1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 Fujitsu MB86A16 DVB-S/DSS DC Receiver driver
4
5 Copyright (C) Manu Abraham (abraham.manu@gmail.com)
6
7 */
8
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/moduleparam.h>
13 #include <linux/slab.h>
14
15 #include <media/dvb_frontend.h>
16 #include "mb86a16.h"
17 #include "mb86a16_priv.h"
18
19 static unsigned int verbose = 5;
20 module_param(verbose, int, 0644);
21
22 struct mb86a16_state {
23 struct i2c_adapter *i2c_adap;
24 const struct mb86a16_config *config;
25 struct dvb_frontend frontend;
26
27 /* tuning parameters */
28 int frequency;
29 int srate;
30
31 /* Internal stuff */
32 int master_clk;
33 int deci;
34 int csel;
35 int rsel;
36 };
37
38 #define MB86A16_ERROR 0
39 #define MB86A16_NOTICE 1
40 #define MB86A16_INFO 2
41 #define MB86A16_DEBUG 3
42
43 #define dprintk(x, y, z, format, arg...) do { \
44 if (z) { \
45 if ((x > MB86A16_ERROR) && (x > y)) \
46 printk(KERN_ERR "%s: " format "\n", __func__, ##arg); \
47 else if ((x > MB86A16_NOTICE) && (x > y)) \
48 printk(KERN_NOTICE "%s: " format "\n", __func__, ##arg); \
49 else if ((x > MB86A16_INFO) && (x > y)) \
50 printk(KERN_INFO "%s: " format "\n", __func__, ##arg); \
51 else if ((x > MB86A16_DEBUG) && (x > y)) \
52 printk(KERN_DEBUG "%s: " format "\n", __func__, ##arg); \
53 } else { \
54 if (x > y) \
55 printk(format, ##arg); \
56 } \
57 } while (0)
58
59 #define TRACE_IN dprintk(verbose, MB86A16_DEBUG, 1, "-->()")
60 #define TRACE_OUT dprintk(verbose, MB86A16_DEBUG, 1, "()-->")
61
mb86a16_write(struct mb86a16_state * state,u8 reg,u8 val)62 static int mb86a16_write(struct mb86a16_state *state, u8 reg, u8 val)
63 {
64 int ret;
65 u8 buf[] = { reg, val };
66
67 struct i2c_msg msg = {
68 .addr = state->config->demod_address,
69 .flags = 0,
70 .buf = buf,
71 .len = 2
72 };
73
74 dprintk(verbose, MB86A16_DEBUG, 1,
75 "writing to [0x%02x],Reg[0x%02x],Data[0x%02x]",
76 state->config->demod_address, buf[0], buf[1]);
77
78 ret = i2c_transfer(state->i2c_adap, &msg, 1);
79
80 return (ret != 1) ? -EREMOTEIO : 0;
81 }
82
mb86a16_read(struct mb86a16_state * state,u8 reg,u8 * val)83 static int mb86a16_read(struct mb86a16_state *state, u8 reg, u8 *val)
84 {
85 int ret;
86 u8 b0[] = { reg };
87 u8 b1[] = { 0 };
88
89 struct i2c_msg msg[] = {
90 {
91 .addr = state->config->demod_address,
92 .flags = 0,
93 .buf = b0,
94 .len = 1
95 }, {
96 .addr = state->config->demod_address,
97 .flags = I2C_M_RD,
98 .buf = b1,
99 .len = 1
100 }
101 };
102 ret = i2c_transfer(state->i2c_adap, msg, 2);
103 if (ret != 2) {
104 dprintk(verbose, MB86A16_ERROR, 1, "read error(reg=0x%02x, ret=%i)",
105 reg, ret);
106
107 if (ret < 0)
108 return ret;
109 return -EREMOTEIO;
110 }
111 *val = b1[0];
112
113 return ret;
114 }
115
CNTM_set(struct mb86a16_state * state,unsigned char timint1,unsigned char timint2,unsigned char cnext)116 static int CNTM_set(struct mb86a16_state *state,
117 unsigned char timint1,
118 unsigned char timint2,
119 unsigned char cnext)
120 {
121 unsigned char val;
122
123 val = (timint1 << 4) | (timint2 << 2) | cnext;
124 if (mb86a16_write(state, MB86A16_CNTMR, val) < 0)
125 goto err;
126
127 return 0;
128
129 err:
130 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
131 return -EREMOTEIO;
132 }
133
smrt_set(struct mb86a16_state * state,int rate)134 static int smrt_set(struct mb86a16_state *state, int rate)
135 {
136 int tmp ;
137 int m ;
138 unsigned char STOFS0, STOFS1;
139
140 m = 1 << state->deci;
141 tmp = (8192 * state->master_clk - 2 * m * rate * 8192 + state->master_clk / 2) / state->master_clk;
142
143 STOFS0 = tmp & 0x0ff;
144 STOFS1 = (tmp & 0xf00) >> 8;
145
146 if (mb86a16_write(state, MB86A16_SRATE1, (state->deci << 2) |
147 (state->csel << 1) |
148 state->rsel) < 0)
149 goto err;
150 if (mb86a16_write(state, MB86A16_SRATE2, STOFS0) < 0)
151 goto err;
152 if (mb86a16_write(state, MB86A16_SRATE3, STOFS1) < 0)
153 goto err;
154
155 return 0;
156 err:
157 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
158 return -1;
159 }
160
srst(struct mb86a16_state * state)161 static int srst(struct mb86a16_state *state)
162 {
163 if (mb86a16_write(state, MB86A16_RESET, 0x04) < 0)
164 goto err;
165
166 return 0;
167 err:
168 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
169 return -EREMOTEIO;
170
171 }
172
afcex_data_set(struct mb86a16_state * state,unsigned char AFCEX_L,unsigned char AFCEX_H)173 static int afcex_data_set(struct mb86a16_state *state,
174 unsigned char AFCEX_L,
175 unsigned char AFCEX_H)
176 {
177 if (mb86a16_write(state, MB86A16_AFCEXL, AFCEX_L) < 0)
178 goto err;
179 if (mb86a16_write(state, MB86A16_AFCEXH, AFCEX_H) < 0)
180 goto err;
181
182 return 0;
183 err:
184 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
185
186 return -1;
187 }
188
afcofs_data_set(struct mb86a16_state * state,unsigned char AFCEX_L,unsigned char AFCEX_H)189 static int afcofs_data_set(struct mb86a16_state *state,
190 unsigned char AFCEX_L,
191 unsigned char AFCEX_H)
192 {
193 if (mb86a16_write(state, 0x58, AFCEX_L) < 0)
194 goto err;
195 if (mb86a16_write(state, 0x59, AFCEX_H) < 0)
196 goto err;
197
198 return 0;
199 err:
200 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
201 return -EREMOTEIO;
202 }
203
stlp_set(struct mb86a16_state * state,unsigned char STRAS,unsigned char STRBS)204 static int stlp_set(struct mb86a16_state *state,
205 unsigned char STRAS,
206 unsigned char STRBS)
207 {
208 if (mb86a16_write(state, MB86A16_STRFILTCOEF1, (STRBS << 3) | (STRAS)) < 0)
209 goto err;
210
211 return 0;
212 err:
213 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
214 return -EREMOTEIO;
215 }
216
Vi_set(struct mb86a16_state * state,unsigned char ETH,unsigned char VIA)217 static int Vi_set(struct mb86a16_state *state, unsigned char ETH, unsigned char VIA)
218 {
219 if (mb86a16_write(state, MB86A16_VISET2, 0x04) < 0)
220 goto err;
221 if (mb86a16_write(state, MB86A16_VISET3, 0xf5) < 0)
222 goto err;
223
224 return 0;
225 err:
226 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
227 return -EREMOTEIO;
228 }
229
initial_set(struct mb86a16_state * state)230 static int initial_set(struct mb86a16_state *state)
231 {
232 if (stlp_set(state, 5, 7))
233 goto err;
234
235 udelay(100);
236 if (afcex_data_set(state, 0, 0))
237 goto err;
238
239 udelay(100);
240 if (afcofs_data_set(state, 0, 0))
241 goto err;
242
243 udelay(100);
244 if (mb86a16_write(state, MB86A16_CRLFILTCOEF1, 0x16) < 0)
245 goto err;
246 if (mb86a16_write(state, 0x2f, 0x21) < 0)
247 goto err;
248 if (mb86a16_write(state, MB86A16_VIMAG, 0x38) < 0)
249 goto err;
250 if (mb86a16_write(state, MB86A16_FAGCS1, 0x00) < 0)
251 goto err;
252 if (mb86a16_write(state, MB86A16_FAGCS2, 0x1c) < 0)
253 goto err;
254 if (mb86a16_write(state, MB86A16_FAGCS3, 0x20) < 0)
255 goto err;
256 if (mb86a16_write(state, MB86A16_FAGCS4, 0x1e) < 0)
257 goto err;
258 if (mb86a16_write(state, MB86A16_FAGCS5, 0x23) < 0)
259 goto err;
260 if (mb86a16_write(state, 0x54, 0xff) < 0)
261 goto err;
262 if (mb86a16_write(state, MB86A16_TSOUT, 0x00) < 0)
263 goto err;
264
265 return 0;
266
267 err:
268 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
269 return -EREMOTEIO;
270 }
271
S01T_set(struct mb86a16_state * state,unsigned char s1t,unsigned s0t)272 static int S01T_set(struct mb86a16_state *state,
273 unsigned char s1t,
274 unsigned s0t)
275 {
276 if (mb86a16_write(state, 0x33, (s1t << 3) | s0t) < 0)
277 goto err;
278
279 return 0;
280 err:
281 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
282 return -EREMOTEIO;
283 }
284
285
EN_set(struct mb86a16_state * state,int cren,int afcen)286 static int EN_set(struct mb86a16_state *state,
287 int cren,
288 int afcen)
289 {
290 unsigned char val;
291
292 val = 0x7a | (cren << 7) | (afcen << 2);
293 if (mb86a16_write(state, 0x49, val) < 0)
294 goto err;
295
296 return 0;
297 err:
298 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
299 return -EREMOTEIO;
300 }
301
AFCEXEN_set(struct mb86a16_state * state,int afcexen,int smrt)302 static int AFCEXEN_set(struct mb86a16_state *state,
303 int afcexen,
304 int smrt)
305 {
306 unsigned char AFCA ;
307
308 if (smrt > 18875)
309 AFCA = 4;
310 else if (smrt > 9375)
311 AFCA = 3;
312 else if (smrt > 2250)
313 AFCA = 2;
314 else
315 AFCA = 1;
316
317 if (mb86a16_write(state, 0x2a, 0x02 | (afcexen << 5) | (AFCA << 2)) < 0)
318 goto err;
319
320 return 0;
321
322 err:
323 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
324 return -EREMOTEIO;
325 }
326
DAGC_data_set(struct mb86a16_state * state,unsigned char DAGCA,unsigned char DAGCW)327 static int DAGC_data_set(struct mb86a16_state *state,
328 unsigned char DAGCA,
329 unsigned char DAGCW)
330 {
331 if (mb86a16_write(state, 0x2d, (DAGCA << 3) | DAGCW) < 0)
332 goto err;
333
334 return 0;
335
336 err:
337 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
338 return -EREMOTEIO;
339 }
340
smrt_info_get(struct mb86a16_state * state,int rate)341 static void smrt_info_get(struct mb86a16_state *state, int rate)
342 {
343 if (rate >= 37501) {
344 state->deci = 0; state->csel = 0; state->rsel = 0;
345 } else if (rate >= 30001) {
346 state->deci = 0; state->csel = 0; state->rsel = 1;
347 } else if (rate >= 26251) {
348 state->deci = 0; state->csel = 1; state->rsel = 0;
349 } else if (rate >= 22501) {
350 state->deci = 0; state->csel = 1; state->rsel = 1;
351 } else if (rate >= 18751) {
352 state->deci = 1; state->csel = 0; state->rsel = 0;
353 } else if (rate >= 15001) {
354 state->deci = 1; state->csel = 0; state->rsel = 1;
355 } else if (rate >= 13126) {
356 state->deci = 1; state->csel = 1; state->rsel = 0;
357 } else if (rate >= 11251) {
358 state->deci = 1; state->csel = 1; state->rsel = 1;
359 } else if (rate >= 9376) {
360 state->deci = 2; state->csel = 0; state->rsel = 0;
361 } else if (rate >= 7501) {
362 state->deci = 2; state->csel = 0; state->rsel = 1;
363 } else if (rate >= 6563) {
364 state->deci = 2; state->csel = 1; state->rsel = 0;
365 } else if (rate >= 5626) {
366 state->deci = 2; state->csel = 1; state->rsel = 1;
367 } else if (rate >= 4688) {
368 state->deci = 3; state->csel = 0; state->rsel = 0;
369 } else if (rate >= 3751) {
370 state->deci = 3; state->csel = 0; state->rsel = 1;
371 } else if (rate >= 3282) {
372 state->deci = 3; state->csel = 1; state->rsel = 0;
373 } else if (rate >= 2814) {
374 state->deci = 3; state->csel = 1; state->rsel = 1;
375 } else if (rate >= 2344) {
376 state->deci = 4; state->csel = 0; state->rsel = 0;
377 } else if (rate >= 1876) {
378 state->deci = 4; state->csel = 0; state->rsel = 1;
379 } else if (rate >= 1641) {
380 state->deci = 4; state->csel = 1; state->rsel = 0;
381 } else if (rate >= 1407) {
382 state->deci = 4; state->csel = 1; state->rsel = 1;
383 } else if (rate >= 1172) {
384 state->deci = 5; state->csel = 0; state->rsel = 0;
385 } else if (rate >= 939) {
386 state->deci = 5; state->csel = 0; state->rsel = 1;
387 } else if (rate >= 821) {
388 state->deci = 5; state->csel = 1; state->rsel = 0;
389 } else {
390 state->deci = 5; state->csel = 1; state->rsel = 1;
391 }
392
393 if (state->csel == 0)
394 state->master_clk = 92000;
395 else
396 state->master_clk = 61333;
397
398 }
399
signal_det(struct mb86a16_state * state,int smrt,unsigned char * SIG)400 static int signal_det(struct mb86a16_state *state,
401 int smrt,
402 unsigned char *SIG)
403 {
404 int ret;
405 int smrtd;
406 unsigned char S[3];
407 int i;
408
409 if (*SIG > 45) {
410 if (CNTM_set(state, 2, 1, 2) < 0) {
411 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
412 return -1;
413 }
414 } else {
415 if (CNTM_set(state, 3, 1, 2) < 0) {
416 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
417 return -1;
418 }
419 }
420 for (i = 0; i < 3; i++) {
421 if (i == 0)
422 smrtd = smrt * 98 / 100;
423 else if (i == 1)
424 smrtd = smrt;
425 else
426 smrtd = smrt * 102 / 100;
427 smrt_info_get(state, smrtd);
428 smrt_set(state, smrtd);
429 srst(state);
430 msleep_interruptible(10);
431 if (mb86a16_read(state, 0x37, &(S[i])) != 2) {
432 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
433 return -EREMOTEIO;
434 }
435 }
436 if ((S[1] > S[0] * 112 / 100) && (S[1] > S[2] * 112 / 100))
437 ret = 1;
438 else
439 ret = 0;
440
441 *SIG = S[1];
442
443 if (CNTM_set(state, 0, 1, 2) < 0) {
444 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set Error");
445 return -1;
446 }
447
448 return ret;
449 }
450
rf_val_set(struct mb86a16_state * state,int f,int smrt,unsigned char R)451 static int rf_val_set(struct mb86a16_state *state,
452 int f,
453 int smrt,
454 unsigned char R)
455 {
456 unsigned char C, F, B;
457 int M;
458 unsigned char rf_val[5];
459 int ack = -1;
460
461 if (smrt > 37750)
462 C = 1;
463 else if (smrt > 18875)
464 C = 2;
465 else if (smrt > 5500)
466 C = 3;
467 else
468 C = 4;
469
470 if (smrt > 30500)
471 F = 3;
472 else if (smrt > 9375)
473 F = 1;
474 else if (smrt > 4625)
475 F = 0;
476 else
477 F = 2;
478
479 if (f < 1060)
480 B = 0;
481 else if (f < 1175)
482 B = 1;
483 else if (f < 1305)
484 B = 2;
485 else if (f < 1435)
486 B = 3;
487 else if (f < 1570)
488 B = 4;
489 else if (f < 1715)
490 B = 5;
491 else if (f < 1845)
492 B = 6;
493 else if (f < 1980)
494 B = 7;
495 else if (f < 2080)
496 B = 8;
497 else
498 B = 9;
499
500 M = f * (1 << R) / 2;
501
502 rf_val[0] = 0x01 | (C << 3) | (F << 1);
503 rf_val[1] = (R << 5) | ((M & 0x1f000) >> 12);
504 rf_val[2] = (M & 0x00ff0) >> 4;
505 rf_val[3] = ((M & 0x0000f) << 4) | B;
506
507 /* Frequency Set */
508 if (mb86a16_write(state, 0x21, rf_val[0]) < 0)
509 ack = 0;
510 if (mb86a16_write(state, 0x22, rf_val[1]) < 0)
511 ack = 0;
512 if (mb86a16_write(state, 0x23, rf_val[2]) < 0)
513 ack = 0;
514 if (mb86a16_write(state, 0x24, rf_val[3]) < 0)
515 ack = 0;
516 if (mb86a16_write(state, 0x25, 0x01) < 0)
517 ack = 0;
518 if (ack == 0) {
519 dprintk(verbose, MB86A16_ERROR, 1, "RF Setup - I2C transfer error");
520 return -EREMOTEIO;
521 }
522
523 return 0;
524 }
525
afcerr_chk(struct mb86a16_state * state)526 static int afcerr_chk(struct mb86a16_state *state)
527 {
528 unsigned char AFCM_L, AFCM_H ;
529 int AFCM ;
530 int afcm, afcerr ;
531
532 if (mb86a16_read(state, 0x0e, &AFCM_L) != 2)
533 goto err;
534 if (mb86a16_read(state, 0x0f, &AFCM_H) != 2)
535 goto err;
536
537 AFCM = (AFCM_H << 8) + AFCM_L;
538
539 if (AFCM > 2048)
540 afcm = AFCM - 4096;
541 else
542 afcm = AFCM;
543 afcerr = afcm * state->master_clk / 8192;
544
545 return afcerr;
546
547 err:
548 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
549 return -EREMOTEIO;
550 }
551
dagcm_val_get(struct mb86a16_state * state)552 static int dagcm_val_get(struct mb86a16_state *state)
553 {
554 int DAGCM;
555 unsigned char DAGCM_H, DAGCM_L;
556
557 if (mb86a16_read(state, 0x45, &DAGCM_L) != 2)
558 goto err;
559 if (mb86a16_read(state, 0x46, &DAGCM_H) != 2)
560 goto err;
561
562 DAGCM = (DAGCM_H << 8) + DAGCM_L;
563
564 return DAGCM;
565
566 err:
567 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
568 return -EREMOTEIO;
569 }
570
mb86a16_read_status(struct dvb_frontend * fe,enum fe_status * status)571 static int mb86a16_read_status(struct dvb_frontend *fe, enum fe_status *status)
572 {
573 u8 stat, stat2;
574 struct mb86a16_state *state = fe->demodulator_priv;
575
576 *status = 0;
577
578 if (mb86a16_read(state, MB86A16_SIG1, &stat) != 2)
579 goto err;
580 if (mb86a16_read(state, MB86A16_SIG2, &stat2) != 2)
581 goto err;
582 if ((stat > 25) && (stat2 > 25))
583 *status |= FE_HAS_SIGNAL;
584 if ((stat > 45) && (stat2 > 45))
585 *status |= FE_HAS_CARRIER;
586
587 if (mb86a16_read(state, MB86A16_STATUS, &stat) != 2)
588 goto err;
589
590 if (stat & 0x01)
591 *status |= FE_HAS_SYNC;
592 if (stat & 0x01)
593 *status |= FE_HAS_VITERBI;
594
595 if (mb86a16_read(state, MB86A16_FRAMESYNC, &stat) != 2)
596 goto err;
597
598 if ((stat & 0x0f) && (*status & FE_HAS_VITERBI))
599 *status |= FE_HAS_LOCK;
600
601 return 0;
602
603 err:
604 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
605 return -EREMOTEIO;
606 }
607
sync_chk(struct mb86a16_state * state,unsigned char * VIRM)608 static int sync_chk(struct mb86a16_state *state,
609 unsigned char *VIRM)
610 {
611 unsigned char val;
612 int sync;
613
614 if (mb86a16_read(state, 0x0d, &val) != 2)
615 goto err;
616
617 dprintk(verbose, MB86A16_INFO, 1, "Status = %02x,", val);
618 sync = val & 0x01;
619 *VIRM = (val & 0x1c) >> 2;
620
621 return sync;
622 err:
623 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
624 *VIRM = 0;
625 return -EREMOTEIO;
626
627 }
628
freqerr_chk(struct mb86a16_state * state,int fTP,int smrt,int unit)629 static int freqerr_chk(struct mb86a16_state *state,
630 int fTP,
631 int smrt,
632 int unit)
633 {
634 unsigned char CRM, AFCML, AFCMH;
635 unsigned char temp1, temp2, temp3;
636 int crm, afcm, AFCM;
637 int crrerr, afcerr; /* kHz */
638 int frqerr; /* MHz */
639 int afcen, afcexen = 0;
640 int R, M, fOSC, fOSC_OFS;
641
642 if (mb86a16_read(state, 0x43, &CRM) != 2)
643 goto err;
644
645 if (CRM > 127)
646 crm = CRM - 256;
647 else
648 crm = CRM;
649
650 crrerr = smrt * crm / 256;
651 if (mb86a16_read(state, 0x49, &temp1) != 2)
652 goto err;
653
654 afcen = (temp1 & 0x04) >> 2;
655 if (afcen == 0) {
656 if (mb86a16_read(state, 0x2a, &temp1) != 2)
657 goto err;
658 afcexen = (temp1 & 0x20) >> 5;
659 }
660
661 if (afcen == 1) {
662 if (mb86a16_read(state, 0x0e, &AFCML) != 2)
663 goto err;
664 if (mb86a16_read(state, 0x0f, &AFCMH) != 2)
665 goto err;
666 } else if (afcexen == 1) {
667 if (mb86a16_read(state, 0x2b, &AFCML) != 2)
668 goto err;
669 if (mb86a16_read(state, 0x2c, &AFCMH) != 2)
670 goto err;
671 }
672 if ((afcen == 1) || (afcexen == 1)) {
673 smrt_info_get(state, smrt);
674 AFCM = ((AFCMH & 0x01) << 8) + AFCML;
675 if (AFCM > 255)
676 afcm = AFCM - 512;
677 else
678 afcm = AFCM;
679
680 afcerr = afcm * state->master_clk / 8192;
681 } else
682 afcerr = 0;
683
684 if (mb86a16_read(state, 0x22, &temp1) != 2)
685 goto err;
686 if (mb86a16_read(state, 0x23, &temp2) != 2)
687 goto err;
688 if (mb86a16_read(state, 0x24, &temp3) != 2)
689 goto err;
690
691 R = (temp1 & 0xe0) >> 5;
692 M = ((temp1 & 0x1f) << 12) + (temp2 << 4) + (temp3 >> 4);
693 if (R == 0)
694 fOSC = 2 * M;
695 else
696 fOSC = M;
697
698 fOSC_OFS = fOSC - fTP;
699
700 if (unit == 0) { /* MHz */
701 if (crrerr + afcerr + fOSC_OFS * 1000 >= 0)
702 frqerr = (crrerr + afcerr + fOSC_OFS * 1000 + 500) / 1000;
703 else
704 frqerr = (crrerr + afcerr + fOSC_OFS * 1000 - 500) / 1000;
705 } else { /* kHz */
706 frqerr = crrerr + afcerr + fOSC_OFS * 1000;
707 }
708
709 return frqerr;
710 err:
711 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
712 return -EREMOTEIO;
713 }
714
vco_dev_get(struct mb86a16_state * state,int smrt)715 static unsigned char vco_dev_get(struct mb86a16_state *state, int smrt)
716 {
717 unsigned char R;
718
719 if (smrt > 9375)
720 R = 0;
721 else
722 R = 1;
723
724 return R;
725 }
726
swp_info_get(struct mb86a16_state * state,int fOSC_start,int smrt,int v,int R,int swp_ofs,int * fOSC,int * afcex_freq,unsigned char * AFCEX_L,unsigned char * AFCEX_H)727 static void swp_info_get(struct mb86a16_state *state,
728 int fOSC_start,
729 int smrt,
730 int v, int R,
731 int swp_ofs,
732 int *fOSC,
733 int *afcex_freq,
734 unsigned char *AFCEX_L,
735 unsigned char *AFCEX_H)
736 {
737 int AFCEX ;
738 int crnt_swp_freq ;
739
740 crnt_swp_freq = fOSC_start * 1000 + v * swp_ofs;
741
742 if (R == 0)
743 *fOSC = (crnt_swp_freq + 1000) / 2000 * 2;
744 else
745 *fOSC = (crnt_swp_freq + 500) / 1000;
746
747 if (*fOSC >= crnt_swp_freq)
748 *afcex_freq = *fOSC * 1000 - crnt_swp_freq;
749 else
750 *afcex_freq = crnt_swp_freq - *fOSC * 1000;
751
752 AFCEX = *afcex_freq * 8192 / state->master_clk;
753 *AFCEX_L = AFCEX & 0x00ff;
754 *AFCEX_H = (AFCEX & 0x0f00) >> 8;
755 }
756
757
swp_freq_calcuation(struct mb86a16_state * state,int i,int v,int * V,int vmax,int vmin,int SIGMIN,int fOSC,int afcex_freq,int swp_ofs,unsigned char * SIG1)758 static int swp_freq_calcuation(struct mb86a16_state *state, int i, int v, int *V, int vmax, int vmin,
759 int SIGMIN, int fOSC, int afcex_freq, int swp_ofs, unsigned char *SIG1)
760 {
761 int swp_freq ;
762
763 if ((i % 2 == 1) && (v <= vmax)) {
764 /* positive v (case 1) */
765 if ((v - 1 == vmin) &&
766 (*(V + 30 + v) >= 0) &&
767 (*(V + 30 + v - 1) >= 0) &&
768 (*(V + 30 + v - 1) > *(V + 30 + v)) &&
769 (*(V + 30 + v - 1) > SIGMIN)) {
770
771 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
772 *SIG1 = *(V + 30 + v - 1);
773 } else if ((v == vmax) &&
774 (*(V + 30 + v) >= 0) &&
775 (*(V + 30 + v - 1) >= 0) &&
776 (*(V + 30 + v) > *(V + 30 + v - 1)) &&
777 (*(V + 30 + v) > SIGMIN)) {
778 /* (case 2) */
779 swp_freq = fOSC * 1000 + afcex_freq;
780 *SIG1 = *(V + 30 + v);
781 } else if ((*(V + 30 + v) > 0) &&
782 (*(V + 30 + v - 1) > 0) &&
783 (*(V + 30 + v - 2) > 0) &&
784 (*(V + 30 + v - 3) > 0) &&
785 (*(V + 30 + v - 1) > *(V + 30 + v)) &&
786 (*(V + 30 + v - 2) > *(V + 30 + v - 3)) &&
787 ((*(V + 30 + v - 1) > SIGMIN) ||
788 (*(V + 30 + v - 2) > SIGMIN))) {
789 /* (case 3) */
790 if (*(V + 30 + v - 1) >= *(V + 30 + v - 2)) {
791 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
792 *SIG1 = *(V + 30 + v - 1);
793 } else {
794 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs * 2;
795 *SIG1 = *(V + 30 + v - 2);
796 }
797 } else if ((v == vmax) &&
798 (*(V + 30 + v) >= 0) &&
799 (*(V + 30 + v - 1) >= 0) &&
800 (*(V + 30 + v - 2) >= 0) &&
801 (*(V + 30 + v) > *(V + 30 + v - 2)) &&
802 (*(V + 30 + v - 1) > *(V + 30 + v - 2)) &&
803 ((*(V + 30 + v) > SIGMIN) ||
804 (*(V + 30 + v - 1) > SIGMIN))) {
805 /* (case 4) */
806 if (*(V + 30 + v) >= *(V + 30 + v - 1)) {
807 swp_freq = fOSC * 1000 + afcex_freq;
808 *SIG1 = *(V + 30 + v);
809 } else {
810 swp_freq = fOSC * 1000 + afcex_freq - swp_ofs;
811 *SIG1 = *(V + 30 + v - 1);
812 }
813 } else {
814 swp_freq = -1 ;
815 }
816 } else if ((i % 2 == 0) && (v >= vmin)) {
817 /* Negative v (case 1) */
818 if ((*(V + 30 + v) > 0) &&
819 (*(V + 30 + v + 1) > 0) &&
820 (*(V + 30 + v + 2) > 0) &&
821 (*(V + 30 + v + 1) > *(V + 30 + v)) &&
822 (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
823 (*(V + 30 + v + 1) > SIGMIN)) {
824
825 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
826 *SIG1 = *(V + 30 + v + 1);
827 } else if ((v + 1 == vmax) &&
828 (*(V + 30 + v) >= 0) &&
829 (*(V + 30 + v + 1) >= 0) &&
830 (*(V + 30 + v + 1) > *(V + 30 + v)) &&
831 (*(V + 30 + v + 1) > SIGMIN)) {
832 /* (case 2) */
833 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
834 *SIG1 = *(V + 30 + v);
835 } else if ((v == vmin) &&
836 (*(V + 30 + v) > 0) &&
837 (*(V + 30 + v + 1) > 0) &&
838 (*(V + 30 + v + 2) > 0) &&
839 (*(V + 30 + v) > *(V + 30 + v + 1)) &&
840 (*(V + 30 + v) > *(V + 30 + v + 2)) &&
841 (*(V + 30 + v) > SIGMIN)) {
842 /* (case 3) */
843 swp_freq = fOSC * 1000 + afcex_freq;
844 *SIG1 = *(V + 30 + v);
845 } else if ((*(V + 30 + v) >= 0) &&
846 (*(V + 30 + v + 1) >= 0) &&
847 (*(V + 30 + v + 2) >= 0) &&
848 (*(V + 30 + v + 3) >= 0) &&
849 (*(V + 30 + v + 1) > *(V + 30 + v)) &&
850 (*(V + 30 + v + 2) > *(V + 30 + v + 3)) &&
851 ((*(V + 30 + v + 1) > SIGMIN) ||
852 (*(V + 30 + v + 2) > SIGMIN))) {
853 /* (case 4) */
854 if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
855 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
856 *SIG1 = *(V + 30 + v + 1);
857 } else {
858 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
859 *SIG1 = *(V + 30 + v + 2);
860 }
861 } else if ((*(V + 30 + v) >= 0) &&
862 (*(V + 30 + v + 1) >= 0) &&
863 (*(V + 30 + v + 2) >= 0) &&
864 (*(V + 30 + v + 3) >= 0) &&
865 (*(V + 30 + v) > *(V + 30 + v + 2)) &&
866 (*(V + 30 + v + 1) > *(V + 30 + v + 2)) &&
867 (*(V + 30 + v) > *(V + 30 + v + 3)) &&
868 (*(V + 30 + v + 1) > *(V + 30 + v + 3)) &&
869 ((*(V + 30 + v) > SIGMIN) ||
870 (*(V + 30 + v + 1) > SIGMIN))) {
871 /* (case 5) */
872 if (*(V + 30 + v) >= *(V + 30 + v + 1)) {
873 swp_freq = fOSC * 1000 + afcex_freq;
874 *SIG1 = *(V + 30 + v);
875 } else {
876 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
877 *SIG1 = *(V + 30 + v + 1);
878 }
879 } else if ((v + 2 == vmin) &&
880 (*(V + 30 + v) >= 0) &&
881 (*(V + 30 + v + 1) >= 0) &&
882 (*(V + 30 + v + 2) >= 0) &&
883 (*(V + 30 + v + 1) > *(V + 30 + v)) &&
884 (*(V + 30 + v + 2) > *(V + 30 + v)) &&
885 ((*(V + 30 + v + 1) > SIGMIN) ||
886 (*(V + 30 + v + 2) > SIGMIN))) {
887 /* (case 6) */
888 if (*(V + 30 + v + 1) >= *(V + 30 + v + 2)) {
889 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs;
890 *SIG1 = *(V + 30 + v + 1);
891 } else {
892 swp_freq = fOSC * 1000 + afcex_freq + swp_ofs * 2;
893 *SIG1 = *(V + 30 + v + 2);
894 }
895 } else if ((vmax == 0) && (vmin == 0) && (*(V + 30 + v) > SIGMIN)) {
896 swp_freq = fOSC * 1000;
897 *SIG1 = *(V + 30 + v);
898 } else
899 swp_freq = -1;
900 } else
901 swp_freq = -1;
902
903 return swp_freq;
904 }
905
swp_info_get2(struct mb86a16_state * state,int smrt,int R,int swp_freq,int * afcex_freq,int * fOSC,unsigned char * AFCEX_L,unsigned char * AFCEX_H)906 static void swp_info_get2(struct mb86a16_state *state,
907 int smrt,
908 int R,
909 int swp_freq,
910 int *afcex_freq,
911 int *fOSC,
912 unsigned char *AFCEX_L,
913 unsigned char *AFCEX_H)
914 {
915 int AFCEX ;
916
917 if (R == 0)
918 *fOSC = (swp_freq + 1000) / 2000 * 2;
919 else
920 *fOSC = (swp_freq + 500) / 1000;
921
922 if (*fOSC >= swp_freq)
923 *afcex_freq = *fOSC * 1000 - swp_freq;
924 else
925 *afcex_freq = swp_freq - *fOSC * 1000;
926
927 AFCEX = *afcex_freq * 8192 / state->master_clk;
928 *AFCEX_L = AFCEX & 0x00ff;
929 *AFCEX_H = (AFCEX & 0x0f00) >> 8;
930 }
931
afcex_info_get(struct mb86a16_state * state,int afcex_freq,unsigned char * AFCEX_L,unsigned char * AFCEX_H)932 static void afcex_info_get(struct mb86a16_state *state,
933 int afcex_freq,
934 unsigned char *AFCEX_L,
935 unsigned char *AFCEX_H)
936 {
937 int AFCEX ;
938
939 AFCEX = afcex_freq * 8192 / state->master_clk;
940 *AFCEX_L = AFCEX & 0x00ff;
941 *AFCEX_H = (AFCEX & 0x0f00) >> 8;
942 }
943
SEQ_set(struct mb86a16_state * state,unsigned char loop)944 static int SEQ_set(struct mb86a16_state *state, unsigned char loop)
945 {
946 /* SLOCK0 = 0 */
947 if (mb86a16_write(state, 0x32, 0x02 | (loop << 2)) < 0) {
948 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
949 return -EREMOTEIO;
950 }
951
952 return 0;
953 }
954
iq_vt_set(struct mb86a16_state * state,unsigned char IQINV)955 static int iq_vt_set(struct mb86a16_state *state, unsigned char IQINV)
956 {
957 /* Viterbi Rate, IQ Settings */
958 if (mb86a16_write(state, 0x06, 0xdf | (IQINV << 5)) < 0) {
959 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
960 return -EREMOTEIO;
961 }
962
963 return 0;
964 }
965
FEC_srst(struct mb86a16_state * state)966 static int FEC_srst(struct mb86a16_state *state)
967 {
968 if (mb86a16_write(state, MB86A16_RESET, 0x02) < 0) {
969 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
970 return -EREMOTEIO;
971 }
972
973 return 0;
974 }
975
S2T_set(struct mb86a16_state * state,unsigned char S2T)976 static int S2T_set(struct mb86a16_state *state, unsigned char S2T)
977 {
978 if (mb86a16_write(state, 0x34, 0x70 | S2T) < 0) {
979 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
980 return -EREMOTEIO;
981 }
982
983 return 0;
984 }
985
S45T_set(struct mb86a16_state * state,unsigned char S4T,unsigned char S5T)986 static int S45T_set(struct mb86a16_state *state, unsigned char S4T, unsigned char S5T)
987 {
988 if (mb86a16_write(state, 0x35, 0x00 | (S5T << 4) | S4T) < 0) {
989 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
990 return -EREMOTEIO;
991 }
992
993 return 0;
994 }
995
996
mb86a16_set_fe(struct mb86a16_state * state)997 static int mb86a16_set_fe(struct mb86a16_state *state)
998 {
999 u8 agcval, cnmval;
1000
1001 int i, j;
1002 int fOSC = 0;
1003 int fOSC_start = 0;
1004 int wait_t;
1005 int fcp;
1006 int swp_ofs;
1007 int V[60];
1008 u8 SIG1MIN;
1009
1010 unsigned char CREN, AFCEN, AFCEXEN;
1011 unsigned char SIG1;
1012 unsigned char TIMINT1, TIMINT2, TIMEXT;
1013 unsigned char S0T, S1T;
1014 unsigned char S2T;
1015 /* unsigned char S2T, S3T; */
1016 unsigned char S4T, S5T;
1017 unsigned char AFCEX_L, AFCEX_H;
1018 unsigned char R;
1019 unsigned char VIRM;
1020 unsigned char ETH, VIA;
1021 unsigned char junk;
1022
1023 int loop;
1024 int ftemp;
1025 int v, vmax, vmin;
1026 int vmax_his, vmin_his;
1027 int swp_freq, prev_swp_freq[20];
1028 int prev_freq_num;
1029 int signal_dupl;
1030 int afcex_freq;
1031 int signal;
1032 int afcerr;
1033 int temp_freq, delta_freq;
1034 int dagcm[4];
1035 int smrt_d;
1036 /* int freq_err; */
1037 int n;
1038 int ret = -1;
1039 int sync;
1040
1041 dprintk(verbose, MB86A16_INFO, 1, "freq=%d Mhz, symbrt=%d Ksps", state->frequency, state->srate);
1042
1043 fcp = 3000;
1044 swp_ofs = state->srate / 4;
1045
1046 for (i = 0; i < 60; i++)
1047 V[i] = -1;
1048
1049 for (i = 0; i < 20; i++)
1050 prev_swp_freq[i] = 0;
1051
1052 SIG1MIN = 25;
1053
1054 for (n = 0; ((n < 3) && (ret == -1)); n++) {
1055 SEQ_set(state, 0);
1056 iq_vt_set(state, 0);
1057
1058 CREN = 0;
1059 AFCEN = 0;
1060 AFCEXEN = 1;
1061 TIMINT1 = 0;
1062 TIMINT2 = 1;
1063 TIMEXT = 2;
1064 S1T = 0;
1065 S0T = 0;
1066
1067 if (initial_set(state) < 0) {
1068 dprintk(verbose, MB86A16_ERROR, 1, "initial set failed");
1069 return -1;
1070 }
1071 if (DAGC_data_set(state, 3, 2) < 0) {
1072 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1073 return -1;
1074 }
1075 if (EN_set(state, CREN, AFCEN) < 0) {
1076 dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1077 return -1; /* (0, 0) */
1078 }
1079 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1080 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1081 return -1; /* (1, smrt) = (1, symbolrate) */
1082 }
1083 if (CNTM_set(state, TIMINT1, TIMINT2, TIMEXT) < 0) {
1084 dprintk(verbose, MB86A16_ERROR, 1, "CNTM set error");
1085 return -1; /* (0, 1, 2) */
1086 }
1087 if (S01T_set(state, S1T, S0T) < 0) {
1088 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1089 return -1; /* (0, 0) */
1090 }
1091 smrt_info_get(state, state->srate);
1092 if (smrt_set(state, state->srate) < 0) {
1093 dprintk(verbose, MB86A16_ERROR, 1, "smrt info get error");
1094 return -1;
1095 }
1096
1097 R = vco_dev_get(state, state->srate);
1098 if (R == 1)
1099 fOSC_start = state->frequency;
1100
1101 else if (R == 0) {
1102 if (state->frequency % 2 == 0) {
1103 fOSC_start = state->frequency;
1104 } else {
1105 fOSC_start = state->frequency + 1;
1106 if (fOSC_start > 2150)
1107 fOSC_start = state->frequency - 1;
1108 }
1109 }
1110 loop = 1;
1111 ftemp = fOSC_start * 1000;
1112 vmax = 0 ;
1113 while (loop == 1) {
1114 ftemp = ftemp + swp_ofs;
1115 vmax++;
1116
1117 /* Upper bound */
1118 if (ftemp > 2150000) {
1119 loop = 0;
1120 vmax--;
1121 } else {
1122 if ((ftemp == 2150000) ||
1123 (ftemp - state->frequency * 1000 >= fcp + state->srate / 4))
1124 loop = 0;
1125 }
1126 }
1127
1128 loop = 1;
1129 ftemp = fOSC_start * 1000;
1130 vmin = 0 ;
1131 while (loop == 1) {
1132 ftemp = ftemp - swp_ofs;
1133 vmin--;
1134
1135 /* Lower bound */
1136 if (ftemp < 950000) {
1137 loop = 0;
1138 vmin++;
1139 } else {
1140 if ((ftemp == 950000) ||
1141 (state->frequency * 1000 - ftemp >= fcp + state->srate / 4))
1142 loop = 0;
1143 }
1144 }
1145
1146 wait_t = (8000 + state->srate / 2) / state->srate;
1147 if (wait_t == 0)
1148 wait_t = 1;
1149
1150 i = 0;
1151 j = 0;
1152 prev_freq_num = 0;
1153 loop = 1;
1154 signal = 0;
1155 vmax_his = 0;
1156 vmin_his = 0;
1157 v = 0;
1158
1159 while (loop == 1) {
1160 swp_info_get(state, fOSC_start, state->srate,
1161 v, R, swp_ofs, &fOSC,
1162 &afcex_freq, &AFCEX_L, &AFCEX_H);
1163
1164 udelay(100);
1165 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1166 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1167 return -1;
1168 }
1169 udelay(100);
1170 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1171 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1172 return -1;
1173 }
1174 if (srst(state) < 0) {
1175 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1176 return -1;
1177 }
1178 msleep_interruptible(wait_t);
1179
1180 if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1181 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1182 return -1;
1183 }
1184 V[30 + v] = SIG1 ;
1185 swp_freq = swp_freq_calcuation(state, i, v, V, vmax, vmin,
1186 SIG1MIN, fOSC, afcex_freq,
1187 swp_ofs, &SIG1); /* changed */
1188
1189 signal_dupl = 0;
1190 for (j = 0; j < prev_freq_num; j++) {
1191 if ((abs(prev_swp_freq[j] - swp_freq)) < (swp_ofs * 3 / 2)) {
1192 signal_dupl = 1;
1193 dprintk(verbose, MB86A16_INFO, 1, "Probably Duplicate Signal, j = %d", j);
1194 }
1195 }
1196 if ((signal_dupl == 0) && (swp_freq > 0) && (abs(swp_freq - state->frequency * 1000) < fcp + state->srate / 6)) {
1197 dprintk(verbose, MB86A16_DEBUG, 1, "------ Signal detect ------ [swp_freq=[%07d, srate=%05d]]", swp_freq, state->srate);
1198 prev_swp_freq[prev_freq_num] = swp_freq;
1199 prev_freq_num++;
1200 swp_info_get2(state, state->srate, R, swp_freq,
1201 &afcex_freq, &fOSC,
1202 &AFCEX_L, &AFCEX_H);
1203
1204 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1205 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1206 return -1;
1207 }
1208 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1209 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1210 return -1;
1211 }
1212 signal = signal_det(state, state->srate, &SIG1);
1213 if (signal == 1) {
1214 dprintk(verbose, MB86A16_ERROR, 1, "***** Signal Found *****");
1215 loop = 0;
1216 } else {
1217 dprintk(verbose, MB86A16_ERROR, 1, "!!!!! No signal !!!!!, try again...");
1218 smrt_info_get(state, state->srate);
1219 if (smrt_set(state, state->srate) < 0) {
1220 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1221 return -1;
1222 }
1223 }
1224 }
1225 if (v > vmax)
1226 vmax_his = 1 ;
1227 if (v < vmin)
1228 vmin_his = 1 ;
1229 i++;
1230
1231 if ((i % 2 == 1) && (vmax_his == 1))
1232 i++;
1233 if ((i % 2 == 0) && (vmin_his == 1))
1234 i++;
1235
1236 if (i % 2 == 1)
1237 v = (i + 1) / 2;
1238 else
1239 v = -i / 2;
1240
1241 if ((vmax_his == 1) && (vmin_his == 1))
1242 loop = 0 ;
1243 }
1244
1245 if (signal == 1) {
1246 dprintk(verbose, MB86A16_INFO, 1, " Start Freq Error Check");
1247 S1T = 7 ;
1248 S0T = 1 ;
1249 CREN = 0 ;
1250 AFCEN = 1 ;
1251 AFCEXEN = 0 ;
1252
1253 if (S01T_set(state, S1T, S0T) < 0) {
1254 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1255 return -1;
1256 }
1257 smrt_info_get(state, state->srate);
1258 if (smrt_set(state, state->srate) < 0) {
1259 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1260 return -1;
1261 }
1262 if (EN_set(state, CREN, AFCEN) < 0) {
1263 dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1264 return -1;
1265 }
1266 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1267 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1268 return -1;
1269 }
1270 afcex_info_get(state, afcex_freq, &AFCEX_L, &AFCEX_H);
1271 if (afcofs_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1272 dprintk(verbose, MB86A16_ERROR, 1, "AFCOFS data set error");
1273 return -1;
1274 }
1275 if (srst(state) < 0) {
1276 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1277 return -1;
1278 }
1279 /* delay 4~200 */
1280 wait_t = 200000 / state->master_clk + 200000 / state->srate;
1281 msleep(wait_t);
1282 afcerr = afcerr_chk(state);
1283 if (afcerr == -1)
1284 return -1;
1285
1286 swp_freq = fOSC * 1000 + afcerr ;
1287 AFCEXEN = 1 ;
1288 if (state->srate >= 1500)
1289 smrt_d = state->srate / 3;
1290 else
1291 smrt_d = state->srate / 2;
1292 smrt_info_get(state, smrt_d);
1293 if (smrt_set(state, smrt_d) < 0) {
1294 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1295 return -1;
1296 }
1297 if (AFCEXEN_set(state, AFCEXEN, smrt_d) < 0) {
1298 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1299 return -1;
1300 }
1301 R = vco_dev_get(state, smrt_d);
1302 if (DAGC_data_set(state, 2, 0) < 0) {
1303 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1304 return -1;
1305 }
1306 for (i = 0; i < 3; i++) {
1307 temp_freq = swp_freq + (i - 1) * state->srate / 8;
1308 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1309 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1310 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1311 return -1;
1312 }
1313 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1314 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1315 return -1;
1316 }
1317 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1318 msleep(wait_t);
1319 dagcm[i] = dagcm_val_get(state);
1320 }
1321 if ((dagcm[0] > dagcm[1]) &&
1322 (dagcm[0] > dagcm[2]) &&
1323 (dagcm[0] - dagcm[1] > 2 * (dagcm[2] - dagcm[1]))) {
1324
1325 temp_freq = swp_freq - 2 * state->srate / 8;
1326 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1327 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1328 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1329 return -1;
1330 }
1331 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1332 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1333 return -1;
1334 }
1335 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1336 msleep(wait_t);
1337 dagcm[3] = dagcm_val_get(state);
1338 if (dagcm[3] > dagcm[1])
1339 delta_freq = (dagcm[2] - dagcm[0] + dagcm[1] - dagcm[3]) * state->srate / 300;
1340 else
1341 delta_freq = 0;
1342 } else if ((dagcm[2] > dagcm[1]) &&
1343 (dagcm[2] > dagcm[0]) &&
1344 (dagcm[2] - dagcm[1] > 2 * (dagcm[0] - dagcm[1]))) {
1345
1346 temp_freq = swp_freq + 2 * state->srate / 8;
1347 swp_info_get2(state, smrt_d, R, temp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1348 if (rf_val_set(state, fOSC, smrt_d, R) < 0) {
1349 dprintk(verbose, MB86A16_ERROR, 1, "rf val set");
1350 return -1;
1351 }
1352 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1353 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set");
1354 return -1;
1355 }
1356 wait_t = 200000 / state->master_clk + 40000 / smrt_d;
1357 msleep(wait_t);
1358 dagcm[3] = dagcm_val_get(state);
1359 if (dagcm[3] > dagcm[1])
1360 delta_freq = (dagcm[2] - dagcm[0] + dagcm[3] - dagcm[1]) * state->srate / 300;
1361 else
1362 delta_freq = 0 ;
1363
1364 } else {
1365 delta_freq = 0 ;
1366 }
1367 dprintk(verbose, MB86A16_INFO, 1, "SWEEP Frequency = %d", swp_freq);
1368 swp_freq += delta_freq;
1369 dprintk(verbose, MB86A16_INFO, 1, "Adjusting .., DELTA Freq = %d, SWEEP Freq=%d", delta_freq, swp_freq);
1370 if (abs(state->frequency * 1000 - swp_freq) > 3800) {
1371 dprintk(verbose, MB86A16_INFO, 1, "NO -- SIGNAL !");
1372 } else {
1373
1374 S1T = 0;
1375 S0T = 3;
1376 CREN = 1;
1377 AFCEN = 0;
1378 AFCEXEN = 1;
1379
1380 if (S01T_set(state, S1T, S0T) < 0) {
1381 dprintk(verbose, MB86A16_ERROR, 1, "S01T set error");
1382 return -1;
1383 }
1384 if (DAGC_data_set(state, 0, 0) < 0) {
1385 dprintk(verbose, MB86A16_ERROR, 1, "DAGC data set error");
1386 return -1;
1387 }
1388 R = vco_dev_get(state, state->srate);
1389 smrt_info_get(state, state->srate);
1390 if (smrt_set(state, state->srate) < 0) {
1391 dprintk(verbose, MB86A16_ERROR, 1, "smrt set error");
1392 return -1;
1393 }
1394 if (EN_set(state, CREN, AFCEN) < 0) {
1395 dprintk(verbose, MB86A16_ERROR, 1, "EN set error");
1396 return -1;
1397 }
1398 if (AFCEXEN_set(state, AFCEXEN, state->srate) < 0) {
1399 dprintk(verbose, MB86A16_ERROR, 1, "AFCEXEN set error");
1400 return -1;
1401 }
1402 swp_info_get2(state, state->srate, R, swp_freq, &afcex_freq, &fOSC, &AFCEX_L, &AFCEX_H);
1403 if (rf_val_set(state, fOSC, state->srate, R) < 0) {
1404 dprintk(verbose, MB86A16_ERROR, 1, "rf val set error");
1405 return -1;
1406 }
1407 if (afcex_data_set(state, AFCEX_L, AFCEX_H) < 0) {
1408 dprintk(verbose, MB86A16_ERROR, 1, "afcex data set error");
1409 return -1;
1410 }
1411 if (srst(state) < 0) {
1412 dprintk(verbose, MB86A16_ERROR, 1, "srst error");
1413 return -1;
1414 }
1415 wait_t = 7 + (10000 + state->srate / 2) / state->srate;
1416 if (wait_t == 0)
1417 wait_t = 1;
1418 msleep_interruptible(wait_t);
1419 if (mb86a16_read(state, 0x37, &SIG1) != 2) {
1420 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1421 return -EREMOTEIO;
1422 }
1423
1424 if (SIG1 > 110) {
1425 S2T = 4; S4T = 1; S5T = 6; ETH = 4; VIA = 6;
1426 wait_t = 7 + (917504 + state->srate / 2) / state->srate;
1427 } else if (SIG1 > 105) {
1428 S2T = 4; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1429 wait_t = 7 + (1048576 + state->srate / 2) / state->srate;
1430 } else if (SIG1 > 85) {
1431 S2T = 5; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1432 wait_t = 7 + (1310720 + state->srate / 2) / state->srate;
1433 } else if (SIG1 > 65) {
1434 S2T = 6; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1435 wait_t = 7 + (1572864 + state->srate / 2) / state->srate;
1436 } else {
1437 S2T = 7; S4T = 2; S5T = 8; ETH = 7; VIA = 2;
1438 wait_t = 7 + (2097152 + state->srate / 2) / state->srate;
1439 }
1440 wait_t *= 2; /* FOS */
1441 S2T_set(state, S2T);
1442 S45T_set(state, S4T, S5T);
1443 Vi_set(state, ETH, VIA);
1444 srst(state);
1445 msleep_interruptible(wait_t);
1446 sync = sync_chk(state, &VIRM);
1447 dprintk(verbose, MB86A16_INFO, 1, "-------- Viterbi=[%d] SYNC=[%d] ---------", VIRM, sync);
1448 if (VIRM) {
1449 if (VIRM == 4) {
1450 /* 5/6 */
1451 if (SIG1 > 110)
1452 wait_t = (786432 + state->srate / 2) / state->srate;
1453 else
1454 wait_t = (1572864 + state->srate / 2) / state->srate;
1455
1456 msleep_interruptible(wait_t);
1457
1458 if (sync_chk(state, &junk) == 0) {
1459 iq_vt_set(state, 1);
1460 FEC_srst(state);
1461 }
1462 }
1463 /* 1/2, 2/3, 3/4, 7/8 */
1464 if (SIG1 > 110)
1465 wait_t = (786432 + state->srate / 2) / state->srate;
1466 else
1467 wait_t = (1572864 + state->srate / 2) / state->srate;
1468 msleep_interruptible(wait_t);
1469 SEQ_set(state, 1);
1470 } else {
1471 dprintk(verbose, MB86A16_INFO, 1, "NO -- SYNC");
1472 SEQ_set(state, 1);
1473 ret = -1;
1474 }
1475 }
1476 } else {
1477 dprintk(verbose, MB86A16_INFO, 1, "NO -- SIGNAL");
1478 ret = -1;
1479 }
1480
1481 sync = sync_chk(state, &junk);
1482 if (sync) {
1483 dprintk(verbose, MB86A16_INFO, 1, "******* SYNC *******");
1484 freqerr_chk(state, state->frequency, state->srate, 1);
1485 ret = 0;
1486 break;
1487 }
1488 }
1489
1490 mb86a16_read(state, 0x15, &agcval);
1491 mb86a16_read(state, 0x26, &cnmval);
1492 dprintk(verbose, MB86A16_INFO, 1, "AGC = %02x CNM = %02x", agcval, cnmval);
1493
1494 return ret;
1495 }
1496
mb86a16_send_diseqc_msg(struct dvb_frontend * fe,struct dvb_diseqc_master_cmd * cmd)1497 static int mb86a16_send_diseqc_msg(struct dvb_frontend *fe,
1498 struct dvb_diseqc_master_cmd *cmd)
1499 {
1500 struct mb86a16_state *state = fe->demodulator_priv;
1501 int i;
1502 u8 regs;
1503
1504 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1505 goto err;
1506 if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1507 goto err;
1508 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1509 goto err;
1510
1511 regs = 0x18;
1512
1513 if (cmd->msg_len > 5 || cmd->msg_len < 4)
1514 return -EINVAL;
1515
1516 for (i = 0; i < cmd->msg_len; i++) {
1517 if (mb86a16_write(state, regs, cmd->msg[i]) < 0)
1518 goto err;
1519
1520 regs++;
1521 }
1522 i += 0x90;
1523
1524 msleep_interruptible(10);
1525
1526 if (mb86a16_write(state, MB86A16_DCC1, i) < 0)
1527 goto err;
1528 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1529 goto err;
1530
1531 return 0;
1532
1533 err:
1534 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1535 return -EREMOTEIO;
1536 }
1537
mb86a16_send_diseqc_burst(struct dvb_frontend * fe,enum fe_sec_mini_cmd burst)1538 static int mb86a16_send_diseqc_burst(struct dvb_frontend *fe,
1539 enum fe_sec_mini_cmd burst)
1540 {
1541 struct mb86a16_state *state = fe->demodulator_priv;
1542
1543 switch (burst) {
1544 case SEC_MINI_A:
1545 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1546 MB86A16_DCC1_TBEN |
1547 MB86A16_DCC1_TBO) < 0)
1548 goto err;
1549 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1550 goto err;
1551 break;
1552 case SEC_MINI_B:
1553 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1554 MB86A16_DCC1_TBEN) < 0)
1555 goto err;
1556 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1557 goto err;
1558 break;
1559 }
1560
1561 return 0;
1562 err:
1563 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1564 return -EREMOTEIO;
1565 }
1566
mb86a16_set_tone(struct dvb_frontend * fe,enum fe_sec_tone_mode tone)1567 static int mb86a16_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
1568 {
1569 struct mb86a16_state *state = fe->demodulator_priv;
1570
1571 switch (tone) {
1572 case SEC_TONE_ON:
1573 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x00) < 0)
1574 goto err;
1575 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA |
1576 MB86A16_DCC1_CTOE) < 0)
1577
1578 goto err;
1579 if (mb86a16_write(state, MB86A16_DCCOUT, MB86A16_DCCOUT_DISEN) < 0)
1580 goto err;
1581 break;
1582 case SEC_TONE_OFF:
1583 if (mb86a16_write(state, MB86A16_TONEOUT2, 0x04) < 0)
1584 goto err;
1585 if (mb86a16_write(state, MB86A16_DCC1, MB86A16_DCC1_DISTA) < 0)
1586 goto err;
1587 if (mb86a16_write(state, MB86A16_DCCOUT, 0x00) < 0)
1588 goto err;
1589 break;
1590 default:
1591 return -EINVAL;
1592 }
1593 return 0;
1594
1595 err:
1596 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1597 return -EREMOTEIO;
1598 }
1599
mb86a16_search(struct dvb_frontend * fe)1600 static enum dvbfe_search mb86a16_search(struct dvb_frontend *fe)
1601 {
1602 struct dtv_frontend_properties *p = &fe->dtv_property_cache;
1603 struct mb86a16_state *state = fe->demodulator_priv;
1604
1605 state->frequency = p->frequency / 1000;
1606 state->srate = p->symbol_rate / 1000;
1607
1608 if (!mb86a16_set_fe(state)) {
1609 dprintk(verbose, MB86A16_ERROR, 1, "Successfully acquired LOCK");
1610 return DVBFE_ALGO_SEARCH_SUCCESS;
1611 }
1612
1613 dprintk(verbose, MB86A16_ERROR, 1, "Lock acquisition failed!");
1614 return DVBFE_ALGO_SEARCH_FAILED;
1615 }
1616
mb86a16_release(struct dvb_frontend * fe)1617 static void mb86a16_release(struct dvb_frontend *fe)
1618 {
1619 struct mb86a16_state *state = fe->demodulator_priv;
1620 kfree(state);
1621 }
1622
mb86a16_init(struct dvb_frontend * fe)1623 static int mb86a16_init(struct dvb_frontend *fe)
1624 {
1625 return 0;
1626 }
1627
mb86a16_sleep(struct dvb_frontend * fe)1628 static int mb86a16_sleep(struct dvb_frontend *fe)
1629 {
1630 return 0;
1631 }
1632
mb86a16_read_ber(struct dvb_frontend * fe,u32 * ber)1633 static int mb86a16_read_ber(struct dvb_frontend *fe, u32 *ber)
1634 {
1635 u8 ber_mon, ber_tab, ber_lsb, ber_mid, ber_msb, ber_tim, ber_rst;
1636 u32 timer;
1637
1638 struct mb86a16_state *state = fe->demodulator_priv;
1639
1640 *ber = 0;
1641 if (mb86a16_read(state, MB86A16_BERMON, &ber_mon) != 2)
1642 goto err;
1643 if (mb86a16_read(state, MB86A16_BERTAB, &ber_tab) != 2)
1644 goto err;
1645 if (mb86a16_read(state, MB86A16_BERLSB, &ber_lsb) != 2)
1646 goto err;
1647 if (mb86a16_read(state, MB86A16_BERMID, &ber_mid) != 2)
1648 goto err;
1649 if (mb86a16_read(state, MB86A16_BERMSB, &ber_msb) != 2)
1650 goto err;
1651 /* BER monitor invalid when BER_EN = 0 */
1652 if (ber_mon & 0x04) {
1653 /* coarse, fast calculation */
1654 *ber = ber_tab & 0x1f;
1655 dprintk(verbose, MB86A16_DEBUG, 1, "BER coarse=[0x%02x]", *ber);
1656 if (ber_mon & 0x01) {
1657 /*
1658 * BER_SEL = 1, The monitored BER is the estimated
1659 * value with a Reed-Solomon decoder error amount at
1660 * the deinterleaver output.
1661 * monitored BER is expressed as a 20 bit output in total
1662 */
1663 ber_rst = (ber_mon >> 3) & 0x03;
1664 *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1665 if (ber_rst == 0)
1666 timer = 12500000;
1667 else if (ber_rst == 1)
1668 timer = 25000000;
1669 else if (ber_rst == 2)
1670 timer = 50000000;
1671 else /* ber_rst == 3 */
1672 timer = 100000000;
1673
1674 *ber /= timer;
1675 dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1676 } else {
1677 /*
1678 * BER_SEL = 0, The monitored BER is the estimated
1679 * value with a Viterbi decoder error amount at the
1680 * QPSK demodulator output.
1681 * monitored BER is expressed as a 24 bit output in total
1682 */
1683 ber_tim = (ber_mon >> 1) & 0x01;
1684 *ber = (((ber_msb << 8) | ber_mid) << 8) | ber_lsb;
1685 if (ber_tim == 0)
1686 timer = 16;
1687 else /* ber_tim == 1 */
1688 timer = 24;
1689
1690 *ber /= 2 ^ timer;
1691 dprintk(verbose, MB86A16_DEBUG, 1, "BER fine=[0x%02x]", *ber);
1692 }
1693 }
1694 return 0;
1695 err:
1696 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1697 return -EREMOTEIO;
1698 }
1699
mb86a16_read_signal_strength(struct dvb_frontend * fe,u16 * strength)1700 static int mb86a16_read_signal_strength(struct dvb_frontend *fe, u16 *strength)
1701 {
1702 u8 agcm = 0;
1703 struct mb86a16_state *state = fe->demodulator_priv;
1704
1705 *strength = 0;
1706 if (mb86a16_read(state, MB86A16_AGCM, &agcm) != 2) {
1707 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1708 return -EREMOTEIO;
1709 }
1710
1711 *strength = ((0xff - agcm) * 100) / 256;
1712 dprintk(verbose, MB86A16_DEBUG, 1, "Signal strength=[%d %%]", (u8) *strength);
1713 *strength = (0xffff - 0xff) + agcm;
1714
1715 return 0;
1716 }
1717
1718 struct cnr {
1719 u8 cn_reg;
1720 u8 cn_val;
1721 };
1722
1723 static const struct cnr cnr_tab[] = {
1724 { 35, 2 },
1725 { 40, 3 },
1726 { 50, 4 },
1727 { 60, 5 },
1728 { 70, 6 },
1729 { 80, 7 },
1730 { 92, 8 },
1731 { 103, 9 },
1732 { 115, 10 },
1733 { 138, 12 },
1734 { 162, 15 },
1735 { 180, 18 },
1736 { 185, 19 },
1737 { 189, 20 },
1738 { 195, 22 },
1739 { 199, 24 },
1740 { 201, 25 },
1741 { 202, 26 },
1742 { 203, 27 },
1743 { 205, 28 },
1744 { 208, 30 }
1745 };
1746
mb86a16_read_snr(struct dvb_frontend * fe,u16 * snr)1747 static int mb86a16_read_snr(struct dvb_frontend *fe, u16 *snr)
1748 {
1749 struct mb86a16_state *state = fe->demodulator_priv;
1750 int i = 0;
1751 int low_tide = 2, high_tide = 30, q_level;
1752 u8 cn;
1753
1754 *snr = 0;
1755 if (mb86a16_read(state, 0x26, &cn) != 2) {
1756 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1757 return -EREMOTEIO;
1758 }
1759
1760 for (i = 0; i < ARRAY_SIZE(cnr_tab); i++) {
1761 if (cn < cnr_tab[i].cn_reg) {
1762 *snr = cnr_tab[i].cn_val;
1763 break;
1764 }
1765 }
1766 q_level = (*snr * 100) / (high_tide - low_tide);
1767 dprintk(verbose, MB86A16_ERROR, 1, "SNR (Quality) = [%d dB], Level=%d %%", *snr, q_level);
1768 *snr = (0xffff - 0xff) + *snr;
1769
1770 return 0;
1771 }
1772
mb86a16_read_ucblocks(struct dvb_frontend * fe,u32 * ucblocks)1773 static int mb86a16_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
1774 {
1775 u8 dist;
1776 struct mb86a16_state *state = fe->demodulator_priv;
1777
1778 if (mb86a16_read(state, MB86A16_DISTMON, &dist) != 2) {
1779 dprintk(verbose, MB86A16_ERROR, 1, "I2C transfer error");
1780 return -EREMOTEIO;
1781 }
1782 *ucblocks = dist;
1783
1784 return 0;
1785 }
1786
mb86a16_frontend_algo(struct dvb_frontend * fe)1787 static enum dvbfe_algo mb86a16_frontend_algo(struct dvb_frontend *fe)
1788 {
1789 return DVBFE_ALGO_CUSTOM;
1790 }
1791
1792 static const struct dvb_frontend_ops mb86a16_ops = {
1793 .delsys = { SYS_DVBS },
1794 .info = {
1795 .name = "Fujitsu MB86A16 DVB-S",
1796 .frequency_min_hz = 950 * MHz,
1797 .frequency_max_hz = 2150 * MHz,
1798 .frequency_stepsize_hz = 3 * MHz,
1799 .symbol_rate_min = 1000000,
1800 .symbol_rate_max = 45000000,
1801 .symbol_rate_tolerance = 500,
1802 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
1803 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 |
1804 FE_CAN_FEC_7_8 | FE_CAN_QPSK |
1805 FE_CAN_FEC_AUTO
1806 },
1807 .release = mb86a16_release,
1808
1809 .get_frontend_algo = mb86a16_frontend_algo,
1810 .search = mb86a16_search,
1811 .init = mb86a16_init,
1812 .sleep = mb86a16_sleep,
1813 .read_status = mb86a16_read_status,
1814
1815 .read_ber = mb86a16_read_ber,
1816 .read_signal_strength = mb86a16_read_signal_strength,
1817 .read_snr = mb86a16_read_snr,
1818 .read_ucblocks = mb86a16_read_ucblocks,
1819
1820 .diseqc_send_master_cmd = mb86a16_send_diseqc_msg,
1821 .diseqc_send_burst = mb86a16_send_diseqc_burst,
1822 .set_tone = mb86a16_set_tone,
1823 };
1824
mb86a16_attach(const struct mb86a16_config * config,struct i2c_adapter * i2c_adap)1825 struct dvb_frontend *mb86a16_attach(const struct mb86a16_config *config,
1826 struct i2c_adapter *i2c_adap)
1827 {
1828 u8 dev_id = 0;
1829 struct mb86a16_state *state = NULL;
1830
1831 state = kmalloc(sizeof(struct mb86a16_state), GFP_KERNEL);
1832 if (state == NULL)
1833 goto error;
1834
1835 state->config = config;
1836 state->i2c_adap = i2c_adap;
1837
1838 mb86a16_read(state, 0x7f, &dev_id);
1839 if (dev_id != 0xfe)
1840 goto error;
1841
1842 memcpy(&state->frontend.ops, &mb86a16_ops, sizeof(struct dvb_frontend_ops));
1843 state->frontend.demodulator_priv = state;
1844 state->frontend.ops.set_voltage = state->config->set_voltage;
1845
1846 return &state->frontend;
1847 error:
1848 kfree(state);
1849 return NULL;
1850 }
1851 EXPORT_SYMBOL(mb86a16_attach);
1852 MODULE_LICENSE("GPL");
1853 MODULE_AUTHOR("Manu Abraham");
1854