1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * S3C24XX DMA handling
4  *
5  * Copyright (c) 2013 Heiko Stuebner <heiko@sntech.de>
6  *
7  * based on amba-pl08x.c
8  *
9  * Copyright (c) 2006 ARM Ltd.
10  * Copyright (c) 2010 ST-Ericsson SA
11  *
12  * Author: Peter Pearse <peter.pearse@arm.com>
13  * Author: Linus Walleij <linus.walleij@stericsson.com>
14  *
15  * The DMA controllers in S3C24XX SoCs have a varying number of DMA signals
16  * that can be routed to any of the 4 to 8 hardware-channels.
17  *
18  * Therefore on these DMA controllers the number of channels
19  * and the number of incoming DMA signals are two totally different things.
20  * It is usually not possible to theoretically handle all physical signals,
21  * so a multiplexing scheme with possible denial of use is necessary.
22  *
23  * Open items:
24  * - bursts
25  */
26 
27 #include <linux/platform_device.h>
28 #include <linux/types.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/interrupt.h>
32 #include <linux/clk.h>
33 #include <linux/module.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/slab.h>
36 #include <linux/platform_data/dma-s3c24xx.h>
37 
38 #include "dmaengine.h"
39 #include "virt-dma.h"
40 
41 #define MAX_DMA_CHANNELS	8
42 
43 #define S3C24XX_DISRC			0x00
44 #define S3C24XX_DISRCC			0x04
45 #define S3C24XX_DISRCC_INC_INCREMENT	0
46 #define S3C24XX_DISRCC_INC_FIXED	BIT(0)
47 #define S3C24XX_DISRCC_LOC_AHB		0
48 #define S3C24XX_DISRCC_LOC_APB		BIT(1)
49 
50 #define S3C24XX_DIDST			0x08
51 #define S3C24XX_DIDSTC			0x0c
52 #define S3C24XX_DIDSTC_INC_INCREMENT	0
53 #define S3C24XX_DIDSTC_INC_FIXED	BIT(0)
54 #define S3C24XX_DIDSTC_LOC_AHB		0
55 #define S3C24XX_DIDSTC_LOC_APB		BIT(1)
56 #define S3C24XX_DIDSTC_INT_TC0		0
57 #define S3C24XX_DIDSTC_INT_RELOAD	BIT(2)
58 
59 #define S3C24XX_DCON			0x10
60 
61 #define S3C24XX_DCON_TC_MASK		0xfffff
62 #define S3C24XX_DCON_DSZ_BYTE		(0 << 20)
63 #define S3C24XX_DCON_DSZ_HALFWORD	(1 << 20)
64 #define S3C24XX_DCON_DSZ_WORD		(2 << 20)
65 #define S3C24XX_DCON_DSZ_MASK		(3 << 20)
66 #define S3C24XX_DCON_DSZ_SHIFT		20
67 #define S3C24XX_DCON_AUTORELOAD		0
68 #define S3C24XX_DCON_NORELOAD		BIT(22)
69 #define S3C24XX_DCON_HWTRIG		BIT(23)
70 #define S3C24XX_DCON_HWSRC_SHIFT	24
71 #define S3C24XX_DCON_SERV_SINGLE	0
72 #define S3C24XX_DCON_SERV_WHOLE		BIT(27)
73 #define S3C24XX_DCON_TSZ_UNIT		0
74 #define S3C24XX_DCON_TSZ_BURST4		BIT(28)
75 #define S3C24XX_DCON_INT		BIT(29)
76 #define S3C24XX_DCON_SYNC_PCLK		0
77 #define S3C24XX_DCON_SYNC_HCLK		BIT(30)
78 #define S3C24XX_DCON_DEMAND		0
79 #define S3C24XX_DCON_HANDSHAKE		BIT(31)
80 
81 #define S3C24XX_DSTAT			0x14
82 #define S3C24XX_DSTAT_STAT_BUSY		BIT(20)
83 #define S3C24XX_DSTAT_CURRTC_MASK	0xfffff
84 
85 #define S3C24XX_DMASKTRIG		0x20
86 #define S3C24XX_DMASKTRIG_SWTRIG	BIT(0)
87 #define S3C24XX_DMASKTRIG_ON		BIT(1)
88 #define S3C24XX_DMASKTRIG_STOP		BIT(2)
89 
90 #define S3C24XX_DMAREQSEL		0x24
91 #define S3C24XX_DMAREQSEL_HW		BIT(0)
92 
93 /*
94  * S3C2410, S3C2440 and S3C2442 SoCs cannot select any physical channel
95  * for a DMA source. Instead only specific channels are valid.
96  * All of these SoCs have 4 physical channels and the number of request
97  * source bits is 3. Additionally we also need 1 bit to mark the channel
98  * as valid.
99  * Therefore we separate the chansel element of the channel data into 4
100  * parts of 4 bits each, to hold the information if the channel is valid
101  * and the hw request source to use.
102  *
103  * Example:
104  * SDI is valid on channels 0, 2 and 3 - with varying hw request sources.
105  * For it the chansel field would look like
106  *
107  * ((BIT(3) | 1) << 3 * 4) | // channel 3, with request source 1
108  * ((BIT(3) | 2) << 2 * 4) | // channel 2, with request source 2
109  * ((BIT(3) | 2) << 0 * 4)   // channel 0, with request source 2
110  */
111 #define S3C24XX_CHANSEL_WIDTH		4
112 #define S3C24XX_CHANSEL_VALID		BIT(3)
113 #define S3C24XX_CHANSEL_REQ_MASK	7
114 
115 /*
116  * struct soc_data - vendor-specific config parameters for individual SoCs
117  * @stride: spacing between the registers of each channel
118  * @has_reqsel: does the controller use the newer requestselection mechanism
119  * @has_clocks: are controllable dma-clocks present
120  */
121 struct soc_data {
122 	int stride;
123 	bool has_reqsel;
124 	bool has_clocks;
125 };
126 
127 /*
128  * enum s3c24xx_dma_chan_state - holds the virtual channel states
129  * @S3C24XX_DMA_CHAN_IDLE: the channel is idle
130  * @S3C24XX_DMA_CHAN_RUNNING: the channel has allocated a physical transport
131  * channel and is running a transfer on it
132  * @S3C24XX_DMA_CHAN_WAITING: the channel is waiting for a physical transport
133  * channel to become available (only pertains to memcpy channels)
134  */
135 enum s3c24xx_dma_chan_state {
136 	S3C24XX_DMA_CHAN_IDLE,
137 	S3C24XX_DMA_CHAN_RUNNING,
138 	S3C24XX_DMA_CHAN_WAITING,
139 };
140 
141 /*
142  * struct s3c24xx_sg - structure containing data per sg
143  * @src_addr: src address of sg
144  * @dst_addr: dst address of sg
145  * @len: transfer len in bytes
146  * @node: node for txd's dsg_list
147  */
148 struct s3c24xx_sg {
149 	dma_addr_t src_addr;
150 	dma_addr_t dst_addr;
151 	size_t len;
152 	struct list_head node;
153 };
154 
155 /*
156  * struct s3c24xx_txd - wrapper for struct dma_async_tx_descriptor
157  * @vd: virtual DMA descriptor
158  * @dsg_list: list of children sg's
159  * @at: sg currently being transfered
160  * @width: transfer width
161  * @disrcc: value for source control register
162  * @didstc: value for destination control register
163  * @dcon: base value for dcon register
164  * @cyclic: indicate cyclic transfer
165  */
166 struct s3c24xx_txd {
167 	struct virt_dma_desc vd;
168 	struct list_head dsg_list;
169 	struct list_head *at;
170 	u8 width;
171 	u32 disrcc;
172 	u32 didstc;
173 	u32 dcon;
174 	bool cyclic;
175 };
176 
177 struct s3c24xx_dma_chan;
178 
179 /*
180  * struct s3c24xx_dma_phy - holder for the physical channels
181  * @id: physical index to this channel
182  * @valid: does the channel have all required elements
183  * @base: virtual memory base (remapped) for the this channel
184  * @irq: interrupt for this channel
185  * @clk: clock for this channel
186  * @lock: a lock to use when altering an instance of this struct
187  * @serving: virtual channel currently being served by this physicalchannel
188  * @host: a pointer to the host (internal use)
189  */
190 struct s3c24xx_dma_phy {
191 	unsigned int			id;
192 	bool				valid;
193 	void __iomem			*base;
194 	int				irq;
195 	struct clk			*clk;
196 	spinlock_t			lock;
197 	struct s3c24xx_dma_chan		*serving;
198 	struct s3c24xx_dma_engine	*host;
199 };
200 
201 /*
202  * struct s3c24xx_dma_chan - this structure wraps a DMA ENGINE channel
203  * @id: the id of the channel
204  * @name: name of the channel
205  * @vc: wrapped virtual channel
206  * @phy: the physical channel utilized by this channel, if there is one
207  * @runtime_addr: address for RX/TX according to the runtime config
208  * @at: active transaction on this channel
209  * @lock: a lock for this channel data
210  * @host: a pointer to the host (internal use)
211  * @state: whether the channel is idle, running etc
212  * @slave: whether this channel is a device (slave) or for memcpy
213  */
214 struct s3c24xx_dma_chan {
215 	int id;
216 	const char *name;
217 	struct virt_dma_chan vc;
218 	struct s3c24xx_dma_phy *phy;
219 	struct dma_slave_config cfg;
220 	struct s3c24xx_txd *at;
221 	struct s3c24xx_dma_engine *host;
222 	enum s3c24xx_dma_chan_state state;
223 	bool slave;
224 };
225 
226 /*
227  * struct s3c24xx_dma_engine - the local state holder for the S3C24XX
228  * @pdev: the corresponding platform device
229  * @pdata: platform data passed in from the platform/machine
230  * @base: virtual memory base (remapped)
231  * @slave: slave engine for this instance
232  * @memcpy: memcpy engine for this instance
233  * @phy_chans: array of data for the physical channels
234  */
235 struct s3c24xx_dma_engine {
236 	struct platform_device			*pdev;
237 	const struct s3c24xx_dma_platdata	*pdata;
238 	struct soc_data				*sdata;
239 	void __iomem				*base;
240 	struct dma_device			slave;
241 	struct dma_device			memcpy;
242 	struct s3c24xx_dma_phy			*phy_chans;
243 };
244 
245 /*
246  * Physical channel handling
247  */
248 
249 /*
250  * Check whether a certain channel is busy or not.
251  */
s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy * phy)252 static int s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy *phy)
253 {
254 	unsigned int val = readl(phy->base + S3C24XX_DSTAT);
255 	return val & S3C24XX_DSTAT_STAT_BUSY;
256 }
257 
s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan * s3cchan,struct s3c24xx_dma_phy * phy)258 static bool s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan *s3cchan,
259 				  struct s3c24xx_dma_phy *phy)
260 {
261 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
262 	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
263 	struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
264 	int phyvalid;
265 
266 	/* every phy is valid for memcopy channels */
267 	if (!s3cchan->slave)
268 		return true;
269 
270 	/* On newer variants all phys can be used for all virtual channels */
271 	if (s3cdma->sdata->has_reqsel)
272 		return true;
273 
274 	phyvalid = (cdata->chansel >> (phy->id * S3C24XX_CHANSEL_WIDTH));
275 	return (phyvalid & S3C24XX_CHANSEL_VALID) ? true : false;
276 }
277 
278 /*
279  * Allocate a physical channel for a virtual channel
280  *
281  * Try to locate a physical channel to be used for this transfer. If all
282  * are taken return NULL and the requester will have to cope by using
283  * some fallback PIO mode or retrying later.
284  */
285 static
s3c24xx_dma_get_phy(struct s3c24xx_dma_chan * s3cchan)286 struct s3c24xx_dma_phy *s3c24xx_dma_get_phy(struct s3c24xx_dma_chan *s3cchan)
287 {
288 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
289 	struct s3c24xx_dma_phy *phy = NULL;
290 	unsigned long flags;
291 	int i;
292 	int ret;
293 
294 	for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) {
295 		phy = &s3cdma->phy_chans[i];
296 
297 		if (!phy->valid)
298 			continue;
299 
300 		if (!s3c24xx_dma_phy_valid(s3cchan, phy))
301 			continue;
302 
303 		spin_lock_irqsave(&phy->lock, flags);
304 
305 		if (!phy->serving) {
306 			phy->serving = s3cchan;
307 			spin_unlock_irqrestore(&phy->lock, flags);
308 			break;
309 		}
310 
311 		spin_unlock_irqrestore(&phy->lock, flags);
312 	}
313 
314 	/* No physical channel available, cope with it */
315 	if (i == s3cdma->pdata->num_phy_channels) {
316 		dev_warn(&s3cdma->pdev->dev, "no phy channel available\n");
317 		return NULL;
318 	}
319 
320 	/* start the phy clock */
321 	if (s3cdma->sdata->has_clocks) {
322 		ret = clk_enable(phy->clk);
323 		if (ret) {
324 			dev_err(&s3cdma->pdev->dev, "could not enable clock for channel %d, err %d\n",
325 				phy->id, ret);
326 			phy->serving = NULL;
327 			return NULL;
328 		}
329 	}
330 
331 	return phy;
332 }
333 
334 /*
335  * Mark the physical channel as free.
336  *
337  * This drops the link between the physical and virtual channel.
338  */
s3c24xx_dma_put_phy(struct s3c24xx_dma_phy * phy)339 static inline void s3c24xx_dma_put_phy(struct s3c24xx_dma_phy *phy)
340 {
341 	struct s3c24xx_dma_engine *s3cdma = phy->host;
342 
343 	if (s3cdma->sdata->has_clocks)
344 		clk_disable(phy->clk);
345 
346 	phy->serving = NULL;
347 }
348 
349 /*
350  * Stops the channel by writing the stop bit.
351  * This should not be used for an on-going transfer, but as a method of
352  * shutting down a channel (eg, when it's no longer used) or terminating a
353  * transfer.
354  */
s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy * phy)355 static void s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy *phy)
356 {
357 	writel(S3C24XX_DMASKTRIG_STOP, phy->base + S3C24XX_DMASKTRIG);
358 }
359 
360 /*
361  * Virtual channel handling
362  */
363 
364 static inline
to_s3c24xx_dma_chan(struct dma_chan * chan)365 struct s3c24xx_dma_chan *to_s3c24xx_dma_chan(struct dma_chan *chan)
366 {
367 	return container_of(chan, struct s3c24xx_dma_chan, vc.chan);
368 }
369 
s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan * s3cchan)370 static u32 s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan *s3cchan)
371 {
372 	struct s3c24xx_dma_phy *phy = s3cchan->phy;
373 	struct s3c24xx_txd *txd = s3cchan->at;
374 	u32 tc = readl(phy->base + S3C24XX_DSTAT) & S3C24XX_DSTAT_CURRTC_MASK;
375 
376 	return tc * txd->width;
377 }
378 
s3c24xx_dma_set_runtime_config(struct dma_chan * chan,struct dma_slave_config * config)379 static int s3c24xx_dma_set_runtime_config(struct dma_chan *chan,
380 				  struct dma_slave_config *config)
381 {
382 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
383 	unsigned long flags;
384 	int ret = 0;
385 
386 	/* Reject definitely invalid configurations */
387 	if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
388 	    config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
389 		return -EINVAL;
390 
391 	spin_lock_irqsave(&s3cchan->vc.lock, flags);
392 
393 	if (!s3cchan->slave) {
394 		ret = -EINVAL;
395 		goto out;
396 	}
397 
398 	s3cchan->cfg = *config;
399 
400 out:
401 	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
402 	return ret;
403 }
404 
405 /*
406  * Transfer handling
407  */
408 
409 static inline
to_s3c24xx_txd(struct dma_async_tx_descriptor * tx)410 struct s3c24xx_txd *to_s3c24xx_txd(struct dma_async_tx_descriptor *tx)
411 {
412 	return container_of(tx, struct s3c24xx_txd, vd.tx);
413 }
414 
s3c24xx_dma_get_txd(void)415 static struct s3c24xx_txd *s3c24xx_dma_get_txd(void)
416 {
417 	struct s3c24xx_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
418 
419 	if (txd) {
420 		INIT_LIST_HEAD(&txd->dsg_list);
421 		txd->dcon = S3C24XX_DCON_INT | S3C24XX_DCON_NORELOAD;
422 	}
423 
424 	return txd;
425 }
426 
s3c24xx_dma_free_txd(struct s3c24xx_txd * txd)427 static void s3c24xx_dma_free_txd(struct s3c24xx_txd *txd)
428 {
429 	struct s3c24xx_sg *dsg, *_dsg;
430 
431 	list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
432 		list_del(&dsg->node);
433 		kfree(dsg);
434 	}
435 
436 	kfree(txd);
437 }
438 
s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan * s3cchan,struct s3c24xx_txd * txd)439 static void s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan *s3cchan,
440 				       struct s3c24xx_txd *txd)
441 {
442 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
443 	struct s3c24xx_dma_phy *phy = s3cchan->phy;
444 	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
445 	struct s3c24xx_sg *dsg = list_entry(txd->at, struct s3c24xx_sg, node);
446 	u32 dcon = txd->dcon;
447 	u32 val;
448 
449 	/* transfer-size and -count from len and width */
450 	switch (txd->width) {
451 	case 1:
452 		dcon |= S3C24XX_DCON_DSZ_BYTE | dsg->len;
453 		break;
454 	case 2:
455 		dcon |= S3C24XX_DCON_DSZ_HALFWORD | (dsg->len / 2);
456 		break;
457 	case 4:
458 		dcon |= S3C24XX_DCON_DSZ_WORD | (dsg->len / 4);
459 		break;
460 	}
461 
462 	if (s3cchan->slave) {
463 		struct s3c24xx_dma_channel *cdata =
464 					&pdata->channels[s3cchan->id];
465 
466 		if (s3cdma->sdata->has_reqsel) {
467 			writel_relaxed((cdata->chansel << 1) |
468 							S3C24XX_DMAREQSEL_HW,
469 					phy->base + S3C24XX_DMAREQSEL);
470 		} else {
471 			int csel = cdata->chansel >> (phy->id *
472 							S3C24XX_CHANSEL_WIDTH);
473 
474 			csel &= S3C24XX_CHANSEL_REQ_MASK;
475 			dcon |= csel << S3C24XX_DCON_HWSRC_SHIFT;
476 			dcon |= S3C24XX_DCON_HWTRIG;
477 		}
478 	} else {
479 		if (s3cdma->sdata->has_reqsel)
480 			writel_relaxed(0, phy->base + S3C24XX_DMAREQSEL);
481 	}
482 
483 	writel_relaxed(dsg->src_addr, phy->base + S3C24XX_DISRC);
484 	writel_relaxed(txd->disrcc, phy->base + S3C24XX_DISRCC);
485 	writel_relaxed(dsg->dst_addr, phy->base + S3C24XX_DIDST);
486 	writel_relaxed(txd->didstc, phy->base + S3C24XX_DIDSTC);
487 	writel_relaxed(dcon, phy->base + S3C24XX_DCON);
488 
489 	val = readl_relaxed(phy->base + S3C24XX_DMASKTRIG);
490 	val &= ~S3C24XX_DMASKTRIG_STOP;
491 	val |= S3C24XX_DMASKTRIG_ON;
492 
493 	/* trigger the dma operation for memcpy transfers */
494 	if (!s3cchan->slave)
495 		val |= S3C24XX_DMASKTRIG_SWTRIG;
496 
497 	writel(val, phy->base + S3C24XX_DMASKTRIG);
498 }
499 
500 /*
501  * Set the initial DMA register values and start first sg.
502  */
s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan * s3cchan)503 static void s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan *s3cchan)
504 {
505 	struct s3c24xx_dma_phy *phy = s3cchan->phy;
506 	struct virt_dma_desc *vd = vchan_next_desc(&s3cchan->vc);
507 	struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
508 
509 	list_del(&txd->vd.node);
510 
511 	s3cchan->at = txd;
512 
513 	/* Wait for channel inactive */
514 	while (s3c24xx_dma_phy_busy(phy))
515 		cpu_relax();
516 
517 	/* point to the first element of the sg list */
518 	txd->at = txd->dsg_list.next;
519 	s3c24xx_dma_start_next_sg(s3cchan, txd);
520 }
521 
522 /*
523  * Try to allocate a physical channel.  When successful, assign it to
524  * this virtual channel, and initiate the next descriptor.  The
525  * virtual channel lock must be held at this point.
526  */
s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan * s3cchan)527 static void s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan *s3cchan)
528 {
529 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
530 	struct s3c24xx_dma_phy *phy;
531 
532 	phy = s3c24xx_dma_get_phy(s3cchan);
533 	if (!phy) {
534 		dev_dbg(&s3cdma->pdev->dev, "no physical channel available for xfer on %s\n",
535 			s3cchan->name);
536 		s3cchan->state = S3C24XX_DMA_CHAN_WAITING;
537 		return;
538 	}
539 
540 	dev_dbg(&s3cdma->pdev->dev, "allocated physical channel %d for xfer on %s\n",
541 		phy->id, s3cchan->name);
542 
543 	s3cchan->phy = phy;
544 	s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
545 
546 	s3c24xx_dma_start_next_txd(s3cchan);
547 }
548 
s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy * phy,struct s3c24xx_dma_chan * s3cchan)549 static void s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy *phy,
550 	struct s3c24xx_dma_chan *s3cchan)
551 {
552 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
553 
554 	dev_dbg(&s3cdma->pdev->dev, "reassigned physical channel %d for xfer on %s\n",
555 		phy->id, s3cchan->name);
556 
557 	/*
558 	 * We do this without taking the lock; we're really only concerned
559 	 * about whether this pointer is NULL or not, and we're guaranteed
560 	 * that this will only be called when it _already_ is non-NULL.
561 	 */
562 	phy->serving = s3cchan;
563 	s3cchan->phy = phy;
564 	s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
565 	s3c24xx_dma_start_next_txd(s3cchan);
566 }
567 
568 /*
569  * Free a physical DMA channel, potentially reallocating it to another
570  * virtual channel if we have any pending.
571  */
s3c24xx_dma_phy_free(struct s3c24xx_dma_chan * s3cchan)572 static void s3c24xx_dma_phy_free(struct s3c24xx_dma_chan *s3cchan)
573 {
574 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
575 	struct s3c24xx_dma_chan *p, *next;
576 
577 retry:
578 	next = NULL;
579 
580 	/* Find a waiting virtual channel for the next transfer. */
581 	list_for_each_entry(p, &s3cdma->memcpy.channels, vc.chan.device_node)
582 		if (p->state == S3C24XX_DMA_CHAN_WAITING) {
583 			next = p;
584 			break;
585 		}
586 
587 	if (!next) {
588 		list_for_each_entry(p, &s3cdma->slave.channels,
589 				    vc.chan.device_node)
590 			if (p->state == S3C24XX_DMA_CHAN_WAITING &&
591 				      s3c24xx_dma_phy_valid(p, s3cchan->phy)) {
592 				next = p;
593 				break;
594 			}
595 	}
596 
597 	/* Ensure that the physical channel is stopped */
598 	s3c24xx_dma_terminate_phy(s3cchan->phy);
599 
600 	if (next) {
601 		bool success;
602 
603 		/*
604 		 * Eww.  We know this isn't going to deadlock
605 		 * but lockdep probably doesn't.
606 		 */
607 		spin_lock(&next->vc.lock);
608 		/* Re-check the state now that we have the lock */
609 		success = next->state == S3C24XX_DMA_CHAN_WAITING;
610 		if (success)
611 			s3c24xx_dma_phy_reassign_start(s3cchan->phy, next);
612 		spin_unlock(&next->vc.lock);
613 
614 		/* If the state changed, try to find another channel */
615 		if (!success)
616 			goto retry;
617 	} else {
618 		/* No more jobs, so free up the physical channel */
619 		s3c24xx_dma_put_phy(s3cchan->phy);
620 	}
621 
622 	s3cchan->phy = NULL;
623 	s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
624 }
625 
s3c24xx_dma_desc_free(struct virt_dma_desc * vd)626 static void s3c24xx_dma_desc_free(struct virt_dma_desc *vd)
627 {
628 	struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
629 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(vd->tx.chan);
630 
631 	if (!s3cchan->slave)
632 		dma_descriptor_unmap(&vd->tx);
633 
634 	s3c24xx_dma_free_txd(txd);
635 }
636 
s3c24xx_dma_irq(int irq,void * data)637 static irqreturn_t s3c24xx_dma_irq(int irq, void *data)
638 {
639 	struct s3c24xx_dma_phy *phy = data;
640 	struct s3c24xx_dma_chan *s3cchan = phy->serving;
641 	struct s3c24xx_txd *txd;
642 
643 	dev_dbg(&phy->host->pdev->dev, "interrupt on channel %d\n", phy->id);
644 
645 	/*
646 	 * Interrupts happen to notify the completion of a transfer and the
647 	 * channel should have moved into its stop state already on its own.
648 	 * Therefore interrupts on channels not bound to a virtual channel
649 	 * should never happen. Nevertheless send a terminate command to the
650 	 * channel if the unlikely case happens.
651 	 */
652 	if (unlikely(!s3cchan)) {
653 		dev_err(&phy->host->pdev->dev, "interrupt on unused channel %d\n",
654 			phy->id);
655 
656 		s3c24xx_dma_terminate_phy(phy);
657 
658 		return IRQ_HANDLED;
659 	}
660 
661 	spin_lock(&s3cchan->vc.lock);
662 	txd = s3cchan->at;
663 	if (txd) {
664 		/* when more sg's are in this txd, start the next one */
665 		if (!list_is_last(txd->at, &txd->dsg_list)) {
666 			txd->at = txd->at->next;
667 			if (txd->cyclic)
668 				vchan_cyclic_callback(&txd->vd);
669 			s3c24xx_dma_start_next_sg(s3cchan, txd);
670 		} else if (!txd->cyclic) {
671 			s3cchan->at = NULL;
672 			vchan_cookie_complete(&txd->vd);
673 
674 			/*
675 			 * And start the next descriptor (if any),
676 			 * otherwise free this channel.
677 			 */
678 			if (vchan_next_desc(&s3cchan->vc))
679 				s3c24xx_dma_start_next_txd(s3cchan);
680 			else
681 				s3c24xx_dma_phy_free(s3cchan);
682 		} else {
683 			vchan_cyclic_callback(&txd->vd);
684 
685 			/* Cyclic: reset at beginning */
686 			txd->at = txd->dsg_list.next;
687 			s3c24xx_dma_start_next_sg(s3cchan, txd);
688 		}
689 	}
690 	spin_unlock(&s3cchan->vc.lock);
691 
692 	return IRQ_HANDLED;
693 }
694 
695 /*
696  * The DMA ENGINE API
697  */
698 
s3c24xx_dma_terminate_all(struct dma_chan * chan)699 static int s3c24xx_dma_terminate_all(struct dma_chan *chan)
700 {
701 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
702 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
703 	LIST_HEAD(head);
704 	unsigned long flags;
705 	int ret;
706 
707 	spin_lock_irqsave(&s3cchan->vc.lock, flags);
708 
709 	if (!s3cchan->phy && !s3cchan->at) {
710 		dev_err(&s3cdma->pdev->dev, "trying to terminate already stopped channel %d\n",
711 			s3cchan->id);
712 		ret = -EINVAL;
713 		goto unlock;
714 	}
715 
716 	s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
717 
718 	/* Mark physical channel as free */
719 	if (s3cchan->phy)
720 		s3c24xx_dma_phy_free(s3cchan);
721 
722 	/* Dequeue current job */
723 	if (s3cchan->at) {
724 		vchan_terminate_vdesc(&s3cchan->at->vd);
725 		s3cchan->at = NULL;
726 	}
727 
728 	/* Dequeue jobs not yet fired as well */
729 
730 	vchan_get_all_descriptors(&s3cchan->vc, &head);
731 
732 	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
733 
734 	vchan_dma_desc_free_list(&s3cchan->vc, &head);
735 
736 	return 0;
737 
738 unlock:
739 	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
740 
741 	return ret;
742 }
743 
s3c24xx_dma_synchronize(struct dma_chan * chan)744 static void s3c24xx_dma_synchronize(struct dma_chan *chan)
745 {
746 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
747 
748 	vchan_synchronize(&s3cchan->vc);
749 }
750 
s3c24xx_dma_free_chan_resources(struct dma_chan * chan)751 static void s3c24xx_dma_free_chan_resources(struct dma_chan *chan)
752 {
753 	/* Ensure all queued descriptors are freed */
754 	vchan_free_chan_resources(to_virt_chan(chan));
755 }
756 
s3c24xx_dma_tx_status(struct dma_chan * chan,dma_cookie_t cookie,struct dma_tx_state * txstate)757 static enum dma_status s3c24xx_dma_tx_status(struct dma_chan *chan,
758 		dma_cookie_t cookie, struct dma_tx_state *txstate)
759 {
760 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
761 	struct s3c24xx_txd *txd;
762 	struct s3c24xx_sg *dsg;
763 	struct virt_dma_desc *vd;
764 	unsigned long flags;
765 	enum dma_status ret;
766 	size_t bytes = 0;
767 
768 	spin_lock_irqsave(&s3cchan->vc.lock, flags);
769 	ret = dma_cookie_status(chan, cookie, txstate);
770 
771 	/*
772 	 * There's no point calculating the residue if there's
773 	 * no txstate to store the value.
774 	 */
775 	if (ret == DMA_COMPLETE || !txstate) {
776 		spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
777 		return ret;
778 	}
779 
780 	vd = vchan_find_desc(&s3cchan->vc, cookie);
781 	if (vd) {
782 		/* On the issued list, so hasn't been processed yet */
783 		txd = to_s3c24xx_txd(&vd->tx);
784 
785 		list_for_each_entry(dsg, &txd->dsg_list, node)
786 			bytes += dsg->len;
787 	} else {
788 		/*
789 		 * Currently running, so sum over the pending sg's and
790 		 * the currently active one.
791 		 */
792 		txd = s3cchan->at;
793 
794 		dsg = list_entry(txd->at, struct s3c24xx_sg, node);
795 		list_for_each_entry_from(dsg, &txd->dsg_list, node)
796 			bytes += dsg->len;
797 
798 		bytes += s3c24xx_dma_getbytes_chan(s3cchan);
799 	}
800 	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
801 
802 	/*
803 	 * This cookie not complete yet
804 	 * Get number of bytes left in the active transactions and queue
805 	 */
806 	dma_set_residue(txstate, bytes);
807 
808 	/* Whether waiting or running, we're in progress */
809 	return ret;
810 }
811 
812 /*
813  * Initialize a descriptor to be used by memcpy submit
814  */
s3c24xx_dma_prep_memcpy(struct dma_chan * chan,dma_addr_t dest,dma_addr_t src,size_t len,unsigned long flags)815 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_memcpy(
816 		struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
817 		size_t len, unsigned long flags)
818 {
819 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
820 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
821 	struct s3c24xx_txd *txd;
822 	struct s3c24xx_sg *dsg;
823 	int src_mod, dest_mod;
824 
825 	dev_dbg(&s3cdma->pdev->dev, "prepare memcpy of %zu bytes from %s\n",
826 			len, s3cchan->name);
827 
828 	if ((len & S3C24XX_DCON_TC_MASK) != len) {
829 		dev_err(&s3cdma->pdev->dev, "memcpy size %zu to large\n", len);
830 		return NULL;
831 	}
832 
833 	txd = s3c24xx_dma_get_txd();
834 	if (!txd)
835 		return NULL;
836 
837 	dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
838 	if (!dsg) {
839 		s3c24xx_dma_free_txd(txd);
840 		return NULL;
841 	}
842 	list_add_tail(&dsg->node, &txd->dsg_list);
843 
844 	dsg->src_addr = src;
845 	dsg->dst_addr = dest;
846 	dsg->len = len;
847 
848 	/*
849 	 * Determine a suitable transfer width.
850 	 * The DMA controller cannot fetch/store information which is not
851 	 * naturally aligned on the bus, i.e., a 4 byte fetch must start at
852 	 * an address divisible by 4 - more generally addr % width must be 0.
853 	 */
854 	src_mod = src % 4;
855 	dest_mod = dest % 4;
856 	switch (len % 4) {
857 	case 0:
858 		txd->width = (src_mod == 0 && dest_mod == 0) ? 4 : 1;
859 		break;
860 	case 2:
861 		txd->width = ((src_mod == 2 || src_mod == 0) &&
862 			      (dest_mod == 2 || dest_mod == 0)) ? 2 : 1;
863 		break;
864 	default:
865 		txd->width = 1;
866 		break;
867 	}
868 
869 	txd->disrcc = S3C24XX_DISRCC_LOC_AHB | S3C24XX_DISRCC_INC_INCREMENT;
870 	txd->didstc = S3C24XX_DIDSTC_LOC_AHB | S3C24XX_DIDSTC_INC_INCREMENT;
871 	txd->dcon |= S3C24XX_DCON_DEMAND | S3C24XX_DCON_SYNC_HCLK |
872 		     S3C24XX_DCON_SERV_WHOLE;
873 
874 	return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
875 }
876 
s3c24xx_dma_prep_dma_cyclic(struct dma_chan * chan,dma_addr_t addr,size_t size,size_t period,enum dma_transfer_direction direction,unsigned long flags)877 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_dma_cyclic(
878 	struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period,
879 	enum dma_transfer_direction direction, unsigned long flags)
880 {
881 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
882 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
883 	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
884 	struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
885 	struct s3c24xx_txd *txd;
886 	struct s3c24xx_sg *dsg;
887 	unsigned sg_len;
888 	dma_addr_t slave_addr;
889 	u32 hwcfg = 0;
890 	int i;
891 
892 	dev_dbg(&s3cdma->pdev->dev,
893 		"prepare cyclic transaction of %zu bytes with period %zu from %s\n",
894 		size, period, s3cchan->name);
895 
896 	if (!is_slave_direction(direction)) {
897 		dev_err(&s3cdma->pdev->dev,
898 			"direction %d unsupported\n", direction);
899 		return NULL;
900 	}
901 
902 	txd = s3c24xx_dma_get_txd();
903 	if (!txd)
904 		return NULL;
905 
906 	txd->cyclic = 1;
907 
908 	if (cdata->handshake)
909 		txd->dcon |= S3C24XX_DCON_HANDSHAKE;
910 
911 	switch (cdata->bus) {
912 	case S3C24XX_DMA_APB:
913 		txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
914 		hwcfg |= S3C24XX_DISRCC_LOC_APB;
915 		break;
916 	case S3C24XX_DMA_AHB:
917 		txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
918 		hwcfg |= S3C24XX_DISRCC_LOC_AHB;
919 		break;
920 	}
921 
922 	/*
923 	 * Always assume our peripheral desintation is a fixed
924 	 * address in memory.
925 	 */
926 	hwcfg |= S3C24XX_DISRCC_INC_FIXED;
927 
928 	/*
929 	 * Individual dma operations are requested by the slave,
930 	 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
931 	 */
932 	txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
933 
934 	if (direction == DMA_MEM_TO_DEV) {
935 		txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
936 			      S3C24XX_DISRCC_INC_INCREMENT;
937 		txd->didstc = hwcfg;
938 		slave_addr = s3cchan->cfg.dst_addr;
939 		txd->width = s3cchan->cfg.dst_addr_width;
940 	} else {
941 		txd->disrcc = hwcfg;
942 		txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
943 			      S3C24XX_DIDSTC_INC_INCREMENT;
944 		slave_addr = s3cchan->cfg.src_addr;
945 		txd->width = s3cchan->cfg.src_addr_width;
946 	}
947 
948 	sg_len = size / period;
949 
950 	for (i = 0; i < sg_len; i++) {
951 		dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
952 		if (!dsg) {
953 			s3c24xx_dma_free_txd(txd);
954 			return NULL;
955 		}
956 		list_add_tail(&dsg->node, &txd->dsg_list);
957 
958 		dsg->len = period;
959 		/* Check last period length */
960 		if (i == sg_len - 1)
961 			dsg->len = size - period * i;
962 		if (direction == DMA_MEM_TO_DEV) {
963 			dsg->src_addr = addr + period * i;
964 			dsg->dst_addr = slave_addr;
965 		} else { /* DMA_DEV_TO_MEM */
966 			dsg->src_addr = slave_addr;
967 			dsg->dst_addr = addr + period * i;
968 		}
969 	}
970 
971 	return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
972 }
973 
s3c24xx_dma_prep_slave_sg(struct dma_chan * chan,struct scatterlist * sgl,unsigned int sg_len,enum dma_transfer_direction direction,unsigned long flags,void * context)974 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_slave_sg(
975 		struct dma_chan *chan, struct scatterlist *sgl,
976 		unsigned int sg_len, enum dma_transfer_direction direction,
977 		unsigned long flags, void *context)
978 {
979 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
980 	struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
981 	const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
982 	struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
983 	struct s3c24xx_txd *txd;
984 	struct s3c24xx_sg *dsg;
985 	struct scatterlist *sg;
986 	dma_addr_t slave_addr;
987 	u32 hwcfg = 0;
988 	int tmp;
989 
990 	dev_dbg(&s3cdma->pdev->dev, "prepare transaction of %d bytes from %s\n",
991 			sg_dma_len(sgl), s3cchan->name);
992 
993 	txd = s3c24xx_dma_get_txd();
994 	if (!txd)
995 		return NULL;
996 
997 	if (cdata->handshake)
998 		txd->dcon |= S3C24XX_DCON_HANDSHAKE;
999 
1000 	switch (cdata->bus) {
1001 	case S3C24XX_DMA_APB:
1002 		txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
1003 		hwcfg |= S3C24XX_DISRCC_LOC_APB;
1004 		break;
1005 	case S3C24XX_DMA_AHB:
1006 		txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
1007 		hwcfg |= S3C24XX_DISRCC_LOC_AHB;
1008 		break;
1009 	}
1010 
1011 	/*
1012 	 * Always assume our peripheral desintation is a fixed
1013 	 * address in memory.
1014 	 */
1015 	hwcfg |= S3C24XX_DISRCC_INC_FIXED;
1016 
1017 	/*
1018 	 * Individual dma operations are requested by the slave,
1019 	 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
1020 	 */
1021 	txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
1022 
1023 	if (direction == DMA_MEM_TO_DEV) {
1024 		txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
1025 			      S3C24XX_DISRCC_INC_INCREMENT;
1026 		txd->didstc = hwcfg;
1027 		slave_addr = s3cchan->cfg.dst_addr;
1028 		txd->width = s3cchan->cfg.dst_addr_width;
1029 	} else if (direction == DMA_DEV_TO_MEM) {
1030 		txd->disrcc = hwcfg;
1031 		txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
1032 			      S3C24XX_DIDSTC_INC_INCREMENT;
1033 		slave_addr = s3cchan->cfg.src_addr;
1034 		txd->width = s3cchan->cfg.src_addr_width;
1035 	} else {
1036 		s3c24xx_dma_free_txd(txd);
1037 		dev_err(&s3cdma->pdev->dev,
1038 			"direction %d unsupported\n", direction);
1039 		return NULL;
1040 	}
1041 
1042 	for_each_sg(sgl, sg, sg_len, tmp) {
1043 		dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
1044 		if (!dsg) {
1045 			s3c24xx_dma_free_txd(txd);
1046 			return NULL;
1047 		}
1048 		list_add_tail(&dsg->node, &txd->dsg_list);
1049 
1050 		dsg->len = sg_dma_len(sg);
1051 		if (direction == DMA_MEM_TO_DEV) {
1052 			dsg->src_addr = sg_dma_address(sg);
1053 			dsg->dst_addr = slave_addr;
1054 		} else { /* DMA_DEV_TO_MEM */
1055 			dsg->src_addr = slave_addr;
1056 			dsg->dst_addr = sg_dma_address(sg);
1057 		}
1058 	}
1059 
1060 	return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
1061 }
1062 
1063 /*
1064  * Slave transactions callback to the slave device to allow
1065  * synchronization of slave DMA signals with the DMAC enable
1066  */
s3c24xx_dma_issue_pending(struct dma_chan * chan)1067 static void s3c24xx_dma_issue_pending(struct dma_chan *chan)
1068 {
1069 	struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
1070 	unsigned long flags;
1071 
1072 	spin_lock_irqsave(&s3cchan->vc.lock, flags);
1073 	if (vchan_issue_pending(&s3cchan->vc)) {
1074 		if (!s3cchan->phy && s3cchan->state != S3C24XX_DMA_CHAN_WAITING)
1075 			s3c24xx_dma_phy_alloc_and_start(s3cchan);
1076 	}
1077 	spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
1078 }
1079 
1080 /*
1081  * Bringup and teardown
1082  */
1083 
1084 /*
1085  * Initialise the DMAC memcpy/slave channels.
1086  * Make a local wrapper to hold required data
1087  */
s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine * s3cdma,struct dma_device * dmadev,unsigned int channels,bool slave)1088 static int s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine *s3cdma,
1089 		struct dma_device *dmadev, unsigned int channels, bool slave)
1090 {
1091 	struct s3c24xx_dma_chan *chan;
1092 	int i;
1093 
1094 	INIT_LIST_HEAD(&dmadev->channels);
1095 
1096 	/*
1097 	 * Register as many memcpy as we have physical channels,
1098 	 * we won't always be able to use all but the code will have
1099 	 * to cope with that situation.
1100 	 */
1101 	for (i = 0; i < channels; i++) {
1102 		chan = devm_kzalloc(dmadev->dev, sizeof(*chan), GFP_KERNEL);
1103 		if (!chan)
1104 			return -ENOMEM;
1105 
1106 		chan->id = i;
1107 		chan->host = s3cdma;
1108 		chan->state = S3C24XX_DMA_CHAN_IDLE;
1109 
1110 		if (slave) {
1111 			chan->slave = true;
1112 			chan->name = kasprintf(GFP_KERNEL, "slave%d", i);
1113 			if (!chan->name)
1114 				return -ENOMEM;
1115 		} else {
1116 			chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1117 			if (!chan->name)
1118 				return -ENOMEM;
1119 		}
1120 		dev_dbg(dmadev->dev,
1121 			 "initialize virtual channel \"%s\"\n",
1122 			 chan->name);
1123 
1124 		chan->vc.desc_free = s3c24xx_dma_desc_free;
1125 		vchan_init(&chan->vc, dmadev);
1126 	}
1127 	dev_info(dmadev->dev, "initialized %d virtual %s channels\n",
1128 		 i, slave ? "slave" : "memcpy");
1129 	return i;
1130 }
1131 
s3c24xx_dma_free_virtual_channels(struct dma_device * dmadev)1132 static void s3c24xx_dma_free_virtual_channels(struct dma_device *dmadev)
1133 {
1134 	struct s3c24xx_dma_chan *chan = NULL;
1135 	struct s3c24xx_dma_chan *next;
1136 
1137 	list_for_each_entry_safe(chan,
1138 				 next, &dmadev->channels, vc.chan.device_node) {
1139 		list_del(&chan->vc.chan.device_node);
1140 		tasklet_kill(&chan->vc.task);
1141 	}
1142 }
1143 
1144 /* s3c2410, s3c2440 and s3c2442 have a 0x40 stride without separate clocks */
1145 static struct soc_data soc_s3c2410 = {
1146 	.stride = 0x40,
1147 	.has_reqsel = false,
1148 	.has_clocks = false,
1149 };
1150 
1151 /* s3c2412 and s3c2413 have a 0x40 stride and dmareqsel mechanism */
1152 static struct soc_data soc_s3c2412 = {
1153 	.stride = 0x40,
1154 	.has_reqsel = true,
1155 	.has_clocks = true,
1156 };
1157 
1158 /* s3c2443 and following have a 0x100 stride and dmareqsel mechanism */
1159 static struct soc_data soc_s3c2443 = {
1160 	.stride = 0x100,
1161 	.has_reqsel = true,
1162 	.has_clocks = true,
1163 };
1164 
1165 static const struct platform_device_id s3c24xx_dma_driver_ids[] = {
1166 	{
1167 		.name		= "s3c2410-dma",
1168 		.driver_data	= (kernel_ulong_t)&soc_s3c2410,
1169 	}, {
1170 		.name		= "s3c2412-dma",
1171 		.driver_data	= (kernel_ulong_t)&soc_s3c2412,
1172 	}, {
1173 		.name		= "s3c2443-dma",
1174 		.driver_data	= (kernel_ulong_t)&soc_s3c2443,
1175 	},
1176 	{ },
1177 };
1178 
s3c24xx_dma_get_soc_data(struct platform_device * pdev)1179 static struct soc_data *s3c24xx_dma_get_soc_data(struct platform_device *pdev)
1180 {
1181 	return (struct soc_data *)
1182 			 platform_get_device_id(pdev)->driver_data;
1183 }
1184 
s3c24xx_dma_probe(struct platform_device * pdev)1185 static int s3c24xx_dma_probe(struct platform_device *pdev)
1186 {
1187 	const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1188 	struct s3c24xx_dma_engine *s3cdma;
1189 	struct soc_data *sdata;
1190 	struct resource *res;
1191 	int ret;
1192 	int i;
1193 
1194 	if (!pdata) {
1195 		dev_err(&pdev->dev, "platform data missing\n");
1196 		return -ENODEV;
1197 	}
1198 
1199 	/* Basic sanity check */
1200 	if (pdata->num_phy_channels > MAX_DMA_CHANNELS) {
1201 		dev_err(&pdev->dev, "too many dma channels %d, max %d\n",
1202 			pdata->num_phy_channels, MAX_DMA_CHANNELS);
1203 		return -EINVAL;
1204 	}
1205 
1206 	sdata = s3c24xx_dma_get_soc_data(pdev);
1207 	if (!sdata)
1208 		return -EINVAL;
1209 
1210 	s3cdma = devm_kzalloc(&pdev->dev, sizeof(*s3cdma), GFP_KERNEL);
1211 	if (!s3cdma)
1212 		return -ENOMEM;
1213 
1214 	s3cdma->pdev = pdev;
1215 	s3cdma->pdata = pdata;
1216 	s3cdma->sdata = sdata;
1217 
1218 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1219 	s3cdma->base = devm_ioremap_resource(&pdev->dev, res);
1220 	if (IS_ERR(s3cdma->base))
1221 		return PTR_ERR(s3cdma->base);
1222 
1223 	s3cdma->phy_chans = devm_kcalloc(&pdev->dev,
1224 					      pdata->num_phy_channels,
1225 					      sizeof(struct s3c24xx_dma_phy),
1226 					      GFP_KERNEL);
1227 	if (!s3cdma->phy_chans)
1228 		return -ENOMEM;
1229 
1230 	/* acquire irqs and clocks for all physical channels */
1231 	for (i = 0; i < pdata->num_phy_channels; i++) {
1232 		struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1233 		char clk_name[6];
1234 
1235 		phy->id = i;
1236 		phy->base = s3cdma->base + (i * sdata->stride);
1237 		phy->host = s3cdma;
1238 
1239 		phy->irq = platform_get_irq(pdev, i);
1240 		if (phy->irq < 0)
1241 			continue;
1242 
1243 		ret = devm_request_irq(&pdev->dev, phy->irq, s3c24xx_dma_irq,
1244 				       0, pdev->name, phy);
1245 		if (ret) {
1246 			dev_err(&pdev->dev, "Unable to request irq for channel %d, error %d\n",
1247 				i, ret);
1248 			continue;
1249 		}
1250 
1251 		if (sdata->has_clocks) {
1252 			sprintf(clk_name, "dma.%d", i);
1253 			phy->clk = devm_clk_get(&pdev->dev, clk_name);
1254 			if (IS_ERR(phy->clk) && sdata->has_clocks) {
1255 				dev_err(&pdev->dev, "unable to acquire clock for channel %d, error %lu\n",
1256 					i, PTR_ERR(phy->clk));
1257 				continue;
1258 			}
1259 
1260 			ret = clk_prepare(phy->clk);
1261 			if (ret) {
1262 				dev_err(&pdev->dev, "clock for phy %d failed, error %d\n",
1263 					i, ret);
1264 				continue;
1265 			}
1266 		}
1267 
1268 		spin_lock_init(&phy->lock);
1269 		phy->valid = true;
1270 
1271 		dev_dbg(&pdev->dev, "physical channel %d is %s\n",
1272 			i, s3c24xx_dma_phy_busy(phy) ? "BUSY" : "FREE");
1273 	}
1274 
1275 	/* Initialize memcpy engine */
1276 	dma_cap_set(DMA_MEMCPY, s3cdma->memcpy.cap_mask);
1277 	dma_cap_set(DMA_PRIVATE, s3cdma->memcpy.cap_mask);
1278 	s3cdma->memcpy.dev = &pdev->dev;
1279 	s3cdma->memcpy.device_free_chan_resources =
1280 					s3c24xx_dma_free_chan_resources;
1281 	s3cdma->memcpy.device_prep_dma_memcpy = s3c24xx_dma_prep_memcpy;
1282 	s3cdma->memcpy.device_tx_status = s3c24xx_dma_tx_status;
1283 	s3cdma->memcpy.device_issue_pending = s3c24xx_dma_issue_pending;
1284 	s3cdma->memcpy.device_config = s3c24xx_dma_set_runtime_config;
1285 	s3cdma->memcpy.device_terminate_all = s3c24xx_dma_terminate_all;
1286 	s3cdma->memcpy.device_synchronize = s3c24xx_dma_synchronize;
1287 
1288 	/* Initialize slave engine for SoC internal dedicated peripherals */
1289 	dma_cap_set(DMA_SLAVE, s3cdma->slave.cap_mask);
1290 	dma_cap_set(DMA_CYCLIC, s3cdma->slave.cap_mask);
1291 	dma_cap_set(DMA_PRIVATE, s3cdma->slave.cap_mask);
1292 	s3cdma->slave.dev = &pdev->dev;
1293 	s3cdma->slave.device_free_chan_resources =
1294 					s3c24xx_dma_free_chan_resources;
1295 	s3cdma->slave.device_tx_status = s3c24xx_dma_tx_status;
1296 	s3cdma->slave.device_issue_pending = s3c24xx_dma_issue_pending;
1297 	s3cdma->slave.device_prep_slave_sg = s3c24xx_dma_prep_slave_sg;
1298 	s3cdma->slave.device_prep_dma_cyclic = s3c24xx_dma_prep_dma_cyclic;
1299 	s3cdma->slave.device_config = s3c24xx_dma_set_runtime_config;
1300 	s3cdma->slave.device_terminate_all = s3c24xx_dma_terminate_all;
1301 	s3cdma->slave.device_synchronize = s3c24xx_dma_synchronize;
1302 	s3cdma->slave.filter.map = pdata->slave_map;
1303 	s3cdma->slave.filter.mapcnt = pdata->slavecnt;
1304 	s3cdma->slave.filter.fn = s3c24xx_dma_filter;
1305 
1306 	/* Register as many memcpy channels as there are physical channels */
1307 	ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->memcpy,
1308 						pdata->num_phy_channels, false);
1309 	if (ret <= 0) {
1310 		dev_warn(&pdev->dev,
1311 			 "%s failed to enumerate memcpy channels - %d\n",
1312 			 __func__, ret);
1313 		goto err_memcpy;
1314 	}
1315 
1316 	/* Register slave channels */
1317 	ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->slave,
1318 				pdata->num_channels, true);
1319 	if (ret <= 0) {
1320 		dev_warn(&pdev->dev,
1321 			"%s failed to enumerate slave channels - %d\n",
1322 				__func__, ret);
1323 		goto err_slave;
1324 	}
1325 
1326 	ret = dma_async_device_register(&s3cdma->memcpy);
1327 	if (ret) {
1328 		dev_warn(&pdev->dev,
1329 			"%s failed to register memcpy as an async device - %d\n",
1330 			__func__, ret);
1331 		goto err_memcpy_reg;
1332 	}
1333 
1334 	ret = dma_async_device_register(&s3cdma->slave);
1335 	if (ret) {
1336 		dev_warn(&pdev->dev,
1337 			"%s failed to register slave as an async device - %d\n",
1338 			__func__, ret);
1339 		goto err_slave_reg;
1340 	}
1341 
1342 	platform_set_drvdata(pdev, s3cdma);
1343 	dev_info(&pdev->dev, "Loaded dma driver with %d physical channels\n",
1344 		 pdata->num_phy_channels);
1345 
1346 	return 0;
1347 
1348 err_slave_reg:
1349 	dma_async_device_unregister(&s3cdma->memcpy);
1350 err_memcpy_reg:
1351 	s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1352 err_slave:
1353 	s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1354 err_memcpy:
1355 	if (sdata->has_clocks)
1356 		for (i = 0; i < pdata->num_phy_channels; i++) {
1357 			struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1358 			if (phy->valid)
1359 				clk_unprepare(phy->clk);
1360 		}
1361 
1362 	return ret;
1363 }
1364 
s3c24xx_dma_free_irq(struct platform_device * pdev,struct s3c24xx_dma_engine * s3cdma)1365 static void s3c24xx_dma_free_irq(struct platform_device *pdev,
1366 				struct s3c24xx_dma_engine *s3cdma)
1367 {
1368 	int i;
1369 
1370 	for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) {
1371 		struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1372 
1373 		devm_free_irq(&pdev->dev, phy->irq, phy);
1374 	}
1375 }
1376 
s3c24xx_dma_remove(struct platform_device * pdev)1377 static int s3c24xx_dma_remove(struct platform_device *pdev)
1378 {
1379 	const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1380 	struct s3c24xx_dma_engine *s3cdma = platform_get_drvdata(pdev);
1381 	struct soc_data *sdata = s3c24xx_dma_get_soc_data(pdev);
1382 	int i;
1383 
1384 	dma_async_device_unregister(&s3cdma->slave);
1385 	dma_async_device_unregister(&s3cdma->memcpy);
1386 
1387 	s3c24xx_dma_free_irq(pdev, s3cdma);
1388 
1389 	s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1390 	s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1391 
1392 	if (sdata->has_clocks)
1393 		for (i = 0; i < pdata->num_phy_channels; i++) {
1394 			struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1395 			if (phy->valid)
1396 				clk_unprepare(phy->clk);
1397 		}
1398 
1399 	return 0;
1400 }
1401 
1402 static struct platform_driver s3c24xx_dma_driver = {
1403 	.driver		= {
1404 		.name	= "s3c24xx-dma",
1405 	},
1406 	.id_table	= s3c24xx_dma_driver_ids,
1407 	.probe		= s3c24xx_dma_probe,
1408 	.remove		= s3c24xx_dma_remove,
1409 };
1410 
1411 module_platform_driver(s3c24xx_dma_driver);
1412 
s3c24xx_dma_filter(struct dma_chan * chan,void * param)1413 bool s3c24xx_dma_filter(struct dma_chan *chan, void *param)
1414 {
1415 	struct s3c24xx_dma_chan *s3cchan;
1416 
1417 	if (chan->device->dev->driver != &s3c24xx_dma_driver.driver)
1418 		return false;
1419 
1420 	s3cchan = to_s3c24xx_dma_chan(chan);
1421 
1422 	return s3cchan->id == (uintptr_t)param;
1423 }
1424 EXPORT_SYMBOL(s3c24xx_dma_filter);
1425 
1426 MODULE_DESCRIPTION("S3C24XX DMA Driver");
1427 MODULE_AUTHOR("Heiko Stuebner");
1428 MODULE_LICENSE("GPL v2");
1429