (thermal management).
2275 *
2276 * So nothing would update device:offline state. That would
2277 * leave the sysfs entry stale and prevent onlining after
2278 * smt control has been changed to 'off' again. This is
2279 * called under the sysfs hotplug lock, so it is properly
2280 * serialized against the regular offline usage.
2281 */
2282 cpuhp_offline_cpu_device(cpu);
2283 }
2284 if (!ret)
2285 cpu_smt_control = ctrlval;
2286 cpu_maps_update_done();
2287 return ret;
2288 }
2289
cpuhp_smt_enable(void)2290 int cpuhp_smt_enable(void)
2291 {
2292 int cpu, ret = 0;
2293
2294 cpu_maps_update_begin();
2295 cpu_smt_control = CPU_SMT_ENABLED;
2296 for_each_present_cpu(cpu) {
2297 /* Skip online CPUs and CPUs on offline nodes */
2298 if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2299 continue;
2300 ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2301 if (ret)
2302 break;
2303 /* See comment in cpuhp_smt_disable() */
2304 cpuhp_online_cpu_device(cpu);
2305 }
2306 cpu_maps_update_done();
2307 return ret;
2308 }
2309 #endif
2310
2311 #if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
state_show(struct device * dev,struct device_attribute * attr,char * buf)2312 static ssize_t state_show(struct device *dev,
2313 struct device_attribute *attr, char *buf)
2314 {
2315 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2316
2317 return sprintf(buf, "%d\n", st->state);
2318 }
2319 static DEVICE_ATTR_RO(state);
2320
target_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2321 static ssize_t target_store(struct device *dev, struct device_attribute *attr,
2322 const char *buf, size_t count)
2323 {
2324 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2325 struct cpuhp_step *sp;
2326 int target, ret;
2327
2328 ret = kstrtoint(buf, 10, &target);
2329 if (ret)
2330 return ret;
2331
2332 #ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
2333 if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
2334 return -EINVAL;
2335 #else
2336 if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
2337 return -EINVAL;
2338 #endif
2339
2340 ret = lock_device_hotplug_sysfs();
2341 if (ret)
2342 return ret;
2343
2344 mutex_lock(&cpuhp_state_mutex);
2345 sp = cpuhp_get_step(target);
2346 ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
2347 mutex_unlock(&cpuhp_state_mutex);
2348 if (ret)
2349 goto out;
2350
2351 if (st->state < target)
2352 ret = cpu_up(dev->id, target);
2353 else if (st->state > target)
2354 ret = cpu_down(dev->id, target);
2355 else if (WARN_ON(st->target != target))
2356 st->target = target;
2357 out:
2358 unlock_device_hotplug();
2359 return ret ? ret : count;
2360 }
2361
target_show(struct device * dev,struct device_attribute * attr,char * buf)2362 static ssize_t target_show(struct device *dev,
2363 struct device_attribute *attr, char *buf)
2364 {
2365 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2366
2367 return sprintf(buf, "%d\n", st->target);
2368 }
2369 static DEVICE_ATTR_RW(target);
2370
fail_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2371 static ssize_t fail_store(struct device *dev, struct device_attribute *attr,
2372 const char *buf, size_t count)
2373 {
2374 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2375 struct cpuhp_step *sp;
2376 int fail, ret;
2377
2378 ret = kstrtoint(buf, 10, &fail);
2379 if (ret)
2380 return ret;
2381
2382 if (fail == CPUHP_INVALID) {
2383 st->fail = fail;
2384 return count;
2385 }
2386
2387 if (fail < CPUHP_OFFLINE || fail > CPUHP_ONLINE)
2388 return -EINVAL;
2389
2390 /*
2391 * Cannot fail STARTING/DYING callbacks.
2392 */
2393 if (cpuhp_is_atomic_state(fail))
2394 return -EINVAL;
2395
2396 /*
2397 * DEAD callbacks cannot fail...
2398 * ... neither can CPUHP_BRINGUP_CPU during hotunplug. The latter
2399 * triggering STARTING callbacks, a failure in this state would
2400 * hinder rollback.
2401 */
2402 if (fail <= CPUHP_BRINGUP_CPU && st->state > CPUHP_BRINGUP_CPU)
2403 return -EINVAL;
2404
2405 /*
2406 * Cannot fail anything that doesn't have callbacks.
2407 */
2408 mutex_lock(&cpuhp_state_mutex);
2409 sp = cpuhp_get_step(fail);
2410 if (!sp->startup.single && !sp->teardown.single)
2411 ret = -EINVAL;
2412 mutex_unlock(&cpuhp_state_mutex);
2413 if (ret)
2414 return ret;
2415
2416 st->fail = fail;
2417
2418 return count;
2419 }
2420
fail_show(struct device * dev,struct device_attribute * attr,char * buf)2421 static ssize_t fail_show(struct device *dev,
2422 struct device_attribute *attr, char *buf)
2423 {
2424 struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
2425
2426 return sprintf(buf, "%d\n", st->fail);
2427 }
2428
2429 static DEVICE_ATTR_RW(fail);
2430
2431 static struct attribute *cpuhp_cpu_attrs[] = {
2432 &dev_attr_state.attr,
2433 &dev_attr_target.attr,
2434 &dev_attr_fail.attr,
2435 NULL
2436 };
2437
2438 static const struct attribute_group cpuhp_cpu_attr_group = {
2439 .attrs = cpuhp_cpu_attrs,
2440 .name = "hotplug",
2441 NULL
2442 };
2443
states_show(struct device * dev,struct device_attribute * attr,char * buf)2444 static ssize_t states_show(struct device *dev,
2445 struct device_attribute *attr, char *buf)
2446 {
2447 ssize_t cur, res = 0;
2448 int i;
2449
2450 mutex_lock(&cpuhp_state_mutex);
2451 for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
2452 struct cpuhp_step *sp = cpuhp_get_step(i);
2453
2454 if (sp->name) {
2455 cur = sprintf(buf, "%3d: %s\n", i, sp->name);
2456 buf += cur;
2457 res += cur;
2458 }
2459 }
2460 mutex_unlock(&cpuhp_state_mutex);
2461 return res;
2462 }
2463 static DEVICE_ATTR_RO(states);
2464
2465 static struct attribute *cpuhp_cpu_root_attrs[] = {
2466 &dev_attr_states.attr,
2467 NULL
2468 };
2469
2470 static const struct attribute_group cpuhp_cpu_root_attr_group = {
2471 .attrs = cpuhp_cpu_root_attrs,
2472 .name = "hotplug",
2473 NULL
2474 };
2475
2476 #ifdef CONFIG_HOTPLUG_SMT
2477
2478 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2479 __store_smt_control(struct device *dev, struct device_attribute *attr,
2480 const char *buf, size_t count)
2481 {
2482 int ctrlval, ret;
2483
2484 if (sysfs_streq(buf, "on"))
2485 ctrlval = CPU_SMT_ENABLED;
2486 else if (sysfs_streq(buf, "off"))
2487 ctrlval = CPU_SMT_DISABLED;
2488 else if (sysfs_streq(buf, "forceoff"))
2489 ctrlval = CPU_SMT_FORCE_DISABLED;
2490 else
2491 return -EINVAL;
2492
2493 if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2494 return -EPERM;
2495
2496 if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2497 return -ENODEV;
2498
2499 ret = lock_device_hotplug_sysfs();
2500 if (ret)
2501 return ret;
2502
2503 if (ctrlval != cpu_smt_control) {
2504 switch (ctrlval) {
2505 case CPU_SMT_ENABLED:
2506 ret = cpuhp_smt_enable();
2507 break;
2508 case CPU_SMT_DISABLED:
2509 case CPU_SMT_FORCE_DISABLED:
2510 ret = cpuhp_smt_disable(ctrlval);
2511 break;
2512 }
2513 }
2514
2515 unlock_device_hotplug();
2516 return ret ? ret : count;
2517 }
2518
2519 #else /* !CONFIG_HOTPLUG_SMT */
2520 static ssize_t
__store_smt_control(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2521 __store_smt_control(struct device *dev, struct device_attribute *attr,
2522 const char *buf, size_t count)
2523 {
2524 return -ENODEV;
2525 }
2526 #endif /* CONFIG_HOTPLUG_SMT */
2527
2528 static const char *smt_states[] = {
2529 [CPU_SMT_ENABLED] = "on",
2530 [CPU_SMT_DISABLED] = "off",
2531 [CPU_SMT_FORCE_DISABLED] = "forceoff",
2532 [CPU_SMT_NOT_SUPPORTED] = "notsupported",
2533 [CPU_SMT_NOT_IMPLEMENTED] = "notimplemented",
2534 };
2535
control_show(struct device * dev,struct device_attribute * attr,char * buf)2536 static ssize_t control_show(struct device *dev,
2537 struct device_attribute *attr, char *buf)
2538 {
2539 const char *state = smt_states[cpu_smt_control];
2540
2541 return snprintf(buf, PAGE_SIZE - 2, "%s\n", state);
2542 }
2543
control_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)2544 static ssize_t control_store(struct device *dev, struct device_attribute *attr,
2545 const char *buf, size_t count)
2546 {
2547 return __store_smt_control(dev, attr, buf, count);
2548 }
2549 static DEVICE_ATTR_RW(control);
2550
active_show(struct device * dev,struct device_attribute * attr,char * buf)2551 static ssize_t active_show(struct device *dev,
2552 struct device_attribute *attr, char *buf)
2553 {
2554 return snprintf(buf, PAGE_SIZE - 2, "%d\n", sched_smt_active());
2555 }
2556 static DEVICE_ATTR_RO(active);
2557
2558 static struct attribute *cpuhp_smt_attrs[] = {
2559 &dev_attr_control.attr,
2560 &dev_attr_active.attr,
2561 NULL
2562 };
2563
2564 static const struct attribute_group cpuhp_smt_attr_group = {
2565 .attrs = cpuhp_smt_attrs,
2566 .name = "smt",
2567 NULL
2568 };
2569
cpu_smt_sysfs_init(void)2570 static int __init cpu_smt_sysfs_init(void)
2571 {
2572 return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2573 &cpuhp_smt_attr_group);
2574 }
2575
cpuhp_sysfs_init(void)2576 static int __init cpuhp_sysfs_init(void)
2577 {
2578 int cpu, ret;
2579
2580 ret = cpu_smt_sysfs_init();
2581 if (ret)
2582 return ret;
2583
2584 ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2585 &cpuhp_cpu_root_attr_group);
2586 if (ret)
2587 return ret;
2588
2589 for_each_possible_cpu(cpu) {
2590 struct device *dev = get_cpu_device(cpu);
2591
2592 if (!dev)
2593 continue;
2594 ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2595 if (ret)
2596 return ret;
2597 }
2598 return 0;
2599 }
2600 device_initcall(cpuhp_sysfs_init);
2601 #endif /* CONFIG_SYSFS && CONFIG_HOTPLUG_CPU */
2602
2603 /*
2604 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2605 * represents all NR_CPUS bits binary values of 1<<nr.
2606 *
2607 * It is used by cpumask_of() to get a constant address to a CPU
2608 * mask value that has a single bit set only.
2609 */
2610
2611 /* cpu_bit_bitmap[0] is empty - so we can back into it */
2612 #define MASK_DECLARE_1(x) [x+1][0] = (1UL << (x))
2613 #define MASK_DECLARE_2(x) MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2614 #define MASK_DECLARE_4(x) MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2615 #define MASK_DECLARE_8(x) MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2616
2617 const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2618
2619 MASK_DECLARE_8(0), MASK_DECLARE_8(8),
2620 MASK_DECLARE_8(16), MASK_DECLARE_8(24),
2621 #if BITS_PER_LONG > 32
2622 MASK_DECLARE_8(32), MASK_DECLARE_8(40),
2623 MASK_DECLARE_8(48), MASK_DECLARE_8(56),
2624 #endif
2625 };
2626 EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2627
2628 const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2629 EXPORT_SYMBOL(cpu_all_bits);
2630
2631 #ifdef CONFIG_INIT_ALL_POSSIBLE
2632 struct cpumask __cpu_possible_mask __read_mostly
2633 = {CPU_BITS_ALL};
2634 #else
2635 struct cpumask __cpu_possible_mask __read_mostly;
2636 #endif
2637 EXPORT_SYMBOL(__cpu_possible_mask);
2638
2639 struct cpumask __cpu_online_mask __read_mostly;
2640 EXPORT_SYMBOL(__cpu_online_mask);
2641
2642 struct cpumask __cpu_present_mask __read_mostly;
2643 EXPORT_SYMBOL(__cpu_present_mask);
2644
2645 struct cpumask __cpu_active_mask __read_mostly;
2646 EXPORT_SYMBOL(__cpu_active_mask);
2647
2648 struct cpumask __cpu_dying_mask __read_mostly;
2649 EXPORT_SYMBOL(__cpu_dying_mask);
2650
2651 atomic_t __num_online_cpus __read_mostly;
2652 EXPORT_SYMBOL(__num_online_cpus);
2653
init_cpu_present(const struct cpumask * src)2654 void init_cpu_present(const struct cpumask *src)
2655 {
2656 cpumask_copy(&__cpu_present_mask, src);
2657 }
2658
init_cpu_possible(const struct cpumask * src)2659 void init_cpu_possible(const struct cpumask *src)
2660 {
2661 cpumask_copy(&__cpu_possible_mask, src);
2662 }
2663
init_cpu_online(const struct cpumask * src)2664 void init_cpu_online(const struct cpumask *src)
2665 {
2666 cpumask_copy(&__cpu_online_mask, src);
2667 }
2668
set_cpu_online(unsigned int cpu,bool online)2669 void set_cpu_online(unsigned int cpu, bool online)
2670 {
2671 /*
2672 * atomic_inc/dec() is required to handle the horrid abuse of this
2673 * function by the reboot and kexec code which invoke it from
2674 * IPI/NMI broadcasts when shutting down CPUs. Invocation from
2675 * regular CPU hotplug is properly serialized.
2676 *
2677 * Note, that the fact that __num_online_cpus is of type atomic_t
2678 * does not protect readers which are not serialized against
2679 * concurrent hotplug operations.
2680 */
2681 if (online) {
2682 if (!cpumask_test_and_set_cpu(cpu, &__cpu_online_mask))
2683 atomic_inc(&__num_online_cpus);
2684 } else {
2685 if (cpumask_test_and_clear_cpu(cpu, &__cpu_online_mask))
2686 atomic_dec(&__num_online_cpus);
2687 }
2688 }
2689
2690 /*
2691 * Activate the first processor.
2692 */
boot_cpu_init(void)2693 void __init boot_cpu_init(void)
2694 {
2695 int cpu = smp_processor_id();
2696
2697 /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2698 set_cpu_online(cpu, true);
2699 set_cpu_active(cpu, true);
2700 set_cpu_present(cpu, true);
2701 set_cpu_possible(cpu, true);
2702
2703 #ifdef CONFIG_SMP
2704 __boot_cpu_id = cpu;
2705 #endif
2706 }
2707
2708 /*
2709 * Must be called _AFTER_ setting up the per_cpu areas
2710 */
boot_cpu_hotplug_init(void)2711 void __init boot_cpu_hotplug_init(void)
2712 {
2713 #ifdef CONFIG_SMP
2714 cpumask_set_cpu(smp_processor_id(), &cpus_booted_once_mask);
2715 #endif
2716 this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2717 }
2718
2719 /*
2720 * These are used for a global "mitigations=" cmdline option for toggling
2721 * optional CPU mitigations.
2722 */
2723 enum cpu_mitigations {
2724 CPU_MITIGATIONS_OFF,
2725 CPU_MITIGATIONS_AUTO,
2726 CPU_MITIGATIONS_AUTO_NOSMT,
2727 };
2728
2729 static enum cpu_mitigations cpu_mitigations __ro_after_init =
2730 CPU_MITIGATIONS_AUTO;
2731
mitigations_parse_cmdline(char * arg)2732 static int __init mitigations_parse_cmdline(char *arg)
2733 {
2734 if (!strcmp(arg, "off"))
2735 cpu_mitigations = CPU_MITIGATIONS_OFF;
2736 else if (!strcmp(arg, "auto"))
2737 cpu_mitigations = CPU_MITIGATIONS_AUTO;
2738 else if (!strcmp(arg, "auto,nosmt"))
2739 cpu_mitigations = CPU_MITIGATIONS_AUTO_NOSMT;
2740 else
2741 pr_crit("Unsupported mitigations=%s, system may still be vulnerable\n",
2742 arg);
2743
2744 return 0;
2745 }
2746 early_param("mitigations", mitigations_parse_cmdline);
2747
2748 /* mitigations=off */
cpu_mitigations_off(void)2749 bool cpu_mitigations_off(void)
2750 {
2751 return cpu_mitigations == CPU_MITIGATIONS_OFF;
2752 }
2753 EXPORT_SYMBOL_GPL(cpu_mitigations_off);
2754
2755 /* mitigations=auto,nosmt */
cpu_mitigations_auto_nosmt(void)2756 bool cpu_mitigations_auto_nosmt(void)
2757 {
2758 return cpu_mitigations == CPU_MITIGATIONS_AUTO_NOSMT;
2759 }
2760 EXPORT_SYMBOL_GPL(cpu_mitigations_auto_nosmt);
2761