1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef _LINUX_MM_H
3 #define _LINUX_MM_H
4
5 #include <linux/errno.h>
6 #include <linux/mmdebug.h>
7 #include <linux/gfp.h>
8 #include <linux/bug.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/atomic.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
15 #include <linux/mmap_lock.h>
16 #include <linux/range.h>
17 #include <linux/pfn.h>
18 #include <linux/percpu-refcount.h>
19 #include <linux/bit_spinlock.h>
20 #include <linux/shrinker.h>
21 #include <linux/resource.h>
22 #include <linux/page_ext.h>
23 #include <linux/err.h>
24 #include <linux/page-flags.h>
25 #include <linux/page_ref.h>
26 #include <linux/overflow.h>
27 #include <linux/sizes.h>
28 #include <linux/sched.h>
29 #include <linux/pgtable.h>
30 #include <linux/kasan.h>
31 #include <linux/memremap.h>
32
33 struct mempolicy;
34 struct anon_vma;
35 struct anon_vma_chain;
36 struct user_struct;
37 struct pt_regs;
38
39 extern int sysctl_page_lock_unfairness;
40
41 void init_mm_internals(void);
42
43 #ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
44 extern unsigned long max_mapnr;
45
set_max_mapnr(unsigned long limit)46 static inline void set_max_mapnr(unsigned long limit)
47 {
48 max_mapnr = limit;
49 }
50 #else
set_max_mapnr(unsigned long limit)51 static inline void set_max_mapnr(unsigned long limit) { }
52 #endif
53
54 extern atomic_long_t _totalram_pages;
totalram_pages(void)55 static inline unsigned long totalram_pages(void)
56 {
57 return (unsigned long)atomic_long_read(&_totalram_pages);
58 }
59
totalram_pages_inc(void)60 static inline void totalram_pages_inc(void)
61 {
62 atomic_long_inc(&_totalram_pages);
63 }
64
totalram_pages_dec(void)65 static inline void totalram_pages_dec(void)
66 {
67 atomic_long_dec(&_totalram_pages);
68 }
69
totalram_pages_add(long count)70 static inline void totalram_pages_add(long count)
71 {
72 atomic_long_add(count, &_totalram_pages);
73 }
74
75 extern void * high_memory;
76 extern int page_cluster;
77
78 #ifdef CONFIG_SYSCTL
79 extern int sysctl_legacy_va_layout;
80 #else
81 #define sysctl_legacy_va_layout 0
82 #endif
83
84 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
85 extern const int mmap_rnd_bits_min;
86 extern const int mmap_rnd_bits_max;
87 extern int mmap_rnd_bits __read_mostly;
88 #endif
89 #ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
90 extern const int mmap_rnd_compat_bits_min;
91 extern const int mmap_rnd_compat_bits_max;
92 extern int mmap_rnd_compat_bits __read_mostly;
93 #endif
94
95 #include <asm/page.h>
96 #include <asm/processor.h>
97
98 /*
99 * Architectures that support memory tagging (assigning tags to memory regions,
100 * embedding these tags into addresses that point to these memory regions, and
101 * checking that the memory and the pointer tags match on memory accesses)
102 * redefine this macro to strip tags from pointers.
103 * It's defined as noop for architectures that don't support memory tagging.
104 */
105 #ifndef untagged_addr
106 #define untagged_addr(addr) (addr)
107 #endif
108
109 #ifndef __pa_symbol
110 #define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
111 #endif
112
113 #ifndef page_to_virt
114 #define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
115 #endif
116
117 #ifndef lm_alias
118 #define lm_alias(x) __va(__pa_symbol(x))
119 #endif
120
121 /*
122 * To prevent common memory management code establishing
123 * a zero page mapping on a read fault.
124 * This macro should be defined within <asm/pgtable.h>.
125 * s390 does this to prevent multiplexing of hardware bits
126 * related to the physical page in case of virtualization.
127 */
128 #ifndef mm_forbids_zeropage
129 #define mm_forbids_zeropage(X) (0)
130 #endif
131
132 /*
133 * On some architectures it is expensive to call memset() for small sizes.
134 * If an architecture decides to implement their own version of
135 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
136 * define their own version of this macro in <asm/pgtable.h>
137 */
138 #if BITS_PER_LONG == 64
139 /* This function must be updated when the size of struct page grows above 80
140 * or reduces below 56. The idea that compiler optimizes out switch()
141 * statement, and only leaves move/store instructions. Also the compiler can
142 * combine write statements if they are both assignments and can be reordered,
143 * this can result in several of the writes here being dropped.
144 */
145 #define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
__mm_zero_struct_page(struct page * page)146 static inline void __mm_zero_struct_page(struct page *page)
147 {
148 unsigned long *_pp = (void *)page;
149
150 /* Check that struct page is either 56, 64, 72, or 80 bytes */
151 BUILD_BUG_ON(sizeof(struct page) & 7);
152 BUILD_BUG_ON(sizeof(struct page) < 56);
153 BUILD_BUG_ON(sizeof(struct page) > 80);
154
155 switch (sizeof(struct page)) {
156 case 80:
157 _pp[9] = 0;
158 fallthrough;
159 case 72:
160 _pp[8] = 0;
161 fallthrough;
162 case 64:
163 _pp[7] = 0;
164 fallthrough;
165 case 56:
166 _pp[6] = 0;
167 _pp[5] = 0;
168 _pp[4] = 0;
169 _pp[3] = 0;
170 _pp[2] = 0;
171 _pp[1] = 0;
172 _pp[0] = 0;
173 }
174 }
175 #else
176 #define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
177 #endif
178
179 /*
180 * Default maximum number of active map areas, this limits the number of vmas
181 * per mm struct. Users can overwrite this number by sysctl but there is a
182 * problem.
183 *
184 * When a program's coredump is generated as ELF format, a section is created
185 * per a vma. In ELF, the number of sections is represented in unsigned short.
186 * This means the number of sections should be smaller than 65535 at coredump.
187 * Because the kernel adds some informative sections to a image of program at
188 * generating coredump, we need some margin. The number of extra sections is
189 * 1-3 now and depends on arch. We use "5" as safe margin, here.
190 *
191 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
192 * not a hard limit any more. Although some userspace tools can be surprised by
193 * that.
194 */
195 #define MAPCOUNT_ELF_CORE_MARGIN (5)
196 #define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
197
198 extern int sysctl_max_map_count;
199
200 extern unsigned long sysctl_user_reserve_kbytes;
201 extern unsigned long sysctl_admin_reserve_kbytes;
202
203 extern int sysctl_overcommit_memory;
204 extern int sysctl_overcommit_ratio;
205 extern unsigned long sysctl_overcommit_kbytes;
206
207 int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
209 int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
211 int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
212 loff_t *);
213
214 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
215 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
216 #define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
217 #else
218 #define nth_page(page,n) ((page) + (n))
219 #define folio_page_idx(folio, p) ((p) - &(folio)->page)
220 #endif
221
222 /* to align the pointer to the (next) page boundary */
223 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
224
225 /* to align the pointer to the (prev) page boundary */
226 #define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
227
228 /* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
229 #define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
230
231 #define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
lru_to_folio(struct list_head * head)232 static inline struct folio *lru_to_folio(struct list_head *head)
233 {
234 return list_entry((head)->prev, struct folio, lru);
235 }
236
237 void setup_initial_init_mm(void *start_code, void *end_code,
238 void *end_data, void *brk);
239
240 /*
241 * Linux kernel virtual memory manager primitives.
242 * The idea being to have a "virtual" mm in the same way
243 * we have a virtual fs - giving a cleaner interface to the
244 * mm details, and allowing different kinds of memory mappings
245 * (from shared memory to executable loading to arbitrary
246 * mmap() functions).
247 */
248
249 struct vm_area_struct *vm_area_alloc(struct mm_struct *);
250 struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
251 void vm_area_free(struct vm_area_struct *);
252
253 #ifndef CONFIG_MMU
254 extern struct rb_root nommu_region_tree;
255 extern struct rw_semaphore nommu_region_sem;
256
257 extern unsigned int kobjsize(const void *objp);
258 #endif
259
260 /*
261 * vm_flags in vm_area_struct, see mm_types.h.
262 * When changing, update also include/trace/events/mmflags.h
263 */
264 #define VM_NONE 0x00000000
265
266 #define VM_READ 0x00000001 /* currently active flags */
267 #define VM_WRITE 0x00000002
268 #define VM_EXEC 0x00000004
269 #define VM_SHARED 0x00000008
270
271 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273 #define VM_MAYWRITE 0x00000020
274 #define VM_MAYEXEC 0x00000040
275 #define VM_MAYSHARE 0x00000080
276
277 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
278 #define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
279 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
280 #define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
281
282 #define VM_LOCKED 0x00002000
283 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
284
285 /* Used by sys_madvise() */
286 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
287 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
288
289 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
290 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
291 #define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
292 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
293 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
294 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
295 #define VM_SYNC 0x00800000 /* Synchronous page faults */
296 #define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
297 #define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
298 #define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
299
300 #ifdef CONFIG_MEM_SOFT_DIRTY
301 # define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
302 #else
303 # define VM_SOFTDIRTY 0
304 #endif
305
306 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
307 #define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
308 #define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
309 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
310
311 #ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
312 #define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
313 #define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
314 #define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
315 #define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
316 #define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
317 #define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
318 #define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
319 #define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
320 #define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
321 #define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
322 #endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
323
324 #ifdef CONFIG_ARCH_HAS_PKEYS
325 # define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
326 # define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
327 # define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
328 # define VM_PKEY_BIT2 VM_HIGH_ARCH_2
329 # define VM_PKEY_BIT3 VM_HIGH_ARCH_3
330 #ifdef CONFIG_PPC
331 # define VM_PKEY_BIT4 VM_HIGH_ARCH_4
332 #else
333 # define VM_PKEY_BIT4 0
334 #endif
335 #endif /* CONFIG_ARCH_HAS_PKEYS */
336
337 #if defined(CONFIG_X86)
338 # define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
339 #elif defined(CONFIG_PPC)
340 # define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
341 #elif defined(CONFIG_PARISC)
342 # define VM_GROWSUP VM_ARCH_1
343 #elif defined(CONFIG_IA64)
344 # define VM_GROWSUP VM_ARCH_1
345 #elif defined(CONFIG_SPARC64)
346 # define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
347 # define VM_ARCH_CLEAR VM_SPARC_ADI
348 #elif defined(CONFIG_ARM64)
349 # define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
350 # define VM_ARCH_CLEAR VM_ARM64_BTI
351 #elif !defined(CONFIG_MMU)
352 # define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
353 #endif
354
355 #if defined(CONFIG_ARM64_MTE)
356 # define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
357 # define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
358 #else
359 # define VM_MTE VM_NONE
360 # define VM_MTE_ALLOWED VM_NONE
361 #endif
362
363 #ifndef VM_GROWSUP
364 # define VM_GROWSUP VM_NONE
365 #endif
366
367 #ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
368 # define VM_UFFD_MINOR_BIT 37
369 # define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
370 #else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
371 # define VM_UFFD_MINOR VM_NONE
372 #endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
373
374 /* Bits set in the VMA until the stack is in its final location */
375 #define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
376
377 #define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
378
379 /* Common data flag combinations */
380 #define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
381 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
382 #define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
383 VM_MAYWRITE | VM_MAYEXEC)
384 #define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
385 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
386
387 #ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
388 #define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
389 #endif
390
391 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
392 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
393 #endif
394
395 #ifdef CONFIG_STACK_GROWSUP
396 #define VM_STACK VM_GROWSUP
397 #else
398 #define VM_STACK VM_GROWSDOWN
399 #endif
400
401 #define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
402
403 /* VMA basic access permission flags */
404 #define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
405
406
407 /*
408 * Special vmas that are non-mergable, non-mlock()able.
409 */
410 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
411
412 /* This mask prevents VMA from being scanned with khugepaged */
413 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
414
415 /* This mask defines which mm->def_flags a process can inherit its parent */
416 #define VM_INIT_DEF_MASK VM_NOHUGEPAGE
417
418 /* This mask is used to clear all the VMA flags used by mlock */
419 #define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
420
421 /* Arch-specific flags to clear when updating VM flags on protection change */
422 #ifndef VM_ARCH_CLEAR
423 # define VM_ARCH_CLEAR VM_NONE
424 #endif
425 #define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
426
427 /*
428 * mapping from the currently active vm_flags protection bits (the
429 * low four bits) to a page protection mask..
430 */
431
432 /*
433 * The default fault flags that should be used by most of the
434 * arch-specific page fault handlers.
435 */
436 #define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
437 FAULT_FLAG_KILLABLE | \
438 FAULT_FLAG_INTERRUPTIBLE)
439
440 /**
441 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
442 * @flags: Fault flags.
443 *
444 * This is mostly used for places where we want to try to avoid taking
445 * the mmap_lock for too long a time when waiting for another condition
446 * to change, in which case we can try to be polite to release the
447 * mmap_lock in the first round to avoid potential starvation of other
448 * processes that would also want the mmap_lock.
449 *
450 * Return: true if the page fault allows retry and this is the first
451 * attempt of the fault handling; false otherwise.
452 */
fault_flag_allow_retry_first(enum fault_flag flags)453 static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
454 {
455 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
456 (!(flags & FAULT_FLAG_TRIED));
457 }
458
459 #define FAULT_FLAG_TRACE \
460 { FAULT_FLAG_WRITE, "WRITE" }, \
461 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
462 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
463 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
464 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
465 { FAULT_FLAG_TRIED, "TRIED" }, \
466 { FAULT_FLAG_USER, "USER" }, \
467 { FAULT_FLAG_REMOTE, "REMOTE" }, \
468 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
469 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }
470
471 /*
472 * vm_fault is filled by the pagefault handler and passed to the vma's
473 * ->fault function. The vma's ->fault is responsible for returning a bitmask
474 * of VM_FAULT_xxx flags that give details about how the fault was handled.
475 *
476 * MM layer fills up gfp_mask for page allocations but fault handler might
477 * alter it if its implementation requires a different allocation context.
478 *
479 * pgoff should be used in favour of virtual_address, if possible.
480 */
481 struct vm_fault {
482 const struct {
483 struct vm_area_struct *vma; /* Target VMA */
484 gfp_t gfp_mask; /* gfp mask to be used for allocations */
485 pgoff_t pgoff; /* Logical page offset based on vma */
486 unsigned long address; /* Faulting virtual address - masked */
487 unsigned long real_address; /* Faulting virtual address - unmasked */
488 };
489 enum fault_flag flags; /* FAULT_FLAG_xxx flags
490 * XXX: should really be 'const' */
491 pmd_t *pmd; /* Pointer to pmd entry matching
492 * the 'address' */
493 pud_t *pud; /* Pointer to pud entry matching
494 * the 'address'
495 */
496 union {
497 pte_t orig_pte; /* Value of PTE at the time of fault */
498 pmd_t orig_pmd; /* Value of PMD at the time of fault,
499 * used by PMD fault only.
500 */
501 };
502
503 struct page *cow_page; /* Page handler may use for COW fault */
504 struct page *page; /* ->fault handlers should return a
505 * page here, unless VM_FAULT_NOPAGE
506 * is set (which is also implied by
507 * VM_FAULT_ERROR).
508 */
509 /* These three entries are valid only while holding ptl lock */
510 pte_t *pte; /* Pointer to pte entry matching
511 * the 'address'. NULL if the page
512 * table hasn't been allocated.
513 */
514 spinlock_t *ptl; /* Page table lock.
515 * Protects pte page table if 'pte'
516 * is not NULL, otherwise pmd.
517 */
518 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
519 * vm_ops->map_pages() sets up a page
520 * table from atomic context.
521 * do_fault_around() pre-allocates
522 * page table to avoid allocation from
523 * atomic context.
524 */
525 };
526
527 /* page entry size for vm->huge_fault() */
528 enum page_entry_size {
529 PE_SIZE_PTE = 0,
530 PE_SIZE_PMD,
531 PE_SIZE_PUD,
532 };
533
534 /*
535 * These are the virtual MM functions - opening of an area, closing and
536 * unmapping it (needed to keep files on disk up-to-date etc), pointer
537 * to the functions called when a no-page or a wp-page exception occurs.
538 */
539 struct vm_operations_struct {
540 void (*open)(struct vm_area_struct * area);
541 /**
542 * @close: Called when the VMA is being removed from the MM.
543 * Context: User context. May sleep. Caller holds mmap_lock.
544 */
545 void (*close)(struct vm_area_struct * area);
546 /* Called any time before splitting to check if it's allowed */
547 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
548 int (*mremap)(struct vm_area_struct *area);
549 /*
550 * Called by mprotect() to make driver-specific permission
551 * checks before mprotect() is finalised. The VMA must not
552 * be modified. Returns 0 if eprotect() can proceed.
553 */
554 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
555 unsigned long end, unsigned long newflags);
556 vm_fault_t (*fault)(struct vm_fault *vmf);
557 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
558 enum page_entry_size pe_size);
559 vm_fault_t (*map_pages)(struct vm_fault *vmf,
560 pgoff_t start_pgoff, pgoff_t end_pgoff);
561 unsigned long (*pagesize)(struct vm_area_struct * area);
562
563 /* notification that a previously read-only page is about to become
564 * writable, if an error is returned it will cause a SIGBUS */
565 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
566
567 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
568 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
569
570 /* called by access_process_vm when get_user_pages() fails, typically
571 * for use by special VMAs. See also generic_access_phys() for a generic
572 * implementation useful for any iomem mapping.
573 */
574 int (*access)(struct vm_area_struct *vma, unsigned long addr,
575 void *buf, int len, int write);
576
577 /* Called by the /proc/PID/maps code to ask the vma whether it
578 * has a special name. Returning non-NULL will also cause this
579 * vma to be dumped unconditionally. */
580 const char *(*name)(struct vm_area_struct *vma);
581
582 #ifdef CONFIG_NUMA
583 /*
584 * set_policy() op must add a reference to any non-NULL @new mempolicy
585 * to hold the policy upon return. Caller should pass NULL @new to
586 * remove a policy and fall back to surrounding context--i.e. do not
587 * install a MPOL_DEFAULT policy, nor the task or system default
588 * mempolicy.
589 */
590 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
591
592 /*
593 * get_policy() op must add reference [mpol_get()] to any policy at
594 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
595 * in mm/mempolicy.c will do this automatically.
596 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
597 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
598 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
599 * must return NULL--i.e., do not "fallback" to task or system default
600 * policy.
601 */
602 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
603 unsigned long addr);
604 #endif
605 /*
606 * Called by vm_normal_page() for special PTEs to find the
607 * page for @addr. This is useful if the default behavior
608 * (using pte_page()) would not find the correct page.
609 */
610 struct page *(*find_special_page)(struct vm_area_struct *vma,
611 unsigned long addr);
612 };
613
vma_init(struct vm_area_struct * vma,struct mm_struct * mm)614 static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
615 {
616 static const struct vm_operations_struct dummy_vm_ops = {};
617
618 memset(vma, 0, sizeof(*vma));
619 vma->vm_mm = mm;
620 vma->vm_ops = &dummy_vm_ops;
621 INIT_LIST_HEAD(&vma->anon_vma_chain);
622 }
623
vma_set_anonymous(struct vm_area_struct * vma)624 static inline void vma_set_anonymous(struct vm_area_struct *vma)
625 {
626 vma->vm_ops = NULL;
627 }
628
vma_is_anonymous(struct vm_area_struct * vma)629 static inline bool vma_is_anonymous(struct vm_area_struct *vma)
630 {
631 return !vma->vm_ops;
632 }
633
vma_is_temporary_stack(struct vm_area_struct * vma)634 static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
635 {
636 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
637
638 if (!maybe_stack)
639 return false;
640
641 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
642 VM_STACK_INCOMPLETE_SETUP)
643 return true;
644
645 return false;
646 }
647
vma_is_foreign(struct vm_area_struct * vma)648 static inline bool vma_is_foreign(struct vm_area_struct *vma)
649 {
650 if (!current->mm)
651 return true;
652
653 if (current->mm != vma->vm_mm)
654 return true;
655
656 return false;
657 }
658
vma_is_accessible(struct vm_area_struct * vma)659 static inline bool vma_is_accessible(struct vm_area_struct *vma)
660 {
661 return vma->vm_flags & VM_ACCESS_FLAGS;
662 }
663
664 static inline
vma_find(struct vma_iterator * vmi,unsigned long max)665 struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
666 {
667 return mas_find(&vmi->mas, max);
668 }
669
vma_next(struct vma_iterator * vmi)670 static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
671 {
672 /*
673 * Uses vma_find() to get the first VMA when the iterator starts.
674 * Calling mas_next() could skip the first entry.
675 */
676 return vma_find(vmi, ULONG_MAX);
677 }
678
vma_prev(struct vma_iterator * vmi)679 static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
680 {
681 return mas_prev(&vmi->mas, 0);
682 }
683
vma_iter_addr(struct vma_iterator * vmi)684 static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
685 {
686 return vmi->mas.index;
687 }
688
689 #define for_each_vma(__vmi, __vma) \
690 while (((__vma) = vma_next(&(__vmi))) != NULL)
691
692 /* The MM code likes to work with exclusive end addresses */
693 #define for_each_vma_range(__vmi, __vma, __end) \
694 while (((__vma) = vma_find(&(__vmi), (__end) - 1)) != NULL)
695
696 #ifdef CONFIG_SHMEM
697 /*
698 * The vma_is_shmem is not inline because it is used only by slow
699 * paths in userfault.
700 */
701 bool vma_is_shmem(struct vm_area_struct *vma);
702 #else
vma_is_shmem(struct vm_area_struct * vma)703 static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
704 #endif
705
706 int vma_is_stack_for_current(struct vm_area_struct *vma);
707
708 /* flush_tlb_range() takes a vma, not a mm, and can care about flags */
709 #define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
710
711 struct mmu_gather;
712 struct inode;
713
compound_order(struct page * page)714 static inline unsigned int compound_order(struct page *page)
715 {
716 if (!PageHead(page))
717 return 0;
718 return page[1].compound_order;
719 }
720
721 /**
722 * folio_order - The allocation order of a folio.
723 * @folio: The folio.
724 *
725 * A folio is composed of 2^order pages. See get_order() for the definition
726 * of order.
727 *
728 * Return: The order of the folio.
729 */
folio_order(struct folio * folio)730 static inline unsigned int folio_order(struct folio *folio)
731 {
732 if (!folio_test_large(folio))
733 return 0;
734 return folio->_folio_order;
735 }
736
737 #include <linux/huge_mm.h>
738
739 /*
740 * Methods to modify the page usage count.
741 *
742 * What counts for a page usage:
743 * - cache mapping (page->mapping)
744 * - private data (page->private)
745 * - page mapped in a task's page tables, each mapping
746 * is counted separately
747 *
748 * Also, many kernel routines increase the page count before a critical
749 * routine so they can be sure the page doesn't go away from under them.
750 */
751
752 /*
753 * Drop a ref, return true if the refcount fell to zero (the page has no users)
754 */
put_page_testzero(struct page * page)755 static inline int put_page_testzero(struct page *page)
756 {
757 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
758 return page_ref_dec_and_test(page);
759 }
760
folio_put_testzero(struct folio * folio)761 static inline int folio_put_testzero(struct folio *folio)
762 {
763 return put_page_testzero(&folio->page);
764 }
765
766 /*
767 * Try to grab a ref unless the page has a refcount of zero, return false if
768 * that is the case.
769 * This can be called when MMU is off so it must not access
770 * any of the virtual mappings.
771 */
get_page_unless_zero(struct page * page)772 static inline bool get_page_unless_zero(struct page *page)
773 {
774 return page_ref_add_unless(page, 1, 0);
775 }
776
777 extern int page_is_ram(unsigned long pfn);
778
779 enum {
780 REGION_INTERSECTS,
781 REGION_DISJOINT,
782 REGION_MIXED,
783 };
784
785 int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
786 unsigned long desc);
787
788 /* Support for virtually mapped pages */
789 struct page *vmalloc_to_page(const void *addr);
790 unsigned long vmalloc_to_pfn(const void *addr);
791
792 /*
793 * Determine if an address is within the vmalloc range
794 *
795 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
796 * is no special casing required.
797 */
798
799 #ifndef is_ioremap_addr
800 #define is_ioremap_addr(x) is_vmalloc_addr(x)
801 #endif
802
803 #ifdef CONFIG_MMU
804 extern bool is_vmalloc_addr(const void *x);
805 extern int is_vmalloc_or_module_addr(const void *x);
806 #else
is_vmalloc_addr(const void * x)807 static inline bool is_vmalloc_addr(const void *x)
808 {
809 return false;
810 }
is_vmalloc_or_module_addr(const void * x)811 static inline int is_vmalloc_or_module_addr(const void *x)
812 {
813 return 0;
814 }
815 #endif
816
817 /*
818 * How many times the entire folio is mapped as a single unit (eg by a
819 * PMD or PUD entry). This is probably not what you want, except for
820 * debugging purposes; look at folio_mapcount() or page_mapcount()
821 * instead.
822 */
folio_entire_mapcount(struct folio * folio)823 static inline int folio_entire_mapcount(struct folio *folio)
824 {
825 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
826 return atomic_read(folio_mapcount_ptr(folio)) + 1;
827 }
828
829 /*
830 * Mapcount of compound page as a whole, does not include mapped sub-pages.
831 *
832 * Must be called only for compound pages.
833 */
compound_mapcount(struct page * page)834 static inline int compound_mapcount(struct page *page)
835 {
836 return folio_entire_mapcount(page_folio(page));
837 }
838
839 /*
840 * The atomic page->_mapcount, starts from -1: so that transitions
841 * both from it and to it can be tracked, using atomic_inc_and_test
842 * and atomic_add_negative(-1).
843 */
page_mapcount_reset(struct page * page)844 static inline void page_mapcount_reset(struct page *page)
845 {
846 atomic_set(&(page)->_mapcount, -1);
847 }
848
849 int __page_mapcount(struct page *page);
850
851 /*
852 * Mapcount of 0-order page; when compound sub-page, includes
853 * compound_mapcount().
854 *
855 * Result is undefined for pages which cannot be mapped into userspace.
856 * For example SLAB or special types of pages. See function page_has_type().
857 * They use this place in struct page differently.
858 */
page_mapcount(struct page * page)859 static inline int page_mapcount(struct page *page)
860 {
861 if (unlikely(PageCompound(page)))
862 return __page_mapcount(page);
863 return atomic_read(&page->_mapcount) + 1;
864 }
865
866 int folio_mapcount(struct folio *folio);
867
868 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
total_mapcount(struct page * page)869 static inline int total_mapcount(struct page *page)
870 {
871 return folio_mapcount(page_folio(page));
872 }
873
874 #else
total_mapcount(struct page * page)875 static inline int total_mapcount(struct page *page)
876 {
877 return page_mapcount(page);
878 }
879 #endif
880
virt_to_head_page(const void * x)881 static inline struct page *virt_to_head_page(const void *x)
882 {
883 struct page *page = virt_to_page(x);
884
885 return compound_head(page);
886 }
887
virt_to_folio(const void * x)888 static inline struct folio *virt_to_folio(const void *x)
889 {
890 struct page *page = virt_to_page(x);
891
892 return page_folio(page);
893 }
894
895 void __folio_put(struct folio *folio);
896
897 void put_pages_list(struct list_head *pages);
898
899 void split_page(struct page *page, unsigned int order);
900 void folio_copy(struct folio *dst, struct folio *src);
901
902 unsigned long nr_free_buffer_pages(void);
903
904 /*
905 * Compound pages have a destructor function. Provide a
906 * prototype for that function and accessor functions.
907 * These are _only_ valid on the head of a compound page.
908 */
909 typedef void compound_page_dtor(struct page *);
910
911 /* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
912 enum compound_dtor_id {
913 NULL_COMPOUND_DTOR,
914 COMPOUND_PAGE_DTOR,
915 #ifdef CONFIG_HUGETLB_PAGE
916 HUGETLB_PAGE_DTOR,
917 #endif
918 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
919 TRANSHUGE_PAGE_DTOR,
920 #endif
921 NR_COMPOUND_DTORS,
922 };
923 extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
924
set_compound_page_dtor(struct page * page,enum compound_dtor_id compound_dtor)925 static inline void set_compound_page_dtor(struct page *page,
926 enum compound_dtor_id compound_dtor)
927 {
928 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
929 page[1].compound_dtor = compound_dtor;
930 }
931
932 void destroy_large_folio(struct folio *folio);
933
head_compound_pincount(struct page * head)934 static inline int head_compound_pincount(struct page *head)
935 {
936 return atomic_read(compound_pincount_ptr(head));
937 }
938
set_compound_order(struct page * page,unsigned int order)939 static inline void set_compound_order(struct page *page, unsigned int order)
940 {
941 page[1].compound_order = order;
942 #ifdef CONFIG_64BIT
943 page[1].compound_nr = 1U << order;
944 #endif
945 }
946
947 /* Returns the number of pages in this potentially compound page. */
compound_nr(struct page * page)948 static inline unsigned long compound_nr(struct page *page)
949 {
950 if (!PageHead(page))
951 return 1;
952 #ifdef CONFIG_64BIT
953 return page[1].compound_nr;
954 #else
955 return 1UL << compound_order(page);
956 #endif
957 }
958
959 /* Returns the number of bytes in this potentially compound page. */
page_size(struct page * page)960 static inline unsigned long page_size(struct page *page)
961 {
962 return PAGE_SIZE << compound_order(page);
963 }
964
965 /* Returns the number of bits needed for the number of bytes in a page */
page_shift(struct page * page)966 static inline unsigned int page_shift(struct page *page)
967 {
968 return PAGE_SHIFT + compound_order(page);
969 }
970
971 /**
972 * thp_order - Order of a transparent huge page.
973 * @page: Head page of a transparent huge page.
974 */
thp_order(struct page * page)975 static inline unsigned int thp_order(struct page *page)
976 {
977 VM_BUG_ON_PGFLAGS(PageTail(page), page);
978 return compound_order(page);
979 }
980
981 /**
982 * thp_nr_pages - The number of regular pages in this huge page.
983 * @page: The head page of a huge page.
984 */
thp_nr_pages(struct page * page)985 static inline int thp_nr_pages(struct page *page)
986 {
987 VM_BUG_ON_PGFLAGS(PageTail(page), page);
988 return compound_nr(page);
989 }
990
991 /**
992 * thp_size - Size of a transparent huge page.
993 * @page: Head page of a transparent huge page.
994 *
995 * Return: Number of bytes in this page.
996 */
thp_size(struct page * page)997 static inline unsigned long thp_size(struct page *page)
998 {
999 return PAGE_SIZE << thp_order(page);
1000 }
1001
1002 void free_compound_page(struct page *page);
1003
1004 #ifdef CONFIG_MMU
1005 /*
1006 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1007 * servicing faults for write access. In the normal case, do always want
1008 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1009 * that do not have writing enabled, when used by access_process_vm.
1010 */
maybe_mkwrite(pte_t pte,struct vm_area_struct * vma)1011 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1012 {
1013 if (likely(vma->vm_flags & VM_WRITE))
1014 pte = pte_mkwrite(pte);
1015 return pte;
1016 }
1017
1018 vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1019 void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1020
1021 vm_fault_t finish_fault(struct vm_fault *vmf);
1022 vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1023 #endif
1024
1025 /*
1026 * Multiple processes may "see" the same page. E.g. for untouched
1027 * mappings of /dev/null, all processes see the same page full of
1028 * zeroes, and text pages of executables and shared libraries have
1029 * only one copy in memory, at most, normally.
1030 *
1031 * For the non-reserved pages, page_count(page) denotes a reference count.
1032 * page_count() == 0 means the page is free. page->lru is then used for
1033 * freelist management in the buddy allocator.
1034 * page_count() > 0 means the page has been allocated.
1035 *
1036 * Pages are allocated by the slab allocator in order to provide memory
1037 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1038 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1039 * unless a particular usage is carefully commented. (the responsibility of
1040 * freeing the kmalloc memory is the caller's, of course).
1041 *
1042 * A page may be used by anyone else who does a __get_free_page().
1043 * In this case, page_count still tracks the references, and should only
1044 * be used through the normal accessor functions. The top bits of page->flags
1045 * and page->virtual store page management information, but all other fields
1046 * are unused and could be used privately, carefully. The management of this
1047 * page is the responsibility of the one who allocated it, and those who have
1048 * subsequently been given references to it.
1049 *
1050 * The other pages (we may call them "pagecache pages") are completely
1051 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1052 * The following discussion applies only to them.
1053 *
1054 * A pagecache page contains an opaque `private' member, which belongs to the
1055 * page's address_space. Usually, this is the address of a circular list of
1056 * the page's disk buffers. PG_private must be set to tell the VM to call
1057 * into the filesystem to release these pages.
1058 *
1059 * A page may belong to an inode's memory mapping. In this case, page->mapping
1060 * is the pointer to the inode, and page->index is the file offset of the page,
1061 * in units of PAGE_SIZE.
1062 *
1063 * If pagecache pages are not associated with an inode, they are said to be
1064 * anonymous pages. These may become associated with the swapcache, and in that
1065 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1066 *
1067 * In either case (swapcache or inode backed), the pagecache itself holds one
1068 * reference to the page. Setting PG_private should also increment the
1069 * refcount. The each user mapping also has a reference to the page.
1070 *
1071 * The pagecache pages are stored in a per-mapping radix tree, which is
1072 * rooted at mapping->i_pages, and indexed by offset.
1073 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1074 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1075 *
1076 * All pagecache pages may be subject to I/O:
1077 * - inode pages may need to be read from disk,
1078 * - inode pages which have been modified and are MAP_SHARED may need
1079 * to be written back to the inode on disk,
1080 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1081 * modified may need to be swapped out to swap space and (later) to be read
1082 * back into memory.
1083 */
1084
1085 #if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1086 DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1087
1088 bool __put_devmap_managed_page_refs(struct page *page, int refs);
put_devmap_managed_page_refs(struct page * page,int refs)1089 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1090 {
1091 if (!static_branch_unlikely(&devmap_managed_key))
1092 return false;
1093 if (!is_zone_device_page(page))
1094 return false;
1095 return __put_devmap_managed_page_refs(page, refs);
1096 }
1097 #else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
put_devmap_managed_page_refs(struct page * page,int refs)1098 static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1099 {
1100 return false;
1101 }
1102 #endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1103
put_devmap_managed_page(struct page * page)1104 static inline bool put_devmap_managed_page(struct page *page)
1105 {
1106 return put_devmap_managed_page_refs(page, 1);
1107 }
1108
1109 /* 127: arbitrary random number, small enough to assemble well */
1110 #define folio_ref_zero_or_close_to_overflow(folio) \
1111 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1112
1113 /**
1114 * folio_get - Increment the reference count on a folio.
1115 * @folio: The folio.
1116 *
1117 * Context: May be called in any context, as long as you know that
1118 * you have a refcount on the folio. If you do not already have one,
1119 * folio_try_get() may be the right interface for you to use.
1120 */
folio_get(struct folio * folio)1121 static inline void folio_get(struct folio *folio)
1122 {
1123 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1124 folio_ref_inc(folio);
1125 }
1126
get_page(struct page * page)1127 static inline void get_page(struct page *page)
1128 {
1129 folio_get(page_folio(page));
1130 }
1131
1132 bool __must_check try_grab_page(struct page *page, unsigned int flags);
1133
try_get_page(struct page * page)1134 static inline __must_check bool try_get_page(struct page *page)
1135 {
1136 page = compound_head(page);
1137 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1138 return false;
1139 page_ref_inc(page);
1140 return true;
1141 }
1142
1143 /**
1144 * folio_put - Decrement the reference count on a folio.
1145 * @folio: The folio.
1146 *
1147 * If the folio's reference count reaches zero, the memory will be
1148 * released back to the page allocator and may be used by another
1149 * allocation immediately. Do not access the memory or the struct folio
1150 * after calling folio_put() unless you can be sure that it wasn't the
1151 * last reference.
1152 *
1153 * Context: May be called in process or interrupt context, but not in NMI
1154 * context. May be called while holding a spinlock.
1155 */
folio_put(struct folio * folio)1156 static inline void folio_put(struct folio *folio)
1157 {
1158 if (folio_put_testzero(folio))
1159 __folio_put(folio);
1160 }
1161
1162 /**
1163 * folio_put_refs - Reduce the reference count on a folio.
1164 * @folio: The folio.
1165 * @refs: The amount to subtract from the folio's reference count.
1166 *
1167 * If the folio's reference count reaches zero, the memory will be
1168 * released back to the page allocator and may be used by another
1169 * allocation immediately. Do not access the memory or the struct folio
1170 * after calling folio_put_refs() unless you can be sure that these weren't
1171 * the last references.
1172 *
1173 * Context: May be called in process or interrupt context, but not in NMI
1174 * context. May be called while holding a spinlock.
1175 */
folio_put_refs(struct folio * folio,int refs)1176 static inline void folio_put_refs(struct folio *folio, int refs)
1177 {
1178 if (folio_ref_sub_and_test(folio, refs))
1179 __folio_put(folio);
1180 }
1181
1182 void release_pages(struct page **pages, int nr);
1183
1184 /**
1185 * folios_put - Decrement the reference count on an array of folios.
1186 * @folios: The folios.
1187 * @nr: How many folios there are.
1188 *
1189 * Like folio_put(), but for an array of folios. This is more efficient
1190 * than writing the loop yourself as it will optimise the locks which
1191 * need to be taken if the folios are freed.
1192 *
1193 * Context: May be called in process or interrupt context, but not in NMI
1194 * context. May be called while holding a spinlock.
1195 */
folios_put(struct folio ** folios,unsigned int nr)1196 static inline void folios_put(struct folio **folios, unsigned int nr)
1197 {
1198 release_pages((struct page **)folios, nr);
1199 }
1200
put_page(struct page * page)1201 static inline void put_page(struct page *page)
1202 {
1203 struct folio *folio = page_folio(page);
1204
1205 /*
1206 * For some devmap managed pages we need to catch refcount transition
1207 * from 2 to 1:
1208 */
1209 if (put_devmap_managed_page(&folio->page))
1210 return;
1211 folio_put(folio);
1212 }
1213
1214 /*
1215 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1216 * the page's refcount so that two separate items are tracked: the original page
1217 * reference count, and also a new count of how many pin_user_pages() calls were
1218 * made against the page. ("gup-pinned" is another term for the latter).
1219 *
1220 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1221 * distinct from normal pages. As such, the unpin_user_page() call (and its
1222 * variants) must be used in order to release gup-pinned pages.
1223 *
1224 * Choice of value:
1225 *
1226 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1227 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1228 * simpler, due to the fact that adding an even power of two to the page
1229 * refcount has the effect of using only the upper N bits, for the code that
1230 * counts up using the bias value. This means that the lower bits are left for
1231 * the exclusive use of the original code that increments and decrements by one
1232 * (or at least, by much smaller values than the bias value).
1233 *
1234 * Of course, once the lower bits overflow into the upper bits (and this is
1235 * OK, because subtraction recovers the original values), then visual inspection
1236 * no longer suffices to directly view the separate counts. However, for normal
1237 * applications that don't have huge page reference counts, this won't be an
1238 * issue.
1239 *
1240 * Locking: the lockless algorithm described in folio_try_get_rcu()
1241 * provides safe operation for get_user_pages(), page_mkclean() and
1242 * other calls that race to set up page table entries.
1243 */
1244 #define GUP_PIN_COUNTING_BIAS (1U << 10)
1245
1246 void unpin_user_page(struct page *page);
1247 void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1248 bool make_dirty);
1249 void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1250 bool make_dirty);
1251 void unpin_user_pages(struct page **pages, unsigned long npages);
1252
is_cow_mapping(vm_flags_t flags)1253 static inline bool is_cow_mapping(vm_flags_t flags)
1254 {
1255 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1256 }
1257
1258 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1259 #define SECTION_IN_PAGE_FLAGS
1260 #endif
1261
1262 /*
1263 * The identification function is mainly used by the buddy allocator for
1264 * determining if two pages could be buddies. We are not really identifying
1265 * the zone since we could be using the section number id if we do not have
1266 * node id available in page flags.
1267 * We only guarantee that it will return the same value for two combinable
1268 * pages in a zone.
1269 */
page_zone_id(struct page * page)1270 static inline int page_zone_id(struct page *page)
1271 {
1272 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1273 }
1274
1275 #ifdef NODE_NOT_IN_PAGE_FLAGS
1276 extern int page_to_nid(const struct page *page);
1277 #else
page_to_nid(const struct page * page)1278 static inline int page_to_nid(const struct page *page)
1279 {
1280 struct page *p = (struct page *)page;
1281
1282 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1283 }
1284 #endif
1285
folio_nid(const struct folio * folio)1286 static inline int folio_nid(const struct folio *folio)
1287 {
1288 return page_to_nid(&folio->page);
1289 }
1290
1291 #ifdef CONFIG_NUMA_BALANCING
1292 /* page access time bits needs to hold at least 4 seconds */
1293 #define PAGE_ACCESS_TIME_MIN_BITS 12
1294 #if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1295 #define PAGE_ACCESS_TIME_BUCKETS \
1296 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1297 #else
1298 #define PAGE_ACCESS_TIME_BUCKETS 0
1299 #endif
1300
1301 #define PAGE_ACCESS_TIME_MASK \
1302 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1303
cpu_pid_to_cpupid(int cpu,int pid)1304 static inline int cpu_pid_to_cpupid(int cpu, int pid)
1305 {
1306 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1307 }
1308
cpupid_to_pid(int cpupid)1309 static inline int cpupid_to_pid(int cpupid)
1310 {
1311 return cpupid & LAST__PID_MASK;
1312 }
1313
cpupid_to_cpu(int cpupid)1314 static inline int cpupid_to_cpu(int cpupid)
1315 {
1316 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1317 }
1318
cpupid_to_nid(int cpupid)1319 static inline int cpupid_to_nid(int cpupid)
1320 {
1321 return cpu_to_node(cpupid_to_cpu(cpupid));
1322 }
1323
cpupid_pid_unset(int cpupid)1324 static inline bool cpupid_pid_unset(int cpupid)
1325 {
1326 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1327 }
1328
cpupid_cpu_unset(int cpupid)1329 static inline bool cpupid_cpu_unset(int cpupid)
1330 {
1331 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1332 }
1333
__cpupid_match_pid(pid_t task_pid,int cpupid)1334 static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1335 {
1336 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1337 }
1338
1339 #define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1340 #ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
page_cpupid_xchg_last(struct page * page,int cpupid)1341 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1342 {
1343 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1344 }
1345
page_cpupid_last(struct page * page)1346 static inline int page_cpupid_last(struct page *page)
1347 {
1348 return page->_last_cpupid;
1349 }
page_cpupid_reset_last(struct page * page)1350 static inline void page_cpupid_reset_last(struct page *page)
1351 {
1352 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1353 }
1354 #else
page_cpupid_last(struct page * page)1355 static inline int page_cpupid_last(struct page *page)
1356 {
1357 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1358 }
1359
1360 extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1361
page_cpupid_reset_last(struct page * page)1362 static inline void page_cpupid_reset_last(struct page *page)
1363 {
1364 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1365 }
1366 #endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1367
xchg_page_access_time(struct page * page,int time)1368 static inline int xchg_page_access_time(struct page *page, int time)
1369 {
1370 int last_time;
1371
1372 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1373 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1374 }
1375 #else /* !CONFIG_NUMA_BALANCING */
page_cpupid_xchg_last(struct page * page,int cpupid)1376 static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1377 {
1378 return page_to_nid(page); /* XXX */
1379 }
1380
xchg_page_access_time(struct page * page,int time)1381 static inline int xchg_page_access_time(struct page *page, int time)
1382 {
1383 return 0;
1384 }
1385
page_cpupid_last(struct page * page)1386 static inline int page_cpupid_last(struct page *page)
1387 {
1388 return page_to_nid(page); /* XXX */
1389 }
1390
cpupid_to_nid(int cpupid)1391 static inline int cpupid_to_nid(int cpupid)
1392 {
1393 return -1;
1394 }
1395
cpupid_to_pid(int cpupid)1396 static inline int cpupid_to_pid(int cpupid)
1397 {
1398 return -1;
1399 }
1400
cpupid_to_cpu(int cpupid)1401 static inline int cpupid_to_cpu(int cpupid)
1402 {
1403 return -1;
1404 }
1405
cpu_pid_to_cpupid(int nid,int pid)1406 static inline int cpu_pid_to_cpupid(int nid, int pid)
1407 {
1408 return -1;
1409 }
1410
cpupid_pid_unset(int cpupid)1411 static inline bool cpupid_pid_unset(int cpupid)
1412 {
1413 return true;
1414 }
1415
page_cpupid_reset_last(struct page * page)1416 static inline void page_cpupid_reset_last(struct page *page)
1417 {
1418 }
1419
cpupid_match_pid(struct task_struct * task,int cpupid)1420 static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1421 {
1422 return false;
1423 }
1424 #endif /* CONFIG_NUMA_BALANCING */
1425
1426 #if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1427
1428 /*
1429 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1430 * setting tags for all pages to native kernel tag value 0xff, as the default
1431 * value 0x00 maps to 0xff.
1432 */
1433
page_kasan_tag(const struct page * page)1434 static inline u8 page_kasan_tag(const struct page *page)
1435 {
1436 u8 tag = 0xff;
1437
1438 if (kasan_enabled()) {
1439 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1440 tag ^= 0xff;
1441 }
1442
1443 return tag;
1444 }
1445
page_kasan_tag_set(struct page * page,u8 tag)1446 static inline void page_kasan_tag_set(struct page *page, u8 tag)
1447 {
1448 unsigned long old_flags, flags;
1449
1450 if (!kasan_enabled())
1451 return;
1452
1453 tag ^= 0xff;
1454 old_flags = READ_ONCE(page->flags);
1455 do {
1456 flags = old_flags;
1457 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1458 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1459 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1460 }
1461
page_kasan_tag_reset(struct page * page)1462 static inline void page_kasan_tag_reset(struct page *page)
1463 {
1464 if (kasan_enabled())
1465 page_kasan_tag_set(page, 0xff);
1466 }
1467
1468 #else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1469
page_kasan_tag(const struct page * page)1470 static inline u8 page_kasan_tag(const struct page *page)
1471 {
1472 return 0xff;
1473 }
1474
page_kasan_tag_set(struct page * page,u8 tag)1475 static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
page_kasan_tag_reset(struct page * page)1476 static inline void page_kasan_tag_reset(struct page *page) { }
1477
1478 #endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1479
page_zone(const struct page * page)1480 static inline struct zone *page_zone(const struct page *page)
1481 {
1482 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1483 }
1484
page_pgdat(const struct page * page)1485 static inline pg_data_t *page_pgdat(const struct page *page)
1486 {
1487 return NODE_DATA(page_to_nid(page));
1488 }
1489
folio_zone(const struct folio * folio)1490 static inline struct zone *folio_zone(const struct folio *folio)
1491 {
1492 return page_zone(&folio->page);
1493 }
1494
folio_pgdat(const struct folio * folio)1495 static inline pg_data_t *folio_pgdat(const struct folio *folio)
1496 {
1497 return page_pgdat(&folio->page);
1498 }
1499
1500 #ifdef SECTION_IN_PAGE_FLAGS
set_page_section(struct page * page,unsigned long section)1501 static inline void set_page_section(struct page *page, unsigned long section)
1502 {
1503 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1504 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1505 }
1506
page_to_section(const struct page * page)1507 static inline unsigned long page_to_section(const struct page *page)
1508 {
1509 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1510 }
1511 #endif
1512
1513 /**
1514 * folio_pfn - Return the Page Frame Number of a folio.
1515 * @folio: The folio.
1516 *
1517 * A folio may contain multiple pages. The pages have consecutive
1518 * Page Frame Numbers.
1519 *
1520 * Return: The Page Frame Number of the first page in the folio.
1521 */
folio_pfn(struct folio * folio)1522 static inline unsigned long folio_pfn(struct folio *folio)
1523 {
1524 return page_to_pfn(&folio->page);
1525 }
1526
pfn_folio(unsigned long pfn)1527 static inline struct folio *pfn_folio(unsigned long pfn)
1528 {
1529 return page_folio(pfn_to_page(pfn));
1530 }
1531
folio_pincount_ptr(struct folio * folio)1532 static inline atomic_t *folio_pincount_ptr(struct folio *folio)
1533 {
1534 return &folio_page(folio, 1)->compound_pincount;
1535 }
1536
1537 /**
1538 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1539 * @folio: The folio.
1540 *
1541 * This function checks if a folio has been pinned via a call to
1542 * a function in the pin_user_pages() family.
1543 *
1544 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1545 * because it means "definitely not pinned for DMA", but true means "probably
1546 * pinned for DMA, but possibly a false positive due to having at least
1547 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1548 *
1549 * False positives are OK, because: a) it's unlikely for a folio to
1550 * get that many refcounts, and b) all the callers of this routine are
1551 * expected to be able to deal gracefully with a false positive.
1552 *
1553 * For large folios, the result will be exactly correct. That's because
1554 * we have more tracking data available: the compound_pincount is used
1555 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1556 *
1557 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1558 *
1559 * Return: True, if it is likely that the page has been "dma-pinned".
1560 * False, if the page is definitely not dma-pinned.
1561 */
folio_maybe_dma_pinned(struct folio * folio)1562 static inline bool folio_maybe_dma_pinned(struct folio *folio)
1563 {
1564 if (folio_test_large(folio))
1565 return atomic_read(folio_pincount_ptr(folio)) > 0;
1566
1567 /*
1568 * folio_ref_count() is signed. If that refcount overflows, then
1569 * folio_ref_count() returns a negative value, and callers will avoid
1570 * further incrementing the refcount.
1571 *
1572 * Here, for that overflow case, use the sign bit to count a little
1573 * bit higher via unsigned math, and thus still get an accurate result.
1574 */
1575 return ((unsigned int)folio_ref_count(folio)) >=
1576 GUP_PIN_COUNTING_BIAS;
1577 }
1578
page_maybe_dma_pinned(struct page * page)1579 static inline bool page_maybe_dma_pinned(struct page *page)
1580 {
1581 return folio_maybe_dma_pinned(page_folio(page));
1582 }
1583
1584 /*
1585 * This should most likely only be called during fork() to see whether we
1586 * should break the cow immediately for an anon page on the src mm.
1587 *
1588 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1589 */
page_needs_cow_for_dma(struct vm_area_struct * vma,struct page * page)1590 static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1591 struct page *page)
1592 {
1593 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1594
1595 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1596 return false;
1597
1598 return page_maybe_dma_pinned(page);
1599 }
1600
1601 /* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1602 #ifdef CONFIG_MIGRATION
is_longterm_pinnable_page(struct page * page)1603 static inline bool is_longterm_pinnable_page(struct page *page)
1604 {
1605 #ifdef CONFIG_CMA
1606 int mt = get_pageblock_migratetype(page);
1607
1608 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1609 return false;
1610 #endif
1611 /* The zero page may always be pinned */
1612 if (is_zero_pfn(page_to_pfn(page)))
1613 return true;
1614
1615 /* Coherent device memory must always allow eviction. */
1616 if (is_device_coherent_page(page))
1617 return false;
1618
1619 /* Otherwise, non-movable zone pages can be pinned. */
1620 return !is_zone_movable_page(page);
1621 }
1622 #else
is_longterm_pinnable_page(struct page * page)1623 static inline bool is_longterm_pinnable_page(struct page *page)
1624 {
1625 return true;
1626 }
1627 #endif
1628
folio_is_longterm_pinnable(struct folio * folio)1629 static inline bool folio_is_longterm_pinnable(struct folio *folio)
1630 {
1631 return is_longterm_pinnable_page(&folio->page);
1632 }
1633
set_page_zone(struct page * page,enum zone_type zone)1634 static inline void set_page_zone(struct page *page, enum zone_type zone)
1635 {
1636 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1637 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1638 }
1639
set_page_node(struct page * page,unsigned long node)1640 static inline void set_page_node(struct page *page, unsigned long node)
1641 {
1642 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1643 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1644 }
1645
set_page_links(struct page * page,enum zone_type zone,unsigned long node,unsigned long pfn)1646 static inline void set_page_links(struct page *page, enum zone_type zone,
1647 unsigned long node, unsigned long pfn)
1648 {
1649 set_page_zone(page, zone);
1650 set_page_node(page, node);
1651 #ifdef SECTION_IN_PAGE_FLAGS
1652 set_page_section(page, pfn_to_section_nr(pfn));
1653 #endif
1654 }
1655
1656 /**
1657 * folio_nr_pages - The number of pages in the folio.
1658 * @folio: The folio.
1659 *
1660 * Return: A positive power of two.
1661 */
folio_nr_pages(struct folio * folio)1662 static inline long folio_nr_pages(struct folio *folio)
1663 {
1664 if (!folio_test_large(folio))
1665 return 1;
1666 #ifdef CONFIG_64BIT
1667 return folio->_folio_nr_pages;
1668 #else
1669 return 1L << folio->_folio_order;
1670 #endif
1671 }
1672
1673 /**
1674 * folio_next - Move to the next physical folio.
1675 * @folio: The folio we're currently operating on.
1676 *
1677 * If you have physically contiguous memory which may span more than
1678 * one folio (eg a &struct bio_vec), use this function to move from one
1679 * folio to the next. Do not use it if the memory is only virtually
1680 * contiguous as the folios are almost certainly not adjacent to each
1681 * other. This is the folio equivalent to writing ``page++``.
1682 *
1683 * Context: We assume that the folios are refcounted and/or locked at a
1684 * higher level and do not adjust the reference counts.
1685 * Return: The next struct folio.
1686 */
folio_next(struct folio * folio)1687 static inline struct folio *folio_next(struct folio *folio)
1688 {
1689 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
1690 }
1691
1692 /**
1693 * folio_shift - The size of the memory described by this folio.
1694 * @folio: The folio.
1695 *
1696 * A folio represents a number of bytes which is a power-of-two in size.
1697 * This function tells you which power-of-two the folio is. See also
1698 * folio_size() and folio_order().
1699 *
1700 * Context: The caller should have a reference on the folio to prevent
1701 * it from being split. It is not necessary for the folio to be locked.
1702 * Return: The base-2 logarithm of the size of this folio.
1703 */
folio_shift(struct folio * folio)1704 static inline unsigned int folio_shift(struct folio *folio)
1705 {
1706 return PAGE_SHIFT + folio_order(folio);
1707 }
1708
1709 /**
1710 * folio_size - The number of bytes in a folio.
1711 * @folio: The folio.
1712 *
1713 * Context: The caller should have a reference on the folio to prevent
1714 * it from being split. It is not necessary for the folio to be locked.
1715 * Return: The number of bytes in this folio.
1716 */
folio_size(struct folio * folio)1717 static inline size_t folio_size(struct folio *folio)
1718 {
1719 return PAGE_SIZE << folio_order(folio);
1720 }
1721
1722 #ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
arch_make_page_accessible(struct page * page)1723 static inline int arch_make_page_accessible(struct page *page)
1724 {
1725 return 0;
1726 }
1727 #endif
1728
1729 #ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
arch_make_folio_accessible(struct folio * folio)1730 static inline int arch_make_folio_accessible(struct folio *folio)
1731 {
1732 int ret;
1733 long i, nr = folio_nr_pages(folio);
1734
1735 for (i = 0; i < nr; i++) {
1736 ret = arch_make_page_accessible(folio_page(folio, i));
1737 if (ret)
1738 break;
1739 }
1740
1741 return ret;
1742 }
1743 #endif
1744
1745 /*
1746 * Some inline functions in vmstat.h depend on page_zone()
1747 */
1748 #include <linux/vmstat.h>
1749
lowmem_page_address(const struct page * page)1750 static __always_inline void *lowmem_page_address(const struct page *page)
1751 {
1752 return page_to_virt(page);
1753 }
1754
1755 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1756 #define HASHED_PAGE_VIRTUAL
1757 #endif
1758
1759 #if defined(WANT_PAGE_VIRTUAL)
page_address(const struct page * page)1760 static inline void *page_address(const struct page *page)
1761 {
1762 return page->virtual;
1763 }
set_page_address(struct page * page,void * address)1764 static inline void set_page_address(struct page *page, void *address)
1765 {
1766 page->virtual = address;
1767 }
1768 #define page_address_init() do { } while(0)
1769 #endif
1770
1771 #if defined(HASHED_PAGE_VIRTUAL)
1772 void *page_address(const struct page *page);
1773 void set_page_address(struct page *page, void *virtual);
1774 void page_address_init(void);
1775 #endif
1776
1777 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1778 #define page_address(page) lowmem_page_address(page)
1779 #define set_page_address(page, address) do { } while(0)
1780 #define page_address_init() do { } while(0)
1781 #endif
1782
folio_address(const struct folio * folio)1783 static inline void *folio_address(const struct folio *folio)
1784 {
1785 return page_address(&folio->page);
1786 }
1787
1788 extern void *page_rmapping(struct page *page);
1789 extern pgoff_t __page_file_index(struct page *page);
1790
1791 /*
1792 * Return the pagecache index of the passed page. Regular pagecache pages
1793 * use ->index whereas swapcache pages use swp_offset(->private)
1794 */
page_index(struct page * page)1795 static inline pgoff_t page_index(struct page *page)
1796 {
1797 if (unlikely(PageSwapCache(page)))
1798 return __page_file_index(page);
1799 return page->index;
1800 }
1801
1802 bool page_mapped(struct page *page);
1803 bool folio_mapped(struct folio *folio);
1804
1805 /*
1806 * Return true only if the page has been allocated with
1807 * ALLOC_NO_WATERMARKS and the low watermark was not
1808 * met implying that the system is under some pressure.
1809 */
page_is_pfmemalloc(const struct page * page)1810 static inline bool page_is_pfmemalloc(const struct page *page)
1811 {
1812 /*
1813 * lru.next has bit 1 set if the page is allocated from the
1814 * pfmemalloc reserves. Callers may simply overwrite it if
1815 * they do not need to preserve that information.
1816 */
1817 return (uintptr_t)page->lru.next & BIT(1);
1818 }
1819
1820 /*
1821 * Only to be called by the page allocator on a freshly allocated
1822 * page.
1823 */
set_page_pfmemalloc(struct page * page)1824 static inline void set_page_pfmemalloc(struct page *page)
1825 {
1826 page->lru.next = (void *)BIT(1);
1827 }
1828
clear_page_pfmemalloc(struct page * page)1829 static inline void clear_page_pfmemalloc(struct page *page)
1830 {
1831 page->lru.next = NULL;
1832 }
1833
1834 /*
1835 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1836 */
1837 extern void pagefault_out_of_memory(void);
1838
1839 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1840 #define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
1841 #define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
1842
1843 /*
1844 * Flags passed to show_mem() and show_free_areas() to suppress output in
1845 * various contexts.
1846 */
1847 #define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
1848
1849 extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_free_areas(unsigned int flags,nodemask_t * nodemask)1850 static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
1851 {
1852 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
1853 }
1854
1855 /*
1856 * Parameter block passed down to zap_pte_range in exceptional cases.
1857 */
1858 struct zap_details {
1859 struct folio *single_folio; /* Locked folio to be unmapped */
1860 bool even_cows; /* Zap COWed private pages too? */
1861 zap_flags_t zap_flags; /* Extra flags for zapping */
1862 };
1863
1864 /*
1865 * Whether to drop the pte markers, for example, the uffd-wp information for
1866 * file-backed memory. This should only be specified when we will completely
1867 * drop the page in the mm, either by truncation or unmapping of the vma. By
1868 * default, the flag is not set.
1869 */
1870 #define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
1871 /* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
1872 #define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
1873
1874 #ifdef CONFIG_MMU
1875 extern bool can_do_mlock(void);
1876 #else
can_do_mlock(void)1877 static inline bool can_do_mlock(void) { return false; }
1878 #endif
1879 extern int user_shm_lock(size_t, struct ucounts *);
1880 extern void user_shm_unlock(size_t, struct ucounts *);
1881
1882 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1883 pte_t pte);
1884 struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1885 pmd_t pmd);
1886
1887 void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1888 unsigned long size);
1889 void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1890 unsigned long size);
1891 void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1892 unsigned long size, struct zap_details *details);
1893 void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1894 struct vm_area_struct *start_vma, unsigned long start,
1895 unsigned long end);
1896
1897 struct mmu_notifier_range;
1898
1899 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
1900 unsigned long end, unsigned long floor, unsigned long ceiling);
1901 int
1902 copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
1903 int follow_pte(struct mm_struct *mm, unsigned long address,
1904 pte_t **ptepp, spinlock_t **ptlp);
1905 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1906 unsigned long *pfn);
1907 int follow_phys(struct vm_area_struct *vma, unsigned long address,
1908 unsigned int flags, unsigned long *prot, resource_size_t *phys);
1909 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1910 void *buf, int len, int write);
1911
1912 extern void truncate_pagecache(struct inode *inode, loff_t new);
1913 extern void truncate_setsize(struct inode *inode, loff_t newsize);
1914 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
1915 void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
1916 int generic_error_remove_page(struct address_space *mapping, struct page *page);
1917
1918 #ifdef CONFIG_MMU
1919 extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1920 unsigned long address, unsigned int flags,
1921 struct pt_regs *regs);
1922 extern int fixup_user_fault(struct mm_struct *mm,
1923 unsigned long address, unsigned int fault_flags,
1924 bool *unlocked);
1925 void unmap_mapping_pages(struct address_space *mapping,
1926 pgoff_t start, pgoff_t nr, bool even_cows);
1927 void unmap_mapping_range(struct address_space *mapping,
1928 loff_t const holebegin, loff_t const holelen, int even_cows);
1929 #else
handle_mm_fault(struct vm_area_struct * vma,unsigned long address,unsigned int flags,struct pt_regs * regs)1930 static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
1931 unsigned long address, unsigned int flags,
1932 struct pt_regs *regs)
1933 {
1934 /* should never happen if there's no MMU */
1935 BUG();
1936 return VM_FAULT_SIGBUS;
1937 }
fixup_user_fault(struct mm_struct * mm,unsigned long address,unsigned int fault_flags,bool * unlocked)1938 static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
1939 unsigned int fault_flags, bool *unlocked)
1940 {
1941 /* should never happen if there's no MMU */
1942 BUG();
1943 return -EFAULT;
1944 }
unmap_mapping_pages(struct address_space * mapping,pgoff_t start,pgoff_t nr,bool even_cows)1945 static inline void unmap_mapping_pages(struct address_space *mapping,
1946 pgoff_t start, pgoff_t nr, bool even_cows) { }
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1947 static inline void unmap_mapping_range(struct address_space *mapping,
1948 loff_t const holebegin, loff_t const holelen, int even_cows) { }
1949 #endif
1950
unmap_shared_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen)1951 static inline void unmap_shared_mapping_range(struct address_space *mapping,
1952 loff_t const holebegin, loff_t const holelen)
1953 {
1954 unmap_mapping_range(mapping, holebegin, holelen, 0);
1955 }
1956
1957 extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
1958 void *buf, int len, unsigned int gup_flags);
1959 extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1960 void *buf, int len, unsigned int gup_flags);
1961 extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
1962 void *buf, int len, unsigned int gup_flags);
1963
1964 long get_user_pages_remote(struct mm_struct *mm,
1965 unsigned long start, unsigned long nr_pages,
1966 unsigned int gup_flags, struct page **pages,
1967 struct vm_area_struct **vmas, int *locked);
1968 long pin_user_pages_remote(struct mm_struct *mm,
1969 unsigned long start, unsigned long nr_pages,
1970 unsigned int gup_flags, struct page **pages,
1971 struct vm_area_struct **vmas, int *locked);
1972 long get_user_pages(unsigned long start, unsigned long nr_pages,
1973 unsigned int gup_flags, struct page **pages,
1974 struct vm_area_struct **vmas);
1975 long pin_user_pages(unsigned long start, unsigned long nr_pages,
1976 unsigned int gup_flags, struct page **pages,
1977 struct vm_area_struct **vmas);
1978 long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1979 struct page **pages, unsigned int gup_flags);
1980 long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1981 struct page **pages, unsigned int gup_flags);
1982
1983 int get_user_pages_fast(unsigned long start, int nr_pages,
1984 unsigned int gup_flags, struct page **pages);
1985 int pin_user_pages_fast(unsigned long start, int nr_pages,
1986 unsigned int gup_flags, struct page **pages);
1987
1988 int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
1989 int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
1990 struct task_struct *task, bool bypass_rlim);
1991
1992 struct kvec;
1993 int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1994 struct page **pages);
1995 struct page *get_dump_page(unsigned long addr);
1996
1997 bool folio_mark_dirty(struct folio *folio);
1998 bool set_page_dirty(struct page *page);
1999 int set_page_dirty_lock(struct page *page);
2000
2001 int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2002
2003 extern unsigned long move_page_tables(struct vm_area_struct *vma,
2004 unsigned long old_addr, struct vm_area_struct *new_vma,
2005 unsigned long new_addr, unsigned long len,
2006 bool need_rmap_locks);
2007
2008 /*
2009 * Flags used by change_protection(). For now we make it a bitmap so
2010 * that we can pass in multiple flags just like parameters. However
2011 * for now all the callers are only use one of the flags at the same
2012 * time.
2013 */
2014 /*
2015 * Whether we should manually check if we can map individual PTEs writable,
2016 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2017 * PTEs automatically in a writable mapping.
2018 */
2019 #define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2020 /* Whether this protection change is for NUMA hints */
2021 #define MM_CP_PROT_NUMA (1UL << 1)
2022 /* Whether this change is for write protecting */
2023 #define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2024 #define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2025 #define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2026 MM_CP_UFFD_WP_RESOLVE)
2027
2028 extern unsigned long change_protection(struct mmu_gather *tlb,
2029 struct vm_area_struct *vma, unsigned long start,
2030 unsigned long end, pgprot_t newprot,
2031 unsigned long cp_flags);
2032 extern int mprotect_fixup(struct mmu_gather *tlb, struct vm_area_struct *vma,
2033 struct vm_area_struct **pprev, unsigned long start,
2034 unsigned long end, unsigned long newflags);
2035
2036 /*
2037 * doesn't attempt to fault and will return short.
2038 */
2039 int get_user_pages_fast_only(unsigned long start, int nr_pages,
2040 unsigned int gup_flags, struct page **pages);
2041 int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2042 unsigned int gup_flags, struct page **pages);
2043
get_user_page_fast_only(unsigned long addr,unsigned int gup_flags,struct page ** pagep)2044 static inline bool get_user_page_fast_only(unsigned long addr,
2045 unsigned int gup_flags, struct page **pagep)
2046 {
2047 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2048 }
2049 /*
2050 * per-process(per-mm_struct) statistics.
2051 */
get_mm_counter(struct mm_struct * mm,int member)2052 static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2053 {
2054 long val = atomic_long_read(&mm->rss_stat.count[member]);
2055
2056 #ifdef SPLIT_RSS_COUNTING
2057 /*
2058 * counter is updated in asynchronous manner and may go to minus.
2059 * But it's never be expected number for users.
2060 */
2061 if (val < 0)
2062 val = 0;
2063 #endif
2064 return (unsigned long)val;
2065 }
2066
2067 void mm_trace_rss_stat(struct mm_struct *mm, int member, long count);
2068
add_mm_counter(struct mm_struct * mm,int member,long value)2069 static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2070 {
2071 long count = atomic_long_add_return(value, &mm->rss_stat.count[member]);
2072
2073 mm_trace_rss_stat(mm, member, count);
2074 }
2075
inc_mm_counter(struct mm_struct * mm,int member)2076 static inline void inc_mm_counter(struct mm_struct *mm, int member)
2077 {
2078 long count = atomic_long_inc_return(&mm->rss_stat.count[member]);
2079
2080 mm_trace_rss_stat(mm, member, count);
2081 }
2082
dec_mm_counter(struct mm_struct * mm,int member)2083 static inline void dec_mm_counter(struct mm_struct *mm, int member)
2084 {
2085 long count = atomic_long_dec_return(&mm->rss_stat.count[member]);
2086
2087 mm_trace_rss_stat(mm, member, count);
2088 }
2089
2090 /* Optimized variant when page is already known not to be PageAnon */
mm_counter_file(struct page * page)2091 static inline int mm_counter_file(struct page *page)
2092 {
2093 if (PageSwapBacked(page))
2094 return MM_SHMEMPAGES;
2095 return MM_FILEPAGES;
2096 }
2097
mm_counter(struct page * page)2098 static inline int mm_counter(struct page *page)
2099 {
2100 if (PageAnon(page))
2101 return MM_ANONPAGES;
2102 return mm_counter_file(page);
2103 }
2104
get_mm_rss(struct mm_struct * mm)2105 static inline unsigned long get_mm_rss(struct mm_struct *mm)
2106 {
2107 return get_mm_counter(mm, MM_FILEPAGES) +
2108 get_mm_counter(mm, MM_ANONPAGES) +
2109 get_mm_counter(mm, MM_SHMEMPAGES);
2110 }
2111
get_mm_hiwater_rss(struct mm_struct * mm)2112 static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2113 {
2114 return max(mm->hiwater_rss, get_mm_rss(mm));
2115 }
2116
get_mm_hiwater_vm(struct mm_struct * mm)2117 static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2118 {
2119 return max(mm->hiwater_vm, mm->total_vm);
2120 }
2121
update_hiwater_rss(struct mm_struct * mm)2122 static inline void update_hiwater_rss(struct mm_struct *mm)
2123 {
2124 unsigned long _rss = get_mm_rss(mm);
2125
2126 if ((mm)->hiwater_rss < _rss)
2127 (mm)->hiwater_rss = _rss;
2128 }
2129
update_hiwater_vm(struct mm_struct * mm)2130 static inline void update_hiwater_vm(struct mm_struct *mm)
2131 {
2132 if (mm->hiwater_vm < mm->total_vm)
2133 mm->hiwater_vm = mm->total_vm;
2134 }
2135
reset_mm_hiwater_rss(struct mm_struct * mm)2136 static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2137 {
2138 mm->hiwater_rss = get_mm_rss(mm);
2139 }
2140
setmax_mm_hiwater_rss(unsigned long * maxrss,struct mm_struct * mm)2141 static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2142 struct mm_struct *mm)
2143 {
2144 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2145
2146 if (*maxrss < hiwater_rss)
2147 *maxrss = hiwater_rss;
2148 }
2149
2150 #if defined(SPLIT_RSS_COUNTING)
2151 void sync_mm_rss(struct mm_struct *mm);
2152 #else
sync_mm_rss(struct mm_struct * mm)2153 static inline void sync_mm_rss(struct mm_struct *mm)
2154 {
2155 }
2156 #endif
2157
2158 #ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
pte_special(pte_t pte)2159 static inline int pte_special(pte_t pte)
2160 {
2161 return 0;
2162 }
2163
pte_mkspecial(pte_t pte)2164 static inline pte_t pte_mkspecial(pte_t pte)
2165 {
2166 return pte;
2167 }
2168 #endif
2169
2170 #ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
pte_devmap(pte_t pte)2171 static inline int pte_devmap(pte_t pte)
2172 {
2173 return 0;
2174 }
2175 #endif
2176
2177 int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2178
2179 extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2180 spinlock_t **ptl);
get_locked_pte(struct mm_struct * mm,unsigned long addr,spinlock_t ** ptl)2181 static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2182 spinlock_t **ptl)
2183 {
2184 pte_t *ptep;
2185 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2186 return ptep;
2187 }
2188
2189 #ifdef __PAGETABLE_P4D_FOLDED
__p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2190 static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2191 unsigned long address)
2192 {
2193 return 0;
2194 }
2195 #else
2196 int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2197 #endif
2198
2199 #if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
__pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2200 static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2201 unsigned long address)
2202 {
2203 return 0;
2204 }
mm_inc_nr_puds(struct mm_struct * mm)2205 static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
mm_dec_nr_puds(struct mm_struct * mm)2206 static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2207
2208 #else
2209 int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2210
mm_inc_nr_puds(struct mm_struct * mm)2211 static inline void mm_inc_nr_puds(struct mm_struct *mm)
2212 {
2213 if (mm_pud_folded(mm))
2214 return;
2215 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2216 }
2217
mm_dec_nr_puds(struct mm_struct * mm)2218 static inline void mm_dec_nr_puds(struct mm_struct *mm)
2219 {
2220 if (mm_pud_folded(mm))
2221 return;
2222 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2223 }
2224 #endif
2225
2226 #if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
__pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2227 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2228 unsigned long address)
2229 {
2230 return 0;
2231 }
2232
mm_inc_nr_pmds(struct mm_struct * mm)2233 static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
mm_dec_nr_pmds(struct mm_struct * mm)2234 static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2235
2236 #else
2237 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2238
mm_inc_nr_pmds(struct mm_struct * mm)2239 static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2240 {
2241 if (mm_pmd_folded(mm))
2242 return;
2243 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2244 }
2245
mm_dec_nr_pmds(struct mm_struct * mm)2246 static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2247 {
2248 if (mm_pmd_folded(mm))
2249 return;
2250 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2251 }
2252 #endif
2253
2254 #ifdef CONFIG_MMU
mm_pgtables_bytes_init(struct mm_struct * mm)2255 static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2256 {
2257 atomic_long_set(&mm->pgtables_bytes, 0);
2258 }
2259
mm_pgtables_bytes(const struct mm_struct * mm)2260 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2261 {
2262 return atomic_long_read(&mm->pgtables_bytes);
2263 }
2264
mm_inc_nr_ptes(struct mm_struct * mm)2265 static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2266 {
2267 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2268 }
2269
mm_dec_nr_ptes(struct mm_struct * mm)2270 static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2271 {
2272 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2273 }
2274 #else
2275
mm_pgtables_bytes_init(struct mm_struct * mm)2276 static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
mm_pgtables_bytes(const struct mm_struct * mm)2277 static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2278 {
2279 return 0;
2280 }
2281
mm_inc_nr_ptes(struct mm_struct * mm)2282 static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
mm_dec_nr_ptes(struct mm_struct * mm)2283 static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2284 #endif
2285
2286 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2287 int __pte_alloc_kernel(pmd_t *pmd);
2288
2289 #if defined(CONFIG_MMU)
2290
p4d_alloc(struct mm_struct * mm,pgd_t * pgd,unsigned long address)2291 static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2292 unsigned long address)
2293 {
2294 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2295 NULL : p4d_offset(pgd, address);
2296 }
2297
pud_alloc(struct mm_struct * mm,p4d_t * p4d,unsigned long address)2298 static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2299 unsigned long address)
2300 {
2301 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2302 NULL : pud_offset(p4d, address);
2303 }
2304
pmd_alloc(struct mm_struct * mm,pud_t * pud,unsigned long address)2305 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2306 {
2307 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2308 NULL: pmd_offset(pud, address);
2309 }
2310 #endif /* CONFIG_MMU */
2311
2312 #if USE_SPLIT_PTE_PTLOCKS
2313 #if ALLOC_SPLIT_PTLOCKS
2314 void __init ptlock_cache_init(void);
2315 extern bool ptlock_alloc(struct page *page);
2316 extern void ptlock_free(struct page *page);
2317
ptlock_ptr(struct page * page)2318 static inline spinlock_t *ptlock_ptr(struct page *page)
2319 {
2320 return page->ptl;
2321 }
2322 #else /* ALLOC_SPLIT_PTLOCKS */
ptlock_cache_init(void)2323 static inline void ptlock_cache_init(void)
2324 {
2325 }
2326
ptlock_alloc(struct page * page)2327 static inline bool ptlock_alloc(struct page *page)
2328 {
2329 return true;
2330 }
2331
ptlock_free(struct page * page)2332 static inline void ptlock_free(struct page *page)
2333 {
2334 }
2335
ptlock_ptr(struct page * page)2336 static inline spinlock_t *ptlock_ptr(struct page *page)
2337 {
2338 return &page->ptl;
2339 }
2340 #endif /* ALLOC_SPLIT_PTLOCKS */
2341
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2342 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2343 {
2344 return ptlock_ptr(pmd_page(*pmd));
2345 }
2346
ptlock_init(struct page * page)2347 static inline bool ptlock_init(struct page *page)
2348 {
2349 /*
2350 * prep_new_page() initialize page->private (and therefore page->ptl)
2351 * with 0. Make sure nobody took it in use in between.
2352 *
2353 * It can happen if arch try to use slab for page table allocation:
2354 * slab code uses page->slab_cache, which share storage with page->ptl.
2355 */
2356 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2357 if (!ptlock_alloc(page))
2358 return false;
2359 spin_lock_init(ptlock_ptr(page));
2360 return true;
2361 }
2362
2363 #else /* !USE_SPLIT_PTE_PTLOCKS */
2364 /*
2365 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2366 */
pte_lockptr(struct mm_struct * mm,pmd_t * pmd)2367 static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2368 {
2369 return &mm->page_table_lock;
2370 }
ptlock_cache_init(void)2371 static inline void ptlock_cache_init(void) {}
ptlock_init(struct page * page)2372 static inline bool ptlock_init(struct page *page) { return true; }
ptlock_free(struct page * page)2373 static inline void ptlock_free(struct page *page) {}
2374 #endif /* USE_SPLIT_PTE_PTLOCKS */
2375
pgtable_init(void)2376 static inline void pgtable_init(void)
2377 {
2378 ptlock_cache_init();
2379 pgtable_cache_init();
2380 }
2381
pgtable_pte_page_ctor(struct page * page)2382 static inline bool pgtable_pte_page_ctor(struct page *page)
2383 {
2384 if (!ptlock_init(page))
2385 return false;
2386 __SetPageTable(page);
2387 inc_lruvec_page_state(page, NR_PAGETABLE);
2388 return true;
2389 }
2390
pgtable_pte_page_dtor(struct page * page)2391 static inline void pgtable_pte_page_dtor(struct page *page)
2392 {
2393 ptlock_free(page);
2394 __ClearPageTable(page);
2395 dec_lruvec_page_state(page, NR_PAGETABLE);
2396 }
2397
2398 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
2399 ({ \
2400 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2401 pte_t *__pte = pte_offset_map(pmd, address); \
2402 *(ptlp) = __ptl; \
2403 spin_lock(__ptl); \
2404 __pte; \
2405 })
2406
2407 #define pte_unmap_unlock(pte, ptl) do { \
2408 spin_unlock(ptl); \
2409 pte_unmap(pte); \
2410 } while (0)
2411
2412 #define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2413
2414 #define pte_alloc_map(mm, pmd, address) \
2415 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2416
2417 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2418 (pte_alloc(mm, pmd) ? \
2419 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2420
2421 #define pte_alloc_kernel(pmd, address) \
2422 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2423 NULL: pte_offset_kernel(pmd, address))
2424
2425 #if USE_SPLIT_PMD_PTLOCKS
2426
pmd_to_page(pmd_t * pmd)2427 static struct page *pmd_to_page(pmd_t *pmd)
2428 {
2429 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2430 return virt_to_page((void *)((unsigned long) pmd & mask));
2431 }
2432
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2433 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2434 {
2435 return ptlock_ptr(pmd_to_page(pmd));
2436 }
2437
pmd_ptlock_init(struct page * page)2438 static inline bool pmd_ptlock_init(struct page *page)
2439 {
2440 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2441 page->pmd_huge_pte = NULL;
2442 #endif
2443 return ptlock_init(page);
2444 }
2445
pmd_ptlock_free(struct page * page)2446 static inline void pmd_ptlock_free(struct page *page)
2447 {
2448 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
2449 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2450 #endif
2451 ptlock_free(page);
2452 }
2453
2454 #define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
2455
2456 #else
2457
pmd_lockptr(struct mm_struct * mm,pmd_t * pmd)2458 static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2459 {
2460 return &mm->page_table_lock;
2461 }
2462
pmd_ptlock_init(struct page * page)2463 static inline bool pmd_ptlock_init(struct page *page) { return true; }
pmd_ptlock_free(struct page * page)2464 static inline void pmd_ptlock_free(struct page *page) {}
2465
2466 #define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2467
2468 #endif
2469
pmd_lock(struct mm_struct * mm,pmd_t * pmd)2470 static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2471 {
2472 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2473 spin_lock(ptl);
2474 return ptl;
2475 }
2476
pgtable_pmd_page_ctor(struct page * page)2477 static inline bool pgtable_pmd_page_ctor(struct page *page)
2478 {
2479 if (!pmd_ptlock_init(page))
2480 return false;
2481 __SetPageTable(page);
2482 inc_lruvec_page_state(page, NR_PAGETABLE);
2483 return true;
2484 }
2485
pgtable_pmd_page_dtor(struct page * page)2486 static inline void pgtable_pmd_page_dtor(struct page *page)
2487 {
2488 pmd_ptlock_free(page);
2489 __ClearPageTable(page);
2490 dec_lruvec_page_state(page, NR_PAGETABLE);
2491 }
2492
2493 /*
2494 * No scalability reason to split PUD locks yet, but follow the same pattern
2495 * as the PMD locks to make it easier if we decide to. The VM should not be
2496 * considered ready to switch to split PUD locks yet; there may be places
2497 * which need to be converted from page_table_lock.
2498 */
pud_lockptr(struct mm_struct * mm,pud_t * pud)2499 static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2500 {
2501 return &mm->page_table_lock;
2502 }
2503
pud_lock(struct mm_struct * mm,pud_t * pud)2504 static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2505 {
2506 spinlock_t *ptl = pud_lockptr(mm, pud);
2507
2508 spin_lock(ptl);
2509 return ptl;
2510 }
2511
2512 extern void __init pagecache_init(void);
2513 extern void free_initmem(void);
2514
2515 /*
2516 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2517 * into the buddy system. The freed pages will be poisoned with pattern
2518 * "poison" if it's within range [0, UCHAR_MAX].
2519 * Return pages freed into the buddy system.
2520 */
2521 extern unsigned long free_reserved_area(void *start, void *end,
2522 int poison, const char *s);
2523
2524 extern void adjust_managed_page_count(struct page *page, long count);
2525 extern void mem_init_print_info(void);
2526
2527 extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2528
2529 /* Free the reserved page into the buddy system, so it gets managed. */
free_reserved_page(struct page * page)2530 static inline void free_reserved_page(struct page *page)
2531 {
2532 ClearPageReserved(page);
2533 init_page_count(page);
2534 __free_page(page);
2535 adjust_managed_page_count(page, 1);
2536 }
2537 #define free_highmem_page(page) free_reserved_page(page)
2538
mark_page_reserved(struct page * page)2539 static inline void mark_page_reserved(struct page *page)
2540 {
2541 SetPageReserved(page);
2542 adjust_managed_page_count(page, -1);
2543 }
2544
2545 /*
2546 * Default method to free all the __init memory into the buddy system.
2547 * The freed pages will be poisoned with pattern "poison" if it's within
2548 * range [0, UCHAR_MAX].
2549 * Return pages freed into the buddy system.
2550 */
free_initmem_default(int poison)2551 static inline unsigned long free_initmem_default(int poison)
2552 {
2553 extern char __init_begin[], __init_end[];
2554
2555 return free_reserved_area(&__init_begin, &__init_end,
2556 poison, "unused kernel image (initmem)");
2557 }
2558
get_num_physpages(void)2559 static inline unsigned long get_num_physpages(void)
2560 {
2561 int nid;
2562 unsigned long phys_pages = 0;
2563
2564 for_each_online_node(nid)
2565 phys_pages += node_present_pages(nid);
2566
2567 return phys_pages;
2568 }
2569
2570 /*
2571 * Using memblock node mappings, an architecture may initialise its
2572 * zones, allocate the backing mem_map and account for memory holes in an
2573 * architecture independent manner.
2574 *
2575 * An architecture is expected to register range of page frames backed by
2576 * physical memory with memblock_add[_node]() before calling
2577 * free_area_init() passing in the PFN each zone ends at. At a basic
2578 * usage, an architecture is expected to do something like
2579 *
2580 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2581 * max_highmem_pfn};
2582 * for_each_valid_physical_page_range()
2583 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2584 * free_area_init(max_zone_pfns);
2585 */
2586 void free_area_init(unsigned long *max_zone_pfn);
2587 unsigned long node_map_pfn_alignment(void);
2588 unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2589 unsigned long end_pfn);
2590 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2591 unsigned long end_pfn);
2592 extern void get_pfn_range_for_nid(unsigned int nid,
2593 unsigned long *start_pfn, unsigned long *end_pfn);
2594
2595 #ifndef CONFIG_NUMA
early_pfn_to_nid(unsigned long pfn)2596 static inline int early_pfn_to_nid(unsigned long pfn)
2597 {
2598 return 0;
2599 }
2600 #else
2601 /* please see mm/page_alloc.c */
2602 extern int __meminit early_pfn_to_nid(unsigned long pfn);
2603 #endif
2604
2605 extern void set_dma_reserve(unsigned long new_dma_reserve);
2606 extern void memmap_init_range(unsigned long, int, unsigned long,
2607 unsigned long, unsigned long, enum meminit_context,
2608 struct vmem_altmap *, int migratetype);
2609 extern void setup_per_zone_wmarks(void);
2610 extern void calculate_min_free_kbytes(void);
2611 extern int __meminit init_per_zone_wmark_min(void);
2612 extern void mem_init(void);
2613 extern void __init mmap_init(void);
2614
2615 extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
show_mem(unsigned int flags,nodemask_t * nodemask)2616 static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
2617 {
2618 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
2619 }
2620 extern long si_mem_available(void);
2621 extern void si_meminfo(struct sysinfo * val);
2622 extern void si_meminfo_node(struct sysinfo *val, int nid);
2623 #ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
2624 extern unsigned long arch_reserved_kernel_pages(void);
2625 #endif
2626
2627 extern __printf(3, 4)
2628 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
2629
2630 extern void setup_per_cpu_pageset(void);
2631
2632 /* page_alloc.c */
2633 extern int min_free_kbytes;
2634 extern int watermark_boost_factor;
2635 extern int watermark_scale_factor;
2636 extern bool arch_has_descending_max_zone_pfns(void);
2637
2638 /* nommu.c */
2639 extern atomic_long_t mmap_pages_allocated;
2640 extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
2641
2642 /* interval_tree.c */
2643 void vma_interval_tree_insert(struct vm_area_struct *node,
2644 struct rb_root_cached *root);
2645 void vma_interval_tree_insert_after(struct vm_area_struct *node,
2646 struct vm_area_struct *prev,
2647 struct rb_root_cached *root);
2648 void vma_interval_tree_remove(struct vm_area_struct *node,
2649 struct rb_root_cached *root);
2650 struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
2651 unsigned long start, unsigned long last);
2652 struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
2653 unsigned long start, unsigned long last);
2654
2655 #define vma_interval_tree_foreach(vma, root, start, last) \
2656 for (vma = vma_interval_tree_iter_first(root, start, last); \
2657 vma; vma = vma_interval_tree_iter_next(vma, start, last))
2658
2659 void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
2660 struct rb_root_cached *root);
2661 void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
2662 struct rb_root_cached *root);
2663 struct anon_vma_chain *
2664 anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
2665 unsigned long start, unsigned long last);
2666 struct anon_vma_chain *anon_vma_interval_tree_iter_next(
2667 struct anon_vma_chain *node, unsigned long start, unsigned long last);
2668 #ifdef CONFIG_DEBUG_VM_RB
2669 void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
2670 #endif
2671
2672 #define anon_vma_interval_tree_foreach(avc, root, start, last) \
2673 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
2674 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
2675
2676 /* mmap.c */
2677 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
2678 extern int __vma_adjust(struct vm_area_struct *vma, unsigned long start,
2679 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert,
2680 struct vm_area_struct *expand);
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)2681 static inline int vma_adjust(struct vm_area_struct *vma, unsigned long start,
2682 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
2683 {
2684 return __vma_adjust(vma, start, end, pgoff, insert, NULL);
2685 }
2686 extern struct vm_area_struct *vma_merge(struct mm_struct *,
2687 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
2688 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
2689 struct mempolicy *, struct vm_userfaultfd_ctx, struct anon_vma_name *);
2690 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
2691 extern int __split_vma(struct mm_struct *, struct vm_area_struct *,
2692 unsigned long addr, int new_below);
2693 extern int split_vma(struct mm_struct *, struct vm_area_struct *,
2694 unsigned long addr, int new_below);
2695 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
2696 extern void unlink_file_vma(struct vm_area_struct *);
2697 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
2698 unsigned long addr, unsigned long len, pgoff_t pgoff,
2699 bool *need_rmap_locks);
2700 extern void exit_mmap(struct mm_struct *);
2701
2702 void vma_mas_store(struct vm_area_struct *vma, struct ma_state *mas);
2703 void vma_mas_remove(struct vm_area_struct *vma, struct ma_state *mas);
2704
check_data_rlimit(unsigned long rlim,unsigned long new,unsigned long start,unsigned long end_data,unsigned long start_data)2705 static inline int check_data_rlimit(unsigned long rlim,
2706 unsigned long new,
2707 unsigned long start,
2708 unsigned long end_data,
2709 unsigned long start_data)
2710 {
2711 if (rlim < RLIM_INFINITY) {
2712 if (((new - start) + (end_data - start_data)) > rlim)
2713 return -ENOSPC;
2714 }
2715
2716 return 0;
2717 }
2718
2719 extern int mm_take_all_locks(struct mm_struct *mm);
2720 extern void mm_drop_all_locks(struct mm_struct *mm);
2721
2722 extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2723 extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2724 extern struct file *get_mm_exe_file(struct mm_struct *mm);
2725 extern struct file *get_task_exe_file(struct task_struct *task);
2726
2727 extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2728 extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2729
2730 extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
2731 const struct vm_special_mapping *sm);
2732 extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2733 unsigned long addr, unsigned long len,
2734 unsigned long flags,
2735 const struct vm_special_mapping *spec);
2736 /* This is an obsolete alternative to _install_special_mapping. */
2737 extern int install_special_mapping(struct mm_struct *mm,
2738 unsigned long addr, unsigned long len,
2739 unsigned long flags, struct page **pages);
2740
2741 unsigned long randomize_stack_top(unsigned long stack_top);
2742 unsigned long randomize_page(unsigned long start, unsigned long range);
2743
2744 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2745
2746 extern unsigned long mmap_region(struct file *file, unsigned long addr,
2747 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
2748 struct list_head *uf);
2749 extern unsigned long do_mmap(struct file *file, unsigned long addr,
2750 unsigned long len, unsigned long prot, unsigned long flags,
2751 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
2752 extern int do_mas_munmap(struct ma_state *mas, struct mm_struct *mm,
2753 unsigned long start, size_t len, struct list_head *uf,
2754 bool downgrade);
2755 extern int do_munmap(struct mm_struct *, unsigned long, size_t,
2756 struct list_head *uf);
2757 extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
2758
2759 #ifdef CONFIG_MMU
2760 extern int __mm_populate(unsigned long addr, unsigned long len,
2761 int ignore_errors);
mm_populate(unsigned long addr,unsigned long len)2762 static inline void mm_populate(unsigned long addr, unsigned long len)
2763 {
2764 /* Ignore errors */
2765 (void) __mm_populate(addr, len, 1);
2766 }
2767 #else
mm_populate(unsigned long addr,unsigned long len)2768 static inline void mm_populate(unsigned long addr, unsigned long len) {}
2769 #endif
2770
2771 /* These take the mm semaphore themselves */
2772 extern int __must_check vm_brk(unsigned long, unsigned long);
2773 extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
2774 extern int vm_munmap(unsigned long, size_t);
2775 extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
2776 unsigned long, unsigned long,
2777 unsigned long, unsigned long);
2778
2779 struct vm_unmapped_area_info {
2780 #define VM_UNMAPPED_AREA_TOPDOWN 1
2781 unsigned long flags;
2782 unsigned long length;
2783 unsigned long low_limit;
2784 unsigned long high_limit;
2785 unsigned long align_mask;
2786 unsigned long align_offset;
2787 };
2788
2789 extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
2790
2791 /* truncate.c */
2792 extern void truncate_inode_pages(struct address_space *, loff_t);
2793 extern void truncate_inode_pages_range(struct address_space *,
2794 loff_t lstart, loff_t lend);
2795 extern void truncate_inode_pages_final(struct address_space *);
2796
2797 /* generic vm_area_ops exported for stackable file systems */
2798 extern vm_fault_t filemap_fault(struct vm_fault *vmf);
2799 extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
2800 pgoff_t start_pgoff, pgoff_t end_pgoff);
2801 extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
2802
2803 extern unsigned long stack_guard_gap;
2804 /* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
2805 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
2806
2807 /* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
2808 extern int expand_downwards(struct vm_area_struct *vma,
2809 unsigned long address);
2810 #if VM_GROWSUP
2811 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
2812 #else
2813 #define expand_upwards(vma, address) (0)
2814 #endif
2815
2816 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2817 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2818 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2819 struct vm_area_struct **pprev);
2820
2821 /*
2822 * Look up the first VMA which intersects the interval [start_addr, end_addr)
2823 * NULL if none. Assume start_addr < end_addr.
2824 */
2825 struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
2826 unsigned long start_addr, unsigned long end_addr);
2827
2828 /**
2829 * vma_lookup() - Find a VMA at a specific address
2830 * @mm: The process address space.
2831 * @addr: The user address.
2832 *
2833 * Return: The vm_area_struct at the given address, %NULL otherwise.
2834 */
2835 static inline
vma_lookup(struct mm_struct * mm,unsigned long addr)2836 struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
2837 {
2838 return mtree_load(&mm->mm_mt, addr);
2839 }
2840
vm_start_gap(struct vm_area_struct * vma)2841 static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
2842 {
2843 unsigned long vm_start = vma->vm_start;
2844
2845 if (vma->vm_flags & VM_GROWSDOWN) {
2846 vm_start -= stack_guard_gap;
2847 if (vm_start > vma->vm_start)
2848 vm_start = 0;
2849 }
2850 return vm_start;
2851 }
2852
vm_end_gap(struct vm_area_struct * vma)2853 static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
2854 {
2855 unsigned long vm_end = vma->vm_end;
2856
2857 if (vma->vm_flags & VM_GROWSUP) {
2858 vm_end += stack_guard_gap;
2859 if (vm_end < vma->vm_end)
2860 vm_end = -PAGE_SIZE;
2861 }
2862 return vm_end;
2863 }
2864
vma_pages(struct vm_area_struct * vma)2865 static inline unsigned long vma_pages(struct vm_area_struct *vma)
2866 {
2867 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2868 }
2869
2870 /* Look up the first VMA which exactly match the interval vm_start ... vm_end */
find_exact_vma(struct mm_struct * mm,unsigned long vm_start,unsigned long vm_end)2871 static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2872 unsigned long vm_start, unsigned long vm_end)
2873 {
2874 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
2875
2876 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2877 vma = NULL;
2878
2879 return vma;
2880 }
2881
range_in_vma(struct vm_area_struct * vma,unsigned long start,unsigned long end)2882 static inline bool range_in_vma(struct vm_area_struct *vma,
2883 unsigned long start, unsigned long end)
2884 {
2885 return (vma && vma->vm_start <= start && end <= vma->vm_end);
2886 }
2887
2888 #ifdef CONFIG_MMU
2889 pgprot_t vm_get_page_prot(unsigned long vm_flags);
2890 void vma_set_page_prot(struct vm_area_struct *vma);
2891 #else
vm_get_page_prot(unsigned long vm_flags)2892 static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2893 {
2894 return __pgprot(0);
2895 }
vma_set_page_prot(struct vm_area_struct * vma)2896 static inline void vma_set_page_prot(struct vm_area_struct *vma)
2897 {
2898 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2899 }
2900 #endif
2901
2902 void vma_set_file(struct vm_area_struct *vma, struct file *file);
2903
2904 #ifdef CONFIG_NUMA_BALANCING
2905 unsigned long change_prot_numa(struct vm_area_struct *vma,
2906 unsigned long start, unsigned long end);
2907 #endif
2908
2909 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
2910 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2911 unsigned long pfn, unsigned long size, pgprot_t);
2912 int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2913 unsigned long pfn, unsigned long size, pgprot_t prot);
2914 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
2915 int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
2916 struct page **pages, unsigned long *num);
2917 int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2918 unsigned long num);
2919 int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2920 unsigned long num);
2921 vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2922 unsigned long pfn);
2923 vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2924 unsigned long pfn, pgprot_t pgprot);
2925 vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2926 pfn_t pfn);
2927 vm_fault_t vmf_insert_mixed_prot(struct vm_area_struct *vma, unsigned long addr,
2928 pfn_t pfn, pgprot_t pgprot);
2929 vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2930 unsigned long addr, pfn_t pfn);
2931 int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2932
vmf_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)2933 static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
2934 unsigned long addr, struct page *page)
2935 {
2936 int err = vm_insert_page(vma, addr, page);
2937
2938 if (err == -ENOMEM)
2939 return VM_FAULT_OOM;
2940 if (err < 0 && err != -EBUSY)
2941 return VM_FAULT_SIGBUS;
2942
2943 return VM_FAULT_NOPAGE;
2944 }
2945
2946 #ifndef io_remap_pfn_range
io_remap_pfn_range(struct vm_area_struct * vma,unsigned long addr,unsigned long pfn,unsigned long size,pgprot_t prot)2947 static inline int io_remap_pfn_range(struct vm_area_struct *vma,
2948 unsigned long addr, unsigned long pfn,
2949 unsigned long size, pgprot_t prot)
2950 {
2951 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
2952 }
2953 #endif
2954
vmf_error(int err)2955 static inline vm_fault_t vmf_error(int err)
2956 {
2957 if (err == -ENOMEM)
2958 return VM_FAULT_OOM;
2959 return VM_FAULT_SIGBUS;
2960 }
2961
2962 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
2963 unsigned int foll_flags);
2964
2965 #define FOLL_WRITE 0x01 /* check pte is writable */
2966 #define FOLL_TOUCH 0x02 /* mark page accessed */
2967 #define FOLL_GET 0x04 /* do get_page on page */
2968 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
2969 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
2970 #define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2971 * and return without waiting upon it */
2972 #define FOLL_NOFAULT 0x80 /* do not fault in pages */
2973 #define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
2974 #define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
2975 #define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
2976 #define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
2977 #define FOLL_ANON 0x8000 /* don't do file mappings */
2978 #define FOLL_LONGTERM 0x10000 /* mapping lifetime is indefinite: see below */
2979 #define FOLL_SPLIT_PMD 0x20000 /* split huge pmd before returning */
2980 #define FOLL_PIN 0x40000 /* pages must be released via unpin_user_page */
2981 #define FOLL_FAST_ONLY 0x80000 /* gup_fast: prevent fall-back to slow gup */
2982
2983 /*
2984 * FOLL_PIN and FOLL_LONGTERM may be used in various combinations with each
2985 * other. Here is what they mean, and how to use them:
2986 *
2987 * FOLL_LONGTERM indicates that the page will be held for an indefinite time
2988 * period _often_ under userspace control. This is in contrast to
2989 * iov_iter_get_pages(), whose usages are transient.
2990 *
2991 * FIXME: For pages which are part of a filesystem, mappings are subject to the
2992 * lifetime enforced by the filesystem and we need guarantees that longterm
2993 * users like RDMA and V4L2 only establish mappings which coordinate usage with
2994 * the filesystem. Ideas for this coordination include revoking the longterm
2995 * pin, delaying writeback, bounce buffer page writeback, etc. As FS DAX was
2996 * added after the problem with filesystems was found FS DAX VMAs are
2997 * specifically failed. Filesystem pages are still subject to bugs and use of
2998 * FOLL_LONGTERM should be avoided on those pages.
2999 *
3000 * FIXME: Also NOTE that FOLL_LONGTERM is not supported in every GUP call.
3001 * Currently only get_user_pages() and get_user_pages_fast() support this flag
3002 * and calls to get_user_pages_[un]locked are specifically not allowed. This
3003 * is due to an incompatibility with the FS DAX check and
3004 * FAULT_FLAG_ALLOW_RETRY.
3005 *
3006 * In the CMA case: long term pins in a CMA region would unnecessarily fragment
3007 * that region. And so, CMA attempts to migrate the page before pinning, when
3008 * FOLL_LONGTERM is specified.
3009 *
3010 * FOLL_PIN indicates that a special kind of tracking (not just page->_refcount,
3011 * but an additional pin counting system) will be invoked. This is intended for
3012 * anything that gets a page reference and then touches page data (for example,
3013 * Direct IO). This lets the filesystem know that some non-file-system entity is
3014 * potentially changing the pages' data. In contrast to FOLL_GET (whose pages
3015 * are released via put_page()), FOLL_PIN pages must be released, ultimately, by
3016 * a call to unpin_user_page().
3017 *
3018 * FOLL_PIN is similar to FOLL_GET: both of these pin pages. They use different
3019 * and separate refcounting mechanisms, however, and that means that each has
3020 * its own acquire and release mechanisms:
3021 *
3022 * FOLL_GET: get_user_pages*() to acquire, and put_page() to release.
3023 *
3024 * FOLL_PIN: pin_user_pages*() to acquire, and unpin_user_pages to release.
3025 *
3026 * FOLL_PIN and FOLL_GET are mutually exclusive for a given function call.
3027 * (The underlying pages may experience both FOLL_GET-based and FOLL_PIN-based
3028 * calls applied to them, and that's perfectly OK. This is a constraint on the
3029 * callers, not on the pages.)
3030 *
3031 * FOLL_PIN should be set internally by the pin_user_pages*() APIs, never
3032 * directly by the caller. That's in order to help avoid mismatches when
3033 * releasing pages: get_user_pages*() pages must be released via put_page(),
3034 * while pin_user_pages*() pages must be released via unpin_user_page().
3035 *
3036 * Please see Documentation/core-api/pin_user_pages.rst for more information.
3037 */
3038
vm_fault_to_errno(vm_fault_t vm_fault,int foll_flags)3039 static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3040 {
3041 if (vm_fault & VM_FAULT_OOM)
3042 return -ENOMEM;
3043 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3044 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3045 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3046 return -EFAULT;
3047 return 0;
3048 }
3049
3050 /*
3051 * Indicates for which pages that are write-protected in the page table,
3052 * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
3053 * GUP pin will remain consistent with the pages mapped into the page tables
3054 * of the MM.
3055 *
3056 * Temporary unmapping of PageAnonExclusive() pages or clearing of
3057 * PageAnonExclusive() has to protect against concurrent GUP:
3058 * * Ordinary GUP: Using the PT lock
3059 * * GUP-fast and fork(): mm->write_protect_seq
3060 * * GUP-fast and KSM or temporary unmapping (swap, migration): see
3061 * page_try_share_anon_rmap()
3062 *
3063 * Must be called with the (sub)page that's actually referenced via the
3064 * page table entry, which might not necessarily be the head page for a
3065 * PTE-mapped THP.
3066 */
gup_must_unshare(unsigned int flags,struct page * page)3067 static inline bool gup_must_unshare(unsigned int flags, struct page *page)
3068 {
3069 /*
3070 * FOLL_WRITE is implicitly handled correctly as the page table entry
3071 * has to be writable -- and if it references (part of) an anonymous
3072 * folio, that part is required to be marked exclusive.
3073 */
3074 if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
3075 return false;
3076 /*
3077 * Note: PageAnon(page) is stable until the page is actually getting
3078 * freed.
3079 */
3080 if (!PageAnon(page))
3081 return false;
3082
3083 /* Paired with a memory barrier in page_try_share_anon_rmap(). */
3084 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
3085 smp_rmb();
3086
3087 /*
3088 * Note that PageKsm() pages cannot be exclusive, and consequently,
3089 * cannot get pinned.
3090 */
3091 return !PageAnonExclusive(page);
3092 }
3093
3094 /*
3095 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3096 * a (NUMA hinting) fault is required.
3097 */
gup_can_follow_protnone(unsigned int flags)3098 static inline bool gup_can_follow_protnone(unsigned int flags)
3099 {
3100 /*
3101 * FOLL_FORCE has to be able to make progress even if the VMA is
3102 * inaccessible. Further, FOLL_FORCE access usually does not represent
3103 * application behaviour and we should avoid triggering NUMA hinting
3104 * faults.
3105 */
3106 return flags & FOLL_FORCE;
3107 }
3108
3109 typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3110 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3111 unsigned long size, pte_fn_t fn, void *data);
3112 extern int apply_to_existing_page_range(struct mm_struct *mm,
3113 unsigned long address, unsigned long size,
3114 pte_fn_t fn, void *data);
3115
3116 extern void __init init_mem_debugging_and_hardening(void);
3117 #ifdef CONFIG_PAGE_POISONING
3118 extern void __kernel_poison_pages(struct page *page, int numpages);
3119 extern void __kernel_unpoison_pages(struct page *page, int numpages);
3120 extern bool _page_poisoning_enabled_early;
3121 DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
page_poisoning_enabled(void)3122 static inline bool page_poisoning_enabled(void)
3123 {
3124 return _page_poisoning_enabled_early;
3125 }
3126 /*
3127 * For use in fast paths after init_mem_debugging() has run, or when a
3128 * false negative result is not harmful when called too early.
3129 */
page_poisoning_enabled_static(void)3130 static inline bool page_poisoning_enabled_static(void)
3131 {
3132 return static_branch_unlikely(&_page_poisoning_enabled);
3133 }
kernel_poison_pages(struct page * page,int numpages)3134 static inline void kernel_poison_pages(struct page *page, int numpages)
3135 {
3136 if (page_poisoning_enabled_static())
3137 __kernel_poison_pages(page, numpages);
3138 }
kernel_unpoison_pages(struct page * page,int numpages)3139 static inline void kernel_unpoison_pages(struct page *page, int numpages)
3140 {
3141 if (page_poisoning_enabled_static())
3142 __kernel_unpoison_pages(page, numpages);
3143 }
3144 #else
page_poisoning_enabled(void)3145 static inline bool page_poisoning_enabled(void) { return false; }
page_poisoning_enabled_static(void)3146 static inline bool page_poisoning_enabled_static(void) { return false; }
__kernel_poison_pages(struct page * page,int nunmpages)3147 static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
kernel_poison_pages(struct page * page,int numpages)3148 static inline void kernel_poison_pages(struct page *page, int numpages) { }
kernel_unpoison_pages(struct page * page,int numpages)3149 static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3150 #endif
3151
3152 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
want_init_on_alloc(gfp_t flags)3153 static inline bool want_init_on_alloc(gfp_t flags)
3154 {
3155 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3156 &init_on_alloc))
3157 return true;
3158 return flags & __GFP_ZERO;
3159 }
3160
3161 DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
want_init_on_free(void)3162 static inline bool want_init_on_free(void)
3163 {
3164 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3165 &init_on_free);
3166 }
3167
3168 extern bool _debug_pagealloc_enabled_early;
3169 DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3170
debug_pagealloc_enabled(void)3171 static inline bool debug_pagealloc_enabled(void)
3172 {
3173 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3174 _debug_pagealloc_enabled_early;
3175 }
3176
3177 /*
3178 * For use in fast paths after init_debug_pagealloc() has run, or when a
3179 * false negative result is not harmful when called too early.
3180 */
debug_pagealloc_enabled_static(void)3181 static inline bool debug_pagealloc_enabled_static(void)
3182 {
3183 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3184 return false;
3185
3186 return static_branch_unlikely(&_debug_pagealloc_enabled);
3187 }
3188
3189 #ifdef CONFIG_DEBUG_PAGEALLOC
3190 /*
3191 * To support DEBUG_PAGEALLOC architecture must ensure that
3192 * __kernel_map_pages() never fails
3193 */
3194 extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3195
debug_pagealloc_map_pages(struct page * page,int numpages)3196 static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3197 {
3198 if (debug_pagealloc_enabled_static())
3199 __kernel_map_pages(page, numpages, 1);
3200 }
3201
debug_pagealloc_unmap_pages(struct page * page,int numpages)3202 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3203 {
3204 if (debug_pagealloc_enabled_static())
3205 __kernel_map_pages(page, numpages, 0);
3206 }
3207 #else /* CONFIG_DEBUG_PAGEALLOC */
debug_pagealloc_map_pages(struct page * page,int numpages)3208 static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
debug_pagealloc_unmap_pages(struct page * page,int numpages)3209 static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3210 #endif /* CONFIG_DEBUG_PAGEALLOC */
3211
3212 #ifdef __HAVE_ARCH_GATE_AREA
3213 extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3214 extern int in_gate_area_no_mm(unsigned long addr);
3215 extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3216 #else
get_gate_vma(struct mm_struct * mm)3217 static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3218 {
3219 return NULL;
3220 }
in_gate_area_no_mm(unsigned long addr)3221 static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
in_gate_area(struct mm_struct * mm,unsigned long addr)3222 static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3223 {
3224 return 0;
3225 }
3226 #endif /* __HAVE_ARCH_GATE_AREA */
3227
3228 extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3229
3230 #ifdef CONFIG_SYSCTL
3231 extern int sysctl_drop_caches;
3232 int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3233 loff_t *);
3234 #endif
3235
3236 void drop_slab(void);
3237
3238 #ifndef CONFIG_MMU
3239 #define randomize_va_space 0
3240 #else
3241 extern int randomize_va_space;
3242 #endif
3243
3244 const char * arch_vma_name(struct vm_area_struct *vma);
3245 #ifdef CONFIG_MMU
3246 void print_vma_addr(char *prefix, unsigned long rip);
3247 #else
print_vma_addr(char * prefix,unsigned long rip)3248 static inline void print_vma_addr(char *prefix, unsigned long rip)
3249 {
3250 }
3251 #endif
3252
3253 void *sparse_buffer_alloc(unsigned long size);
3254 struct page * __populate_section_memmap(unsigned long pfn,
3255 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3256 struct dev_pagemap *pgmap);
3257 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3258 p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3259 pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3260 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3261 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3262 struct vmem_altmap *altmap, struct page *reuse);
3263 void *vmemmap_alloc_block(unsigned long size, int node);
3264 struct vmem_altmap;
3265 void *vmemmap_alloc_block_buf(unsigned long size, int node,
3266 struct vmem_altmap *altmap);
3267 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3268 int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3269 int node, struct vmem_altmap *altmap);
3270 int vmemmap_populate(unsigned long start, unsigned long end, int node,
3271 struct vmem_altmap *altmap);
3272 void vmemmap_populate_print_last(void);
3273 #ifdef CONFIG_MEMORY_HOTPLUG
3274 void vmemmap_free(unsigned long start, unsigned long end,
3275 struct vmem_altmap *altmap);
3276 #endif
3277 void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3278 unsigned long nr_pages);
3279
3280 enum mf_flags {
3281 MF_COUNT_INCREASED = 1 << 0,
3282 MF_ACTION_REQUIRED = 1 << 1,
3283 MF_MUST_KILL = 1 << 2,
3284 MF_SOFT_OFFLINE = 1 << 3,
3285 MF_UNPOISON = 1 << 4,
3286 MF_SW_SIMULATED = 1 << 5,
3287 MF_NO_RETRY = 1 << 6,
3288 };
3289 int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3290 unsigned long count, int mf_flags);
3291 extern int memory_failure(unsigned long pfn, int flags);
3292 extern void memory_failure_queue(unsigned long pfn, int flags);
3293 extern void memory_failure_queue_kick(int cpu);
3294 extern int unpoison_memory(unsigned long pfn);
3295 extern int sysctl_memory_failure_early_kill;
3296 extern int sysctl_memory_failure_recovery;
3297 extern void shake_page(struct page *p);
3298 extern atomic_long_t num_poisoned_pages __read_mostly;
3299 extern int soft_offline_page(unsigned long pfn, int flags);
3300 #ifdef CONFIG_MEMORY_FAILURE
3301 extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags);
3302 #else
__get_huge_page_for_hwpoison(unsigned long pfn,int flags)3303 static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags)
3304 {
3305 return 0;
3306 }
3307 #endif
3308
3309 #ifndef arch_memory_failure
arch_memory_failure(unsigned long pfn,int flags)3310 static inline int arch_memory_failure(unsigned long pfn, int flags)
3311 {
3312 return -ENXIO;
3313 }
3314 #endif
3315
3316 #ifndef arch_is_platform_page
arch_is_platform_page(u64 paddr)3317 static inline bool arch_is_platform_page(u64 paddr)
3318 {
3319 return false;
3320 }
3321 #endif
3322
3323 /*
3324 * Error handlers for various types of pages.
3325 */
3326 enum mf_result {
3327 MF_IGNORED, /* Error: cannot be handled */
3328 MF_FAILED, /* Error: handling failed */
3329 MF_DELAYED, /* Will be handled later */
3330 MF_RECOVERED, /* Successfully recovered */
3331 };
3332
3333 enum mf_action_page_type {
3334 MF_MSG_KERNEL,
3335 MF_MSG_KERNEL_HIGH_ORDER,
3336 MF_MSG_SLAB,
3337 MF_MSG_DIFFERENT_COMPOUND,
3338 MF_MSG_HUGE,
3339 MF_MSG_FREE_HUGE,
3340 MF_MSG_UNMAP_FAILED,
3341 MF_MSG_DIRTY_SWAPCACHE,
3342 MF_MSG_CLEAN_SWAPCACHE,
3343 MF_MSG_DIRTY_MLOCKED_LRU,
3344 MF_MSG_CLEAN_MLOCKED_LRU,
3345 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3346 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3347 MF_MSG_DIRTY_LRU,
3348 MF_MSG_CLEAN_LRU,
3349 MF_MSG_TRUNCATED_LRU,
3350 MF_MSG_BUDDY,
3351 MF_MSG_DAX,
3352 MF_MSG_UNSPLIT_THP,
3353 MF_MSG_UNKNOWN,
3354 };
3355
3356 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3357 extern void clear_huge_page(struct page *page,
3358 unsigned long addr_hint,
3359 unsigned int pages_per_huge_page);
3360 extern void copy_user_huge_page(struct page *dst, struct page *src,
3361 unsigned long addr_hint,
3362 struct vm_area_struct *vma,
3363 unsigned int pages_per_huge_page);
3364 extern long copy_huge_page_from_user(struct page *dst_page,
3365 const void __user *usr_src,
3366 unsigned int pages_per_huge_page,
3367 bool allow_pagefault);
3368
3369 /**
3370 * vma_is_special_huge - Are transhuge page-table entries considered special?
3371 * @vma: Pointer to the struct vm_area_struct to consider
3372 *
3373 * Whether transhuge page-table entries are considered "special" following
3374 * the definition in vm_normal_page().
3375 *
3376 * Return: true if transhuge page-table entries should be considered special,
3377 * false otherwise.
3378 */
vma_is_special_huge(const struct vm_area_struct * vma)3379 static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3380 {
3381 return vma_is_dax(vma) || (vma->vm_file &&
3382 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3383 }
3384
3385 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3386
3387 #ifdef CONFIG_DEBUG_PAGEALLOC
3388 extern unsigned int _debug_guardpage_minorder;
3389 DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3390
debug_guardpage_minorder(void)3391 static inline unsigned int debug_guardpage_minorder(void)
3392 {
3393 return _debug_guardpage_minorder;
3394 }
3395
debug_guardpage_enabled(void)3396 static inline bool debug_guardpage_enabled(void)
3397 {
3398 return static_branch_unlikely(&_debug_guardpage_enabled);
3399 }
3400
page_is_guard(struct page * page)3401 static inline bool page_is_guard(struct page *page)
3402 {
3403 if (!debug_guardpage_enabled())
3404 return false;
3405
3406 return PageGuard(page);
3407 }
3408 #else
debug_guardpage_minorder(void)3409 static inline unsigned int debug_guardpage_minorder(void) { return 0; }
debug_guardpage_enabled(void)3410 static inline bool debug_guardpage_enabled(void) { return false; }
page_is_guard(struct page * page)3411 static inline bool page_is_guard(struct page *page) { return false; }
3412 #endif /* CONFIG_DEBUG_PAGEALLOC */
3413
3414 #if MAX_NUMNODES > 1
3415 void __init setup_nr_node_ids(void);
3416 #else
setup_nr_node_ids(void)3417 static inline void setup_nr_node_ids(void) {}
3418 #endif
3419
3420 extern int memcmp_pages(struct page *page1, struct page *page2);
3421
pages_identical(struct page * page1,struct page * page2)3422 static inline int pages_identical(struct page *page1, struct page *page2)
3423 {
3424 return !memcmp_pages(page1, page2);
3425 }
3426
3427 #ifdef CONFIG_MAPPING_DIRTY_HELPERS
3428 unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3429 pgoff_t first_index, pgoff_t nr,
3430 pgoff_t bitmap_pgoff,
3431 unsigned long *bitmap,
3432 pgoff_t *start,
3433 pgoff_t *end);
3434
3435 unsigned long wp_shared_mapping_range(struct address_space *mapping,
3436 pgoff_t first_index, pgoff_t nr);
3437 #endif
3438
3439 extern int sysctl_nr_trim_pages;
3440
3441 #ifdef CONFIG_PRINTK
3442 void mem_dump_obj(void *object);
3443 #else
mem_dump_obj(void * object)3444 static inline void mem_dump_obj(void *object) {}
3445 #endif
3446
3447 /**
3448 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3449 * @seals: the seals to check
3450 * @vma: the vma to operate on
3451 *
3452 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3453 * the vma flags. Return 0 if check pass, or <0 for errors.
3454 */
seal_check_future_write(int seals,struct vm_area_struct * vma)3455 static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3456 {
3457 if (seals & F_SEAL_FUTURE_WRITE) {
3458 /*
3459 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3460 * "future write" seal active.
3461 */
3462 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3463 return -EPERM;
3464
3465 /*
3466 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3467 * MAP_SHARED and read-only, take care to not allow mprotect to
3468 * revert protections on such mappings. Do this only for shared
3469 * mappings. For private mappings, don't need to mask
3470 * VM_MAYWRITE as we still want them to be COW-writable.
3471 */
3472 if (vma->vm_flags & VM_SHARED)
3473 vma->vm_flags &= ~(VM_MAYWRITE);
3474 }
3475
3476 return 0;
3477 }
3478
3479 #ifdef CONFIG_ANON_VMA_NAME
3480 int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3481 unsigned long len_in,
3482 struct anon_vma_name *anon_name);
3483 #else
3484 static inline int
madvise_set_anon_name(struct mm_struct * mm,unsigned long start,unsigned long len_in,struct anon_vma_name * anon_name)3485 madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3486 unsigned long len_in, struct anon_vma_name *anon_name) {
3487 return 0;
3488 }
3489 #endif
3490
3491 #endif /* _LINUX_MM_H */
3492