1 // SPDX-License-Identifier: (GPL-2.0 OR BSD-3-Clause)
2 // Copyright(c) 2015-17 Intel Corporation.
3
4 /*
5 * Soundwire Intel Master Driver
6 */
7
8 #include <linux/acpi.h>
9 #include <linux/debugfs.h>
10 #include <linux/delay.h>
11 #include <linux/module.h>
12 #include <linux/interrupt.h>
13 #include <linux/io.h>
14 #include <linux/auxiliary_bus.h>
15 #include <sound/pcm_params.h>
16 #include <linux/pm_runtime.h>
17 #include <sound/soc.h>
18 #include <linux/soundwire/sdw_registers.h>
19 #include <linux/soundwire/sdw.h>
20 #include <linux/soundwire/sdw_intel.h>
21 #include "cadence_master.h"
22 #include "bus.h"
23 #include "intel.h"
24
25 /* IDA min selected to avoid conflicts with HDaudio/iDISP SDI values */
26 #define INTEL_DEV_NUM_IDA_MIN 4
27
28 #define INTEL_MASTER_SUSPEND_DELAY_MS 3000
29 #define INTEL_MASTER_RESET_ITERATIONS 10
30
31 /*
32 * debug/config flags for the Intel SoundWire Master.
33 *
34 * Since we may have multiple masters active, we can have up to 8
35 * flags reused in each byte, with master0 using the ls-byte, etc.
36 */
37
38 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME BIT(0)
39 #define SDW_INTEL_MASTER_DISABLE_CLOCK_STOP BIT(1)
40 #define SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE BIT(2)
41 #define SDW_INTEL_MASTER_DISABLE_MULTI_LINK BIT(3)
42
43 static int md_flags;
44 module_param_named(sdw_md_flags, md_flags, int, 0444);
45 MODULE_PARM_DESC(sdw_md_flags, "SoundWire Intel Master device flags (0x0 all off)");
46
47 enum intel_pdi_type {
48 INTEL_PDI_IN = 0,
49 INTEL_PDI_OUT = 1,
50 INTEL_PDI_BD = 2,
51 };
52
53 #define cdns_to_intel(_cdns) container_of(_cdns, struct sdw_intel, cdns)
54
55 /*
56 * Read, write helpers for HW registers
57 */
intel_readl(void __iomem * base,int offset)58 static inline int intel_readl(void __iomem *base, int offset)
59 {
60 return readl(base + offset);
61 }
62
intel_writel(void __iomem * base,int offset,int value)63 static inline void intel_writel(void __iomem *base, int offset, int value)
64 {
65 writel(value, base + offset);
66 }
67
intel_readw(void __iomem * base,int offset)68 static inline u16 intel_readw(void __iomem *base, int offset)
69 {
70 return readw(base + offset);
71 }
72
intel_writew(void __iomem * base,int offset,u16 value)73 static inline void intel_writew(void __iomem *base, int offset, u16 value)
74 {
75 writew(value, base + offset);
76 }
77
intel_wait_bit(void __iomem * base,int offset,u32 mask,u32 target)78 static int intel_wait_bit(void __iomem *base, int offset, u32 mask, u32 target)
79 {
80 int timeout = 10;
81 u32 reg_read;
82
83 do {
84 reg_read = readl(base + offset);
85 if ((reg_read & mask) == target)
86 return 0;
87
88 timeout--;
89 usleep_range(50, 100);
90 } while (timeout != 0);
91
92 return -EAGAIN;
93 }
94
intel_clear_bit(void __iomem * base,int offset,u32 value,u32 mask)95 static int intel_clear_bit(void __iomem *base, int offset, u32 value, u32 mask)
96 {
97 writel(value, base + offset);
98 return intel_wait_bit(base, offset, mask, 0);
99 }
100
intel_set_bit(void __iomem * base,int offset,u32 value,u32 mask)101 static int intel_set_bit(void __iomem *base, int offset, u32 value, u32 mask)
102 {
103 writel(value, base + offset);
104 return intel_wait_bit(base, offset, mask, mask);
105 }
106
107 /*
108 * debugfs
109 */
110 #ifdef CONFIG_DEBUG_FS
111
112 #define RD_BUF (2 * PAGE_SIZE)
113
intel_sprintf(void __iomem * mem,bool l,char * buf,size_t pos,unsigned int reg)114 static ssize_t intel_sprintf(void __iomem *mem, bool l,
115 char *buf, size_t pos, unsigned int reg)
116 {
117 int value;
118
119 if (l)
120 value = intel_readl(mem, reg);
121 else
122 value = intel_readw(mem, reg);
123
124 return scnprintf(buf + pos, RD_BUF - pos, "%4x\t%4x\n", reg, value);
125 }
126
intel_reg_show(struct seq_file * s_file,void * data)127 static int intel_reg_show(struct seq_file *s_file, void *data)
128 {
129 struct sdw_intel *sdw = s_file->private;
130 void __iomem *s = sdw->link_res->shim;
131 void __iomem *a = sdw->link_res->alh;
132 char *buf;
133 ssize_t ret;
134 int i, j;
135 unsigned int links, reg;
136
137 buf = kzalloc(RD_BUF, GFP_KERNEL);
138 if (!buf)
139 return -ENOMEM;
140
141 links = intel_readl(s, SDW_SHIM_LCAP) & SDW_SHIM_LCAP_LCOUNT_MASK;
142
143 ret = scnprintf(buf, RD_BUF, "Register Value\n");
144 ret += scnprintf(buf + ret, RD_BUF - ret, "\nShim\n");
145
146 for (i = 0; i < links; i++) {
147 reg = SDW_SHIM_LCAP + i * 4;
148 ret += intel_sprintf(s, true, buf, ret, reg);
149 }
150
151 for (i = 0; i < links; i++) {
152 ret += scnprintf(buf + ret, RD_BUF - ret, "\nLink%d\n", i);
153 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLSCAP(i));
154 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS0CM(i));
155 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS1CM(i));
156 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS2CM(i));
157 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTLS3CM(i));
158 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_PCMSCAP(i));
159
160 ret += scnprintf(buf + ret, RD_BUF - ret, "\n PCMSyCH registers\n");
161
162 /*
163 * the value 10 is the number of PDIs. We will need a
164 * cleanup to remove hard-coded Intel configurations
165 * from cadence_master.c
166 */
167 for (j = 0; j < 10; j++) {
168 ret += intel_sprintf(s, false, buf, ret,
169 SDW_SHIM_PCMSYCHM(i, j));
170 ret += intel_sprintf(s, false, buf, ret,
171 SDW_SHIM_PCMSYCHC(i, j));
172 }
173 ret += scnprintf(buf + ret, RD_BUF - ret, "\n IOCTL, CTMCTL\n");
174
175 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_IOCTL(i));
176 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_CTMCTL(i));
177 }
178
179 ret += scnprintf(buf + ret, RD_BUF - ret, "\nWake registers\n");
180 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKEEN);
181 ret += intel_sprintf(s, false, buf, ret, SDW_SHIM_WAKESTS);
182
183 ret += scnprintf(buf + ret, RD_BUF - ret, "\nALH STRMzCFG\n");
184 for (i = 0; i < SDW_ALH_NUM_STREAMS; i++)
185 ret += intel_sprintf(a, true, buf, ret, SDW_ALH_STRMZCFG(i));
186
187 seq_printf(s_file, "%s", buf);
188 kfree(buf);
189
190 return 0;
191 }
192 DEFINE_SHOW_ATTRIBUTE(intel_reg);
193
intel_set_m_datamode(void * data,u64 value)194 static int intel_set_m_datamode(void *data, u64 value)
195 {
196 struct sdw_intel *sdw = data;
197 struct sdw_bus *bus = &sdw->cdns.bus;
198
199 if (value > SDW_PORT_DATA_MODE_STATIC_1)
200 return -EINVAL;
201
202 /* Userspace changed the hardware state behind the kernel's back */
203 add_taint(TAINT_USER, LOCKDEP_STILL_OK);
204
205 bus->params.m_data_mode = value;
206
207 return 0;
208 }
209 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_m_datamode_fops, NULL,
210 intel_set_m_datamode, "%llu\n");
211
intel_set_s_datamode(void * data,u64 value)212 static int intel_set_s_datamode(void *data, u64 value)
213 {
214 struct sdw_intel *sdw = data;
215 struct sdw_bus *bus = &sdw->cdns.bus;
216
217 if (value > SDW_PORT_DATA_MODE_STATIC_1)
218 return -EINVAL;
219
220 /* Userspace changed the hardware state behind the kernel's back */
221 add_taint(TAINT_USER, LOCKDEP_STILL_OK);
222
223 bus->params.s_data_mode = value;
224
225 return 0;
226 }
227 DEFINE_DEBUGFS_ATTRIBUTE(intel_set_s_datamode_fops, NULL,
228 intel_set_s_datamode, "%llu\n");
229
intel_debugfs_init(struct sdw_intel * sdw)230 static void intel_debugfs_init(struct sdw_intel *sdw)
231 {
232 struct dentry *root = sdw->cdns.bus.debugfs;
233
234 if (!root)
235 return;
236
237 sdw->debugfs = debugfs_create_dir("intel-sdw", root);
238
239 debugfs_create_file("intel-registers", 0400, sdw->debugfs, sdw,
240 &intel_reg_fops);
241
242 debugfs_create_file("intel-m-datamode", 0200, sdw->debugfs, sdw,
243 &intel_set_m_datamode_fops);
244
245 debugfs_create_file("intel-s-datamode", 0200, sdw->debugfs, sdw,
246 &intel_set_s_datamode_fops);
247
248 sdw_cdns_debugfs_init(&sdw->cdns, sdw->debugfs);
249 }
250
intel_debugfs_exit(struct sdw_intel * sdw)251 static void intel_debugfs_exit(struct sdw_intel *sdw)
252 {
253 debugfs_remove_recursive(sdw->debugfs);
254 }
255 #else
intel_debugfs_init(struct sdw_intel * sdw)256 static void intel_debugfs_init(struct sdw_intel *sdw) {}
intel_debugfs_exit(struct sdw_intel * sdw)257 static void intel_debugfs_exit(struct sdw_intel *sdw) {}
258 #endif /* CONFIG_DEBUG_FS */
259
260 /*
261 * shim ops
262 */
263 /* this needs to be called with shim_lock */
intel_shim_glue_to_master_ip(struct sdw_intel * sdw)264 static void intel_shim_glue_to_master_ip(struct sdw_intel *sdw)
265 {
266 void __iomem *shim = sdw->link_res->shim;
267 unsigned int link_id = sdw->instance;
268 u16 ioctl;
269
270 /* Switch to MIP from Glue logic */
271 ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id));
272
273 ioctl &= ~(SDW_SHIM_IOCTL_DOE);
274 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
275 usleep_range(10, 15);
276
277 ioctl &= ~(SDW_SHIM_IOCTL_DO);
278 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
279 usleep_range(10, 15);
280
281 ioctl |= (SDW_SHIM_IOCTL_MIF);
282 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
283 usleep_range(10, 15);
284
285 ioctl &= ~(SDW_SHIM_IOCTL_BKE);
286 ioctl &= ~(SDW_SHIM_IOCTL_COE);
287 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
288 usleep_range(10, 15);
289
290 /* at this point Master IP has full control of the I/Os */
291 }
292
293 /* this needs to be called with shim_lock */
intel_shim_master_ip_to_glue(struct sdw_intel * sdw)294 static void intel_shim_master_ip_to_glue(struct sdw_intel *sdw)
295 {
296 unsigned int link_id = sdw->instance;
297 void __iomem *shim = sdw->link_res->shim;
298 u16 ioctl;
299
300 /* Glue logic */
301 ioctl = intel_readw(shim, SDW_SHIM_IOCTL(link_id));
302 ioctl |= SDW_SHIM_IOCTL_BKE;
303 ioctl |= SDW_SHIM_IOCTL_COE;
304 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
305 usleep_range(10, 15);
306
307 ioctl &= ~(SDW_SHIM_IOCTL_MIF);
308 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
309 usleep_range(10, 15);
310
311 /* at this point Integration Glue has full control of the I/Os */
312 }
313
314 /* this needs to be called with shim_lock */
intel_shim_init(struct sdw_intel * sdw)315 static void intel_shim_init(struct sdw_intel *sdw)
316 {
317 void __iomem *shim = sdw->link_res->shim;
318 unsigned int link_id = sdw->instance;
319 u16 ioctl = 0, act = 0;
320
321 /* Initialize Shim */
322 ioctl |= SDW_SHIM_IOCTL_BKE;
323 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
324 usleep_range(10, 15);
325
326 ioctl |= SDW_SHIM_IOCTL_WPDD;
327 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
328 usleep_range(10, 15);
329
330 ioctl |= SDW_SHIM_IOCTL_DO;
331 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
332 usleep_range(10, 15);
333
334 ioctl |= SDW_SHIM_IOCTL_DOE;
335 intel_writew(shim, SDW_SHIM_IOCTL(link_id), ioctl);
336 usleep_range(10, 15);
337
338 intel_shim_glue_to_master_ip(sdw);
339
340 u16p_replace_bits(&act, 0x1, SDW_SHIM_CTMCTL_DOAIS);
341 act |= SDW_SHIM_CTMCTL_DACTQE;
342 act |= SDW_SHIM_CTMCTL_DODS;
343 intel_writew(shim, SDW_SHIM_CTMCTL(link_id), act);
344 usleep_range(10, 15);
345 }
346
intel_shim_check_wake(struct sdw_intel * sdw)347 static int intel_shim_check_wake(struct sdw_intel *sdw)
348 {
349 void __iomem *shim;
350 u16 wake_sts;
351
352 shim = sdw->link_res->shim;
353 wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS);
354
355 return wake_sts & BIT(sdw->instance);
356 }
357
intel_shim_wake(struct sdw_intel * sdw,bool wake_enable)358 static void intel_shim_wake(struct sdw_intel *sdw, bool wake_enable)
359 {
360 void __iomem *shim = sdw->link_res->shim;
361 unsigned int link_id = sdw->instance;
362 u16 wake_en, wake_sts;
363
364 mutex_lock(sdw->link_res->shim_lock);
365 wake_en = intel_readw(shim, SDW_SHIM_WAKEEN);
366
367 if (wake_enable) {
368 /* Enable the wakeup */
369 wake_en |= (SDW_SHIM_WAKEEN_ENABLE << link_id);
370 intel_writew(shim, SDW_SHIM_WAKEEN, wake_en);
371 } else {
372 /* Disable the wake up interrupt */
373 wake_en &= ~(SDW_SHIM_WAKEEN_ENABLE << link_id);
374 intel_writew(shim, SDW_SHIM_WAKEEN, wake_en);
375
376 /* Clear wake status */
377 wake_sts = intel_readw(shim, SDW_SHIM_WAKESTS);
378 wake_sts |= (SDW_SHIM_WAKESTS_STATUS << link_id);
379 intel_writew(shim, SDW_SHIM_WAKESTS, wake_sts);
380 }
381 mutex_unlock(sdw->link_res->shim_lock);
382 }
383
intel_link_power_up(struct sdw_intel * sdw)384 static int intel_link_power_up(struct sdw_intel *sdw)
385 {
386 unsigned int link_id = sdw->instance;
387 void __iomem *shim = sdw->link_res->shim;
388 u32 *shim_mask = sdw->link_res->shim_mask;
389 struct sdw_bus *bus = &sdw->cdns.bus;
390 struct sdw_master_prop *prop = &bus->prop;
391 u32 spa_mask, cpa_mask;
392 u32 link_control;
393 int ret = 0;
394 u32 syncprd;
395 u32 sync_reg;
396
397 mutex_lock(sdw->link_res->shim_lock);
398
399 /*
400 * The hardware relies on an internal counter, typically 4kHz,
401 * to generate the SoundWire SSP - which defines a 'safe'
402 * synchronization point between commands and audio transport
403 * and allows for multi link synchronization. The SYNCPRD value
404 * is only dependent on the oscillator clock provided to
405 * the IP, so adjust based on _DSD properties reported in DSDT
406 * tables. The values reported are based on either 24MHz
407 * (CNL/CML) or 38.4 MHz (ICL/TGL+).
408 */
409 if (prop->mclk_freq % 6000000)
410 syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_38_4;
411 else
412 syncprd = SDW_SHIM_SYNC_SYNCPRD_VAL_24;
413
414 if (!*shim_mask) {
415 dev_dbg(sdw->cdns.dev, "powering up all links\n");
416
417 /* we first need to program the SyncPRD/CPU registers */
418 dev_dbg(sdw->cdns.dev,
419 "first link up, programming SYNCPRD\n");
420
421 /* set SyncPRD period */
422 sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
423 u32p_replace_bits(&sync_reg, syncprd, SDW_SHIM_SYNC_SYNCPRD);
424
425 /* Set SyncCPU bit */
426 sync_reg |= SDW_SHIM_SYNC_SYNCCPU;
427 intel_writel(shim, SDW_SHIM_SYNC, sync_reg);
428
429 /* Link power up sequence */
430 link_control = intel_readl(shim, SDW_SHIM_LCTL);
431
432 /* only power-up enabled links */
433 spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, sdw->link_res->link_mask);
434 cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask);
435
436 link_control |= spa_mask;
437
438 ret = intel_set_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask);
439 if (ret < 0) {
440 dev_err(sdw->cdns.dev, "Failed to power up link: %d\n", ret);
441 goto out;
442 }
443
444 /* SyncCPU will change once link is active */
445 ret = intel_wait_bit(shim, SDW_SHIM_SYNC,
446 SDW_SHIM_SYNC_SYNCCPU, 0);
447 if (ret < 0) {
448 dev_err(sdw->cdns.dev,
449 "Failed to set SHIM_SYNC: %d\n", ret);
450 goto out;
451 }
452 }
453
454 *shim_mask |= BIT(link_id);
455
456 sdw->cdns.link_up = true;
457
458 intel_shim_init(sdw);
459
460 out:
461 mutex_unlock(sdw->link_res->shim_lock);
462
463 return ret;
464 }
465
intel_link_power_down(struct sdw_intel * sdw)466 static int intel_link_power_down(struct sdw_intel *sdw)
467 {
468 u32 link_control, spa_mask, cpa_mask;
469 unsigned int link_id = sdw->instance;
470 void __iomem *shim = sdw->link_res->shim;
471 u32 *shim_mask = sdw->link_res->shim_mask;
472 int ret = 0;
473
474 mutex_lock(sdw->link_res->shim_lock);
475
476 if (!(*shim_mask & BIT(link_id)))
477 dev_err(sdw->cdns.dev,
478 "%s: Unbalanced power-up/down calls\n", __func__);
479
480 sdw->cdns.link_up = false;
481
482 intel_shim_master_ip_to_glue(sdw);
483
484 *shim_mask &= ~BIT(link_id);
485
486 if (!*shim_mask) {
487
488 dev_dbg(sdw->cdns.dev, "powering down all links\n");
489
490 /* Link power down sequence */
491 link_control = intel_readl(shim, SDW_SHIM_LCTL);
492
493 /* only power-down enabled links */
494 spa_mask = FIELD_PREP(SDW_SHIM_LCTL_SPA_MASK, ~sdw->link_res->link_mask);
495 cpa_mask = FIELD_PREP(SDW_SHIM_LCTL_CPA_MASK, sdw->link_res->link_mask);
496
497 link_control &= spa_mask;
498
499 ret = intel_clear_bit(shim, SDW_SHIM_LCTL, link_control, cpa_mask);
500 if (ret < 0) {
501 dev_err(sdw->cdns.dev, "%s: could not power down link\n", __func__);
502
503 /*
504 * we leave the sdw->cdns.link_up flag as false since we've disabled
505 * the link at this point and cannot handle interrupts any longer.
506 */
507 }
508 }
509
510 mutex_unlock(sdw->link_res->shim_lock);
511
512 return ret;
513 }
514
intel_shim_sync_arm(struct sdw_intel * sdw)515 static void intel_shim_sync_arm(struct sdw_intel *sdw)
516 {
517 void __iomem *shim = sdw->link_res->shim;
518 u32 sync_reg;
519
520 mutex_lock(sdw->link_res->shim_lock);
521
522 /* update SYNC register */
523 sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
524 sync_reg |= (SDW_SHIM_SYNC_CMDSYNC << sdw->instance);
525 intel_writel(shim, SDW_SHIM_SYNC, sync_reg);
526
527 mutex_unlock(sdw->link_res->shim_lock);
528 }
529
intel_shim_sync_go_unlocked(struct sdw_intel * sdw)530 static int intel_shim_sync_go_unlocked(struct sdw_intel *sdw)
531 {
532 void __iomem *shim = sdw->link_res->shim;
533 u32 sync_reg;
534 int ret;
535
536 /* Read SYNC register */
537 sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
538
539 /*
540 * Set SyncGO bit to synchronously trigger a bank switch for
541 * all the masters. A write to SYNCGO bit clears CMDSYNC bit for all
542 * the Masters.
543 */
544 sync_reg |= SDW_SHIM_SYNC_SYNCGO;
545
546 ret = intel_clear_bit(shim, SDW_SHIM_SYNC, sync_reg,
547 SDW_SHIM_SYNC_SYNCGO);
548
549 if (ret < 0)
550 dev_err(sdw->cdns.dev, "SyncGO clear failed: %d\n", ret);
551
552 return ret;
553 }
554
intel_shim_sync_go(struct sdw_intel * sdw)555 static int intel_shim_sync_go(struct sdw_intel *sdw)
556 {
557 int ret;
558
559 mutex_lock(sdw->link_res->shim_lock);
560
561 ret = intel_shim_sync_go_unlocked(sdw);
562
563 mutex_unlock(sdw->link_res->shim_lock);
564
565 return ret;
566 }
567
568 /*
569 * PDI routines
570 */
intel_pdi_init(struct sdw_intel * sdw,struct sdw_cdns_stream_config * config)571 static void intel_pdi_init(struct sdw_intel *sdw,
572 struct sdw_cdns_stream_config *config)
573 {
574 void __iomem *shim = sdw->link_res->shim;
575 unsigned int link_id = sdw->instance;
576 int pcm_cap;
577
578 /* PCM Stream Capability */
579 pcm_cap = intel_readw(shim, SDW_SHIM_PCMSCAP(link_id));
580
581 config->pcm_bd = FIELD_GET(SDW_SHIM_PCMSCAP_BSS, pcm_cap);
582 config->pcm_in = FIELD_GET(SDW_SHIM_PCMSCAP_ISS, pcm_cap);
583 config->pcm_out = FIELD_GET(SDW_SHIM_PCMSCAP_OSS, pcm_cap);
584
585 dev_dbg(sdw->cdns.dev, "PCM cap bd:%d in:%d out:%d\n",
586 config->pcm_bd, config->pcm_in, config->pcm_out);
587 }
588
589 static int
intel_pdi_get_ch_cap(struct sdw_intel * sdw,unsigned int pdi_num)590 intel_pdi_get_ch_cap(struct sdw_intel *sdw, unsigned int pdi_num)
591 {
592 void __iomem *shim = sdw->link_res->shim;
593 unsigned int link_id = sdw->instance;
594 int count;
595
596 count = intel_readw(shim, SDW_SHIM_PCMSYCHC(link_id, pdi_num));
597
598 /*
599 * WORKAROUND: on all existing Intel controllers, pdi
600 * number 2 reports channel count as 1 even though it
601 * supports 8 channels. Performing hardcoding for pdi
602 * number 2.
603 */
604 if (pdi_num == 2)
605 count = 7;
606
607 /* zero based values for channel count in register */
608 count++;
609
610 return count;
611 }
612
intel_pdi_get_ch_update(struct sdw_intel * sdw,struct sdw_cdns_pdi * pdi,unsigned int num_pdi,unsigned int * num_ch)613 static int intel_pdi_get_ch_update(struct sdw_intel *sdw,
614 struct sdw_cdns_pdi *pdi,
615 unsigned int num_pdi,
616 unsigned int *num_ch)
617 {
618 int i, ch_count = 0;
619
620 for (i = 0; i < num_pdi; i++) {
621 pdi->ch_count = intel_pdi_get_ch_cap(sdw, pdi->num);
622 ch_count += pdi->ch_count;
623 pdi++;
624 }
625
626 *num_ch = ch_count;
627 return 0;
628 }
629
intel_pdi_stream_ch_update(struct sdw_intel * sdw,struct sdw_cdns_streams * stream)630 static int intel_pdi_stream_ch_update(struct sdw_intel *sdw,
631 struct sdw_cdns_streams *stream)
632 {
633 intel_pdi_get_ch_update(sdw, stream->bd, stream->num_bd,
634 &stream->num_ch_bd);
635
636 intel_pdi_get_ch_update(sdw, stream->in, stream->num_in,
637 &stream->num_ch_in);
638
639 intel_pdi_get_ch_update(sdw, stream->out, stream->num_out,
640 &stream->num_ch_out);
641
642 return 0;
643 }
644
intel_pdi_ch_update(struct sdw_intel * sdw)645 static int intel_pdi_ch_update(struct sdw_intel *sdw)
646 {
647 intel_pdi_stream_ch_update(sdw, &sdw->cdns.pcm);
648
649 return 0;
650 }
651
652 static void
intel_pdi_shim_configure(struct sdw_intel * sdw,struct sdw_cdns_pdi * pdi)653 intel_pdi_shim_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi)
654 {
655 void __iomem *shim = sdw->link_res->shim;
656 unsigned int link_id = sdw->instance;
657 int pdi_conf = 0;
658
659 /* the Bulk and PCM streams are not contiguous */
660 pdi->intel_alh_id = (link_id * 16) + pdi->num + 3;
661 if (pdi->num >= 2)
662 pdi->intel_alh_id += 2;
663
664 /*
665 * Program stream parameters to stream SHIM register
666 * This is applicable for PCM stream only.
667 */
668 if (pdi->type != SDW_STREAM_PCM)
669 return;
670
671 if (pdi->dir == SDW_DATA_DIR_RX)
672 pdi_conf |= SDW_SHIM_PCMSYCM_DIR;
673 else
674 pdi_conf &= ~(SDW_SHIM_PCMSYCM_DIR);
675
676 u32p_replace_bits(&pdi_conf, pdi->intel_alh_id, SDW_SHIM_PCMSYCM_STREAM);
677 u32p_replace_bits(&pdi_conf, pdi->l_ch_num, SDW_SHIM_PCMSYCM_LCHN);
678 u32p_replace_bits(&pdi_conf, pdi->h_ch_num, SDW_SHIM_PCMSYCM_HCHN);
679
680 intel_writew(shim, SDW_SHIM_PCMSYCHM(link_id, pdi->num), pdi_conf);
681 }
682
683 static void
intel_pdi_alh_configure(struct sdw_intel * sdw,struct sdw_cdns_pdi * pdi)684 intel_pdi_alh_configure(struct sdw_intel *sdw, struct sdw_cdns_pdi *pdi)
685 {
686 void __iomem *alh = sdw->link_res->alh;
687 unsigned int link_id = sdw->instance;
688 unsigned int conf;
689
690 /* the Bulk and PCM streams are not contiguous */
691 pdi->intel_alh_id = (link_id * 16) + pdi->num + 3;
692 if (pdi->num >= 2)
693 pdi->intel_alh_id += 2;
694
695 /* Program Stream config ALH register */
696 conf = intel_readl(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id));
697
698 u32p_replace_bits(&conf, SDW_ALH_STRMZCFG_DMAT_VAL, SDW_ALH_STRMZCFG_DMAT);
699 u32p_replace_bits(&conf, pdi->ch_count - 1, SDW_ALH_STRMZCFG_CHN);
700
701 intel_writel(alh, SDW_ALH_STRMZCFG(pdi->intel_alh_id), conf);
702 }
703
intel_params_stream(struct sdw_intel * sdw,int stream,struct snd_soc_dai * dai,struct snd_pcm_hw_params * hw_params,int link_id,int alh_stream_id)704 static int intel_params_stream(struct sdw_intel *sdw,
705 int stream,
706 struct snd_soc_dai *dai,
707 struct snd_pcm_hw_params *hw_params,
708 int link_id, int alh_stream_id)
709 {
710 struct sdw_intel_link_res *res = sdw->link_res;
711 struct sdw_intel_stream_params_data params_data;
712
713 params_data.stream = stream; /* direction */
714 params_data.dai = dai;
715 params_data.hw_params = hw_params;
716 params_data.link_id = link_id;
717 params_data.alh_stream_id = alh_stream_id;
718
719 if (res->ops && res->ops->params_stream && res->dev)
720 return res->ops->params_stream(res->dev,
721 ¶ms_data);
722 return -EIO;
723 }
724
intel_free_stream(struct sdw_intel * sdw,int stream,struct snd_soc_dai * dai,int link_id)725 static int intel_free_stream(struct sdw_intel *sdw,
726 int stream,
727 struct snd_soc_dai *dai,
728 int link_id)
729 {
730 struct sdw_intel_link_res *res = sdw->link_res;
731 struct sdw_intel_stream_free_data free_data;
732
733 free_data.stream = stream; /* direction */
734 free_data.dai = dai;
735 free_data.link_id = link_id;
736
737 if (res->ops && res->ops->free_stream && res->dev)
738 return res->ops->free_stream(res->dev,
739 &free_data);
740
741 return 0;
742 }
743
744 /*
745 * bank switch routines
746 */
747
intel_pre_bank_switch(struct sdw_bus * bus)748 static int intel_pre_bank_switch(struct sdw_bus *bus)
749 {
750 struct sdw_cdns *cdns = bus_to_cdns(bus);
751 struct sdw_intel *sdw = cdns_to_intel(cdns);
752
753 /* Write to register only for multi-link */
754 if (!bus->multi_link)
755 return 0;
756
757 intel_shim_sync_arm(sdw);
758
759 return 0;
760 }
761
intel_post_bank_switch(struct sdw_bus * bus)762 static int intel_post_bank_switch(struct sdw_bus *bus)
763 {
764 struct sdw_cdns *cdns = bus_to_cdns(bus);
765 struct sdw_intel *sdw = cdns_to_intel(cdns);
766 void __iomem *shim = sdw->link_res->shim;
767 int sync_reg, ret;
768
769 /* Write to register only for multi-link */
770 if (!bus->multi_link)
771 return 0;
772
773 mutex_lock(sdw->link_res->shim_lock);
774
775 /* Read SYNC register */
776 sync_reg = intel_readl(shim, SDW_SHIM_SYNC);
777
778 /*
779 * post_bank_switch() ops is called from the bus in loop for
780 * all the Masters in the steam with the expectation that
781 * we trigger the bankswitch for the only first Master in the list
782 * and do nothing for the other Masters
783 *
784 * So, set the SYNCGO bit only if CMDSYNC bit is set for any Master.
785 */
786 if (!(sync_reg & SDW_SHIM_SYNC_CMDSYNC_MASK)) {
787 ret = 0;
788 goto unlock;
789 }
790
791 ret = intel_shim_sync_go_unlocked(sdw);
792 unlock:
793 mutex_unlock(sdw->link_res->shim_lock);
794
795 if (ret < 0)
796 dev_err(sdw->cdns.dev, "Post bank switch failed: %d\n", ret);
797
798 return ret;
799 }
800
801 /*
802 * DAI routines
803 */
804
intel_startup(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)805 static int intel_startup(struct snd_pcm_substream *substream,
806 struct snd_soc_dai *dai)
807 {
808 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
809 int ret;
810
811 ret = pm_runtime_resume_and_get(cdns->dev);
812 if (ret < 0 && ret != -EACCES) {
813 dev_err_ratelimited(cdns->dev,
814 "pm_runtime_resume_and_get failed in %s, ret %d\n",
815 __func__, ret);
816 return ret;
817 }
818 return 0;
819 }
820
intel_hw_params(struct snd_pcm_substream * substream,struct snd_pcm_hw_params * params,struct snd_soc_dai * dai)821 static int intel_hw_params(struct snd_pcm_substream *substream,
822 struct snd_pcm_hw_params *params,
823 struct snd_soc_dai *dai)
824 {
825 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
826 struct sdw_intel *sdw = cdns_to_intel(cdns);
827 struct sdw_cdns_dma_data *dma;
828 struct sdw_cdns_pdi *pdi;
829 struct sdw_stream_config sconfig;
830 struct sdw_port_config *pconfig;
831 int ch, dir;
832 int ret;
833
834 dma = snd_soc_dai_get_dma_data(dai, substream);
835 if (!dma)
836 return -EIO;
837
838 ch = params_channels(params);
839 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
840 dir = SDW_DATA_DIR_RX;
841 else
842 dir = SDW_DATA_DIR_TX;
843
844 pdi = sdw_cdns_alloc_pdi(cdns, &cdns->pcm, ch, dir, dai->id);
845
846 if (!pdi) {
847 ret = -EINVAL;
848 goto error;
849 }
850
851 /* do run-time configurations for SHIM, ALH and PDI/PORT */
852 intel_pdi_shim_configure(sdw, pdi);
853 intel_pdi_alh_configure(sdw, pdi);
854 sdw_cdns_config_stream(cdns, ch, dir, pdi);
855
856 /* store pdi and hw_params, may be needed in prepare step */
857 dma->paused = false;
858 dma->suspended = false;
859 dma->pdi = pdi;
860 dma->hw_params = params;
861
862 /* Inform DSP about PDI stream number */
863 ret = intel_params_stream(sdw, substream->stream, dai, params,
864 sdw->instance,
865 pdi->intel_alh_id);
866 if (ret)
867 goto error;
868
869 sconfig.direction = dir;
870 sconfig.ch_count = ch;
871 sconfig.frame_rate = params_rate(params);
872 sconfig.type = dma->stream_type;
873
874 sconfig.bps = snd_pcm_format_width(params_format(params));
875
876 /* Port configuration */
877 pconfig = kzalloc(sizeof(*pconfig), GFP_KERNEL);
878 if (!pconfig) {
879 ret = -ENOMEM;
880 goto error;
881 }
882
883 pconfig->num = pdi->num;
884 pconfig->ch_mask = (1 << ch) - 1;
885
886 ret = sdw_stream_add_master(&cdns->bus, &sconfig,
887 pconfig, 1, dma->stream);
888 if (ret)
889 dev_err(cdns->dev, "add master to stream failed:%d\n", ret);
890
891 kfree(pconfig);
892 error:
893 return ret;
894 }
895
intel_prepare(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)896 static int intel_prepare(struct snd_pcm_substream *substream,
897 struct snd_soc_dai *dai)
898 {
899 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
900 struct sdw_intel *sdw = cdns_to_intel(cdns);
901 struct sdw_cdns_dma_data *dma;
902 int ch, dir;
903 int ret = 0;
904
905 dma = snd_soc_dai_get_dma_data(dai, substream);
906 if (!dma) {
907 dev_err(dai->dev, "failed to get dma data in %s\n",
908 __func__);
909 return -EIO;
910 }
911
912 if (dma->suspended) {
913 dma->suspended = false;
914
915 /*
916 * .prepare() is called after system resume, where we
917 * need to reinitialize the SHIM/ALH/Cadence IP.
918 * .prepare() is also called to deal with underflows,
919 * but in those cases we cannot touch ALH/SHIM
920 * registers
921 */
922
923 /* configure stream */
924 ch = params_channels(dma->hw_params);
925 if (substream->stream == SNDRV_PCM_STREAM_CAPTURE)
926 dir = SDW_DATA_DIR_RX;
927 else
928 dir = SDW_DATA_DIR_TX;
929
930 intel_pdi_shim_configure(sdw, dma->pdi);
931 intel_pdi_alh_configure(sdw, dma->pdi);
932 sdw_cdns_config_stream(cdns, ch, dir, dma->pdi);
933
934 /* Inform DSP about PDI stream number */
935 ret = intel_params_stream(sdw, substream->stream, dai,
936 dma->hw_params,
937 sdw->instance,
938 dma->pdi->intel_alh_id);
939 }
940
941 return ret;
942 }
943
944 static int
intel_hw_free(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)945 intel_hw_free(struct snd_pcm_substream *substream, struct snd_soc_dai *dai)
946 {
947 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
948 struct sdw_intel *sdw = cdns_to_intel(cdns);
949 struct sdw_cdns_dma_data *dma;
950 int ret;
951
952 dma = snd_soc_dai_get_dma_data(dai, substream);
953 if (!dma)
954 return -EIO;
955
956 /*
957 * The sdw stream state will transition to RELEASED when stream->
958 * master_list is empty. So the stream state will transition to
959 * DEPREPARED for the first cpu-dai and to RELEASED for the last
960 * cpu-dai.
961 */
962 ret = sdw_stream_remove_master(&cdns->bus, dma->stream);
963 if (ret < 0) {
964 dev_err(dai->dev, "remove master from stream %s failed: %d\n",
965 dma->stream->name, ret);
966 return ret;
967 }
968
969 ret = intel_free_stream(sdw, substream->stream, dai, sdw->instance);
970 if (ret < 0) {
971 dev_err(dai->dev, "intel_free_stream: failed %d\n", ret);
972 return ret;
973 }
974
975 dma->hw_params = NULL;
976 dma->pdi = NULL;
977
978 return 0;
979 }
980
intel_shutdown(struct snd_pcm_substream * substream,struct snd_soc_dai * dai)981 static void intel_shutdown(struct snd_pcm_substream *substream,
982 struct snd_soc_dai *dai)
983 {
984 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
985
986 pm_runtime_mark_last_busy(cdns->dev);
987 pm_runtime_put_autosuspend(cdns->dev);
988 }
989
intel_pcm_set_sdw_stream(struct snd_soc_dai * dai,void * stream,int direction)990 static int intel_pcm_set_sdw_stream(struct snd_soc_dai *dai,
991 void *stream, int direction)
992 {
993 return cdns_set_sdw_stream(dai, stream, direction);
994 }
995
intel_get_sdw_stream(struct snd_soc_dai * dai,int direction)996 static void *intel_get_sdw_stream(struct snd_soc_dai *dai,
997 int direction)
998 {
999 struct sdw_cdns_dma_data *dma;
1000
1001 if (direction == SNDRV_PCM_STREAM_PLAYBACK)
1002 dma = dai->playback_dma_data;
1003 else
1004 dma = dai->capture_dma_data;
1005
1006 if (!dma)
1007 return ERR_PTR(-EINVAL);
1008
1009 return dma->stream;
1010 }
1011
intel_trigger(struct snd_pcm_substream * substream,int cmd,struct snd_soc_dai * dai)1012 static int intel_trigger(struct snd_pcm_substream *substream, int cmd, struct snd_soc_dai *dai)
1013 {
1014 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
1015 struct sdw_intel *sdw = cdns_to_intel(cdns);
1016 struct sdw_intel_link_res *res = sdw->link_res;
1017 struct sdw_cdns_dma_data *dma;
1018 int ret = 0;
1019
1020 /*
1021 * The .trigger callback is used to send required IPC to audio
1022 * firmware. The .free_stream callback will still be called
1023 * by intel_free_stream() in the TRIGGER_SUSPEND case.
1024 */
1025 if (res->ops && res->ops->trigger)
1026 res->ops->trigger(dai, cmd, substream->stream);
1027
1028 dma = snd_soc_dai_get_dma_data(dai, substream);
1029 if (!dma) {
1030 dev_err(dai->dev, "failed to get dma data in %s\n",
1031 __func__);
1032 return -EIO;
1033 }
1034
1035 switch (cmd) {
1036 case SNDRV_PCM_TRIGGER_SUSPEND:
1037
1038 /*
1039 * The .prepare callback is used to deal with xruns and resume operations.
1040 * In the case of xruns, the DMAs and SHIM registers cannot be touched,
1041 * but for resume operations the DMAs and SHIM registers need to be initialized.
1042 * the .trigger callback is used to track the suspend case only.
1043 */
1044
1045 dma->suspended = true;
1046
1047 ret = intel_free_stream(sdw, substream->stream, dai, sdw->instance);
1048 break;
1049
1050 case SNDRV_PCM_TRIGGER_PAUSE_PUSH:
1051 dma->paused = true;
1052 break;
1053 case SNDRV_PCM_TRIGGER_STOP:
1054 case SNDRV_PCM_TRIGGER_PAUSE_RELEASE:
1055 dma->paused = false;
1056 break;
1057 default:
1058 break;
1059 }
1060
1061 return ret;
1062 }
1063
intel_component_probe(struct snd_soc_component * component)1064 static int intel_component_probe(struct snd_soc_component *component)
1065 {
1066 int ret;
1067
1068 /*
1069 * make sure the device is pm_runtime_active before initiating
1070 * bus transactions during the card registration.
1071 * We use pm_runtime_resume() here, without taking a reference
1072 * and releasing it immediately.
1073 */
1074 ret = pm_runtime_resume(component->dev);
1075 if (ret < 0 && ret != -EACCES)
1076 return ret;
1077
1078 return 0;
1079 }
1080
intel_component_dais_suspend(struct snd_soc_component * component)1081 static int intel_component_dais_suspend(struct snd_soc_component *component)
1082 {
1083 struct snd_soc_dai *dai;
1084
1085 /*
1086 * In the corner case where a SUSPEND happens during a PAUSE, the ALSA core
1087 * does not throw the TRIGGER_SUSPEND. This leaves the DAIs in an unbalanced state.
1088 * Since the component suspend is called last, we can trap this corner case
1089 * and force the DAIs to release their resources.
1090 */
1091 for_each_component_dais(component, dai) {
1092 struct sdw_cdns *cdns = snd_soc_dai_get_drvdata(dai);
1093 struct sdw_intel *sdw = cdns_to_intel(cdns);
1094 struct sdw_cdns_dma_data *dma;
1095 int stream;
1096 int ret;
1097
1098 dma = dai->playback_dma_data;
1099 stream = SNDRV_PCM_STREAM_PLAYBACK;
1100 if (!dma) {
1101 dma = dai->capture_dma_data;
1102 stream = SNDRV_PCM_STREAM_CAPTURE;
1103 }
1104
1105 if (!dma)
1106 continue;
1107
1108 if (dma->suspended)
1109 continue;
1110
1111 if (dma->paused) {
1112 dma->suspended = true;
1113
1114 ret = intel_free_stream(sdw, stream, dai, sdw->instance);
1115 if (ret < 0)
1116 return ret;
1117 }
1118 }
1119
1120 return 0;
1121 }
1122
1123 static const struct snd_soc_dai_ops intel_pcm_dai_ops = {
1124 .startup = intel_startup,
1125 .hw_params = intel_hw_params,
1126 .prepare = intel_prepare,
1127 .hw_free = intel_hw_free,
1128 .trigger = intel_trigger,
1129 .shutdown = intel_shutdown,
1130 .set_stream = intel_pcm_set_sdw_stream,
1131 .get_stream = intel_get_sdw_stream,
1132 };
1133
1134 static const struct snd_soc_component_driver dai_component = {
1135 .name = "soundwire",
1136 .probe = intel_component_probe,
1137 .suspend = intel_component_dais_suspend,
1138 .legacy_dai_naming = 1,
1139 };
1140
intel_create_dai(struct sdw_cdns * cdns,struct snd_soc_dai_driver * dais,enum intel_pdi_type type,u32 num,u32 off,u32 max_ch)1141 static int intel_create_dai(struct sdw_cdns *cdns,
1142 struct snd_soc_dai_driver *dais,
1143 enum intel_pdi_type type,
1144 u32 num, u32 off, u32 max_ch)
1145 {
1146 int i;
1147
1148 if (num == 0)
1149 return 0;
1150
1151 /* TODO: Read supported rates/formats from hardware */
1152 for (i = off; i < (off + num); i++) {
1153 dais[i].name = devm_kasprintf(cdns->dev, GFP_KERNEL,
1154 "SDW%d Pin%d",
1155 cdns->instance, i);
1156 if (!dais[i].name)
1157 return -ENOMEM;
1158
1159 if (type == INTEL_PDI_BD || type == INTEL_PDI_OUT) {
1160 dais[i].playback.channels_min = 1;
1161 dais[i].playback.channels_max = max_ch;
1162 dais[i].playback.rates = SNDRV_PCM_RATE_48000;
1163 dais[i].playback.formats = SNDRV_PCM_FMTBIT_S16_LE;
1164 }
1165
1166 if (type == INTEL_PDI_BD || type == INTEL_PDI_IN) {
1167 dais[i].capture.channels_min = 1;
1168 dais[i].capture.channels_max = max_ch;
1169 dais[i].capture.rates = SNDRV_PCM_RATE_48000;
1170 dais[i].capture.formats = SNDRV_PCM_FMTBIT_S16_LE;
1171 }
1172
1173 dais[i].ops = &intel_pcm_dai_ops;
1174 }
1175
1176 return 0;
1177 }
1178
intel_register_dai(struct sdw_intel * sdw)1179 static int intel_register_dai(struct sdw_intel *sdw)
1180 {
1181 struct sdw_cdns_stream_config config;
1182 struct sdw_cdns *cdns = &sdw->cdns;
1183 struct sdw_cdns_streams *stream;
1184 struct snd_soc_dai_driver *dais;
1185 int num_dai, ret, off = 0;
1186
1187 /* Read the PDI config and initialize cadence PDI */
1188 intel_pdi_init(sdw, &config);
1189 ret = sdw_cdns_pdi_init(cdns, config);
1190 if (ret)
1191 return ret;
1192
1193 intel_pdi_ch_update(sdw);
1194
1195 /* DAIs are created based on total number of PDIs supported */
1196 num_dai = cdns->pcm.num_pdi;
1197
1198 dais = devm_kcalloc(cdns->dev, num_dai, sizeof(*dais), GFP_KERNEL);
1199 if (!dais)
1200 return -ENOMEM;
1201
1202 /* Create PCM DAIs */
1203 stream = &cdns->pcm;
1204
1205 ret = intel_create_dai(cdns, dais, INTEL_PDI_IN, cdns->pcm.num_in,
1206 off, stream->num_ch_in);
1207 if (ret)
1208 return ret;
1209
1210 off += cdns->pcm.num_in;
1211 ret = intel_create_dai(cdns, dais, INTEL_PDI_OUT, cdns->pcm.num_out,
1212 off, stream->num_ch_out);
1213 if (ret)
1214 return ret;
1215
1216 off += cdns->pcm.num_out;
1217 ret = intel_create_dai(cdns, dais, INTEL_PDI_BD, cdns->pcm.num_bd,
1218 off, stream->num_ch_bd);
1219 if (ret)
1220 return ret;
1221
1222 return devm_snd_soc_register_component(cdns->dev, &dai_component,
1223 dais, num_dai);
1224 }
1225
intel_start_bus(struct sdw_intel * sdw)1226 static int intel_start_bus(struct sdw_intel *sdw)
1227 {
1228 struct device *dev = sdw->cdns.dev;
1229 struct sdw_cdns *cdns = &sdw->cdns;
1230 struct sdw_bus *bus = &cdns->bus;
1231 int ret;
1232
1233 ret = sdw_cdns_enable_interrupt(cdns, true);
1234 if (ret < 0) {
1235 dev_err(dev, "%s: cannot enable interrupts: %d\n", __func__, ret);
1236 return ret;
1237 }
1238
1239 /*
1240 * follow recommended programming flows to avoid timeouts when
1241 * gsync is enabled
1242 */
1243 if (bus->multi_link)
1244 intel_shim_sync_arm(sdw);
1245
1246 ret = sdw_cdns_init(cdns);
1247 if (ret < 0) {
1248 dev_err(dev, "%s: unable to initialize Cadence IP: %d\n", __func__, ret);
1249 goto err_interrupt;
1250 }
1251
1252 ret = sdw_cdns_exit_reset(cdns);
1253 if (ret < 0) {
1254 dev_err(dev, "%s: unable to exit bus reset sequence: %d\n", __func__, ret);
1255 goto err_interrupt;
1256 }
1257
1258 if (bus->multi_link) {
1259 ret = intel_shim_sync_go(sdw);
1260 if (ret < 0) {
1261 dev_err(dev, "%s: sync go failed: %d\n", __func__, ret);
1262 goto err_interrupt;
1263 }
1264 }
1265 sdw_cdns_check_self_clearing_bits(cdns, __func__,
1266 true, INTEL_MASTER_RESET_ITERATIONS);
1267
1268 return 0;
1269
1270 err_interrupt:
1271 sdw_cdns_enable_interrupt(cdns, false);
1272 return ret;
1273 }
1274
intel_start_bus_after_reset(struct sdw_intel * sdw)1275 static int intel_start_bus_after_reset(struct sdw_intel *sdw)
1276 {
1277 struct device *dev = sdw->cdns.dev;
1278 struct sdw_cdns *cdns = &sdw->cdns;
1279 struct sdw_bus *bus = &cdns->bus;
1280 bool clock_stop0;
1281 int status;
1282 int ret;
1283
1284 /*
1285 * An exception condition occurs for the CLK_STOP_BUS_RESET
1286 * case if one or more masters remain active. In this condition,
1287 * all the masters are powered on for they are in the same power
1288 * domain. Master can preserve its context for clock stop0, so
1289 * there is no need to clear slave status and reset bus.
1290 */
1291 clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns);
1292
1293 if (!clock_stop0) {
1294
1295 /*
1296 * make sure all Slaves are tagged as UNATTACHED and
1297 * provide reason for reinitialization
1298 */
1299
1300 status = SDW_UNATTACH_REQUEST_MASTER_RESET;
1301 sdw_clear_slave_status(bus, status);
1302
1303 ret = sdw_cdns_enable_interrupt(cdns, true);
1304 if (ret < 0) {
1305 dev_err(dev, "cannot enable interrupts during resume\n");
1306 return ret;
1307 }
1308
1309 /*
1310 * follow recommended programming flows to avoid
1311 * timeouts when gsync is enabled
1312 */
1313 if (bus->multi_link)
1314 intel_shim_sync_arm(sdw);
1315
1316 /*
1317 * Re-initialize the IP since it was powered-off
1318 */
1319 sdw_cdns_init(&sdw->cdns);
1320
1321 } else {
1322 ret = sdw_cdns_enable_interrupt(cdns, true);
1323 if (ret < 0) {
1324 dev_err(dev, "cannot enable interrupts during resume\n");
1325 return ret;
1326 }
1327 }
1328
1329 ret = sdw_cdns_clock_restart(cdns, !clock_stop0);
1330 if (ret < 0) {
1331 dev_err(dev, "unable to restart clock during resume\n");
1332 goto err_interrupt;
1333 }
1334
1335 if (!clock_stop0) {
1336 ret = sdw_cdns_exit_reset(cdns);
1337 if (ret < 0) {
1338 dev_err(dev, "unable to exit bus reset sequence during resume\n");
1339 goto err_interrupt;
1340 }
1341
1342 if (bus->multi_link) {
1343 ret = intel_shim_sync_go(sdw);
1344 if (ret < 0) {
1345 dev_err(sdw->cdns.dev, "sync go failed during resume\n");
1346 goto err_interrupt;
1347 }
1348 }
1349 }
1350 sdw_cdns_check_self_clearing_bits(cdns, __func__, true, INTEL_MASTER_RESET_ITERATIONS);
1351
1352 return 0;
1353
1354 err_interrupt:
1355 sdw_cdns_enable_interrupt(cdns, false);
1356 return ret;
1357 }
1358
intel_check_clock_stop(struct sdw_intel * sdw)1359 static void intel_check_clock_stop(struct sdw_intel *sdw)
1360 {
1361 struct device *dev = sdw->cdns.dev;
1362 bool clock_stop0;
1363
1364 clock_stop0 = sdw_cdns_is_clock_stop(&sdw->cdns);
1365 if (!clock_stop0)
1366 dev_err(dev, "%s: invalid configuration, clock was not stopped\n", __func__);
1367 }
1368
intel_start_bus_after_clock_stop(struct sdw_intel * sdw)1369 static int intel_start_bus_after_clock_stop(struct sdw_intel *sdw)
1370 {
1371 struct device *dev = sdw->cdns.dev;
1372 struct sdw_cdns *cdns = &sdw->cdns;
1373 int ret;
1374
1375 ret = sdw_cdns_enable_interrupt(cdns, true);
1376 if (ret < 0) {
1377 dev_err(dev, "%s: cannot enable interrupts: %d\n", __func__, ret);
1378 return ret;
1379 }
1380
1381 ret = sdw_cdns_clock_restart(cdns, false);
1382 if (ret < 0) {
1383 dev_err(dev, "%s: unable to restart clock: %d\n", __func__, ret);
1384 sdw_cdns_enable_interrupt(cdns, false);
1385 return ret;
1386 }
1387
1388 sdw_cdns_check_self_clearing_bits(cdns, "intel_resume_runtime no_quirks",
1389 true, INTEL_MASTER_RESET_ITERATIONS);
1390
1391 return 0;
1392 }
1393
intel_stop_bus(struct sdw_intel * sdw,bool clock_stop)1394 static int intel_stop_bus(struct sdw_intel *sdw, bool clock_stop)
1395 {
1396 struct device *dev = sdw->cdns.dev;
1397 struct sdw_cdns *cdns = &sdw->cdns;
1398 bool wake_enable = false;
1399 int ret;
1400
1401 if (clock_stop) {
1402 ret = sdw_cdns_clock_stop(cdns, true);
1403 if (ret < 0)
1404 dev_err(dev, "%s: cannot stop clock: %d\n", __func__, ret);
1405 else
1406 wake_enable = true;
1407 }
1408
1409 ret = sdw_cdns_enable_interrupt(cdns, false);
1410 if (ret < 0) {
1411 dev_err(dev, "%s: cannot disable interrupts: %d\n", __func__, ret);
1412 return ret;
1413 }
1414
1415 ret = intel_link_power_down(sdw);
1416 if (ret) {
1417 dev_err(dev, "%s: Link power down failed: %d\n", __func__, ret);
1418 return ret;
1419 }
1420
1421 intel_shim_wake(sdw, wake_enable);
1422
1423 return 0;
1424 }
1425
sdw_master_read_intel_prop(struct sdw_bus * bus)1426 static int sdw_master_read_intel_prop(struct sdw_bus *bus)
1427 {
1428 struct sdw_master_prop *prop = &bus->prop;
1429 struct fwnode_handle *link;
1430 char name[32];
1431 u32 quirk_mask;
1432
1433 /* Find master handle */
1434 snprintf(name, sizeof(name),
1435 "mipi-sdw-link-%d-subproperties", bus->link_id);
1436
1437 link = device_get_named_child_node(bus->dev, name);
1438 if (!link) {
1439 dev_err(bus->dev, "Master node %s not found\n", name);
1440 return -EIO;
1441 }
1442
1443 fwnode_property_read_u32(link,
1444 "intel-sdw-ip-clock",
1445 &prop->mclk_freq);
1446
1447 /* the values reported by BIOS are the 2x clock, not the bus clock */
1448 prop->mclk_freq /= 2;
1449
1450 fwnode_property_read_u32(link,
1451 "intel-quirk-mask",
1452 &quirk_mask);
1453
1454 if (quirk_mask & SDW_INTEL_QUIRK_MASK_BUS_DISABLE)
1455 prop->hw_disabled = true;
1456
1457 prop->quirks = SDW_MASTER_QUIRKS_CLEAR_INITIAL_CLASH |
1458 SDW_MASTER_QUIRKS_CLEAR_INITIAL_PARITY;
1459
1460 return 0;
1461 }
1462
intel_prop_read(struct sdw_bus * bus)1463 static int intel_prop_read(struct sdw_bus *bus)
1464 {
1465 /* Initialize with default handler to read all DisCo properties */
1466 sdw_master_read_prop(bus);
1467
1468 /* read Intel-specific properties */
1469 sdw_master_read_intel_prop(bus);
1470
1471 return 0;
1472 }
1473
1474 static struct sdw_master_ops sdw_intel_ops = {
1475 .read_prop = intel_prop_read,
1476 .override_adr = sdw_dmi_override_adr,
1477 .xfer_msg = cdns_xfer_msg,
1478 .xfer_msg_defer = cdns_xfer_msg_defer,
1479 .reset_page_addr = cdns_reset_page_addr,
1480 .set_bus_conf = cdns_bus_conf,
1481 .pre_bank_switch = intel_pre_bank_switch,
1482 .post_bank_switch = intel_post_bank_switch,
1483 .read_ping_status = cdns_read_ping_status,
1484 };
1485
1486 /*
1487 * probe and init (aux_dev_id argument is required by function prototype but not used)
1488 */
intel_link_probe(struct auxiliary_device * auxdev,const struct auxiliary_device_id * aux_dev_id)1489 static int intel_link_probe(struct auxiliary_device *auxdev,
1490 const struct auxiliary_device_id *aux_dev_id)
1491
1492 {
1493 struct device *dev = &auxdev->dev;
1494 struct sdw_intel_link_dev *ldev = auxiliary_dev_to_sdw_intel_link_dev(auxdev);
1495 struct sdw_intel *sdw;
1496 struct sdw_cdns *cdns;
1497 struct sdw_bus *bus;
1498 int ret;
1499
1500 sdw = devm_kzalloc(dev, sizeof(*sdw), GFP_KERNEL);
1501 if (!sdw)
1502 return -ENOMEM;
1503
1504 cdns = &sdw->cdns;
1505 bus = &cdns->bus;
1506
1507 sdw->instance = auxdev->id;
1508 sdw->link_res = &ldev->link_res;
1509 cdns->dev = dev;
1510 cdns->registers = sdw->link_res->registers;
1511 cdns->instance = sdw->instance;
1512 cdns->msg_count = 0;
1513
1514 bus->link_id = auxdev->id;
1515 bus->dev_num_ida_min = INTEL_DEV_NUM_IDA_MIN;
1516 bus->clk_stop_timeout = 1;
1517
1518 sdw_cdns_probe(cdns);
1519
1520 /* Set ops */
1521 bus->ops = &sdw_intel_ops;
1522
1523 /* set driver data, accessed by snd_soc_dai_get_drvdata() */
1524 auxiliary_set_drvdata(auxdev, cdns);
1525
1526 /* use generic bandwidth allocation algorithm */
1527 sdw->cdns.bus.compute_params = sdw_compute_params;
1528
1529 /* avoid resuming from pm_runtime suspend if it's not required */
1530 dev_pm_set_driver_flags(dev, DPM_FLAG_SMART_SUSPEND);
1531
1532 ret = sdw_bus_master_add(bus, dev, dev->fwnode);
1533 if (ret) {
1534 dev_err(dev, "sdw_bus_master_add fail: %d\n", ret);
1535 return ret;
1536 }
1537
1538 if (bus->prop.hw_disabled)
1539 dev_info(dev,
1540 "SoundWire master %d is disabled, will be ignored\n",
1541 bus->link_id);
1542 /*
1543 * Ignore BIOS err_threshold, it's a really bad idea when dealing
1544 * with multiple hardware synchronized links
1545 */
1546 bus->prop.err_threshold = 0;
1547
1548 return 0;
1549 }
1550
intel_link_startup(struct auxiliary_device * auxdev)1551 int intel_link_startup(struct auxiliary_device *auxdev)
1552 {
1553 struct device *dev = &auxdev->dev;
1554 struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev);
1555 struct sdw_intel *sdw = cdns_to_intel(cdns);
1556 struct sdw_bus *bus = &cdns->bus;
1557 int link_flags;
1558 bool multi_link;
1559 u32 clock_stop_quirks;
1560 int ret;
1561
1562 if (bus->prop.hw_disabled) {
1563 dev_info(dev,
1564 "SoundWire master %d is disabled, ignoring\n",
1565 sdw->instance);
1566 return 0;
1567 }
1568
1569 link_flags = md_flags >> (bus->link_id * 8);
1570 multi_link = !(link_flags & SDW_INTEL_MASTER_DISABLE_MULTI_LINK);
1571 if (!multi_link) {
1572 dev_dbg(dev, "Multi-link is disabled\n");
1573 } else {
1574 /*
1575 * hardware-based synchronization is required regardless
1576 * of the number of segments used by a stream: SSP-based
1577 * synchronization is gated by gsync when the multi-master
1578 * mode is set.
1579 */
1580 bus->hw_sync_min_links = 1;
1581 }
1582 bus->multi_link = multi_link;
1583
1584 /* Initialize shim, controller */
1585 ret = intel_link_power_up(sdw);
1586 if (ret)
1587 goto err_init;
1588
1589 /* Register DAIs */
1590 ret = intel_register_dai(sdw);
1591 if (ret) {
1592 dev_err(dev, "DAI registration failed: %d\n", ret);
1593 goto err_power_up;
1594 }
1595
1596 intel_debugfs_init(sdw);
1597
1598 /* start bus */
1599 ret = intel_start_bus(sdw);
1600 if (ret) {
1601 dev_err(dev, "bus start failed: %d\n", ret);
1602 goto err_power_up;
1603 }
1604
1605 /* Enable runtime PM */
1606 if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME)) {
1607 pm_runtime_set_autosuspend_delay(dev,
1608 INTEL_MASTER_SUSPEND_DELAY_MS);
1609 pm_runtime_use_autosuspend(dev);
1610 pm_runtime_mark_last_busy(dev);
1611
1612 pm_runtime_set_active(dev);
1613 pm_runtime_enable(dev);
1614 }
1615
1616 clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1617 if (clock_stop_quirks & SDW_INTEL_CLK_STOP_NOT_ALLOWED) {
1618 /*
1619 * To keep the clock running we need to prevent
1620 * pm_runtime suspend from happening by increasing the
1621 * reference count.
1622 * This quirk is specified by the parent PCI device in
1623 * case of specific latency requirements. It will have
1624 * no effect if pm_runtime is disabled by the user via
1625 * a module parameter for testing purposes.
1626 */
1627 pm_runtime_get_noresume(dev);
1628 }
1629
1630 /*
1631 * The runtime PM status of Slave devices is "Unsupported"
1632 * until they report as ATTACHED. If they don't, e.g. because
1633 * there are no Slave devices populated or if the power-on is
1634 * delayed or dependent on a power switch, the Master will
1635 * remain active and prevent its parent from suspending.
1636 *
1637 * Conditionally force the pm_runtime core to re-evaluate the
1638 * Master status in the absence of any Slave activity. A quirk
1639 * is provided to e.g. deal with Slaves that may be powered on
1640 * with a delay. A more complete solution would require the
1641 * definition of Master properties.
1642 */
1643 if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE))
1644 pm_runtime_idle(dev);
1645
1646 sdw->startup_done = true;
1647 return 0;
1648
1649 err_power_up:
1650 intel_link_power_down(sdw);
1651 err_init:
1652 return ret;
1653 }
1654
intel_link_remove(struct auxiliary_device * auxdev)1655 static void intel_link_remove(struct auxiliary_device *auxdev)
1656 {
1657 struct sdw_cdns *cdns = auxiliary_get_drvdata(auxdev);
1658 struct sdw_intel *sdw = cdns_to_intel(cdns);
1659 struct sdw_bus *bus = &cdns->bus;
1660
1661 /*
1662 * Since pm_runtime is already disabled, we don't decrease
1663 * the refcount when the clock_stop_quirk is
1664 * SDW_INTEL_CLK_STOP_NOT_ALLOWED
1665 */
1666 if (!bus->prop.hw_disabled) {
1667 intel_debugfs_exit(sdw);
1668 sdw_cdns_enable_interrupt(cdns, false);
1669 }
1670 sdw_bus_master_delete(bus);
1671 }
1672
intel_link_process_wakeen_event(struct auxiliary_device * auxdev)1673 int intel_link_process_wakeen_event(struct auxiliary_device *auxdev)
1674 {
1675 struct device *dev = &auxdev->dev;
1676 struct sdw_intel *sdw;
1677 struct sdw_bus *bus;
1678
1679 sdw = auxiliary_get_drvdata(auxdev);
1680 bus = &sdw->cdns.bus;
1681
1682 if (bus->prop.hw_disabled || !sdw->startup_done) {
1683 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1684 bus->link_id);
1685 return 0;
1686 }
1687
1688 if (!intel_shim_check_wake(sdw))
1689 return 0;
1690
1691 /* disable WAKEEN interrupt ASAP to prevent interrupt flood */
1692 intel_shim_wake(sdw, false);
1693
1694 /*
1695 * resume the Master, which will generate a bus reset and result in
1696 * Slaves re-attaching and be re-enumerated. The SoundWire physical
1697 * device which generated the wake will trigger an interrupt, which
1698 * will in turn cause the corresponding Linux Slave device to be
1699 * resumed and the Slave codec driver to check the status.
1700 */
1701 pm_request_resume(dev);
1702
1703 return 0;
1704 }
1705
1706 /*
1707 * PM calls
1708 */
1709
intel_resume_child_device(struct device * dev,void * data)1710 static int intel_resume_child_device(struct device *dev, void *data)
1711 {
1712 int ret;
1713 struct sdw_slave *slave = dev_to_sdw_dev(dev);
1714
1715 if (!slave->probed) {
1716 dev_dbg(dev, "skipping device, no probed driver\n");
1717 return 0;
1718 }
1719 if (!slave->dev_num_sticky) {
1720 dev_dbg(dev, "skipping device, never detected on bus\n");
1721 return 0;
1722 }
1723
1724 ret = pm_request_resume(dev);
1725 if (ret < 0)
1726 dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret);
1727
1728 return ret;
1729 }
1730
intel_pm_prepare(struct device * dev)1731 static int __maybe_unused intel_pm_prepare(struct device *dev)
1732 {
1733 struct sdw_cdns *cdns = dev_get_drvdata(dev);
1734 struct sdw_intel *sdw = cdns_to_intel(cdns);
1735 struct sdw_bus *bus = &cdns->bus;
1736 u32 clock_stop_quirks;
1737 int ret;
1738
1739 if (bus->prop.hw_disabled || !sdw->startup_done) {
1740 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1741 bus->link_id);
1742 return 0;
1743 }
1744
1745 clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1746
1747 if (pm_runtime_suspended(dev) &&
1748 pm_runtime_suspended(dev->parent) &&
1749 ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) ||
1750 !clock_stop_quirks)) {
1751 /*
1752 * if we've enabled clock stop, and the parent is suspended, the SHIM registers
1753 * are not accessible and the shim wake cannot be disabled.
1754 * The only solution is to resume the entire bus to full power
1755 */
1756
1757 /*
1758 * If any operation in this block fails, we keep going since we don't want
1759 * to prevent system suspend from happening and errors should be recoverable
1760 * on resume.
1761 */
1762
1763 /*
1764 * first resume the device for this link. This will also by construction
1765 * resume the PCI parent device.
1766 */
1767 ret = pm_request_resume(dev);
1768 if (ret < 0) {
1769 dev_err(dev, "%s: pm_request_resume failed: %d\n", __func__, ret);
1770 return 0;
1771 }
1772
1773 /*
1774 * Continue resuming the entire bus (parent + child devices) to exit
1775 * the clock stop mode. If there are no devices connected on this link
1776 * this is a no-op.
1777 * The resume to full power could have been implemented with a .prepare
1778 * step in SoundWire codec drivers. This would however require a lot
1779 * of code to handle an Intel-specific corner case. It is simpler in
1780 * practice to add a loop at the link level.
1781 */
1782 ret = device_for_each_child(bus->dev, NULL, intel_resume_child_device);
1783
1784 if (ret < 0)
1785 dev_err(dev, "%s: intel_resume_child_device failed: %d\n", __func__, ret);
1786 }
1787
1788 return 0;
1789 }
1790
intel_suspend(struct device * dev)1791 static int __maybe_unused intel_suspend(struct device *dev)
1792 {
1793 struct sdw_cdns *cdns = dev_get_drvdata(dev);
1794 struct sdw_intel *sdw = cdns_to_intel(cdns);
1795 struct sdw_bus *bus = &cdns->bus;
1796 u32 clock_stop_quirks;
1797 int ret;
1798
1799 if (bus->prop.hw_disabled || !sdw->startup_done) {
1800 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1801 bus->link_id);
1802 return 0;
1803 }
1804
1805 if (pm_runtime_suspended(dev)) {
1806 dev_dbg(dev, "pm_runtime status: suspended\n");
1807
1808 clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1809
1810 if ((clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) ||
1811 !clock_stop_quirks) {
1812
1813 if (pm_runtime_suspended(dev->parent)) {
1814 /*
1815 * paranoia check: this should not happen with the .prepare
1816 * resume to full power
1817 */
1818 dev_err(dev, "%s: invalid config: parent is suspended\n", __func__);
1819 } else {
1820 intel_shim_wake(sdw, false);
1821 }
1822 }
1823
1824 return 0;
1825 }
1826
1827 ret = intel_stop_bus(sdw, false);
1828 if (ret < 0) {
1829 dev_err(dev, "%s: cannot stop bus: %d\n", __func__, ret);
1830 return ret;
1831 }
1832
1833 return 0;
1834 }
1835
intel_suspend_runtime(struct device * dev)1836 static int __maybe_unused intel_suspend_runtime(struct device *dev)
1837 {
1838 struct sdw_cdns *cdns = dev_get_drvdata(dev);
1839 struct sdw_intel *sdw = cdns_to_intel(cdns);
1840 struct sdw_bus *bus = &cdns->bus;
1841 u32 clock_stop_quirks;
1842 int ret;
1843
1844 if (bus->prop.hw_disabled || !sdw->startup_done) {
1845 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1846 bus->link_id);
1847 return 0;
1848 }
1849
1850 clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1851
1852 if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) {
1853 ret = intel_stop_bus(sdw, false);
1854 if (ret < 0) {
1855 dev_err(dev, "%s: cannot stop bus during teardown: %d\n",
1856 __func__, ret);
1857 return ret;
1858 }
1859 } else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET || !clock_stop_quirks) {
1860 ret = intel_stop_bus(sdw, true);
1861 if (ret < 0) {
1862 dev_err(dev, "%s: cannot stop bus during clock_stop: %d\n",
1863 __func__, ret);
1864 return ret;
1865 }
1866 } else {
1867 dev_err(dev, "%s clock_stop_quirks %x unsupported\n",
1868 __func__, clock_stop_quirks);
1869 ret = -EINVAL;
1870 }
1871
1872 return ret;
1873 }
1874
intel_resume(struct device * dev)1875 static int __maybe_unused intel_resume(struct device *dev)
1876 {
1877 struct sdw_cdns *cdns = dev_get_drvdata(dev);
1878 struct sdw_intel *sdw = cdns_to_intel(cdns);
1879 struct sdw_bus *bus = &cdns->bus;
1880 int link_flags;
1881 int ret;
1882
1883 if (bus->prop.hw_disabled || !sdw->startup_done) {
1884 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1885 bus->link_id);
1886 return 0;
1887 }
1888
1889 link_flags = md_flags >> (bus->link_id * 8);
1890
1891 if (pm_runtime_suspended(dev)) {
1892 dev_dbg(dev, "pm_runtime status was suspended, forcing active\n");
1893
1894 /* follow required sequence from runtime_pm.rst */
1895 pm_runtime_disable(dev);
1896 pm_runtime_set_active(dev);
1897 pm_runtime_mark_last_busy(dev);
1898 pm_runtime_enable(dev);
1899
1900 link_flags = md_flags >> (bus->link_id * 8);
1901
1902 if (!(link_flags & SDW_INTEL_MASTER_DISABLE_PM_RUNTIME_IDLE))
1903 pm_runtime_idle(dev);
1904 }
1905
1906 ret = intel_link_power_up(sdw);
1907 if (ret) {
1908 dev_err(dev, "%s failed: %d\n", __func__, ret);
1909 return ret;
1910 }
1911
1912 /*
1913 * make sure all Slaves are tagged as UNATTACHED and provide
1914 * reason for reinitialization
1915 */
1916 sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET);
1917
1918 ret = intel_start_bus(sdw);
1919 if (ret < 0) {
1920 dev_err(dev, "cannot start bus during resume\n");
1921 intel_link_power_down(sdw);
1922 return ret;
1923 }
1924
1925 /*
1926 * after system resume, the pm_runtime suspend() may kick in
1927 * during the enumeration, before any children device force the
1928 * master device to remain active. Using pm_runtime_get()
1929 * routines is not really possible, since it'd prevent the
1930 * master from suspending.
1931 * A reasonable compromise is to update the pm_runtime
1932 * counters and delay the pm_runtime suspend by several
1933 * seconds, by when all enumeration should be complete.
1934 */
1935 pm_runtime_mark_last_busy(dev);
1936
1937 return 0;
1938 }
1939
intel_resume_runtime(struct device * dev)1940 static int __maybe_unused intel_resume_runtime(struct device *dev)
1941 {
1942 struct sdw_cdns *cdns = dev_get_drvdata(dev);
1943 struct sdw_intel *sdw = cdns_to_intel(cdns);
1944 struct sdw_bus *bus = &cdns->bus;
1945 u32 clock_stop_quirks;
1946 int ret;
1947
1948 if (bus->prop.hw_disabled || !sdw->startup_done) {
1949 dev_dbg(dev, "SoundWire master %d is disabled or not-started, ignoring\n",
1950 bus->link_id);
1951 return 0;
1952 }
1953
1954 /* unconditionally disable WAKEEN interrupt */
1955 intel_shim_wake(sdw, false);
1956
1957 clock_stop_quirks = sdw->link_res->clock_stop_quirks;
1958
1959 if (clock_stop_quirks & SDW_INTEL_CLK_STOP_TEARDOWN) {
1960 ret = intel_link_power_up(sdw);
1961 if (ret) {
1962 dev_err(dev, "%s: power_up failed after teardown: %d\n", __func__, ret);
1963 return ret;
1964 }
1965
1966 /*
1967 * make sure all Slaves are tagged as UNATTACHED and provide
1968 * reason for reinitialization
1969 */
1970 sdw_clear_slave_status(bus, SDW_UNATTACH_REQUEST_MASTER_RESET);
1971
1972 ret = intel_start_bus(sdw);
1973 if (ret < 0) {
1974 dev_err(dev, "%s: cannot start bus after teardown: %d\n", __func__, ret);
1975 intel_link_power_down(sdw);
1976 return ret;
1977 }
1978
1979
1980 } else if (clock_stop_quirks & SDW_INTEL_CLK_STOP_BUS_RESET) {
1981 ret = intel_link_power_up(sdw);
1982 if (ret) {
1983 dev_err(dev, "%s: power_up failed after bus reset: %d\n", __func__, ret);
1984 return ret;
1985 }
1986
1987 ret = intel_start_bus_after_reset(sdw);
1988 if (ret < 0) {
1989 dev_err(dev, "%s: cannot start bus after reset: %d\n", __func__, ret);
1990 intel_link_power_down(sdw);
1991 return ret;
1992 }
1993 } else if (!clock_stop_quirks) {
1994
1995 intel_check_clock_stop(sdw);
1996
1997 ret = intel_link_power_up(sdw);
1998 if (ret) {
1999 dev_err(dev, "%s: power_up failed: %d\n", __func__, ret);
2000 return ret;
2001 }
2002
2003 ret = intel_start_bus_after_clock_stop(sdw);
2004 if (ret < 0) {
2005 dev_err(dev, "%s: cannot start bus after clock stop: %d\n", __func__, ret);
2006 intel_link_power_down(sdw);
2007 return ret;
2008 }
2009 } else {
2010 dev_err(dev, "%s: clock_stop_quirks %x unsupported\n",
2011 __func__, clock_stop_quirks);
2012 ret = -EINVAL;
2013 }
2014
2015 return ret;
2016 }
2017
2018 static const struct dev_pm_ops intel_pm = {
2019 .prepare = intel_pm_prepare,
2020 SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
2021 SET_RUNTIME_PM_OPS(intel_suspend_runtime, intel_resume_runtime, NULL)
2022 };
2023
2024 static const struct auxiliary_device_id intel_link_id_table[] = {
2025 { .name = "soundwire_intel.link" },
2026 {},
2027 };
2028 MODULE_DEVICE_TABLE(auxiliary, intel_link_id_table);
2029
2030 static struct auxiliary_driver sdw_intel_drv = {
2031 .probe = intel_link_probe,
2032 .remove = intel_link_remove,
2033 .driver = {
2034 /* auxiliary_driver_register() sets .name to be the modname */
2035 .pm = &intel_pm,
2036 },
2037 .id_table = intel_link_id_table
2038 };
2039 module_auxiliary_driver(sdw_intel_drv);
2040
2041 MODULE_LICENSE("Dual BSD/GPL");
2042 MODULE_DESCRIPTION("Intel Soundwire Link Driver");
2043