1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2009, Microsoft Corporation.
4 *
5 * Authors:
6 * Haiyang Zhang <haiyangz@microsoft.com>
7 * Hank Janssen <hjanssen@microsoft.com>
8 * K. Y. Srinivasan <kys@microsoft.com>
9 */
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/init.h>
13 #include <linux/module.h>
14 #include <linux/device.h>
15 #include <linux/interrupt.h>
16 #include <linux/sysctl.h>
17 #include <linux/slab.h>
18 #include <linux/acpi.h>
19 #include <linux/completion.h>
20 #include <linux/hyperv.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/clockchips.h>
23 #include <linux/cpu.h>
24 #include <linux/sched/isolation.h>
25 #include <linux/sched/task_stack.h>
26
27 #include <linux/delay.h>
28 #include <linux/notifier.h>
29 #include <linux/panic_notifier.h>
30 #include <linux/ptrace.h>
31 #include <linux/screen_info.h>
32 #include <linux/kdebug.h>
33 #include <linux/efi.h>
34 #include <linux/random.h>
35 #include <linux/kernel.h>
36 #include <linux/syscore_ops.h>
37 #include <linux/dma-map-ops.h>
38 #include <linux/pci.h>
39 #include <clocksource/hyperv_timer.h>
40 #include "hyperv_vmbus.h"
41
42 struct vmbus_dynid {
43 struct list_head node;
44 struct hv_vmbus_device_id id;
45 };
46
47 static struct acpi_device *hv_acpi_dev;
48
49 static int hyperv_cpuhp_online;
50
51 static void *hv_panic_page;
52
53 static long __percpu *vmbus_evt;
54
55 /* Values parsed from ACPI DSDT */
56 int vmbus_irq;
57 int vmbus_interrupt;
58
59 /*
60 * Boolean to control whether to report panic messages over Hyper-V.
61 *
62 * It can be set via /proc/sys/kernel/hyperv_record_panic_msg
63 */
64 static int sysctl_record_panic_msg = 1;
65
hyperv_report_reg(void)66 static int hyperv_report_reg(void)
67 {
68 return !sysctl_record_panic_msg || !hv_panic_page;
69 }
70
hyperv_panic_event(struct notifier_block * nb,unsigned long val,void * args)71 static int hyperv_panic_event(struct notifier_block *nb, unsigned long val,
72 void *args)
73 {
74 struct pt_regs *regs;
75
76 vmbus_initiate_unload(true);
77
78 /*
79 * Hyper-V should be notified only once about a panic. If we will be
80 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
81 * here.
82 */
83 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE
84 && hyperv_report_reg()) {
85 regs = current_pt_regs();
86 hyperv_report_panic(regs, val, false);
87 }
88 return NOTIFY_DONE;
89 }
90
hyperv_die_event(struct notifier_block * nb,unsigned long val,void * args)91 static int hyperv_die_event(struct notifier_block *nb, unsigned long val,
92 void *args)
93 {
94 struct die_args *die = args;
95 struct pt_regs *regs = die->regs;
96
97 /* Don't notify Hyper-V if the die event is other than oops */
98 if (val != DIE_OOPS)
99 return NOTIFY_DONE;
100
101 /*
102 * Hyper-V should be notified only once about a panic. If we will be
103 * doing hv_kmsg_dump() with kmsg data later, don't do the notification
104 * here.
105 */
106 if (hyperv_report_reg())
107 hyperv_report_panic(regs, val, true);
108 return NOTIFY_DONE;
109 }
110
111 static struct notifier_block hyperv_die_block = {
112 .notifier_call = hyperv_die_event,
113 };
114 static struct notifier_block hyperv_panic_block = {
115 .notifier_call = hyperv_panic_event,
116 };
117
118 static const char *fb_mmio_name = "fb_range";
119 static struct resource *fb_mmio;
120 static struct resource *hyperv_mmio;
121 static DEFINE_MUTEX(hyperv_mmio_lock);
122
vmbus_exists(void)123 static int vmbus_exists(void)
124 {
125 if (hv_acpi_dev == NULL)
126 return -ENODEV;
127
128 return 0;
129 }
130
channel_monitor_group(const struct vmbus_channel * channel)131 static u8 channel_monitor_group(const struct vmbus_channel *channel)
132 {
133 return (u8)channel->offermsg.monitorid / 32;
134 }
135
channel_monitor_offset(const struct vmbus_channel * channel)136 static u8 channel_monitor_offset(const struct vmbus_channel *channel)
137 {
138 return (u8)channel->offermsg.monitorid % 32;
139 }
140
channel_pending(const struct vmbus_channel * channel,const struct hv_monitor_page * monitor_page)141 static u32 channel_pending(const struct vmbus_channel *channel,
142 const struct hv_monitor_page *monitor_page)
143 {
144 u8 monitor_group = channel_monitor_group(channel);
145
146 return monitor_page->trigger_group[monitor_group].pending;
147 }
148
channel_latency(const struct vmbus_channel * channel,const struct hv_monitor_page * monitor_page)149 static u32 channel_latency(const struct vmbus_channel *channel,
150 const struct hv_monitor_page *monitor_page)
151 {
152 u8 monitor_group = channel_monitor_group(channel);
153 u8 monitor_offset = channel_monitor_offset(channel);
154
155 return monitor_page->latency[monitor_group][monitor_offset];
156 }
157
channel_conn_id(struct vmbus_channel * channel,struct hv_monitor_page * monitor_page)158 static u32 channel_conn_id(struct vmbus_channel *channel,
159 struct hv_monitor_page *monitor_page)
160 {
161 u8 monitor_group = channel_monitor_group(channel);
162 u8 monitor_offset = channel_monitor_offset(channel);
163
164 return monitor_page->parameter[monitor_group][monitor_offset].connectionid.u.id;
165 }
166
id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)167 static ssize_t id_show(struct device *dev, struct device_attribute *dev_attr,
168 char *buf)
169 {
170 struct hv_device *hv_dev = device_to_hv_device(dev);
171
172 if (!hv_dev->channel)
173 return -ENODEV;
174 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.child_relid);
175 }
176 static DEVICE_ATTR_RO(id);
177
state_show(struct device * dev,struct device_attribute * dev_attr,char * buf)178 static ssize_t state_show(struct device *dev, struct device_attribute *dev_attr,
179 char *buf)
180 {
181 struct hv_device *hv_dev = device_to_hv_device(dev);
182
183 if (!hv_dev->channel)
184 return -ENODEV;
185 return sprintf(buf, "%d\n", hv_dev->channel->state);
186 }
187 static DEVICE_ATTR_RO(state);
188
monitor_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)189 static ssize_t monitor_id_show(struct device *dev,
190 struct device_attribute *dev_attr, char *buf)
191 {
192 struct hv_device *hv_dev = device_to_hv_device(dev);
193
194 if (!hv_dev->channel)
195 return -ENODEV;
196 return sprintf(buf, "%d\n", hv_dev->channel->offermsg.monitorid);
197 }
198 static DEVICE_ATTR_RO(monitor_id);
199
class_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)200 static ssize_t class_id_show(struct device *dev,
201 struct device_attribute *dev_attr, char *buf)
202 {
203 struct hv_device *hv_dev = device_to_hv_device(dev);
204
205 if (!hv_dev->channel)
206 return -ENODEV;
207 return sprintf(buf, "{%pUl}\n",
208 &hv_dev->channel->offermsg.offer.if_type);
209 }
210 static DEVICE_ATTR_RO(class_id);
211
device_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)212 static ssize_t device_id_show(struct device *dev,
213 struct device_attribute *dev_attr, char *buf)
214 {
215 struct hv_device *hv_dev = device_to_hv_device(dev);
216
217 if (!hv_dev->channel)
218 return -ENODEV;
219 return sprintf(buf, "{%pUl}\n",
220 &hv_dev->channel->offermsg.offer.if_instance);
221 }
222 static DEVICE_ATTR_RO(device_id);
223
modalias_show(struct device * dev,struct device_attribute * dev_attr,char * buf)224 static ssize_t modalias_show(struct device *dev,
225 struct device_attribute *dev_attr, char *buf)
226 {
227 struct hv_device *hv_dev = device_to_hv_device(dev);
228
229 return sprintf(buf, "vmbus:%*phN\n", UUID_SIZE, &hv_dev->dev_type);
230 }
231 static DEVICE_ATTR_RO(modalias);
232
233 #ifdef CONFIG_NUMA
numa_node_show(struct device * dev,struct device_attribute * attr,char * buf)234 static ssize_t numa_node_show(struct device *dev,
235 struct device_attribute *attr, char *buf)
236 {
237 struct hv_device *hv_dev = device_to_hv_device(dev);
238
239 if (!hv_dev->channel)
240 return -ENODEV;
241
242 return sprintf(buf, "%d\n", cpu_to_node(hv_dev->channel->target_cpu));
243 }
244 static DEVICE_ATTR_RO(numa_node);
245 #endif
246
server_monitor_pending_show(struct device * dev,struct device_attribute * dev_attr,char * buf)247 static ssize_t server_monitor_pending_show(struct device *dev,
248 struct device_attribute *dev_attr,
249 char *buf)
250 {
251 struct hv_device *hv_dev = device_to_hv_device(dev);
252
253 if (!hv_dev->channel)
254 return -ENODEV;
255 return sprintf(buf, "%d\n",
256 channel_pending(hv_dev->channel,
257 vmbus_connection.monitor_pages[0]));
258 }
259 static DEVICE_ATTR_RO(server_monitor_pending);
260
client_monitor_pending_show(struct device * dev,struct device_attribute * dev_attr,char * buf)261 static ssize_t client_monitor_pending_show(struct device *dev,
262 struct device_attribute *dev_attr,
263 char *buf)
264 {
265 struct hv_device *hv_dev = device_to_hv_device(dev);
266
267 if (!hv_dev->channel)
268 return -ENODEV;
269 return sprintf(buf, "%d\n",
270 channel_pending(hv_dev->channel,
271 vmbus_connection.monitor_pages[1]));
272 }
273 static DEVICE_ATTR_RO(client_monitor_pending);
274
server_monitor_latency_show(struct device * dev,struct device_attribute * dev_attr,char * buf)275 static ssize_t server_monitor_latency_show(struct device *dev,
276 struct device_attribute *dev_attr,
277 char *buf)
278 {
279 struct hv_device *hv_dev = device_to_hv_device(dev);
280
281 if (!hv_dev->channel)
282 return -ENODEV;
283 return sprintf(buf, "%d\n",
284 channel_latency(hv_dev->channel,
285 vmbus_connection.monitor_pages[0]));
286 }
287 static DEVICE_ATTR_RO(server_monitor_latency);
288
client_monitor_latency_show(struct device * dev,struct device_attribute * dev_attr,char * buf)289 static ssize_t client_monitor_latency_show(struct device *dev,
290 struct device_attribute *dev_attr,
291 char *buf)
292 {
293 struct hv_device *hv_dev = device_to_hv_device(dev);
294
295 if (!hv_dev->channel)
296 return -ENODEV;
297 return sprintf(buf, "%d\n",
298 channel_latency(hv_dev->channel,
299 vmbus_connection.monitor_pages[1]));
300 }
301 static DEVICE_ATTR_RO(client_monitor_latency);
302
server_monitor_conn_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)303 static ssize_t server_monitor_conn_id_show(struct device *dev,
304 struct device_attribute *dev_attr,
305 char *buf)
306 {
307 struct hv_device *hv_dev = device_to_hv_device(dev);
308
309 if (!hv_dev->channel)
310 return -ENODEV;
311 return sprintf(buf, "%d\n",
312 channel_conn_id(hv_dev->channel,
313 vmbus_connection.monitor_pages[0]));
314 }
315 static DEVICE_ATTR_RO(server_monitor_conn_id);
316
client_monitor_conn_id_show(struct device * dev,struct device_attribute * dev_attr,char * buf)317 static ssize_t client_monitor_conn_id_show(struct device *dev,
318 struct device_attribute *dev_attr,
319 char *buf)
320 {
321 struct hv_device *hv_dev = device_to_hv_device(dev);
322
323 if (!hv_dev->channel)
324 return -ENODEV;
325 return sprintf(buf, "%d\n",
326 channel_conn_id(hv_dev->channel,
327 vmbus_connection.monitor_pages[1]));
328 }
329 static DEVICE_ATTR_RO(client_monitor_conn_id);
330
out_intr_mask_show(struct device * dev,struct device_attribute * dev_attr,char * buf)331 static ssize_t out_intr_mask_show(struct device *dev,
332 struct device_attribute *dev_attr, char *buf)
333 {
334 struct hv_device *hv_dev = device_to_hv_device(dev);
335 struct hv_ring_buffer_debug_info outbound;
336 int ret;
337
338 if (!hv_dev->channel)
339 return -ENODEV;
340
341 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
342 &outbound);
343 if (ret < 0)
344 return ret;
345
346 return sprintf(buf, "%d\n", outbound.current_interrupt_mask);
347 }
348 static DEVICE_ATTR_RO(out_intr_mask);
349
out_read_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)350 static ssize_t out_read_index_show(struct device *dev,
351 struct device_attribute *dev_attr, char *buf)
352 {
353 struct hv_device *hv_dev = device_to_hv_device(dev);
354 struct hv_ring_buffer_debug_info outbound;
355 int ret;
356
357 if (!hv_dev->channel)
358 return -ENODEV;
359
360 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
361 &outbound);
362 if (ret < 0)
363 return ret;
364 return sprintf(buf, "%d\n", outbound.current_read_index);
365 }
366 static DEVICE_ATTR_RO(out_read_index);
367
out_write_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)368 static ssize_t out_write_index_show(struct device *dev,
369 struct device_attribute *dev_attr,
370 char *buf)
371 {
372 struct hv_device *hv_dev = device_to_hv_device(dev);
373 struct hv_ring_buffer_debug_info outbound;
374 int ret;
375
376 if (!hv_dev->channel)
377 return -ENODEV;
378
379 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
380 &outbound);
381 if (ret < 0)
382 return ret;
383 return sprintf(buf, "%d\n", outbound.current_write_index);
384 }
385 static DEVICE_ATTR_RO(out_write_index);
386
out_read_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)387 static ssize_t out_read_bytes_avail_show(struct device *dev,
388 struct device_attribute *dev_attr,
389 char *buf)
390 {
391 struct hv_device *hv_dev = device_to_hv_device(dev);
392 struct hv_ring_buffer_debug_info outbound;
393 int ret;
394
395 if (!hv_dev->channel)
396 return -ENODEV;
397
398 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
399 &outbound);
400 if (ret < 0)
401 return ret;
402 return sprintf(buf, "%d\n", outbound.bytes_avail_toread);
403 }
404 static DEVICE_ATTR_RO(out_read_bytes_avail);
405
out_write_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)406 static ssize_t out_write_bytes_avail_show(struct device *dev,
407 struct device_attribute *dev_attr,
408 char *buf)
409 {
410 struct hv_device *hv_dev = device_to_hv_device(dev);
411 struct hv_ring_buffer_debug_info outbound;
412 int ret;
413
414 if (!hv_dev->channel)
415 return -ENODEV;
416
417 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->outbound,
418 &outbound);
419 if (ret < 0)
420 return ret;
421 return sprintf(buf, "%d\n", outbound.bytes_avail_towrite);
422 }
423 static DEVICE_ATTR_RO(out_write_bytes_avail);
424
in_intr_mask_show(struct device * dev,struct device_attribute * dev_attr,char * buf)425 static ssize_t in_intr_mask_show(struct device *dev,
426 struct device_attribute *dev_attr, char *buf)
427 {
428 struct hv_device *hv_dev = device_to_hv_device(dev);
429 struct hv_ring_buffer_debug_info inbound;
430 int ret;
431
432 if (!hv_dev->channel)
433 return -ENODEV;
434
435 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
436 if (ret < 0)
437 return ret;
438
439 return sprintf(buf, "%d\n", inbound.current_interrupt_mask);
440 }
441 static DEVICE_ATTR_RO(in_intr_mask);
442
in_read_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)443 static ssize_t in_read_index_show(struct device *dev,
444 struct device_attribute *dev_attr, char *buf)
445 {
446 struct hv_device *hv_dev = device_to_hv_device(dev);
447 struct hv_ring_buffer_debug_info inbound;
448 int ret;
449
450 if (!hv_dev->channel)
451 return -ENODEV;
452
453 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
454 if (ret < 0)
455 return ret;
456
457 return sprintf(buf, "%d\n", inbound.current_read_index);
458 }
459 static DEVICE_ATTR_RO(in_read_index);
460
in_write_index_show(struct device * dev,struct device_attribute * dev_attr,char * buf)461 static ssize_t in_write_index_show(struct device *dev,
462 struct device_attribute *dev_attr, char *buf)
463 {
464 struct hv_device *hv_dev = device_to_hv_device(dev);
465 struct hv_ring_buffer_debug_info inbound;
466 int ret;
467
468 if (!hv_dev->channel)
469 return -ENODEV;
470
471 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
472 if (ret < 0)
473 return ret;
474
475 return sprintf(buf, "%d\n", inbound.current_write_index);
476 }
477 static DEVICE_ATTR_RO(in_write_index);
478
in_read_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)479 static ssize_t in_read_bytes_avail_show(struct device *dev,
480 struct device_attribute *dev_attr,
481 char *buf)
482 {
483 struct hv_device *hv_dev = device_to_hv_device(dev);
484 struct hv_ring_buffer_debug_info inbound;
485 int ret;
486
487 if (!hv_dev->channel)
488 return -ENODEV;
489
490 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
491 if (ret < 0)
492 return ret;
493
494 return sprintf(buf, "%d\n", inbound.bytes_avail_toread);
495 }
496 static DEVICE_ATTR_RO(in_read_bytes_avail);
497
in_write_bytes_avail_show(struct device * dev,struct device_attribute * dev_attr,char * buf)498 static ssize_t in_write_bytes_avail_show(struct device *dev,
499 struct device_attribute *dev_attr,
500 char *buf)
501 {
502 struct hv_device *hv_dev = device_to_hv_device(dev);
503 struct hv_ring_buffer_debug_info inbound;
504 int ret;
505
506 if (!hv_dev->channel)
507 return -ENODEV;
508
509 ret = hv_ringbuffer_get_debuginfo(&hv_dev->channel->inbound, &inbound);
510 if (ret < 0)
511 return ret;
512
513 return sprintf(buf, "%d\n", inbound.bytes_avail_towrite);
514 }
515 static DEVICE_ATTR_RO(in_write_bytes_avail);
516
channel_vp_mapping_show(struct device * dev,struct device_attribute * dev_attr,char * buf)517 static ssize_t channel_vp_mapping_show(struct device *dev,
518 struct device_attribute *dev_attr,
519 char *buf)
520 {
521 struct hv_device *hv_dev = device_to_hv_device(dev);
522 struct vmbus_channel *channel = hv_dev->channel, *cur_sc;
523 int buf_size = PAGE_SIZE, n_written, tot_written;
524 struct list_head *cur;
525
526 if (!channel)
527 return -ENODEV;
528
529 mutex_lock(&vmbus_connection.channel_mutex);
530
531 tot_written = snprintf(buf, buf_size, "%u:%u\n",
532 channel->offermsg.child_relid, channel->target_cpu);
533
534 list_for_each(cur, &channel->sc_list) {
535 if (tot_written >= buf_size - 1)
536 break;
537
538 cur_sc = list_entry(cur, struct vmbus_channel, sc_list);
539 n_written = scnprintf(buf + tot_written,
540 buf_size - tot_written,
541 "%u:%u\n",
542 cur_sc->offermsg.child_relid,
543 cur_sc->target_cpu);
544 tot_written += n_written;
545 }
546
547 mutex_unlock(&vmbus_connection.channel_mutex);
548
549 return tot_written;
550 }
551 static DEVICE_ATTR_RO(channel_vp_mapping);
552
vendor_show(struct device * dev,struct device_attribute * dev_attr,char * buf)553 static ssize_t vendor_show(struct device *dev,
554 struct device_attribute *dev_attr,
555 char *buf)
556 {
557 struct hv_device *hv_dev = device_to_hv_device(dev);
558
559 return sprintf(buf, "0x%x\n", hv_dev->vendor_id);
560 }
561 static DEVICE_ATTR_RO(vendor);
562
device_show(struct device * dev,struct device_attribute * dev_attr,char * buf)563 static ssize_t device_show(struct device *dev,
564 struct device_attribute *dev_attr,
565 char *buf)
566 {
567 struct hv_device *hv_dev = device_to_hv_device(dev);
568
569 return sprintf(buf, "0x%x\n", hv_dev->device_id);
570 }
571 static DEVICE_ATTR_RO(device);
572
driver_override_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)573 static ssize_t driver_override_store(struct device *dev,
574 struct device_attribute *attr,
575 const char *buf, size_t count)
576 {
577 struct hv_device *hv_dev = device_to_hv_device(dev);
578 int ret;
579
580 ret = driver_set_override(dev, &hv_dev->driver_override, buf, count);
581 if (ret)
582 return ret;
583
584 return count;
585 }
586
driver_override_show(struct device * dev,struct device_attribute * attr,char * buf)587 static ssize_t driver_override_show(struct device *dev,
588 struct device_attribute *attr, char *buf)
589 {
590 struct hv_device *hv_dev = device_to_hv_device(dev);
591 ssize_t len;
592
593 device_lock(dev);
594 len = snprintf(buf, PAGE_SIZE, "%s\n", hv_dev->driver_override);
595 device_unlock(dev);
596
597 return len;
598 }
599 static DEVICE_ATTR_RW(driver_override);
600
601 /* Set up per device attributes in /sys/bus/vmbus/devices/<bus device> */
602 static struct attribute *vmbus_dev_attrs[] = {
603 &dev_attr_id.attr,
604 &dev_attr_state.attr,
605 &dev_attr_monitor_id.attr,
606 &dev_attr_class_id.attr,
607 &dev_attr_device_id.attr,
608 &dev_attr_modalias.attr,
609 #ifdef CONFIG_NUMA
610 &dev_attr_numa_node.attr,
611 #endif
612 &dev_attr_server_monitor_pending.attr,
613 &dev_attr_client_monitor_pending.attr,
614 &dev_attr_server_monitor_latency.attr,
615 &dev_attr_client_monitor_latency.attr,
616 &dev_attr_server_monitor_conn_id.attr,
617 &dev_attr_client_monitor_conn_id.attr,
618 &dev_attr_out_intr_mask.attr,
619 &dev_attr_out_read_index.attr,
620 &dev_attr_out_write_index.attr,
621 &dev_attr_out_read_bytes_avail.attr,
622 &dev_attr_out_write_bytes_avail.attr,
623 &dev_attr_in_intr_mask.attr,
624 &dev_attr_in_read_index.attr,
625 &dev_attr_in_write_index.attr,
626 &dev_attr_in_read_bytes_avail.attr,
627 &dev_attr_in_write_bytes_avail.attr,
628 &dev_attr_channel_vp_mapping.attr,
629 &dev_attr_vendor.attr,
630 &dev_attr_device.attr,
631 &dev_attr_driver_override.attr,
632 NULL,
633 };
634
635 /*
636 * Device-level attribute_group callback function. Returns the permission for
637 * each attribute, and returns 0 if an attribute is not visible.
638 */
vmbus_dev_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)639 static umode_t vmbus_dev_attr_is_visible(struct kobject *kobj,
640 struct attribute *attr, int idx)
641 {
642 struct device *dev = kobj_to_dev(kobj);
643 const struct hv_device *hv_dev = device_to_hv_device(dev);
644
645 /* Hide the monitor attributes if the monitor mechanism is not used. */
646 if (!hv_dev->channel->offermsg.monitor_allocated &&
647 (attr == &dev_attr_monitor_id.attr ||
648 attr == &dev_attr_server_monitor_pending.attr ||
649 attr == &dev_attr_client_monitor_pending.attr ||
650 attr == &dev_attr_server_monitor_latency.attr ||
651 attr == &dev_attr_client_monitor_latency.attr ||
652 attr == &dev_attr_server_monitor_conn_id.attr ||
653 attr == &dev_attr_client_monitor_conn_id.attr))
654 return 0;
655
656 return attr->mode;
657 }
658
659 static const struct attribute_group vmbus_dev_group = {
660 .attrs = vmbus_dev_attrs,
661 .is_visible = vmbus_dev_attr_is_visible
662 };
663 __ATTRIBUTE_GROUPS(vmbus_dev);
664
665 /* Set up the attribute for /sys/bus/vmbus/hibernation */
hibernation_show(struct bus_type * bus,char * buf)666 static ssize_t hibernation_show(struct bus_type *bus, char *buf)
667 {
668 return sprintf(buf, "%d\n", !!hv_is_hibernation_supported());
669 }
670
671 static BUS_ATTR_RO(hibernation);
672
673 static struct attribute *vmbus_bus_attrs[] = {
674 &bus_attr_hibernation.attr,
675 NULL,
676 };
677 static const struct attribute_group vmbus_bus_group = {
678 .attrs = vmbus_bus_attrs,
679 };
680 __ATTRIBUTE_GROUPS(vmbus_bus);
681
682 /*
683 * vmbus_uevent - add uevent for our device
684 *
685 * This routine is invoked when a device is added or removed on the vmbus to
686 * generate a uevent to udev in the userspace. The udev will then look at its
687 * rule and the uevent generated here to load the appropriate driver
688 *
689 * The alias string will be of the form vmbus:guid where guid is the string
690 * representation of the device guid (each byte of the guid will be
691 * represented with two hex characters.
692 */
vmbus_uevent(struct device * device,struct kobj_uevent_env * env)693 static int vmbus_uevent(struct device *device, struct kobj_uevent_env *env)
694 {
695 struct hv_device *dev = device_to_hv_device(device);
696 const char *format = "MODALIAS=vmbus:%*phN";
697
698 return add_uevent_var(env, format, UUID_SIZE, &dev->dev_type);
699 }
700
701 static const struct hv_vmbus_device_id *
hv_vmbus_dev_match(const struct hv_vmbus_device_id * id,const guid_t * guid)702 hv_vmbus_dev_match(const struct hv_vmbus_device_id *id, const guid_t *guid)
703 {
704 if (id == NULL)
705 return NULL; /* empty device table */
706
707 for (; !guid_is_null(&id->guid); id++)
708 if (guid_equal(&id->guid, guid))
709 return id;
710
711 return NULL;
712 }
713
714 static const struct hv_vmbus_device_id *
hv_vmbus_dynid_match(struct hv_driver * drv,const guid_t * guid)715 hv_vmbus_dynid_match(struct hv_driver *drv, const guid_t *guid)
716 {
717 const struct hv_vmbus_device_id *id = NULL;
718 struct vmbus_dynid *dynid;
719
720 spin_lock(&drv->dynids.lock);
721 list_for_each_entry(dynid, &drv->dynids.list, node) {
722 if (guid_equal(&dynid->id.guid, guid)) {
723 id = &dynid->id;
724 break;
725 }
726 }
727 spin_unlock(&drv->dynids.lock);
728
729 return id;
730 }
731
732 static const struct hv_vmbus_device_id vmbus_device_null;
733
734 /*
735 * Return a matching hv_vmbus_device_id pointer.
736 * If there is no match, return NULL.
737 */
hv_vmbus_get_id(struct hv_driver * drv,struct hv_device * dev)738 static const struct hv_vmbus_device_id *hv_vmbus_get_id(struct hv_driver *drv,
739 struct hv_device *dev)
740 {
741 const guid_t *guid = &dev->dev_type;
742 const struct hv_vmbus_device_id *id;
743
744 /* When driver_override is set, only bind to the matching driver */
745 if (dev->driver_override && strcmp(dev->driver_override, drv->name))
746 return NULL;
747
748 /* Look at the dynamic ids first, before the static ones */
749 id = hv_vmbus_dynid_match(drv, guid);
750 if (!id)
751 id = hv_vmbus_dev_match(drv->id_table, guid);
752
753 /* driver_override will always match, send a dummy id */
754 if (!id && dev->driver_override)
755 id = &vmbus_device_null;
756
757 return id;
758 }
759
760 /* vmbus_add_dynid - add a new device ID to this driver and re-probe devices */
vmbus_add_dynid(struct hv_driver * drv,guid_t * guid)761 static int vmbus_add_dynid(struct hv_driver *drv, guid_t *guid)
762 {
763 struct vmbus_dynid *dynid;
764
765 dynid = kzalloc(sizeof(*dynid), GFP_KERNEL);
766 if (!dynid)
767 return -ENOMEM;
768
769 dynid->id.guid = *guid;
770
771 spin_lock(&drv->dynids.lock);
772 list_add_tail(&dynid->node, &drv->dynids.list);
773 spin_unlock(&drv->dynids.lock);
774
775 return driver_attach(&drv->driver);
776 }
777
vmbus_free_dynids(struct hv_driver * drv)778 static void vmbus_free_dynids(struct hv_driver *drv)
779 {
780 struct vmbus_dynid *dynid, *n;
781
782 spin_lock(&drv->dynids.lock);
783 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
784 list_del(&dynid->node);
785 kfree(dynid);
786 }
787 spin_unlock(&drv->dynids.lock);
788 }
789
790 /*
791 * store_new_id - sysfs frontend to vmbus_add_dynid()
792 *
793 * Allow GUIDs to be added to an existing driver via sysfs.
794 */
new_id_store(struct device_driver * driver,const char * buf,size_t count)795 static ssize_t new_id_store(struct device_driver *driver, const char *buf,
796 size_t count)
797 {
798 struct hv_driver *drv = drv_to_hv_drv(driver);
799 guid_t guid;
800 ssize_t retval;
801
802 retval = guid_parse(buf, &guid);
803 if (retval)
804 return retval;
805
806 if (hv_vmbus_dynid_match(drv, &guid))
807 return -EEXIST;
808
809 retval = vmbus_add_dynid(drv, &guid);
810 if (retval)
811 return retval;
812 return count;
813 }
814 static DRIVER_ATTR_WO(new_id);
815
816 /*
817 * store_remove_id - remove a PCI device ID from this driver
818 *
819 * Removes a dynamic pci device ID to this driver.
820 */
remove_id_store(struct device_driver * driver,const char * buf,size_t count)821 static ssize_t remove_id_store(struct device_driver *driver, const char *buf,
822 size_t count)
823 {
824 struct hv_driver *drv = drv_to_hv_drv(driver);
825 struct vmbus_dynid *dynid, *n;
826 guid_t guid;
827 ssize_t retval;
828
829 retval = guid_parse(buf, &guid);
830 if (retval)
831 return retval;
832
833 retval = -ENODEV;
834 spin_lock(&drv->dynids.lock);
835 list_for_each_entry_safe(dynid, n, &drv->dynids.list, node) {
836 struct hv_vmbus_device_id *id = &dynid->id;
837
838 if (guid_equal(&id->guid, &guid)) {
839 list_del(&dynid->node);
840 kfree(dynid);
841 retval = count;
842 break;
843 }
844 }
845 spin_unlock(&drv->dynids.lock);
846
847 return retval;
848 }
849 static DRIVER_ATTR_WO(remove_id);
850
851 static struct attribute *vmbus_drv_attrs[] = {
852 &driver_attr_new_id.attr,
853 &driver_attr_remove_id.attr,
854 NULL,
855 };
856 ATTRIBUTE_GROUPS(vmbus_drv);
857
858
859 /*
860 * vmbus_match - Attempt to match the specified device to the specified driver
861 */
vmbus_match(struct device * device,struct device_driver * driver)862 static int vmbus_match(struct device *device, struct device_driver *driver)
863 {
864 struct hv_driver *drv = drv_to_hv_drv(driver);
865 struct hv_device *hv_dev = device_to_hv_device(device);
866
867 /* The hv_sock driver handles all hv_sock offers. */
868 if (is_hvsock_channel(hv_dev->channel))
869 return drv->hvsock;
870
871 if (hv_vmbus_get_id(drv, hv_dev))
872 return 1;
873
874 return 0;
875 }
876
877 /*
878 * vmbus_probe - Add the new vmbus's child device
879 */
vmbus_probe(struct device * child_device)880 static int vmbus_probe(struct device *child_device)
881 {
882 int ret = 0;
883 struct hv_driver *drv =
884 drv_to_hv_drv(child_device->driver);
885 struct hv_device *dev = device_to_hv_device(child_device);
886 const struct hv_vmbus_device_id *dev_id;
887
888 dev_id = hv_vmbus_get_id(drv, dev);
889 if (drv->probe) {
890 ret = drv->probe(dev, dev_id);
891 if (ret != 0)
892 pr_err("probe failed for device %s (%d)\n",
893 dev_name(child_device), ret);
894
895 } else {
896 pr_err("probe not set for driver %s\n",
897 dev_name(child_device));
898 ret = -ENODEV;
899 }
900 return ret;
901 }
902
903 /*
904 * vmbus_dma_configure -- Configure DMA coherence for VMbus device
905 */
vmbus_dma_configure(struct device * child_device)906 static int vmbus_dma_configure(struct device *child_device)
907 {
908 /*
909 * On ARM64, propagate the DMA coherence setting from the top level
910 * VMbus ACPI device to the child VMbus device being added here.
911 * On x86/x64 coherence is assumed and these calls have no effect.
912 */
913 hv_setup_dma_ops(child_device,
914 device_get_dma_attr(&hv_acpi_dev->dev) == DEV_DMA_COHERENT);
915 return 0;
916 }
917
918 /*
919 * vmbus_remove - Remove a vmbus device
920 */
vmbus_remove(struct device * child_device)921 static void vmbus_remove(struct device *child_device)
922 {
923 struct hv_driver *drv;
924 struct hv_device *dev = device_to_hv_device(child_device);
925
926 if (child_device->driver) {
927 drv = drv_to_hv_drv(child_device->driver);
928 if (drv->remove)
929 drv->remove(dev);
930 }
931 }
932
933 /*
934 * vmbus_shutdown - Shutdown a vmbus device
935 */
vmbus_shutdown(struct device * child_device)936 static void vmbus_shutdown(struct device *child_device)
937 {
938 struct hv_driver *drv;
939 struct hv_device *dev = device_to_hv_device(child_device);
940
941
942 /* The device may not be attached yet */
943 if (!child_device->driver)
944 return;
945
946 drv = drv_to_hv_drv(child_device->driver);
947
948 if (drv->shutdown)
949 drv->shutdown(dev);
950 }
951
952 #ifdef CONFIG_PM_SLEEP
953 /*
954 * vmbus_suspend - Suspend a vmbus device
955 */
vmbus_suspend(struct device * child_device)956 static int vmbus_suspend(struct device *child_device)
957 {
958 struct hv_driver *drv;
959 struct hv_device *dev = device_to_hv_device(child_device);
960
961 /* The device may not be attached yet */
962 if (!child_device->driver)
963 return 0;
964
965 drv = drv_to_hv_drv(child_device->driver);
966 if (!drv->suspend)
967 return -EOPNOTSUPP;
968
969 return drv->suspend(dev);
970 }
971
972 /*
973 * vmbus_resume - Resume a vmbus device
974 */
vmbus_resume(struct device * child_device)975 static int vmbus_resume(struct device *child_device)
976 {
977 struct hv_driver *drv;
978 struct hv_device *dev = device_to_hv_device(child_device);
979
980 /* The device may not be attached yet */
981 if (!child_device->driver)
982 return 0;
983
984 drv = drv_to_hv_drv(child_device->driver);
985 if (!drv->resume)
986 return -EOPNOTSUPP;
987
988 return drv->resume(dev);
989 }
990 #else
991 #define vmbus_suspend NULL
992 #define vmbus_resume NULL
993 #endif /* CONFIG_PM_SLEEP */
994
995 /*
996 * vmbus_device_release - Final callback release of the vmbus child device
997 */
vmbus_device_release(struct device * device)998 static void vmbus_device_release(struct device *device)
999 {
1000 struct hv_device *hv_dev = device_to_hv_device(device);
1001 struct vmbus_channel *channel = hv_dev->channel;
1002
1003 hv_debug_rm_dev_dir(hv_dev);
1004
1005 mutex_lock(&vmbus_connection.channel_mutex);
1006 hv_process_channel_removal(channel);
1007 mutex_unlock(&vmbus_connection.channel_mutex);
1008 kfree(hv_dev);
1009 }
1010
1011 /*
1012 * Note: we must use the "noirq" ops: see the comment before vmbus_bus_pm.
1013 *
1014 * suspend_noirq/resume_noirq are set to NULL to support Suspend-to-Idle: we
1015 * shouldn't suspend the vmbus devices upon Suspend-to-Idle, otherwise there
1016 * is no way to wake up a Generation-2 VM.
1017 *
1018 * The other 4 ops are for hibernation.
1019 */
1020
1021 static const struct dev_pm_ops vmbus_pm = {
1022 .suspend_noirq = NULL,
1023 .resume_noirq = NULL,
1024 .freeze_noirq = vmbus_suspend,
1025 .thaw_noirq = vmbus_resume,
1026 .poweroff_noirq = vmbus_suspend,
1027 .restore_noirq = vmbus_resume,
1028 };
1029
1030 /* The one and only one */
1031 static struct bus_type hv_bus = {
1032 .name = "vmbus",
1033 .match = vmbus_match,
1034 .shutdown = vmbus_shutdown,
1035 .remove = vmbus_remove,
1036 .probe = vmbus_probe,
1037 .uevent = vmbus_uevent,
1038 .dma_configure = vmbus_dma_configure,
1039 .dev_groups = vmbus_dev_groups,
1040 .drv_groups = vmbus_drv_groups,
1041 .bus_groups = vmbus_bus_groups,
1042 .pm = &vmbus_pm,
1043 };
1044
1045 struct onmessage_work_context {
1046 struct work_struct work;
1047 struct {
1048 struct hv_message_header header;
1049 u8 payload[];
1050 } msg;
1051 };
1052
vmbus_onmessage_work(struct work_struct * work)1053 static void vmbus_onmessage_work(struct work_struct *work)
1054 {
1055 struct onmessage_work_context *ctx;
1056
1057 /* Do not process messages if we're in DISCONNECTED state */
1058 if (vmbus_connection.conn_state == DISCONNECTED)
1059 return;
1060
1061 ctx = container_of(work, struct onmessage_work_context,
1062 work);
1063 vmbus_onmessage((struct vmbus_channel_message_header *)
1064 &ctx->msg.payload);
1065 kfree(ctx);
1066 }
1067
vmbus_on_msg_dpc(unsigned long data)1068 void vmbus_on_msg_dpc(unsigned long data)
1069 {
1070 struct hv_per_cpu_context *hv_cpu = (void *)data;
1071 void *page_addr = hv_cpu->synic_message_page;
1072 struct hv_message msg_copy, *msg = (struct hv_message *)page_addr +
1073 VMBUS_MESSAGE_SINT;
1074 struct vmbus_channel_message_header *hdr;
1075 enum vmbus_channel_message_type msgtype;
1076 const struct vmbus_channel_message_table_entry *entry;
1077 struct onmessage_work_context *ctx;
1078 __u8 payload_size;
1079 u32 message_type;
1080
1081 /*
1082 * 'enum vmbus_channel_message_type' is supposed to always be 'u32' as
1083 * it is being used in 'struct vmbus_channel_message_header' definition
1084 * which is supposed to match hypervisor ABI.
1085 */
1086 BUILD_BUG_ON(sizeof(enum vmbus_channel_message_type) != sizeof(u32));
1087
1088 /*
1089 * Since the message is in memory shared with the host, an erroneous or
1090 * malicious Hyper-V could modify the message while vmbus_on_msg_dpc()
1091 * or individual message handlers are executing; to prevent this, copy
1092 * the message into private memory.
1093 */
1094 memcpy(&msg_copy, msg, sizeof(struct hv_message));
1095
1096 message_type = msg_copy.header.message_type;
1097 if (message_type == HVMSG_NONE)
1098 /* no msg */
1099 return;
1100
1101 hdr = (struct vmbus_channel_message_header *)msg_copy.u.payload;
1102 msgtype = hdr->msgtype;
1103
1104 trace_vmbus_on_msg_dpc(hdr);
1105
1106 if (msgtype >= CHANNELMSG_COUNT) {
1107 WARN_ONCE(1, "unknown msgtype=%d\n", msgtype);
1108 goto msg_handled;
1109 }
1110
1111 payload_size = msg_copy.header.payload_size;
1112 if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT) {
1113 WARN_ONCE(1, "payload size is too large (%d)\n", payload_size);
1114 goto msg_handled;
1115 }
1116
1117 entry = &channel_message_table[msgtype];
1118
1119 if (!entry->message_handler)
1120 goto msg_handled;
1121
1122 if (payload_size < entry->min_payload_len) {
1123 WARN_ONCE(1, "message too short: msgtype=%d len=%d\n", msgtype, payload_size);
1124 goto msg_handled;
1125 }
1126
1127 if (entry->handler_type == VMHT_BLOCKING) {
1128 ctx = kmalloc(struct_size(ctx, msg.payload, payload_size), GFP_ATOMIC);
1129 if (ctx == NULL)
1130 return;
1131
1132 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1133 ctx->msg.header = msg_copy.header;
1134 memcpy(&ctx->msg.payload, msg_copy.u.payload, payload_size);
1135
1136 /*
1137 * The host can generate a rescind message while we
1138 * may still be handling the original offer. We deal with
1139 * this condition by relying on the synchronization provided
1140 * by offer_in_progress and by channel_mutex. See also the
1141 * inline comments in vmbus_onoffer_rescind().
1142 */
1143 switch (msgtype) {
1144 case CHANNELMSG_RESCIND_CHANNELOFFER:
1145 /*
1146 * If we are handling the rescind message;
1147 * schedule the work on the global work queue.
1148 *
1149 * The OFFER message and the RESCIND message should
1150 * not be handled by the same serialized work queue,
1151 * because the OFFER handler may call vmbus_open(),
1152 * which tries to open the channel by sending an
1153 * OPEN_CHANNEL message to the host and waits for
1154 * the host's response; however, if the host has
1155 * rescinded the channel before it receives the
1156 * OPEN_CHANNEL message, the host just silently
1157 * ignores the OPEN_CHANNEL message; as a result,
1158 * the guest's OFFER handler hangs for ever, if we
1159 * handle the RESCIND message in the same serialized
1160 * work queue: the RESCIND handler can not start to
1161 * run before the OFFER handler finishes.
1162 */
1163 if (vmbus_connection.ignore_any_offer_msg)
1164 break;
1165 queue_work(vmbus_connection.rescind_work_queue, &ctx->work);
1166 break;
1167
1168 case CHANNELMSG_OFFERCHANNEL:
1169 /*
1170 * The host sends the offer message of a given channel
1171 * before sending the rescind message of the same
1172 * channel. These messages are sent to the guest's
1173 * connect CPU; the guest then starts processing them
1174 * in the tasklet handler on this CPU:
1175 *
1176 * VMBUS_CONNECT_CPU
1177 *
1178 * [vmbus_on_msg_dpc()]
1179 * atomic_inc() // CHANNELMSG_OFFERCHANNEL
1180 * queue_work()
1181 * ...
1182 * [vmbus_on_msg_dpc()]
1183 * schedule_work() // CHANNELMSG_RESCIND_CHANNELOFFER
1184 *
1185 * We rely on the memory-ordering properties of the
1186 * queue_work() and schedule_work() primitives, which
1187 * guarantee that the atomic increment will be visible
1188 * to the CPUs which will execute the offer & rescind
1189 * works by the time these works will start execution.
1190 */
1191 if (vmbus_connection.ignore_any_offer_msg)
1192 break;
1193 atomic_inc(&vmbus_connection.offer_in_progress);
1194 fallthrough;
1195
1196 default:
1197 queue_work(vmbus_connection.work_queue, &ctx->work);
1198 }
1199 } else
1200 entry->message_handler(hdr);
1201
1202 msg_handled:
1203 vmbus_signal_eom(msg, message_type);
1204 }
1205
1206 #ifdef CONFIG_PM_SLEEP
1207 /*
1208 * Fake RESCIND_CHANNEL messages to clean up hv_sock channels by force for
1209 * hibernation, because hv_sock connections can not persist across hibernation.
1210 */
vmbus_force_channel_rescinded(struct vmbus_channel * channel)1211 static void vmbus_force_channel_rescinded(struct vmbus_channel *channel)
1212 {
1213 struct onmessage_work_context *ctx;
1214 struct vmbus_channel_rescind_offer *rescind;
1215
1216 WARN_ON(!is_hvsock_channel(channel));
1217
1218 /*
1219 * Allocation size is small and the allocation should really not fail,
1220 * otherwise the state of the hv_sock connections ends up in limbo.
1221 */
1222 ctx = kzalloc(sizeof(*ctx) + sizeof(*rescind),
1223 GFP_KERNEL | __GFP_NOFAIL);
1224
1225 /*
1226 * So far, these are not really used by Linux. Just set them to the
1227 * reasonable values conforming to the definitions of the fields.
1228 */
1229 ctx->msg.header.message_type = 1;
1230 ctx->msg.header.payload_size = sizeof(*rescind);
1231
1232 /* These values are actually used by Linux. */
1233 rescind = (struct vmbus_channel_rescind_offer *)ctx->msg.payload;
1234 rescind->header.msgtype = CHANNELMSG_RESCIND_CHANNELOFFER;
1235 rescind->child_relid = channel->offermsg.child_relid;
1236
1237 INIT_WORK(&ctx->work, vmbus_onmessage_work);
1238
1239 queue_work(vmbus_connection.work_queue, &ctx->work);
1240 }
1241 #endif /* CONFIG_PM_SLEEP */
1242
1243 /*
1244 * Schedule all channels with events pending
1245 */
vmbus_chan_sched(struct hv_per_cpu_context * hv_cpu)1246 static void vmbus_chan_sched(struct hv_per_cpu_context *hv_cpu)
1247 {
1248 unsigned long *recv_int_page;
1249 u32 maxbits, relid;
1250
1251 /*
1252 * The event page can be directly checked to get the id of
1253 * the channel that has the interrupt pending.
1254 */
1255 void *page_addr = hv_cpu->synic_event_page;
1256 union hv_synic_event_flags *event
1257 = (union hv_synic_event_flags *)page_addr +
1258 VMBUS_MESSAGE_SINT;
1259
1260 maxbits = HV_EVENT_FLAGS_COUNT;
1261 recv_int_page = event->flags;
1262
1263 if (unlikely(!recv_int_page))
1264 return;
1265
1266 for_each_set_bit(relid, recv_int_page, maxbits) {
1267 void (*callback_fn)(void *context);
1268 struct vmbus_channel *channel;
1269
1270 if (!sync_test_and_clear_bit(relid, recv_int_page))
1271 continue;
1272
1273 /* Special case - vmbus channel protocol msg */
1274 if (relid == 0)
1275 continue;
1276
1277 /*
1278 * Pairs with the kfree_rcu() in vmbus_chan_release().
1279 * Guarantees that the channel data structure doesn't
1280 * get freed while the channel pointer below is being
1281 * dereferenced.
1282 */
1283 rcu_read_lock();
1284
1285 /* Find channel based on relid */
1286 channel = relid2channel(relid);
1287 if (channel == NULL)
1288 goto sched_unlock_rcu;
1289
1290 if (channel->rescind)
1291 goto sched_unlock_rcu;
1292
1293 /*
1294 * Make sure that the ring buffer data structure doesn't get
1295 * freed while we dereference the ring buffer pointer. Test
1296 * for the channel's onchannel_callback being NULL within a
1297 * sched_lock critical section. See also the inline comments
1298 * in vmbus_reset_channel_cb().
1299 */
1300 spin_lock(&channel->sched_lock);
1301
1302 callback_fn = channel->onchannel_callback;
1303 if (unlikely(callback_fn == NULL))
1304 goto sched_unlock;
1305
1306 trace_vmbus_chan_sched(channel);
1307
1308 ++channel->interrupts;
1309
1310 switch (channel->callback_mode) {
1311 case HV_CALL_ISR:
1312 (*callback_fn)(channel->channel_callback_context);
1313 break;
1314
1315 case HV_CALL_BATCHED:
1316 hv_begin_read(&channel->inbound);
1317 fallthrough;
1318 case HV_CALL_DIRECT:
1319 tasklet_schedule(&channel->callback_event);
1320 }
1321
1322 sched_unlock:
1323 spin_unlock(&channel->sched_lock);
1324 sched_unlock_rcu:
1325 rcu_read_unlock();
1326 }
1327 }
1328
vmbus_isr(void)1329 static void vmbus_isr(void)
1330 {
1331 struct hv_per_cpu_context *hv_cpu
1332 = this_cpu_ptr(hv_context.cpu_context);
1333 void *page_addr;
1334 struct hv_message *msg;
1335
1336 vmbus_chan_sched(hv_cpu);
1337
1338 page_addr = hv_cpu->synic_message_page;
1339 msg = (struct hv_message *)page_addr + VMBUS_MESSAGE_SINT;
1340
1341 /* Check if there are actual msgs to be processed */
1342 if (msg->header.message_type != HVMSG_NONE) {
1343 if (msg->header.message_type == HVMSG_TIMER_EXPIRED) {
1344 hv_stimer0_isr();
1345 vmbus_signal_eom(msg, HVMSG_TIMER_EXPIRED);
1346 } else
1347 tasklet_schedule(&hv_cpu->msg_dpc);
1348 }
1349
1350 add_interrupt_randomness(vmbus_interrupt);
1351 }
1352
vmbus_percpu_isr(int irq,void * dev_id)1353 static irqreturn_t vmbus_percpu_isr(int irq, void *dev_id)
1354 {
1355 vmbus_isr();
1356 return IRQ_HANDLED;
1357 }
1358
1359 /*
1360 * Callback from kmsg_dump. Grab as much as possible from the end of the kmsg
1361 * buffer and call into Hyper-V to transfer the data.
1362 */
hv_kmsg_dump(struct kmsg_dumper * dumper,enum kmsg_dump_reason reason)1363 static void hv_kmsg_dump(struct kmsg_dumper *dumper,
1364 enum kmsg_dump_reason reason)
1365 {
1366 struct kmsg_dump_iter iter;
1367 size_t bytes_written;
1368
1369 /* We are only interested in panics. */
1370 if ((reason != KMSG_DUMP_PANIC) || (!sysctl_record_panic_msg))
1371 return;
1372
1373 /*
1374 * Write dump contents to the page. No need to synchronize; panic should
1375 * be single-threaded.
1376 */
1377 kmsg_dump_rewind(&iter);
1378 kmsg_dump_get_buffer(&iter, false, hv_panic_page, HV_HYP_PAGE_SIZE,
1379 &bytes_written);
1380 if (!bytes_written)
1381 return;
1382 /*
1383 * P3 to contain the physical address of the panic page & P4 to
1384 * contain the size of the panic data in that page. Rest of the
1385 * registers are no-op when the NOTIFY_MSG flag is set.
1386 */
1387 hv_set_register(HV_REGISTER_CRASH_P0, 0);
1388 hv_set_register(HV_REGISTER_CRASH_P1, 0);
1389 hv_set_register(HV_REGISTER_CRASH_P2, 0);
1390 hv_set_register(HV_REGISTER_CRASH_P3, virt_to_phys(hv_panic_page));
1391 hv_set_register(HV_REGISTER_CRASH_P4, bytes_written);
1392
1393 /*
1394 * Let Hyper-V know there is crash data available along with
1395 * the panic message.
1396 */
1397 hv_set_register(HV_REGISTER_CRASH_CTL,
1398 (HV_CRASH_CTL_CRASH_NOTIFY | HV_CRASH_CTL_CRASH_NOTIFY_MSG));
1399 }
1400
1401 static struct kmsg_dumper hv_kmsg_dumper = {
1402 .dump = hv_kmsg_dump,
1403 };
1404
hv_kmsg_dump_register(void)1405 static void hv_kmsg_dump_register(void)
1406 {
1407 int ret;
1408
1409 hv_panic_page = hv_alloc_hyperv_zeroed_page();
1410 if (!hv_panic_page) {
1411 pr_err("Hyper-V: panic message page memory allocation failed\n");
1412 return;
1413 }
1414
1415 ret = kmsg_dump_register(&hv_kmsg_dumper);
1416 if (ret) {
1417 pr_err("Hyper-V: kmsg dump register error 0x%x\n", ret);
1418 hv_free_hyperv_page((unsigned long)hv_panic_page);
1419 hv_panic_page = NULL;
1420 }
1421 }
1422
1423 static struct ctl_table_header *hv_ctl_table_hdr;
1424
1425 /*
1426 * sysctl option to allow the user to control whether kmsg data should be
1427 * reported to Hyper-V on panic.
1428 */
1429 static struct ctl_table hv_ctl_table[] = {
1430 {
1431 .procname = "hyperv_record_panic_msg",
1432 .data = &sysctl_record_panic_msg,
1433 .maxlen = sizeof(int),
1434 .mode = 0644,
1435 .proc_handler = proc_dointvec_minmax,
1436 .extra1 = SYSCTL_ZERO,
1437 .extra2 = SYSCTL_ONE
1438 },
1439 {}
1440 };
1441
1442 static struct ctl_table hv_root_table[] = {
1443 {
1444 .procname = "kernel",
1445 .mode = 0555,
1446 .child = hv_ctl_table
1447 },
1448 {}
1449 };
1450
1451 /*
1452 * vmbus_bus_init -Main vmbus driver initialization routine.
1453 *
1454 * Here, we
1455 * - initialize the vmbus driver context
1456 * - invoke the vmbus hv main init routine
1457 * - retrieve the channel offers
1458 */
vmbus_bus_init(void)1459 static int vmbus_bus_init(void)
1460 {
1461 int ret;
1462
1463 ret = hv_init();
1464 if (ret != 0) {
1465 pr_err("Unable to initialize the hypervisor - 0x%x\n", ret);
1466 return ret;
1467 }
1468
1469 ret = bus_register(&hv_bus);
1470 if (ret)
1471 return ret;
1472
1473 /*
1474 * VMbus interrupts are best modeled as per-cpu interrupts. If
1475 * on an architecture with support for per-cpu IRQs (e.g. ARM64),
1476 * allocate a per-cpu IRQ using standard Linux kernel functionality.
1477 * If not on such an architecture (e.g., x86/x64), then rely on
1478 * code in the arch-specific portion of the code tree to connect
1479 * the VMbus interrupt handler.
1480 */
1481
1482 if (vmbus_irq == -1) {
1483 hv_setup_vmbus_handler(vmbus_isr);
1484 } else {
1485 vmbus_evt = alloc_percpu(long);
1486 ret = request_percpu_irq(vmbus_irq, vmbus_percpu_isr,
1487 "Hyper-V VMbus", vmbus_evt);
1488 if (ret) {
1489 pr_err("Can't request Hyper-V VMbus IRQ %d, Err %d",
1490 vmbus_irq, ret);
1491 free_percpu(vmbus_evt);
1492 goto err_setup;
1493 }
1494 }
1495
1496 ret = hv_synic_alloc();
1497 if (ret)
1498 goto err_alloc;
1499
1500 /*
1501 * Initialize the per-cpu interrupt state and stimer state.
1502 * Then connect to the host.
1503 */
1504 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "hyperv/vmbus:online",
1505 hv_synic_init, hv_synic_cleanup);
1506 if (ret < 0)
1507 goto err_cpuhp;
1508 hyperv_cpuhp_online = ret;
1509
1510 ret = vmbus_connect();
1511 if (ret)
1512 goto err_connect;
1513
1514 if (hv_is_isolation_supported())
1515 sysctl_record_panic_msg = 0;
1516
1517 /*
1518 * Only register if the crash MSRs are available
1519 */
1520 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
1521 u64 hyperv_crash_ctl;
1522 /*
1523 * Panic message recording (sysctl_record_panic_msg)
1524 * is enabled by default in non-isolated guests and
1525 * disabled by default in isolated guests; the panic
1526 * message recording won't be available in isolated
1527 * guests should the following registration fail.
1528 */
1529 hv_ctl_table_hdr = register_sysctl_table(hv_root_table);
1530 if (!hv_ctl_table_hdr)
1531 pr_err("Hyper-V: sysctl table register error");
1532
1533 /*
1534 * Register for panic kmsg callback only if the right
1535 * capability is supported by the hypervisor.
1536 */
1537 hyperv_crash_ctl = hv_get_register(HV_REGISTER_CRASH_CTL);
1538 if (hyperv_crash_ctl & HV_CRASH_CTL_CRASH_NOTIFY_MSG)
1539 hv_kmsg_dump_register();
1540
1541 register_die_notifier(&hyperv_die_block);
1542 }
1543
1544 /*
1545 * Always register the panic notifier because we need to unload
1546 * the VMbus channel connection to prevent any VMbus
1547 * activity after the VM panics.
1548 */
1549 atomic_notifier_chain_register(&panic_notifier_list,
1550 &hyperv_panic_block);
1551
1552 vmbus_request_offers();
1553
1554 return 0;
1555
1556 err_connect:
1557 cpuhp_remove_state(hyperv_cpuhp_online);
1558 err_cpuhp:
1559 hv_synic_free();
1560 err_alloc:
1561 if (vmbus_irq == -1) {
1562 hv_remove_vmbus_handler();
1563 } else {
1564 free_percpu_irq(vmbus_irq, vmbus_evt);
1565 free_percpu(vmbus_evt);
1566 }
1567 err_setup:
1568 bus_unregister(&hv_bus);
1569 unregister_sysctl_table(hv_ctl_table_hdr);
1570 hv_ctl_table_hdr = NULL;
1571 return ret;
1572 }
1573
1574 /**
1575 * __vmbus_driver_register() - Register a vmbus's driver
1576 * @hv_driver: Pointer to driver structure you want to register
1577 * @owner: owner module of the drv
1578 * @mod_name: module name string
1579 *
1580 * Registers the given driver with Linux through the 'driver_register()' call
1581 * and sets up the hyper-v vmbus handling for this driver.
1582 * It will return the state of the 'driver_register()' call.
1583 *
1584 */
__vmbus_driver_register(struct hv_driver * hv_driver,struct module * owner,const char * mod_name)1585 int __vmbus_driver_register(struct hv_driver *hv_driver, struct module *owner, const char *mod_name)
1586 {
1587 int ret;
1588
1589 pr_info("registering driver %s\n", hv_driver->name);
1590
1591 ret = vmbus_exists();
1592 if (ret < 0)
1593 return ret;
1594
1595 hv_driver->driver.name = hv_driver->name;
1596 hv_driver->driver.owner = owner;
1597 hv_driver->driver.mod_name = mod_name;
1598 hv_driver->driver.bus = &hv_bus;
1599
1600 spin_lock_init(&hv_driver->dynids.lock);
1601 INIT_LIST_HEAD(&hv_driver->dynids.list);
1602
1603 ret = driver_register(&hv_driver->driver);
1604
1605 return ret;
1606 }
1607 EXPORT_SYMBOL_GPL(__vmbus_driver_register);
1608
1609 /**
1610 * vmbus_driver_unregister() - Unregister a vmbus's driver
1611 * @hv_driver: Pointer to driver structure you want to
1612 * un-register
1613 *
1614 * Un-register the given driver that was previous registered with a call to
1615 * vmbus_driver_register()
1616 */
vmbus_driver_unregister(struct hv_driver * hv_driver)1617 void vmbus_driver_unregister(struct hv_driver *hv_driver)
1618 {
1619 pr_info("unregistering driver %s\n", hv_driver->name);
1620
1621 if (!vmbus_exists()) {
1622 driver_unregister(&hv_driver->driver);
1623 vmbus_free_dynids(hv_driver);
1624 }
1625 }
1626 EXPORT_SYMBOL_GPL(vmbus_driver_unregister);
1627
1628
1629 /*
1630 * Called when last reference to channel is gone.
1631 */
vmbus_chan_release(struct kobject * kobj)1632 static void vmbus_chan_release(struct kobject *kobj)
1633 {
1634 struct vmbus_channel *channel
1635 = container_of(kobj, struct vmbus_channel, kobj);
1636
1637 kfree_rcu(channel, rcu);
1638 }
1639
1640 struct vmbus_chan_attribute {
1641 struct attribute attr;
1642 ssize_t (*show)(struct vmbus_channel *chan, char *buf);
1643 ssize_t (*store)(struct vmbus_channel *chan,
1644 const char *buf, size_t count);
1645 };
1646 #define VMBUS_CHAN_ATTR(_name, _mode, _show, _store) \
1647 struct vmbus_chan_attribute chan_attr_##_name \
1648 = __ATTR(_name, _mode, _show, _store)
1649 #define VMBUS_CHAN_ATTR_RW(_name) \
1650 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RW(_name)
1651 #define VMBUS_CHAN_ATTR_RO(_name) \
1652 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_RO(_name)
1653 #define VMBUS_CHAN_ATTR_WO(_name) \
1654 struct vmbus_chan_attribute chan_attr_##_name = __ATTR_WO(_name)
1655
vmbus_chan_attr_show(struct kobject * kobj,struct attribute * attr,char * buf)1656 static ssize_t vmbus_chan_attr_show(struct kobject *kobj,
1657 struct attribute *attr, char *buf)
1658 {
1659 const struct vmbus_chan_attribute *attribute
1660 = container_of(attr, struct vmbus_chan_attribute, attr);
1661 struct vmbus_channel *chan
1662 = container_of(kobj, struct vmbus_channel, kobj);
1663
1664 if (!attribute->show)
1665 return -EIO;
1666
1667 return attribute->show(chan, buf);
1668 }
1669
vmbus_chan_attr_store(struct kobject * kobj,struct attribute * attr,const char * buf,size_t count)1670 static ssize_t vmbus_chan_attr_store(struct kobject *kobj,
1671 struct attribute *attr, const char *buf,
1672 size_t count)
1673 {
1674 const struct vmbus_chan_attribute *attribute
1675 = container_of(attr, struct vmbus_chan_attribute, attr);
1676 struct vmbus_channel *chan
1677 = container_of(kobj, struct vmbus_channel, kobj);
1678
1679 if (!attribute->store)
1680 return -EIO;
1681
1682 return attribute->store(chan, buf, count);
1683 }
1684
1685 static const struct sysfs_ops vmbus_chan_sysfs_ops = {
1686 .show = vmbus_chan_attr_show,
1687 .store = vmbus_chan_attr_store,
1688 };
1689
out_mask_show(struct vmbus_channel * channel,char * buf)1690 static ssize_t out_mask_show(struct vmbus_channel *channel, char *buf)
1691 {
1692 struct hv_ring_buffer_info *rbi = &channel->outbound;
1693 ssize_t ret;
1694
1695 mutex_lock(&rbi->ring_buffer_mutex);
1696 if (!rbi->ring_buffer) {
1697 mutex_unlock(&rbi->ring_buffer_mutex);
1698 return -EINVAL;
1699 }
1700
1701 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1702 mutex_unlock(&rbi->ring_buffer_mutex);
1703 return ret;
1704 }
1705 static VMBUS_CHAN_ATTR_RO(out_mask);
1706
in_mask_show(struct vmbus_channel * channel,char * buf)1707 static ssize_t in_mask_show(struct vmbus_channel *channel, char *buf)
1708 {
1709 struct hv_ring_buffer_info *rbi = &channel->inbound;
1710 ssize_t ret;
1711
1712 mutex_lock(&rbi->ring_buffer_mutex);
1713 if (!rbi->ring_buffer) {
1714 mutex_unlock(&rbi->ring_buffer_mutex);
1715 return -EINVAL;
1716 }
1717
1718 ret = sprintf(buf, "%u\n", rbi->ring_buffer->interrupt_mask);
1719 mutex_unlock(&rbi->ring_buffer_mutex);
1720 return ret;
1721 }
1722 static VMBUS_CHAN_ATTR_RO(in_mask);
1723
read_avail_show(struct vmbus_channel * channel,char * buf)1724 static ssize_t read_avail_show(struct vmbus_channel *channel, char *buf)
1725 {
1726 struct hv_ring_buffer_info *rbi = &channel->inbound;
1727 ssize_t ret;
1728
1729 mutex_lock(&rbi->ring_buffer_mutex);
1730 if (!rbi->ring_buffer) {
1731 mutex_unlock(&rbi->ring_buffer_mutex);
1732 return -EINVAL;
1733 }
1734
1735 ret = sprintf(buf, "%u\n", hv_get_bytes_to_read(rbi));
1736 mutex_unlock(&rbi->ring_buffer_mutex);
1737 return ret;
1738 }
1739 static VMBUS_CHAN_ATTR_RO(read_avail);
1740
write_avail_show(struct vmbus_channel * channel,char * buf)1741 static ssize_t write_avail_show(struct vmbus_channel *channel, char *buf)
1742 {
1743 struct hv_ring_buffer_info *rbi = &channel->outbound;
1744 ssize_t ret;
1745
1746 mutex_lock(&rbi->ring_buffer_mutex);
1747 if (!rbi->ring_buffer) {
1748 mutex_unlock(&rbi->ring_buffer_mutex);
1749 return -EINVAL;
1750 }
1751
1752 ret = sprintf(buf, "%u\n", hv_get_bytes_to_write(rbi));
1753 mutex_unlock(&rbi->ring_buffer_mutex);
1754 return ret;
1755 }
1756 static VMBUS_CHAN_ATTR_RO(write_avail);
1757
target_cpu_show(struct vmbus_channel * channel,char * buf)1758 static ssize_t target_cpu_show(struct vmbus_channel *channel, char *buf)
1759 {
1760 return sprintf(buf, "%u\n", channel->target_cpu);
1761 }
target_cpu_store(struct vmbus_channel * channel,const char * buf,size_t count)1762 static ssize_t target_cpu_store(struct vmbus_channel *channel,
1763 const char *buf, size_t count)
1764 {
1765 u32 target_cpu, origin_cpu;
1766 ssize_t ret = count;
1767
1768 if (vmbus_proto_version < VERSION_WIN10_V4_1)
1769 return -EIO;
1770
1771 if (sscanf(buf, "%uu", &target_cpu) != 1)
1772 return -EIO;
1773
1774 /* Validate target_cpu for the cpumask_test_cpu() operation below. */
1775 if (target_cpu >= nr_cpumask_bits)
1776 return -EINVAL;
1777
1778 if (!cpumask_test_cpu(target_cpu, housekeeping_cpumask(HK_TYPE_MANAGED_IRQ)))
1779 return -EINVAL;
1780
1781 /* No CPUs should come up or down during this. */
1782 cpus_read_lock();
1783
1784 if (!cpu_online(target_cpu)) {
1785 cpus_read_unlock();
1786 return -EINVAL;
1787 }
1788
1789 /*
1790 * Synchronizes target_cpu_store() and channel closure:
1791 *
1792 * { Initially: state = CHANNEL_OPENED }
1793 *
1794 * CPU1 CPU2
1795 *
1796 * [target_cpu_store()] [vmbus_disconnect_ring()]
1797 *
1798 * LOCK channel_mutex LOCK channel_mutex
1799 * LOAD r1 = state LOAD r2 = state
1800 * IF (r1 == CHANNEL_OPENED) IF (r2 == CHANNEL_OPENED)
1801 * SEND MODIFYCHANNEL STORE state = CHANNEL_OPEN
1802 * [...] SEND CLOSECHANNEL
1803 * UNLOCK channel_mutex UNLOCK channel_mutex
1804 *
1805 * Forbids: r1 == r2 == CHANNEL_OPENED (i.e., CPU1's LOCK precedes
1806 * CPU2's LOCK) && CPU2's SEND precedes CPU1's SEND
1807 *
1808 * Note. The host processes the channel messages "sequentially", in
1809 * the order in which they are received on a per-partition basis.
1810 */
1811 mutex_lock(&vmbus_connection.channel_mutex);
1812
1813 /*
1814 * Hyper-V will ignore MODIFYCHANNEL messages for "non-open" channels;
1815 * avoid sending the message and fail here for such channels.
1816 */
1817 if (channel->state != CHANNEL_OPENED_STATE) {
1818 ret = -EIO;
1819 goto cpu_store_unlock;
1820 }
1821
1822 origin_cpu = channel->target_cpu;
1823 if (target_cpu == origin_cpu)
1824 goto cpu_store_unlock;
1825
1826 if (vmbus_send_modifychannel(channel,
1827 hv_cpu_number_to_vp_number(target_cpu))) {
1828 ret = -EIO;
1829 goto cpu_store_unlock;
1830 }
1831
1832 /*
1833 * For version before VERSION_WIN10_V5_3, the following warning holds:
1834 *
1835 * Warning. At this point, there is *no* guarantee that the host will
1836 * have successfully processed the vmbus_send_modifychannel() request.
1837 * See the header comment of vmbus_send_modifychannel() for more info.
1838 *
1839 * Lags in the processing of the above vmbus_send_modifychannel() can
1840 * result in missed interrupts if the "old" target CPU is taken offline
1841 * before Hyper-V starts sending interrupts to the "new" target CPU.
1842 * But apart from this offlining scenario, the code tolerates such
1843 * lags. It will function correctly even if a channel interrupt comes
1844 * in on a CPU that is different from the channel target_cpu value.
1845 */
1846
1847 channel->target_cpu = target_cpu;
1848
1849 /* See init_vp_index(). */
1850 if (hv_is_perf_channel(channel))
1851 hv_update_allocated_cpus(origin_cpu, target_cpu);
1852
1853 /* Currently set only for storvsc channels. */
1854 if (channel->change_target_cpu_callback) {
1855 (*channel->change_target_cpu_callback)(channel,
1856 origin_cpu, target_cpu);
1857 }
1858
1859 cpu_store_unlock:
1860 mutex_unlock(&vmbus_connection.channel_mutex);
1861 cpus_read_unlock();
1862 return ret;
1863 }
1864 static VMBUS_CHAN_ATTR(cpu, 0644, target_cpu_show, target_cpu_store);
1865
channel_pending_show(struct vmbus_channel * channel,char * buf)1866 static ssize_t channel_pending_show(struct vmbus_channel *channel,
1867 char *buf)
1868 {
1869 return sprintf(buf, "%d\n",
1870 channel_pending(channel,
1871 vmbus_connection.monitor_pages[1]));
1872 }
1873 static VMBUS_CHAN_ATTR(pending, 0444, channel_pending_show, NULL);
1874
channel_latency_show(struct vmbus_channel * channel,char * buf)1875 static ssize_t channel_latency_show(struct vmbus_channel *channel,
1876 char *buf)
1877 {
1878 return sprintf(buf, "%d\n",
1879 channel_latency(channel,
1880 vmbus_connection.monitor_pages[1]));
1881 }
1882 static VMBUS_CHAN_ATTR(latency, 0444, channel_latency_show, NULL);
1883
channel_interrupts_show(struct vmbus_channel * channel,char * buf)1884 static ssize_t channel_interrupts_show(struct vmbus_channel *channel, char *buf)
1885 {
1886 return sprintf(buf, "%llu\n", channel->interrupts);
1887 }
1888 static VMBUS_CHAN_ATTR(interrupts, 0444, channel_interrupts_show, NULL);
1889
channel_events_show(struct vmbus_channel * channel,char * buf)1890 static ssize_t channel_events_show(struct vmbus_channel *channel, char *buf)
1891 {
1892 return sprintf(buf, "%llu\n", channel->sig_events);
1893 }
1894 static VMBUS_CHAN_ATTR(events, 0444, channel_events_show, NULL);
1895
channel_intr_in_full_show(struct vmbus_channel * channel,char * buf)1896 static ssize_t channel_intr_in_full_show(struct vmbus_channel *channel,
1897 char *buf)
1898 {
1899 return sprintf(buf, "%llu\n",
1900 (unsigned long long)channel->intr_in_full);
1901 }
1902 static VMBUS_CHAN_ATTR(intr_in_full, 0444, channel_intr_in_full_show, NULL);
1903
channel_intr_out_empty_show(struct vmbus_channel * channel,char * buf)1904 static ssize_t channel_intr_out_empty_show(struct vmbus_channel *channel,
1905 char *buf)
1906 {
1907 return sprintf(buf, "%llu\n",
1908 (unsigned long long)channel->intr_out_empty);
1909 }
1910 static VMBUS_CHAN_ATTR(intr_out_empty, 0444, channel_intr_out_empty_show, NULL);
1911
channel_out_full_first_show(struct vmbus_channel * channel,char * buf)1912 static ssize_t channel_out_full_first_show(struct vmbus_channel *channel,
1913 char *buf)
1914 {
1915 return sprintf(buf, "%llu\n",
1916 (unsigned long long)channel->out_full_first);
1917 }
1918 static VMBUS_CHAN_ATTR(out_full_first, 0444, channel_out_full_first_show, NULL);
1919
channel_out_full_total_show(struct vmbus_channel * channel,char * buf)1920 static ssize_t channel_out_full_total_show(struct vmbus_channel *channel,
1921 char *buf)
1922 {
1923 return sprintf(buf, "%llu\n",
1924 (unsigned long long)channel->out_full_total);
1925 }
1926 static VMBUS_CHAN_ATTR(out_full_total, 0444, channel_out_full_total_show, NULL);
1927
subchannel_monitor_id_show(struct vmbus_channel * channel,char * buf)1928 static ssize_t subchannel_monitor_id_show(struct vmbus_channel *channel,
1929 char *buf)
1930 {
1931 return sprintf(buf, "%u\n", channel->offermsg.monitorid);
1932 }
1933 static VMBUS_CHAN_ATTR(monitor_id, 0444, subchannel_monitor_id_show, NULL);
1934
subchannel_id_show(struct vmbus_channel * channel,char * buf)1935 static ssize_t subchannel_id_show(struct vmbus_channel *channel,
1936 char *buf)
1937 {
1938 return sprintf(buf, "%u\n",
1939 channel->offermsg.offer.sub_channel_index);
1940 }
1941 static VMBUS_CHAN_ATTR_RO(subchannel_id);
1942
1943 static struct attribute *vmbus_chan_attrs[] = {
1944 &chan_attr_out_mask.attr,
1945 &chan_attr_in_mask.attr,
1946 &chan_attr_read_avail.attr,
1947 &chan_attr_write_avail.attr,
1948 &chan_attr_cpu.attr,
1949 &chan_attr_pending.attr,
1950 &chan_attr_latency.attr,
1951 &chan_attr_interrupts.attr,
1952 &chan_attr_events.attr,
1953 &chan_attr_intr_in_full.attr,
1954 &chan_attr_intr_out_empty.attr,
1955 &chan_attr_out_full_first.attr,
1956 &chan_attr_out_full_total.attr,
1957 &chan_attr_monitor_id.attr,
1958 &chan_attr_subchannel_id.attr,
1959 NULL
1960 };
1961
1962 /*
1963 * Channel-level attribute_group callback function. Returns the permission for
1964 * each attribute, and returns 0 if an attribute is not visible.
1965 */
vmbus_chan_attr_is_visible(struct kobject * kobj,struct attribute * attr,int idx)1966 static umode_t vmbus_chan_attr_is_visible(struct kobject *kobj,
1967 struct attribute *attr, int idx)
1968 {
1969 const struct vmbus_channel *channel =
1970 container_of(kobj, struct vmbus_channel, kobj);
1971
1972 /* Hide the monitor attributes if the monitor mechanism is not used. */
1973 if (!channel->offermsg.monitor_allocated &&
1974 (attr == &chan_attr_pending.attr ||
1975 attr == &chan_attr_latency.attr ||
1976 attr == &chan_attr_monitor_id.attr))
1977 return 0;
1978
1979 return attr->mode;
1980 }
1981
1982 static struct attribute_group vmbus_chan_group = {
1983 .attrs = vmbus_chan_attrs,
1984 .is_visible = vmbus_chan_attr_is_visible
1985 };
1986
1987 static struct kobj_type vmbus_chan_ktype = {
1988 .sysfs_ops = &vmbus_chan_sysfs_ops,
1989 .release = vmbus_chan_release,
1990 };
1991
1992 /*
1993 * vmbus_add_channel_kobj - setup a sub-directory under device/channels
1994 */
vmbus_add_channel_kobj(struct hv_device * dev,struct vmbus_channel * channel)1995 int vmbus_add_channel_kobj(struct hv_device *dev, struct vmbus_channel *channel)
1996 {
1997 const struct device *device = &dev->device;
1998 struct kobject *kobj = &channel->kobj;
1999 u32 relid = channel->offermsg.child_relid;
2000 int ret;
2001
2002 kobj->kset = dev->channels_kset;
2003 ret = kobject_init_and_add(kobj, &vmbus_chan_ktype, NULL,
2004 "%u", relid);
2005 if (ret) {
2006 kobject_put(kobj);
2007 return ret;
2008 }
2009
2010 ret = sysfs_create_group(kobj, &vmbus_chan_group);
2011
2012 if (ret) {
2013 /*
2014 * The calling functions' error handling paths will cleanup the
2015 * empty channel directory.
2016 */
2017 kobject_put(kobj);
2018 dev_err(device, "Unable to set up channel sysfs files\n");
2019 return ret;
2020 }
2021
2022 kobject_uevent(kobj, KOBJ_ADD);
2023
2024 return 0;
2025 }
2026
2027 /*
2028 * vmbus_remove_channel_attr_group - remove the channel's attribute group
2029 */
vmbus_remove_channel_attr_group(struct vmbus_channel * channel)2030 void vmbus_remove_channel_attr_group(struct vmbus_channel *channel)
2031 {
2032 sysfs_remove_group(&channel->kobj, &vmbus_chan_group);
2033 }
2034
2035 /*
2036 * vmbus_device_create - Creates and registers a new child device
2037 * on the vmbus.
2038 */
vmbus_device_create(const guid_t * type,const guid_t * instance,struct vmbus_channel * channel)2039 struct hv_device *vmbus_device_create(const guid_t *type,
2040 const guid_t *instance,
2041 struct vmbus_channel *channel)
2042 {
2043 struct hv_device *child_device_obj;
2044
2045 child_device_obj = kzalloc(sizeof(struct hv_device), GFP_KERNEL);
2046 if (!child_device_obj) {
2047 pr_err("Unable to allocate device object for child device\n");
2048 return NULL;
2049 }
2050
2051 child_device_obj->channel = channel;
2052 guid_copy(&child_device_obj->dev_type, type);
2053 guid_copy(&child_device_obj->dev_instance, instance);
2054 child_device_obj->vendor_id = PCI_VENDOR_ID_MICROSOFT;
2055
2056 return child_device_obj;
2057 }
2058
2059 /*
2060 * vmbus_device_register - Register the child device
2061 */
vmbus_device_register(struct hv_device * child_device_obj)2062 int vmbus_device_register(struct hv_device *child_device_obj)
2063 {
2064 struct kobject *kobj = &child_device_obj->device.kobj;
2065 int ret;
2066
2067 dev_set_name(&child_device_obj->device, "%pUl",
2068 &child_device_obj->channel->offermsg.offer.if_instance);
2069
2070 child_device_obj->device.bus = &hv_bus;
2071 child_device_obj->device.parent = &hv_acpi_dev->dev;
2072 child_device_obj->device.release = vmbus_device_release;
2073
2074 child_device_obj->device.dma_parms = &child_device_obj->dma_parms;
2075 child_device_obj->device.dma_mask = &child_device_obj->dma_mask;
2076 dma_set_mask(&child_device_obj->device, DMA_BIT_MASK(64));
2077
2078 /*
2079 * Register with the LDM. This will kick off the driver/device
2080 * binding...which will eventually call vmbus_match() and vmbus_probe()
2081 */
2082 ret = device_register(&child_device_obj->device);
2083 if (ret) {
2084 pr_err("Unable to register child device\n");
2085 put_device(&child_device_obj->device);
2086 return ret;
2087 }
2088
2089 child_device_obj->channels_kset = kset_create_and_add("channels",
2090 NULL, kobj);
2091 if (!child_device_obj->channels_kset) {
2092 ret = -ENOMEM;
2093 goto err_dev_unregister;
2094 }
2095
2096 ret = vmbus_add_channel_kobj(child_device_obj,
2097 child_device_obj->channel);
2098 if (ret) {
2099 pr_err("Unable to register primary channeln");
2100 goto err_kset_unregister;
2101 }
2102 hv_debug_add_dev_dir(child_device_obj);
2103
2104 return 0;
2105
2106 err_kset_unregister:
2107 kset_unregister(child_device_obj->channels_kset);
2108
2109 err_dev_unregister:
2110 device_unregister(&child_device_obj->device);
2111 return ret;
2112 }
2113
2114 /*
2115 * vmbus_device_unregister - Remove the specified child device
2116 * from the vmbus.
2117 */
vmbus_device_unregister(struct hv_device * device_obj)2118 void vmbus_device_unregister(struct hv_device *device_obj)
2119 {
2120 pr_debug("child device %s unregistered\n",
2121 dev_name(&device_obj->device));
2122
2123 kset_unregister(device_obj->channels_kset);
2124
2125 /*
2126 * Kick off the process of unregistering the device.
2127 * This will call vmbus_remove() and eventually vmbus_device_release()
2128 */
2129 device_unregister(&device_obj->device);
2130 }
2131
2132
2133 /*
2134 * VMBUS is an acpi enumerated device. Get the information we
2135 * need from DSDT.
2136 */
2137 #define VTPM_BASE_ADDRESS 0xfed40000
vmbus_walk_resources(struct acpi_resource * res,void * ctx)2138 static acpi_status vmbus_walk_resources(struct acpi_resource *res, void *ctx)
2139 {
2140 resource_size_t start = 0;
2141 resource_size_t end = 0;
2142 struct resource *new_res;
2143 struct resource **old_res = &hyperv_mmio;
2144 struct resource **prev_res = NULL;
2145 struct resource r;
2146
2147 switch (res->type) {
2148
2149 /*
2150 * "Address" descriptors are for bus windows. Ignore
2151 * "memory" descriptors, which are for registers on
2152 * devices.
2153 */
2154 case ACPI_RESOURCE_TYPE_ADDRESS32:
2155 start = res->data.address32.address.minimum;
2156 end = res->data.address32.address.maximum;
2157 break;
2158
2159 case ACPI_RESOURCE_TYPE_ADDRESS64:
2160 start = res->data.address64.address.minimum;
2161 end = res->data.address64.address.maximum;
2162 break;
2163
2164 /*
2165 * The IRQ information is needed only on ARM64, which Hyper-V
2166 * sets up in the extended format. IRQ information is present
2167 * on x86/x64 in the non-extended format but it is not used by
2168 * Linux. So don't bother checking for the non-extended format.
2169 */
2170 case ACPI_RESOURCE_TYPE_EXTENDED_IRQ:
2171 if (!acpi_dev_resource_interrupt(res, 0, &r)) {
2172 pr_err("Unable to parse Hyper-V ACPI interrupt\n");
2173 return AE_ERROR;
2174 }
2175 /* ARM64 INTID for VMbus */
2176 vmbus_interrupt = res->data.extended_irq.interrupts[0];
2177 /* Linux IRQ number */
2178 vmbus_irq = r.start;
2179 return AE_OK;
2180
2181 default:
2182 /* Unused resource type */
2183 return AE_OK;
2184
2185 }
2186 /*
2187 * Ignore ranges that are below 1MB, as they're not
2188 * necessary or useful here.
2189 */
2190 if (end < 0x100000)
2191 return AE_OK;
2192
2193 new_res = kzalloc(sizeof(*new_res), GFP_ATOMIC);
2194 if (!new_res)
2195 return AE_NO_MEMORY;
2196
2197 /* If this range overlaps the virtual TPM, truncate it. */
2198 if (end > VTPM_BASE_ADDRESS && start < VTPM_BASE_ADDRESS)
2199 end = VTPM_BASE_ADDRESS;
2200
2201 new_res->name = "hyperv mmio";
2202 new_res->flags = IORESOURCE_MEM;
2203 new_res->start = start;
2204 new_res->end = end;
2205
2206 /*
2207 * If two ranges are adjacent, merge them.
2208 */
2209 do {
2210 if (!*old_res) {
2211 *old_res = new_res;
2212 break;
2213 }
2214
2215 if (((*old_res)->end + 1) == new_res->start) {
2216 (*old_res)->end = new_res->end;
2217 kfree(new_res);
2218 break;
2219 }
2220
2221 if ((*old_res)->start == new_res->end + 1) {
2222 (*old_res)->start = new_res->start;
2223 kfree(new_res);
2224 break;
2225 }
2226
2227 if ((*old_res)->start > new_res->end) {
2228 new_res->sibling = *old_res;
2229 if (prev_res)
2230 (*prev_res)->sibling = new_res;
2231 *old_res = new_res;
2232 break;
2233 }
2234
2235 prev_res = old_res;
2236 old_res = &(*old_res)->sibling;
2237
2238 } while (1);
2239
2240 return AE_OK;
2241 }
2242
vmbus_acpi_remove(struct acpi_device * device)2243 static int vmbus_acpi_remove(struct acpi_device *device)
2244 {
2245 struct resource *cur_res;
2246 struct resource *next_res;
2247
2248 if (hyperv_mmio) {
2249 if (fb_mmio) {
2250 __release_region(hyperv_mmio, fb_mmio->start,
2251 resource_size(fb_mmio));
2252 fb_mmio = NULL;
2253 }
2254
2255 for (cur_res = hyperv_mmio; cur_res; cur_res = next_res) {
2256 next_res = cur_res->sibling;
2257 kfree(cur_res);
2258 }
2259 }
2260
2261 return 0;
2262 }
2263
vmbus_reserve_fb(void)2264 static void vmbus_reserve_fb(void)
2265 {
2266 resource_size_t start = 0, size;
2267 struct pci_dev *pdev;
2268
2269 if (efi_enabled(EFI_BOOT)) {
2270 /* Gen2 VM: get FB base from EFI framebuffer */
2271 start = screen_info.lfb_base;
2272 size = max_t(__u32, screen_info.lfb_size, 0x800000);
2273 } else {
2274 /* Gen1 VM: get FB base from PCI */
2275 pdev = pci_get_device(PCI_VENDOR_ID_MICROSOFT,
2276 PCI_DEVICE_ID_HYPERV_VIDEO, NULL);
2277 if (!pdev)
2278 return;
2279
2280 if (pdev->resource[0].flags & IORESOURCE_MEM) {
2281 start = pci_resource_start(pdev, 0);
2282 size = pci_resource_len(pdev, 0);
2283 }
2284
2285 /*
2286 * Release the PCI device so hyperv_drm or hyperv_fb driver can
2287 * grab it later.
2288 */
2289 pci_dev_put(pdev);
2290 }
2291
2292 if (!start)
2293 return;
2294
2295 /*
2296 * Make a claim for the frame buffer in the resource tree under the
2297 * first node, which will be the one below 4GB. The length seems to
2298 * be underreported, particularly in a Generation 1 VM. So start out
2299 * reserving a larger area and make it smaller until it succeeds.
2300 */
2301 for (; !fb_mmio && (size >= 0x100000); size >>= 1)
2302 fb_mmio = __request_region(hyperv_mmio, start, size, fb_mmio_name, 0);
2303 }
2304
2305 /**
2306 * vmbus_allocate_mmio() - Pick a memory-mapped I/O range.
2307 * @new: If successful, supplied a pointer to the
2308 * allocated MMIO space.
2309 * @device_obj: Identifies the caller
2310 * @min: Minimum guest physical address of the
2311 * allocation
2312 * @max: Maximum guest physical address
2313 * @size: Size of the range to be allocated
2314 * @align: Alignment of the range to be allocated
2315 * @fb_overlap_ok: Whether this allocation can be allowed
2316 * to overlap the video frame buffer.
2317 *
2318 * This function walks the resources granted to VMBus by the
2319 * _CRS object in the ACPI namespace underneath the parent
2320 * "bridge" whether that's a root PCI bus in the Generation 1
2321 * case or a Module Device in the Generation 2 case. It then
2322 * attempts to allocate from the global MMIO pool in a way that
2323 * matches the constraints supplied in these parameters and by
2324 * that _CRS.
2325 *
2326 * Return: 0 on success, -errno on failure
2327 */
vmbus_allocate_mmio(struct resource ** new,struct hv_device * device_obj,resource_size_t min,resource_size_t max,resource_size_t size,resource_size_t align,bool fb_overlap_ok)2328 int vmbus_allocate_mmio(struct resource **new, struct hv_device *device_obj,
2329 resource_size_t min, resource_size_t max,
2330 resource_size_t size, resource_size_t align,
2331 bool fb_overlap_ok)
2332 {
2333 struct resource *iter, *shadow;
2334 resource_size_t range_min, range_max, start, end;
2335 const char *dev_n = dev_name(&device_obj->device);
2336 int retval;
2337
2338 retval = -ENXIO;
2339 mutex_lock(&hyperv_mmio_lock);
2340
2341 /*
2342 * If overlaps with frame buffers are allowed, then first attempt to
2343 * make the allocation from within the reserved region. Because it
2344 * is already reserved, no shadow allocation is necessary.
2345 */
2346 if (fb_overlap_ok && fb_mmio && !(min > fb_mmio->end) &&
2347 !(max < fb_mmio->start)) {
2348
2349 range_min = fb_mmio->start;
2350 range_max = fb_mmio->end;
2351 start = (range_min + align - 1) & ~(align - 1);
2352 for (; start + size - 1 <= range_max; start += align) {
2353 *new = request_mem_region_exclusive(start, size, dev_n);
2354 if (*new) {
2355 retval = 0;
2356 goto exit;
2357 }
2358 }
2359 }
2360
2361 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2362 if ((iter->start >= max) || (iter->end <= min))
2363 continue;
2364
2365 range_min = iter->start;
2366 range_max = iter->end;
2367 start = (range_min + align - 1) & ~(align - 1);
2368 for (; start + size - 1 <= range_max; start += align) {
2369 end = start + size - 1;
2370
2371 /* Skip the whole fb_mmio region if not fb_overlap_ok */
2372 if (!fb_overlap_ok && fb_mmio &&
2373 (((start >= fb_mmio->start) && (start <= fb_mmio->end)) ||
2374 ((end >= fb_mmio->start) && (end <= fb_mmio->end))))
2375 continue;
2376
2377 shadow = __request_region(iter, start, size, NULL,
2378 IORESOURCE_BUSY);
2379 if (!shadow)
2380 continue;
2381
2382 *new = request_mem_region_exclusive(start, size, dev_n);
2383 if (*new) {
2384 shadow->name = (char *)*new;
2385 retval = 0;
2386 goto exit;
2387 }
2388
2389 __release_region(iter, start, size);
2390 }
2391 }
2392
2393 exit:
2394 mutex_unlock(&hyperv_mmio_lock);
2395 return retval;
2396 }
2397 EXPORT_SYMBOL_GPL(vmbus_allocate_mmio);
2398
2399 /**
2400 * vmbus_free_mmio() - Free a memory-mapped I/O range.
2401 * @start: Base address of region to release.
2402 * @size: Size of the range to be allocated
2403 *
2404 * This function releases anything requested by
2405 * vmbus_mmio_allocate().
2406 */
vmbus_free_mmio(resource_size_t start,resource_size_t size)2407 void vmbus_free_mmio(resource_size_t start, resource_size_t size)
2408 {
2409 struct resource *iter;
2410
2411 mutex_lock(&hyperv_mmio_lock);
2412 for (iter = hyperv_mmio; iter; iter = iter->sibling) {
2413 if ((iter->start >= start + size) || (iter->end <= start))
2414 continue;
2415
2416 __release_region(iter, start, size);
2417 }
2418 release_mem_region(start, size);
2419 mutex_unlock(&hyperv_mmio_lock);
2420
2421 }
2422 EXPORT_SYMBOL_GPL(vmbus_free_mmio);
2423
vmbus_acpi_add(struct acpi_device * device)2424 static int vmbus_acpi_add(struct acpi_device *device)
2425 {
2426 acpi_status result;
2427 int ret_val = -ENODEV;
2428 struct acpi_device *ancestor;
2429
2430 hv_acpi_dev = device;
2431
2432 /*
2433 * Older versions of Hyper-V for ARM64 fail to include the _CCA
2434 * method on the top level VMbus device in the DSDT. But devices
2435 * are hardware coherent in all current Hyper-V use cases, so fix
2436 * up the ACPI device to behave as if _CCA is present and indicates
2437 * hardware coherence.
2438 */
2439 ACPI_COMPANION_SET(&device->dev, device);
2440 if (IS_ENABLED(CONFIG_ACPI_CCA_REQUIRED) &&
2441 device_get_dma_attr(&device->dev) == DEV_DMA_NOT_SUPPORTED) {
2442 pr_info("No ACPI _CCA found; assuming coherent device I/O\n");
2443 device->flags.cca_seen = true;
2444 device->flags.coherent_dma = true;
2445 }
2446
2447 result = acpi_walk_resources(device->handle, METHOD_NAME__CRS,
2448 vmbus_walk_resources, NULL);
2449
2450 if (ACPI_FAILURE(result))
2451 goto acpi_walk_err;
2452 /*
2453 * Some ancestor of the vmbus acpi device (Gen1 or Gen2
2454 * firmware) is the VMOD that has the mmio ranges. Get that.
2455 */
2456 for (ancestor = acpi_dev_parent(device); ancestor;
2457 ancestor = acpi_dev_parent(ancestor)) {
2458 result = acpi_walk_resources(ancestor->handle, METHOD_NAME__CRS,
2459 vmbus_walk_resources, NULL);
2460
2461 if (ACPI_FAILURE(result))
2462 continue;
2463 if (hyperv_mmio) {
2464 vmbus_reserve_fb();
2465 break;
2466 }
2467 }
2468 ret_val = 0;
2469
2470 acpi_walk_err:
2471 if (ret_val)
2472 vmbus_acpi_remove(device);
2473 return ret_val;
2474 }
2475
2476 #ifdef CONFIG_PM_SLEEP
vmbus_bus_suspend(struct device * dev)2477 static int vmbus_bus_suspend(struct device *dev)
2478 {
2479 struct hv_per_cpu_context *hv_cpu = per_cpu_ptr(
2480 hv_context.cpu_context, VMBUS_CONNECT_CPU);
2481 struct vmbus_channel *channel, *sc;
2482
2483 tasklet_disable(&hv_cpu->msg_dpc);
2484 vmbus_connection.ignore_any_offer_msg = true;
2485 /* The tasklet_enable() takes care of providing a memory barrier */
2486 tasklet_enable(&hv_cpu->msg_dpc);
2487
2488 /* Drain all the workqueues as we are in suspend */
2489 drain_workqueue(vmbus_connection.rescind_work_queue);
2490 drain_workqueue(vmbus_connection.work_queue);
2491 drain_workqueue(vmbus_connection.handle_primary_chan_wq);
2492 drain_workqueue(vmbus_connection.handle_sub_chan_wq);
2493
2494 mutex_lock(&vmbus_connection.channel_mutex);
2495 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2496 if (!is_hvsock_channel(channel))
2497 continue;
2498
2499 vmbus_force_channel_rescinded(channel);
2500 }
2501 mutex_unlock(&vmbus_connection.channel_mutex);
2502
2503 /*
2504 * Wait until all the sub-channels and hv_sock channels have been
2505 * cleaned up. Sub-channels should be destroyed upon suspend, otherwise
2506 * they would conflict with the new sub-channels that will be created
2507 * in the resume path. hv_sock channels should also be destroyed, but
2508 * a hv_sock channel of an established hv_sock connection can not be
2509 * really destroyed since it may still be referenced by the userspace
2510 * application, so we just force the hv_sock channel to be rescinded
2511 * by vmbus_force_channel_rescinded(), and the userspace application
2512 * will thoroughly destroy the channel after hibernation.
2513 *
2514 * Note: the counter nr_chan_close_on_suspend may never go above 0 if
2515 * the VM has no sub-channel and hv_sock channel, e.g. a 1-vCPU VM.
2516 */
2517 if (atomic_read(&vmbus_connection.nr_chan_close_on_suspend) > 0)
2518 wait_for_completion(&vmbus_connection.ready_for_suspend_event);
2519
2520 if (atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) != 0) {
2521 pr_err("Can not suspend due to a previous failed resuming\n");
2522 return -EBUSY;
2523 }
2524
2525 mutex_lock(&vmbus_connection.channel_mutex);
2526
2527 list_for_each_entry(channel, &vmbus_connection.chn_list, listentry) {
2528 /*
2529 * Remove the channel from the array of channels and invalidate
2530 * the channel's relid. Upon resume, vmbus_onoffer() will fix
2531 * up the relid (and other fields, if necessary) and add the
2532 * channel back to the array.
2533 */
2534 vmbus_channel_unmap_relid(channel);
2535 channel->offermsg.child_relid = INVALID_RELID;
2536
2537 if (is_hvsock_channel(channel)) {
2538 if (!channel->rescind) {
2539 pr_err("hv_sock channel not rescinded!\n");
2540 WARN_ON_ONCE(1);
2541 }
2542 continue;
2543 }
2544
2545 list_for_each_entry(sc, &channel->sc_list, sc_list) {
2546 pr_err("Sub-channel not deleted!\n");
2547 WARN_ON_ONCE(1);
2548 }
2549
2550 atomic_inc(&vmbus_connection.nr_chan_fixup_on_resume);
2551 }
2552
2553 mutex_unlock(&vmbus_connection.channel_mutex);
2554
2555 vmbus_initiate_unload(false);
2556
2557 /* Reset the event for the next resume. */
2558 reinit_completion(&vmbus_connection.ready_for_resume_event);
2559
2560 return 0;
2561 }
2562
vmbus_bus_resume(struct device * dev)2563 static int vmbus_bus_resume(struct device *dev)
2564 {
2565 struct vmbus_channel_msginfo *msginfo;
2566 size_t msgsize;
2567 int ret;
2568
2569 vmbus_connection.ignore_any_offer_msg = false;
2570
2571 /*
2572 * We only use the 'vmbus_proto_version', which was in use before
2573 * hibernation, to re-negotiate with the host.
2574 */
2575 if (!vmbus_proto_version) {
2576 pr_err("Invalid proto version = 0x%x\n", vmbus_proto_version);
2577 return -EINVAL;
2578 }
2579
2580 msgsize = sizeof(*msginfo) +
2581 sizeof(struct vmbus_channel_initiate_contact);
2582
2583 msginfo = kzalloc(msgsize, GFP_KERNEL);
2584
2585 if (msginfo == NULL)
2586 return -ENOMEM;
2587
2588 ret = vmbus_negotiate_version(msginfo, vmbus_proto_version);
2589
2590 kfree(msginfo);
2591
2592 if (ret != 0)
2593 return ret;
2594
2595 WARN_ON(atomic_read(&vmbus_connection.nr_chan_fixup_on_resume) == 0);
2596
2597 vmbus_request_offers();
2598
2599 if (wait_for_completion_timeout(
2600 &vmbus_connection.ready_for_resume_event, 10 * HZ) == 0)
2601 pr_err("Some vmbus device is missing after suspending?\n");
2602
2603 /* Reset the event for the next suspend. */
2604 reinit_completion(&vmbus_connection.ready_for_suspend_event);
2605
2606 return 0;
2607 }
2608 #else
2609 #define vmbus_bus_suspend NULL
2610 #define vmbus_bus_resume NULL
2611 #endif /* CONFIG_PM_SLEEP */
2612
2613 static const struct acpi_device_id vmbus_acpi_device_ids[] = {
2614 {"VMBUS", 0},
2615 {"VMBus", 0},
2616 {"", 0},
2617 };
2618 MODULE_DEVICE_TABLE(acpi, vmbus_acpi_device_ids);
2619
2620 /*
2621 * Note: we must use the "no_irq" ops, otherwise hibernation can not work with
2622 * PCI device assignment, because "pci_dev_pm_ops" uses the "noirq" ops: in
2623 * the resume path, the pci "noirq" restore op runs before "non-noirq" op (see
2624 * resume_target_kernel() -> dpm_resume_start(), and hibernation_restore() ->
2625 * dpm_resume_end()). This means vmbus_bus_resume() and the pci-hyperv's
2626 * resume callback must also run via the "noirq" ops.
2627 *
2628 * Set suspend_noirq/resume_noirq to NULL for Suspend-to-Idle: see the comment
2629 * earlier in this file before vmbus_pm.
2630 */
2631
2632 static const struct dev_pm_ops vmbus_bus_pm = {
2633 .suspend_noirq = NULL,
2634 .resume_noirq = NULL,
2635 .freeze_noirq = vmbus_bus_suspend,
2636 .thaw_noirq = vmbus_bus_resume,
2637 .poweroff_noirq = vmbus_bus_suspend,
2638 .restore_noirq = vmbus_bus_resume
2639 };
2640
2641 static struct acpi_driver vmbus_acpi_driver = {
2642 .name = "vmbus",
2643 .ids = vmbus_acpi_device_ids,
2644 .ops = {
2645 .add = vmbus_acpi_add,
2646 .remove = vmbus_acpi_remove,
2647 },
2648 .drv.pm = &vmbus_bus_pm,
2649 .drv.probe_type = PROBE_FORCE_SYNCHRONOUS,
2650 };
2651
hv_kexec_handler(void)2652 static void hv_kexec_handler(void)
2653 {
2654 hv_stimer_global_cleanup();
2655 vmbus_initiate_unload(false);
2656 /* Make sure conn_state is set as hv_synic_cleanup checks for it */
2657 mb();
2658 cpuhp_remove_state(hyperv_cpuhp_online);
2659 };
2660
hv_crash_handler(struct pt_regs * regs)2661 static void hv_crash_handler(struct pt_regs *regs)
2662 {
2663 int cpu;
2664
2665 vmbus_initiate_unload(true);
2666 /*
2667 * In crash handler we can't schedule synic cleanup for all CPUs,
2668 * doing the cleanup for current CPU only. This should be sufficient
2669 * for kdump.
2670 */
2671 cpu = smp_processor_id();
2672 hv_stimer_cleanup(cpu);
2673 hv_synic_disable_regs(cpu);
2674 };
2675
hv_synic_suspend(void)2676 static int hv_synic_suspend(void)
2677 {
2678 /*
2679 * When we reach here, all the non-boot CPUs have been offlined.
2680 * If we're in a legacy configuration where stimer Direct Mode is
2681 * not enabled, the stimers on the non-boot CPUs have been unbound
2682 * in hv_synic_cleanup() -> hv_stimer_legacy_cleanup() ->
2683 * hv_stimer_cleanup() -> clockevents_unbind_device().
2684 *
2685 * hv_synic_suspend() only runs on CPU0 with interrupts disabled.
2686 * Here we do not call hv_stimer_legacy_cleanup() on CPU0 because:
2687 * 1) it's unnecessary as interrupts remain disabled between
2688 * syscore_suspend() and syscore_resume(): see create_image() and
2689 * resume_target_kernel()
2690 * 2) the stimer on CPU0 is automatically disabled later by
2691 * syscore_suspend() -> timekeeping_suspend() -> tick_suspend() -> ...
2692 * -> clockevents_shutdown() -> ... -> hv_ce_shutdown()
2693 * 3) a warning would be triggered if we call
2694 * clockevents_unbind_device(), which may sleep, in an
2695 * interrupts-disabled context.
2696 */
2697
2698 hv_synic_disable_regs(0);
2699
2700 return 0;
2701 }
2702
hv_synic_resume(void)2703 static void hv_synic_resume(void)
2704 {
2705 hv_synic_enable_regs(0);
2706
2707 /*
2708 * Note: we don't need to call hv_stimer_init(0), because the timer
2709 * on CPU0 is not unbound in hv_synic_suspend(), and the timer is
2710 * automatically re-enabled in timekeeping_resume().
2711 */
2712 }
2713
2714 /* The callbacks run only on CPU0, with irqs_disabled. */
2715 static struct syscore_ops hv_synic_syscore_ops = {
2716 .suspend = hv_synic_suspend,
2717 .resume = hv_synic_resume,
2718 };
2719
hv_acpi_init(void)2720 static int __init hv_acpi_init(void)
2721 {
2722 int ret;
2723
2724 if (!hv_is_hyperv_initialized())
2725 return -ENODEV;
2726
2727 if (hv_root_partition)
2728 return 0;
2729
2730 /*
2731 * Get ACPI resources first.
2732 */
2733 ret = acpi_bus_register_driver(&vmbus_acpi_driver);
2734
2735 if (ret)
2736 return ret;
2737
2738 if (!hv_acpi_dev) {
2739 ret = -ENODEV;
2740 goto cleanup;
2741 }
2742
2743 /*
2744 * If we're on an architecture with a hardcoded hypervisor
2745 * vector (i.e. x86/x64), override the VMbus interrupt found
2746 * in the ACPI tables. Ensure vmbus_irq is not set since the
2747 * normal Linux IRQ mechanism is not used in this case.
2748 */
2749 #ifdef HYPERVISOR_CALLBACK_VECTOR
2750 vmbus_interrupt = HYPERVISOR_CALLBACK_VECTOR;
2751 vmbus_irq = -1;
2752 #endif
2753
2754 hv_debug_init();
2755
2756 ret = vmbus_bus_init();
2757 if (ret)
2758 goto cleanup;
2759
2760 hv_setup_kexec_handler(hv_kexec_handler);
2761 hv_setup_crash_handler(hv_crash_handler);
2762
2763 register_syscore_ops(&hv_synic_syscore_ops);
2764
2765 return 0;
2766
2767 cleanup:
2768 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2769 hv_acpi_dev = NULL;
2770 return ret;
2771 }
2772
vmbus_exit(void)2773 static void __exit vmbus_exit(void)
2774 {
2775 int cpu;
2776
2777 unregister_syscore_ops(&hv_synic_syscore_ops);
2778
2779 hv_remove_kexec_handler();
2780 hv_remove_crash_handler();
2781 vmbus_connection.conn_state = DISCONNECTED;
2782 hv_stimer_global_cleanup();
2783 vmbus_disconnect();
2784 if (vmbus_irq == -1) {
2785 hv_remove_vmbus_handler();
2786 } else {
2787 free_percpu_irq(vmbus_irq, vmbus_evt);
2788 free_percpu(vmbus_evt);
2789 }
2790 for_each_online_cpu(cpu) {
2791 struct hv_per_cpu_context *hv_cpu
2792 = per_cpu_ptr(hv_context.cpu_context, cpu);
2793
2794 tasklet_kill(&hv_cpu->msg_dpc);
2795 }
2796 hv_debug_rm_all_dir();
2797
2798 vmbus_free_channels();
2799 kfree(vmbus_connection.channels);
2800
2801 if (ms_hyperv.misc_features & HV_FEATURE_GUEST_CRASH_MSR_AVAILABLE) {
2802 kmsg_dump_unregister(&hv_kmsg_dumper);
2803 unregister_die_notifier(&hyperv_die_block);
2804 }
2805
2806 /*
2807 * The panic notifier is always registered, hence we should
2808 * also unconditionally unregister it here as well.
2809 */
2810 atomic_notifier_chain_unregister(&panic_notifier_list,
2811 &hyperv_panic_block);
2812
2813 free_page((unsigned long)hv_panic_page);
2814 unregister_sysctl_table(hv_ctl_table_hdr);
2815 hv_ctl_table_hdr = NULL;
2816 bus_unregister(&hv_bus);
2817
2818 cpuhp_remove_state(hyperv_cpuhp_online);
2819 hv_synic_free();
2820 acpi_bus_unregister_driver(&vmbus_acpi_driver);
2821 }
2822
2823
2824 MODULE_LICENSE("GPL");
2825 MODULE_DESCRIPTION("Microsoft Hyper-V VMBus Driver");
2826
2827 subsys_initcall(hv_acpi_init);
2828 module_exit(vmbus_exit);
2829