1 /* SPDX-License-Identifier: GPL-2.0+ */
2 /*
3 * Task-based RCU implementations.
4 *
5 * Copyright (C) 2020 Paul E. McKenney
6 */
7
8 #ifdef CONFIG_TASKS_RCU_GENERIC
9 #include "rcu_segcblist.h"
10
11 ////////////////////////////////////////////////////////////////////////
12 //
13 // Generic data structures.
14
15 struct rcu_tasks;
16 typedef void (*rcu_tasks_gp_func_t)(struct rcu_tasks *rtp);
17 typedef void (*pregp_func_t)(struct list_head *hop);
18 typedef void (*pertask_func_t)(struct task_struct *t, struct list_head *hop);
19 typedef void (*postscan_func_t)(struct list_head *hop);
20 typedef void (*holdouts_func_t)(struct list_head *hop, bool ndrpt, bool *frptp);
21 typedef void (*postgp_func_t)(struct rcu_tasks *rtp);
22
23 /**
24 * struct rcu_tasks_percpu - Per-CPU component of definition for a Tasks-RCU-like mechanism.
25 * @cblist: Callback list.
26 * @lock: Lock protecting per-CPU callback list.
27 * @rtp_jiffies: Jiffies counter value for statistics.
28 * @rtp_n_lock_retries: Rough lock-contention statistic.
29 * @rtp_work: Work queue for invoking callbacks.
30 * @rtp_irq_work: IRQ work queue for deferred wakeups.
31 * @barrier_q_head: RCU callback for barrier operation.
32 * @rtp_blkd_tasks: List of tasks blocked as readers.
33 * @cpu: CPU number corresponding to this entry.
34 * @rtpp: Pointer to the rcu_tasks structure.
35 */
36 struct rcu_tasks_percpu {
37 struct rcu_segcblist cblist;
38 raw_spinlock_t __private lock;
39 unsigned long rtp_jiffies;
40 unsigned long rtp_n_lock_retries;
41 struct work_struct rtp_work;
42 struct irq_work rtp_irq_work;
43 struct rcu_head barrier_q_head;
44 struct list_head rtp_blkd_tasks;
45 int cpu;
46 struct rcu_tasks *rtpp;
47 };
48
49 /**
50 * struct rcu_tasks - Definition for a Tasks-RCU-like mechanism.
51 * @cbs_wait: RCU wait allowing a new callback to get kthread's attention.
52 * @cbs_gbl_lock: Lock protecting callback list.
53 * @tasks_gp_mutex: Mutex protecting grace period, needed during mid-boot dead zone.
54 * @kthread_ptr: This flavor's grace-period/callback-invocation kthread.
55 * @gp_func: This flavor's grace-period-wait function.
56 * @gp_state: Grace period's most recent state transition (debugging).
57 * @gp_sleep: Per-grace-period sleep to prevent CPU-bound looping.
58 * @init_fract: Initial backoff sleep interval.
59 * @gp_jiffies: Time of last @gp_state transition.
60 * @gp_start: Most recent grace-period start in jiffies.
61 * @tasks_gp_seq: Number of grace periods completed since boot.
62 * @n_ipis: Number of IPIs sent to encourage grace periods to end.
63 * @n_ipis_fails: Number of IPI-send failures.
64 * @pregp_func: This flavor's pre-grace-period function (optional).
65 * @pertask_func: This flavor's per-task scan function (optional).
66 * @postscan_func: This flavor's post-task scan function (optional).
67 * @holdouts_func: This flavor's holdout-list scan function (optional).
68 * @postgp_func: This flavor's post-grace-period function (optional).
69 * @call_func: This flavor's call_rcu()-equivalent function.
70 * @rtpcpu: This flavor's rcu_tasks_percpu structure.
71 * @percpu_enqueue_shift: Shift down CPU ID this much when enqueuing callbacks.
72 * @percpu_enqueue_lim: Number of per-CPU callback queues in use for enqueuing.
73 * @percpu_dequeue_lim: Number of per-CPU callback queues in use for dequeuing.
74 * @percpu_dequeue_gpseq: RCU grace-period number to propagate enqueue limit to dequeuers.
75 * @barrier_q_mutex: Serialize barrier operations.
76 * @barrier_q_count: Number of queues being waited on.
77 * @barrier_q_completion: Barrier wait/wakeup mechanism.
78 * @barrier_q_seq: Sequence number for barrier operations.
79 * @name: This flavor's textual name.
80 * @kname: This flavor's kthread name.
81 */
82 struct rcu_tasks {
83 struct rcuwait cbs_wait;
84 raw_spinlock_t cbs_gbl_lock;
85 struct mutex tasks_gp_mutex;
86 int gp_state;
87 int gp_sleep;
88 int init_fract;
89 unsigned long gp_jiffies;
90 unsigned long gp_start;
91 unsigned long tasks_gp_seq;
92 unsigned long n_ipis;
93 unsigned long n_ipis_fails;
94 struct task_struct *kthread_ptr;
95 rcu_tasks_gp_func_t gp_func;
96 pregp_func_t pregp_func;
97 pertask_func_t pertask_func;
98 postscan_func_t postscan_func;
99 holdouts_func_t holdouts_func;
100 postgp_func_t postgp_func;
101 call_rcu_func_t call_func;
102 struct rcu_tasks_percpu __percpu *rtpcpu;
103 int percpu_enqueue_shift;
104 int percpu_enqueue_lim;
105 int percpu_dequeue_lim;
106 unsigned long percpu_dequeue_gpseq;
107 struct mutex barrier_q_mutex;
108 atomic_t barrier_q_count;
109 struct completion barrier_q_completion;
110 unsigned long barrier_q_seq;
111 char *name;
112 char *kname;
113 };
114
115 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp);
116
117 #define DEFINE_RCU_TASKS(rt_name, gp, call, n) \
118 static DEFINE_PER_CPU(struct rcu_tasks_percpu, rt_name ## __percpu) = { \
119 .lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name ## __percpu.cbs_pcpu_lock), \
120 .rtp_irq_work = IRQ_WORK_INIT_HARD(call_rcu_tasks_iw_wakeup), \
121 }; \
122 static struct rcu_tasks rt_name = \
123 { \
124 .cbs_wait = __RCUWAIT_INITIALIZER(rt_name.wait), \
125 .cbs_gbl_lock = __RAW_SPIN_LOCK_UNLOCKED(rt_name.cbs_gbl_lock), \
126 .tasks_gp_mutex = __MUTEX_INITIALIZER(rt_name.tasks_gp_mutex), \
127 .gp_func = gp, \
128 .call_func = call, \
129 .rtpcpu = &rt_name ## __percpu, \
130 .name = n, \
131 .percpu_enqueue_shift = order_base_2(CONFIG_NR_CPUS), \
132 .percpu_enqueue_lim = 1, \
133 .percpu_dequeue_lim = 1, \
134 .barrier_q_mutex = __MUTEX_INITIALIZER(rt_name.barrier_q_mutex), \
135 .barrier_q_seq = (0UL - 50UL) << RCU_SEQ_CTR_SHIFT, \
136 .kname = #rt_name, \
137 }
138
139 /* Track exiting tasks in order to allow them to be waited for. */
140 DEFINE_STATIC_SRCU(tasks_rcu_exit_srcu);
141
142 /* Avoid IPIing CPUs early in the grace period. */
143 #define RCU_TASK_IPI_DELAY (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) ? HZ / 2 : 0)
144 static int rcu_task_ipi_delay __read_mostly = RCU_TASK_IPI_DELAY;
145 module_param(rcu_task_ipi_delay, int, 0644);
146
147 /* Control stall timeouts. Disable with <= 0, otherwise jiffies till stall. */
148 #define RCU_TASK_BOOT_STALL_TIMEOUT (HZ * 30)
149 #define RCU_TASK_STALL_TIMEOUT (HZ * 60 * 10)
150 static int rcu_task_stall_timeout __read_mostly = RCU_TASK_STALL_TIMEOUT;
151 module_param(rcu_task_stall_timeout, int, 0644);
152 #define RCU_TASK_STALL_INFO (HZ * 10)
153 static int rcu_task_stall_info __read_mostly = RCU_TASK_STALL_INFO;
154 module_param(rcu_task_stall_info, int, 0644);
155 static int rcu_task_stall_info_mult __read_mostly = 3;
156 module_param(rcu_task_stall_info_mult, int, 0444);
157
158 static int rcu_task_enqueue_lim __read_mostly = -1;
159 module_param(rcu_task_enqueue_lim, int, 0444);
160
161 static bool rcu_task_cb_adjust;
162 static int rcu_task_contend_lim __read_mostly = 100;
163 module_param(rcu_task_contend_lim, int, 0444);
164 static int rcu_task_collapse_lim __read_mostly = 10;
165 module_param(rcu_task_collapse_lim, int, 0444);
166
167 /* RCU tasks grace-period state for debugging. */
168 #define RTGS_INIT 0
169 #define RTGS_WAIT_WAIT_CBS 1
170 #define RTGS_WAIT_GP 2
171 #define RTGS_PRE_WAIT_GP 3
172 #define RTGS_SCAN_TASKLIST 4
173 #define RTGS_POST_SCAN_TASKLIST 5
174 #define RTGS_WAIT_SCAN_HOLDOUTS 6
175 #define RTGS_SCAN_HOLDOUTS 7
176 #define RTGS_POST_GP 8
177 #define RTGS_WAIT_READERS 9
178 #define RTGS_INVOKE_CBS 10
179 #define RTGS_WAIT_CBS 11
180 #ifndef CONFIG_TINY_RCU
181 static const char * const rcu_tasks_gp_state_names[] = {
182 "RTGS_INIT",
183 "RTGS_WAIT_WAIT_CBS",
184 "RTGS_WAIT_GP",
185 "RTGS_PRE_WAIT_GP",
186 "RTGS_SCAN_TASKLIST",
187 "RTGS_POST_SCAN_TASKLIST",
188 "RTGS_WAIT_SCAN_HOLDOUTS",
189 "RTGS_SCAN_HOLDOUTS",
190 "RTGS_POST_GP",
191 "RTGS_WAIT_READERS",
192 "RTGS_INVOKE_CBS",
193 "RTGS_WAIT_CBS",
194 };
195 #endif /* #ifndef CONFIG_TINY_RCU */
196
197 ////////////////////////////////////////////////////////////////////////
198 //
199 // Generic code.
200
201 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp);
202
203 /* Record grace-period phase and time. */
set_tasks_gp_state(struct rcu_tasks * rtp,int newstate)204 static void set_tasks_gp_state(struct rcu_tasks *rtp, int newstate)
205 {
206 rtp->gp_state = newstate;
207 rtp->gp_jiffies = jiffies;
208 }
209
210 #ifndef CONFIG_TINY_RCU
211 /* Return state name. */
tasks_gp_state_getname(struct rcu_tasks * rtp)212 static const char *tasks_gp_state_getname(struct rcu_tasks *rtp)
213 {
214 int i = data_race(rtp->gp_state); // Let KCSAN detect update races
215 int j = READ_ONCE(i); // Prevent the compiler from reading twice
216
217 if (j >= ARRAY_SIZE(rcu_tasks_gp_state_names))
218 return "???";
219 return rcu_tasks_gp_state_names[j];
220 }
221 #endif /* #ifndef CONFIG_TINY_RCU */
222
223 // Initialize per-CPU callback lists for the specified flavor of
224 // Tasks RCU.
cblist_init_generic(struct rcu_tasks * rtp)225 static void cblist_init_generic(struct rcu_tasks *rtp)
226 {
227 int cpu;
228 unsigned long flags;
229 int lim;
230 int shift;
231
232 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
233 if (rcu_task_enqueue_lim < 0) {
234 rcu_task_enqueue_lim = 1;
235 rcu_task_cb_adjust = true;
236 pr_info("%s: Setting adjustable number of callback queues.\n", __func__);
237 } else if (rcu_task_enqueue_lim == 0) {
238 rcu_task_enqueue_lim = 1;
239 }
240 lim = rcu_task_enqueue_lim;
241
242 if (lim > nr_cpu_ids)
243 lim = nr_cpu_ids;
244 shift = ilog2(nr_cpu_ids / lim);
245 if (((nr_cpu_ids - 1) >> shift) >= lim)
246 shift++;
247 WRITE_ONCE(rtp->percpu_enqueue_shift, shift);
248 WRITE_ONCE(rtp->percpu_dequeue_lim, lim);
249 smp_store_release(&rtp->percpu_enqueue_lim, lim);
250 for_each_possible_cpu(cpu) {
251 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
252
253 WARN_ON_ONCE(!rtpcp);
254 if (cpu)
255 raw_spin_lock_init(&ACCESS_PRIVATE(rtpcp, lock));
256 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
257 if (rcu_segcblist_empty(&rtpcp->cblist))
258 rcu_segcblist_init(&rtpcp->cblist);
259 INIT_WORK(&rtpcp->rtp_work, rcu_tasks_invoke_cbs_wq);
260 rtpcp->cpu = cpu;
261 rtpcp->rtpp = rtp;
262 if (!rtpcp->rtp_blkd_tasks.next)
263 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
264 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
265 }
266 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
267 pr_info("%s: Setting shift to %d and lim to %d.\n", __func__, data_race(rtp->percpu_enqueue_shift), data_race(rtp->percpu_enqueue_lim));
268 }
269
270 // IRQ-work handler that does deferred wakeup for call_rcu_tasks_generic().
call_rcu_tasks_iw_wakeup(struct irq_work * iwp)271 static void call_rcu_tasks_iw_wakeup(struct irq_work *iwp)
272 {
273 struct rcu_tasks *rtp;
274 struct rcu_tasks_percpu *rtpcp = container_of(iwp, struct rcu_tasks_percpu, rtp_irq_work);
275
276 rtp = rtpcp->rtpp;
277 rcuwait_wake_up(&rtp->cbs_wait);
278 }
279
280 // Enqueue a callback for the specified flavor of Tasks RCU.
call_rcu_tasks_generic(struct rcu_head * rhp,rcu_callback_t func,struct rcu_tasks * rtp)281 static void call_rcu_tasks_generic(struct rcu_head *rhp, rcu_callback_t func,
282 struct rcu_tasks *rtp)
283 {
284 int chosen_cpu;
285 unsigned long flags;
286 int ideal_cpu;
287 unsigned long j;
288 bool needadjust = false;
289 bool needwake;
290 struct rcu_tasks_percpu *rtpcp;
291
292 rhp->next = NULL;
293 rhp->func = func;
294 local_irq_save(flags);
295 rcu_read_lock();
296 ideal_cpu = smp_processor_id() >> READ_ONCE(rtp->percpu_enqueue_shift);
297 chosen_cpu = cpumask_next(ideal_cpu - 1, cpu_possible_mask);
298 rtpcp = per_cpu_ptr(rtp->rtpcpu, chosen_cpu);
299 if (!raw_spin_trylock_rcu_node(rtpcp)) { // irqs already disabled.
300 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
301 j = jiffies;
302 if (rtpcp->rtp_jiffies != j) {
303 rtpcp->rtp_jiffies = j;
304 rtpcp->rtp_n_lock_retries = 0;
305 }
306 if (rcu_task_cb_adjust && ++rtpcp->rtp_n_lock_retries > rcu_task_contend_lim &&
307 READ_ONCE(rtp->percpu_enqueue_lim) != nr_cpu_ids)
308 needadjust = true; // Defer adjustment to avoid deadlock.
309 }
310 if (!rcu_segcblist_is_enabled(&rtpcp->cblist)) {
311 raw_spin_unlock_rcu_node(rtpcp); // irqs remain disabled.
312 cblist_init_generic(rtp);
313 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled.
314 }
315 needwake = rcu_segcblist_empty(&rtpcp->cblist);
316 rcu_segcblist_enqueue(&rtpcp->cblist, rhp);
317 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
318 if (unlikely(needadjust)) {
319 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
320 if (rtp->percpu_enqueue_lim != nr_cpu_ids) {
321 WRITE_ONCE(rtp->percpu_enqueue_shift, 0);
322 WRITE_ONCE(rtp->percpu_dequeue_lim, nr_cpu_ids);
323 smp_store_release(&rtp->percpu_enqueue_lim, nr_cpu_ids);
324 pr_info("Switching %s to per-CPU callback queuing.\n", rtp->name);
325 }
326 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
327 }
328 rcu_read_unlock();
329 /* We can't create the thread unless interrupts are enabled. */
330 if (needwake && READ_ONCE(rtp->kthread_ptr))
331 irq_work_queue(&rtpcp->rtp_irq_work);
332 }
333
334 // RCU callback function for rcu_barrier_tasks_generic().
rcu_barrier_tasks_generic_cb(struct rcu_head * rhp)335 static void rcu_barrier_tasks_generic_cb(struct rcu_head *rhp)
336 {
337 struct rcu_tasks *rtp;
338 struct rcu_tasks_percpu *rtpcp;
339
340 rtpcp = container_of(rhp, struct rcu_tasks_percpu, barrier_q_head);
341 rtp = rtpcp->rtpp;
342 if (atomic_dec_and_test(&rtp->barrier_q_count))
343 complete(&rtp->barrier_q_completion);
344 }
345
346 // Wait for all in-flight callbacks for the specified RCU Tasks flavor.
347 // Operates in a manner similar to rcu_barrier().
rcu_barrier_tasks_generic(struct rcu_tasks * rtp)348 static void rcu_barrier_tasks_generic(struct rcu_tasks *rtp)
349 {
350 int cpu;
351 unsigned long flags;
352 struct rcu_tasks_percpu *rtpcp;
353 unsigned long s = rcu_seq_snap(&rtp->barrier_q_seq);
354
355 mutex_lock(&rtp->barrier_q_mutex);
356 if (rcu_seq_done(&rtp->barrier_q_seq, s)) {
357 smp_mb();
358 mutex_unlock(&rtp->barrier_q_mutex);
359 return;
360 }
361 rcu_seq_start(&rtp->barrier_q_seq);
362 init_completion(&rtp->barrier_q_completion);
363 atomic_set(&rtp->barrier_q_count, 2);
364 for_each_possible_cpu(cpu) {
365 if (cpu >= smp_load_acquire(&rtp->percpu_dequeue_lim))
366 break;
367 rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
368 rtpcp->barrier_q_head.func = rcu_barrier_tasks_generic_cb;
369 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
370 if (rcu_segcblist_entrain(&rtpcp->cblist, &rtpcp->barrier_q_head))
371 atomic_inc(&rtp->barrier_q_count);
372 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
373 }
374 if (atomic_sub_and_test(2, &rtp->barrier_q_count))
375 complete(&rtp->barrier_q_completion);
376 wait_for_completion(&rtp->barrier_q_completion);
377 rcu_seq_end(&rtp->barrier_q_seq);
378 mutex_unlock(&rtp->barrier_q_mutex);
379 }
380
381 // Advance callbacks and indicate whether either a grace period or
382 // callback invocation is needed.
rcu_tasks_need_gpcb(struct rcu_tasks * rtp)383 static int rcu_tasks_need_gpcb(struct rcu_tasks *rtp)
384 {
385 int cpu;
386 unsigned long flags;
387 long n;
388 long ncbs = 0;
389 long ncbsnz = 0;
390 int needgpcb = 0;
391
392 for (cpu = 0; cpu < smp_load_acquire(&rtp->percpu_dequeue_lim); cpu++) {
393 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
394
395 /* Advance and accelerate any new callbacks. */
396 if (!rcu_segcblist_n_cbs(&rtpcp->cblist))
397 continue;
398 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
399 // Should we shrink down to a single callback queue?
400 n = rcu_segcblist_n_cbs(&rtpcp->cblist);
401 if (n) {
402 ncbs += n;
403 if (cpu > 0)
404 ncbsnz += n;
405 }
406 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
407 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
408 if (rcu_segcblist_pend_cbs(&rtpcp->cblist))
409 needgpcb |= 0x3;
410 if (!rcu_segcblist_empty(&rtpcp->cblist))
411 needgpcb |= 0x1;
412 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
413 }
414
415 // Shrink down to a single callback queue if appropriate.
416 // This is done in two stages: (1) If there are no more than
417 // rcu_task_collapse_lim callbacks on CPU 0 and none on any other
418 // CPU, limit enqueueing to CPU 0. (2) After an RCU grace period,
419 // if there has not been an increase in callbacks, limit dequeuing
420 // to CPU 0. Note the matching RCU read-side critical section in
421 // call_rcu_tasks_generic().
422 if (rcu_task_cb_adjust && ncbs <= rcu_task_collapse_lim) {
423 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
424 if (rtp->percpu_enqueue_lim > 1) {
425 WRITE_ONCE(rtp->percpu_enqueue_shift, order_base_2(nr_cpu_ids));
426 smp_store_release(&rtp->percpu_enqueue_lim, 1);
427 rtp->percpu_dequeue_gpseq = get_state_synchronize_rcu();
428 pr_info("Starting switch %s to CPU-0 callback queuing.\n", rtp->name);
429 }
430 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
431 }
432 if (rcu_task_cb_adjust && !ncbsnz &&
433 poll_state_synchronize_rcu(rtp->percpu_dequeue_gpseq)) {
434 raw_spin_lock_irqsave(&rtp->cbs_gbl_lock, flags);
435 if (rtp->percpu_enqueue_lim < rtp->percpu_dequeue_lim) {
436 WRITE_ONCE(rtp->percpu_dequeue_lim, 1);
437 pr_info("Completing switch %s to CPU-0 callback queuing.\n", rtp->name);
438 }
439 for (cpu = rtp->percpu_dequeue_lim; cpu < nr_cpu_ids; cpu++) {
440 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
441
442 WARN_ON_ONCE(rcu_segcblist_n_cbs(&rtpcp->cblist));
443 }
444 raw_spin_unlock_irqrestore(&rtp->cbs_gbl_lock, flags);
445 }
446
447 return needgpcb;
448 }
449
450 // Advance callbacks and invoke any that are ready.
rcu_tasks_invoke_cbs(struct rcu_tasks * rtp,struct rcu_tasks_percpu * rtpcp)451 static void rcu_tasks_invoke_cbs(struct rcu_tasks *rtp, struct rcu_tasks_percpu *rtpcp)
452 {
453 int cpu;
454 int cpunext;
455 unsigned long flags;
456 int len;
457 struct rcu_head *rhp;
458 struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
459 struct rcu_tasks_percpu *rtpcp_next;
460
461 cpu = rtpcp->cpu;
462 cpunext = cpu * 2 + 1;
463 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
464 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
465 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
466 cpunext++;
467 if (cpunext < smp_load_acquire(&rtp->percpu_dequeue_lim)) {
468 rtpcp_next = per_cpu_ptr(rtp->rtpcpu, cpunext);
469 queue_work_on(cpunext, system_wq, &rtpcp_next->rtp_work);
470 }
471 }
472
473 if (rcu_segcblist_empty(&rtpcp->cblist) || !cpu_possible(cpu))
474 return;
475 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
476 rcu_segcblist_advance(&rtpcp->cblist, rcu_seq_current(&rtp->tasks_gp_seq));
477 rcu_segcblist_extract_done_cbs(&rtpcp->cblist, &rcl);
478 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
479 len = rcl.len;
480 for (rhp = rcu_cblist_dequeue(&rcl); rhp; rhp = rcu_cblist_dequeue(&rcl)) {
481 local_bh_disable();
482 rhp->func(rhp);
483 local_bh_enable();
484 cond_resched();
485 }
486 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
487 rcu_segcblist_add_len(&rtpcp->cblist, -len);
488 (void)rcu_segcblist_accelerate(&rtpcp->cblist, rcu_seq_snap(&rtp->tasks_gp_seq));
489 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
490 }
491
492 // Workqueue flood to advance callbacks and invoke any that are ready.
rcu_tasks_invoke_cbs_wq(struct work_struct * wp)493 static void rcu_tasks_invoke_cbs_wq(struct work_struct *wp)
494 {
495 struct rcu_tasks *rtp;
496 struct rcu_tasks_percpu *rtpcp = container_of(wp, struct rcu_tasks_percpu, rtp_work);
497
498 rtp = rtpcp->rtpp;
499 rcu_tasks_invoke_cbs(rtp, rtpcp);
500 }
501
502 // Wait for one grace period.
rcu_tasks_one_gp(struct rcu_tasks * rtp,bool midboot)503 static void rcu_tasks_one_gp(struct rcu_tasks *rtp, bool midboot)
504 {
505 int needgpcb;
506
507 mutex_lock(&rtp->tasks_gp_mutex);
508
509 // If there were none, wait a bit and start over.
510 if (unlikely(midboot)) {
511 needgpcb = 0x2;
512 } else {
513 set_tasks_gp_state(rtp, RTGS_WAIT_CBS);
514 rcuwait_wait_event(&rtp->cbs_wait,
515 (needgpcb = rcu_tasks_need_gpcb(rtp)),
516 TASK_IDLE);
517 }
518
519 if (needgpcb & 0x2) {
520 // Wait for one grace period.
521 set_tasks_gp_state(rtp, RTGS_WAIT_GP);
522 rtp->gp_start = jiffies;
523 rcu_seq_start(&rtp->tasks_gp_seq);
524 rtp->gp_func(rtp);
525 rcu_seq_end(&rtp->tasks_gp_seq);
526 }
527
528 // Invoke callbacks.
529 set_tasks_gp_state(rtp, RTGS_INVOKE_CBS);
530 rcu_tasks_invoke_cbs(rtp, per_cpu_ptr(rtp->rtpcpu, 0));
531 mutex_unlock(&rtp->tasks_gp_mutex);
532 }
533
534 // RCU-tasks kthread that detects grace periods and invokes callbacks.
rcu_tasks_kthread(void * arg)535 static int __noreturn rcu_tasks_kthread(void *arg)
536 {
537 struct rcu_tasks *rtp = arg;
538
539 /* Run on housekeeping CPUs by default. Sysadm can move if desired. */
540 housekeeping_affine(current, HK_TYPE_RCU);
541 WRITE_ONCE(rtp->kthread_ptr, current); // Let GPs start!
542
543 /*
544 * Each pass through the following loop makes one check for
545 * newly arrived callbacks, and, if there are some, waits for
546 * one RCU-tasks grace period and then invokes the callbacks.
547 * This loop is terminated by the system going down. ;-)
548 */
549 for (;;) {
550 // Wait for one grace period and invoke any callbacks
551 // that are ready.
552 rcu_tasks_one_gp(rtp, false);
553
554 // Paranoid sleep to keep this from entering a tight loop.
555 schedule_timeout_idle(rtp->gp_sleep);
556 }
557 }
558
559 // Wait for a grace period for the specified flavor of Tasks RCU.
synchronize_rcu_tasks_generic(struct rcu_tasks * rtp)560 static void synchronize_rcu_tasks_generic(struct rcu_tasks *rtp)
561 {
562 /* Complain if the scheduler has not started. */
563 WARN_ONCE(rcu_scheduler_active == RCU_SCHEDULER_INACTIVE,
564 "synchronize_rcu_tasks called too soon");
565
566 // If the grace-period kthread is running, use it.
567 if (READ_ONCE(rtp->kthread_ptr)) {
568 wait_rcu_gp(rtp->call_func);
569 return;
570 }
571 rcu_tasks_one_gp(rtp, true);
572 }
573
574 /* Spawn RCU-tasks grace-period kthread. */
rcu_spawn_tasks_kthread_generic(struct rcu_tasks * rtp)575 static void __init rcu_spawn_tasks_kthread_generic(struct rcu_tasks *rtp)
576 {
577 struct task_struct *t;
578
579 t = kthread_run(rcu_tasks_kthread, rtp, "%s_kthread", rtp->kname);
580 if (WARN_ONCE(IS_ERR(t), "%s: Could not start %s grace-period kthread, OOM is now expected behavior\n", __func__, rtp->name))
581 return;
582 smp_mb(); /* Ensure others see full kthread. */
583 }
584
585 #ifndef CONFIG_TINY_RCU
586
587 /*
588 * Print any non-default Tasks RCU settings.
589 */
rcu_tasks_bootup_oddness(void)590 static void __init rcu_tasks_bootup_oddness(void)
591 {
592 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
593 int rtsimc;
594
595 if (rcu_task_stall_timeout != RCU_TASK_STALL_TIMEOUT)
596 pr_info("\tTasks-RCU CPU stall warnings timeout set to %d (rcu_task_stall_timeout).\n", rcu_task_stall_timeout);
597 rtsimc = clamp(rcu_task_stall_info_mult, 1, 10);
598 if (rtsimc != rcu_task_stall_info_mult) {
599 pr_info("\tTasks-RCU CPU stall info multiplier clamped to %d (rcu_task_stall_info_mult).\n", rtsimc);
600 rcu_task_stall_info_mult = rtsimc;
601 }
602 #endif /* #ifdef CONFIG_TASKS_RCU */
603 #ifdef CONFIG_TASKS_RCU
604 pr_info("\tTrampoline variant of Tasks RCU enabled.\n");
605 #endif /* #ifdef CONFIG_TASKS_RCU */
606 #ifdef CONFIG_TASKS_RUDE_RCU
607 pr_info("\tRude variant of Tasks RCU enabled.\n");
608 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
609 #ifdef CONFIG_TASKS_TRACE_RCU
610 pr_info("\tTracing variant of Tasks RCU enabled.\n");
611 #endif /* #ifdef CONFIG_TASKS_TRACE_RCU */
612 }
613
614 #endif /* #ifndef CONFIG_TINY_RCU */
615
616 #ifndef CONFIG_TINY_RCU
617 /* Dump out rcutorture-relevant state common to all RCU-tasks flavors. */
show_rcu_tasks_generic_gp_kthread(struct rcu_tasks * rtp,char * s)618 static void show_rcu_tasks_generic_gp_kthread(struct rcu_tasks *rtp, char *s)
619 {
620 int cpu;
621 bool havecbs = false;
622
623 for_each_possible_cpu(cpu) {
624 struct rcu_tasks_percpu *rtpcp = per_cpu_ptr(rtp->rtpcpu, cpu);
625
626 if (!data_race(rcu_segcblist_empty(&rtpcp->cblist))) {
627 havecbs = true;
628 break;
629 }
630 }
631 pr_info("%s: %s(%d) since %lu g:%lu i:%lu/%lu %c%c %s\n",
632 rtp->kname,
633 tasks_gp_state_getname(rtp), data_race(rtp->gp_state),
634 jiffies - data_race(rtp->gp_jiffies),
635 data_race(rcu_seq_current(&rtp->tasks_gp_seq)),
636 data_race(rtp->n_ipis_fails), data_race(rtp->n_ipis),
637 ".k"[!!data_race(rtp->kthread_ptr)],
638 ".C"[havecbs],
639 s);
640 }
641 #endif // #ifndef CONFIG_TINY_RCU
642
643 static void exit_tasks_rcu_finish_trace(struct task_struct *t);
644
645 #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU)
646
647 ////////////////////////////////////////////////////////////////////////
648 //
649 // Shared code between task-list-scanning variants of Tasks RCU.
650
651 /* Wait for one RCU-tasks grace period. */
rcu_tasks_wait_gp(struct rcu_tasks * rtp)652 static void rcu_tasks_wait_gp(struct rcu_tasks *rtp)
653 {
654 struct task_struct *g;
655 int fract;
656 LIST_HEAD(holdouts);
657 unsigned long j;
658 unsigned long lastinfo;
659 unsigned long lastreport;
660 bool reported = false;
661 int rtsi;
662 struct task_struct *t;
663
664 set_tasks_gp_state(rtp, RTGS_PRE_WAIT_GP);
665 rtp->pregp_func(&holdouts);
666
667 /*
668 * There were callbacks, so we need to wait for an RCU-tasks
669 * grace period. Start off by scanning the task list for tasks
670 * that are not already voluntarily blocked. Mark these tasks
671 * and make a list of them in holdouts.
672 */
673 set_tasks_gp_state(rtp, RTGS_SCAN_TASKLIST);
674 if (rtp->pertask_func) {
675 rcu_read_lock();
676 for_each_process_thread(g, t)
677 rtp->pertask_func(t, &holdouts);
678 rcu_read_unlock();
679 }
680
681 set_tasks_gp_state(rtp, RTGS_POST_SCAN_TASKLIST);
682 rtp->postscan_func(&holdouts);
683
684 /*
685 * Each pass through the following loop scans the list of holdout
686 * tasks, removing any that are no longer holdouts. When the list
687 * is empty, we are done.
688 */
689 lastreport = jiffies;
690 lastinfo = lastreport;
691 rtsi = READ_ONCE(rcu_task_stall_info);
692
693 // Start off with initial wait and slowly back off to 1 HZ wait.
694 fract = rtp->init_fract;
695
696 while (!list_empty(&holdouts)) {
697 ktime_t exp;
698 bool firstreport;
699 bool needreport;
700 int rtst;
701
702 // Slowly back off waiting for holdouts
703 set_tasks_gp_state(rtp, RTGS_WAIT_SCAN_HOLDOUTS);
704 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
705 schedule_timeout_idle(fract);
706 } else {
707 exp = jiffies_to_nsecs(fract);
708 __set_current_state(TASK_IDLE);
709 schedule_hrtimeout_range(&exp, jiffies_to_nsecs(HZ / 2), HRTIMER_MODE_REL_HARD);
710 }
711
712 if (fract < HZ)
713 fract++;
714
715 rtst = READ_ONCE(rcu_task_stall_timeout);
716 needreport = rtst > 0 && time_after(jiffies, lastreport + rtst);
717 if (needreport) {
718 lastreport = jiffies;
719 reported = true;
720 }
721 firstreport = true;
722 WARN_ON(signal_pending(current));
723 set_tasks_gp_state(rtp, RTGS_SCAN_HOLDOUTS);
724 rtp->holdouts_func(&holdouts, needreport, &firstreport);
725
726 // Print pre-stall informational messages if needed.
727 j = jiffies;
728 if (rtsi > 0 && !reported && time_after(j, lastinfo + rtsi)) {
729 lastinfo = j;
730 rtsi = rtsi * rcu_task_stall_info_mult;
731 pr_info("%s: %s grace period %lu is %lu jiffies old.\n",
732 __func__, rtp->kname, rtp->tasks_gp_seq, j - rtp->gp_start);
733 }
734 }
735
736 set_tasks_gp_state(rtp, RTGS_POST_GP);
737 rtp->postgp_func(rtp);
738 }
739
740 #endif /* #if defined(CONFIG_TASKS_RCU) || defined(CONFIG_TASKS_TRACE_RCU) */
741
742 #ifdef CONFIG_TASKS_RCU
743
744 ////////////////////////////////////////////////////////////////////////
745 //
746 // Simple variant of RCU whose quiescent states are voluntary context
747 // switch, cond_resched_tasks_rcu_qs(), user-space execution, and idle.
748 // As such, grace periods can take one good long time. There are no
749 // read-side primitives similar to rcu_read_lock() and rcu_read_unlock()
750 // because this implementation is intended to get the system into a safe
751 // state for some of the manipulations involved in tracing and the like.
752 // Finally, this implementation does not support high call_rcu_tasks()
753 // rates from multiple CPUs. If this is required, per-CPU callback lists
754 // will be needed.
755 //
756 // The implementation uses rcu_tasks_wait_gp(), which relies on function
757 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_kthread()
758 // function sets these function pointers up so that rcu_tasks_wait_gp()
759 // invokes these functions in this order:
760 //
761 // rcu_tasks_pregp_step():
762 // Invokes synchronize_rcu() in order to wait for all in-flight
763 // t->on_rq and t->nvcsw transitions to complete. This works because
764 // all such transitions are carried out with interrupts disabled.
765 // rcu_tasks_pertask(), invoked on every non-idle task:
766 // For every runnable non-idle task other than the current one, use
767 // get_task_struct() to pin down that task, snapshot that task's
768 // number of voluntary context switches, and add that task to the
769 // holdout list.
770 // rcu_tasks_postscan():
771 // Invoke synchronize_srcu() to ensure that all tasks that were
772 // in the process of exiting (and which thus might not know to
773 // synchronize with this RCU Tasks grace period) have completed
774 // exiting.
775 // check_all_holdout_tasks(), repeatedly until holdout list is empty:
776 // Scans the holdout list, attempting to identify a quiescent state
777 // for each task on the list. If there is a quiescent state, the
778 // corresponding task is removed from the holdout list.
779 // rcu_tasks_postgp():
780 // Invokes synchronize_rcu() in order to ensure that all prior
781 // t->on_rq and t->nvcsw transitions are seen by all CPUs and tasks
782 // to have happened before the end of this RCU Tasks grace period.
783 // Again, this works because all such transitions are carried out
784 // with interrupts disabled.
785 //
786 // For each exiting task, the exit_tasks_rcu_start() and
787 // exit_tasks_rcu_finish() functions begin and end, respectively, the SRCU
788 // read-side critical sections waited for by rcu_tasks_postscan().
789 //
790 // Pre-grace-period update-side code is ordered before the grace
791 // via the raw_spin_lock.*rcu_node(). Pre-grace-period read-side code
792 // is ordered before the grace period via synchronize_rcu() call in
793 // rcu_tasks_pregp_step() and by the scheduler's locks and interrupt
794 // disabling.
795
796 /* Pre-grace-period preparation. */
rcu_tasks_pregp_step(struct list_head * hop)797 static void rcu_tasks_pregp_step(struct list_head *hop)
798 {
799 /*
800 * Wait for all pre-existing t->on_rq and t->nvcsw transitions
801 * to complete. Invoking synchronize_rcu() suffices because all
802 * these transitions occur with interrupts disabled. Without this
803 * synchronize_rcu(), a read-side critical section that started
804 * before the grace period might be incorrectly seen as having
805 * started after the grace period.
806 *
807 * This synchronize_rcu() also dispenses with the need for a
808 * memory barrier on the first store to t->rcu_tasks_holdout,
809 * as it forces the store to happen after the beginning of the
810 * grace period.
811 */
812 synchronize_rcu();
813 }
814
815 /* Per-task initial processing. */
rcu_tasks_pertask(struct task_struct * t,struct list_head * hop)816 static void rcu_tasks_pertask(struct task_struct *t, struct list_head *hop)
817 {
818 if (t != current && READ_ONCE(t->on_rq) && !is_idle_task(t)) {
819 get_task_struct(t);
820 t->rcu_tasks_nvcsw = READ_ONCE(t->nvcsw);
821 WRITE_ONCE(t->rcu_tasks_holdout, true);
822 list_add(&t->rcu_tasks_holdout_list, hop);
823 }
824 }
825
826 /* Processing between scanning taskslist and draining the holdout list. */
rcu_tasks_postscan(struct list_head * hop)827 static void rcu_tasks_postscan(struct list_head *hop)
828 {
829 /*
830 * Wait for tasks that are in the process of exiting. This
831 * does only part of the job, ensuring that all tasks that were
832 * previously exiting reach the point where they have disabled
833 * preemption, allowing the later synchronize_rcu() to finish
834 * the job.
835 */
836 synchronize_srcu(&tasks_rcu_exit_srcu);
837 }
838
839 /* See if tasks are still holding out, complain if so. */
check_holdout_task(struct task_struct * t,bool needreport,bool * firstreport)840 static void check_holdout_task(struct task_struct *t,
841 bool needreport, bool *firstreport)
842 {
843 int cpu;
844
845 if (!READ_ONCE(t->rcu_tasks_holdout) ||
846 t->rcu_tasks_nvcsw != READ_ONCE(t->nvcsw) ||
847 !READ_ONCE(t->on_rq) ||
848 (IS_ENABLED(CONFIG_NO_HZ_FULL) &&
849 !is_idle_task(t) && t->rcu_tasks_idle_cpu >= 0)) {
850 WRITE_ONCE(t->rcu_tasks_holdout, false);
851 list_del_init(&t->rcu_tasks_holdout_list);
852 put_task_struct(t);
853 return;
854 }
855 rcu_request_urgent_qs_task(t);
856 if (!needreport)
857 return;
858 if (*firstreport) {
859 pr_err("INFO: rcu_tasks detected stalls on tasks:\n");
860 *firstreport = false;
861 }
862 cpu = task_cpu(t);
863 pr_alert("%p: %c%c nvcsw: %lu/%lu holdout: %d idle_cpu: %d/%d\n",
864 t, ".I"[is_idle_task(t)],
865 "N."[cpu < 0 || !tick_nohz_full_cpu(cpu)],
866 t->rcu_tasks_nvcsw, t->nvcsw, t->rcu_tasks_holdout,
867 t->rcu_tasks_idle_cpu, cpu);
868 sched_show_task(t);
869 }
870
871 /* Scan the holdout lists for tasks no longer holding out. */
check_all_holdout_tasks(struct list_head * hop,bool needreport,bool * firstreport)872 static void check_all_holdout_tasks(struct list_head *hop,
873 bool needreport, bool *firstreport)
874 {
875 struct task_struct *t, *t1;
876
877 list_for_each_entry_safe(t, t1, hop, rcu_tasks_holdout_list) {
878 check_holdout_task(t, needreport, firstreport);
879 cond_resched();
880 }
881 }
882
883 /* Finish off the Tasks-RCU grace period. */
rcu_tasks_postgp(struct rcu_tasks * rtp)884 static void rcu_tasks_postgp(struct rcu_tasks *rtp)
885 {
886 /*
887 * Because ->on_rq and ->nvcsw are not guaranteed to have a full
888 * memory barriers prior to them in the schedule() path, memory
889 * reordering on other CPUs could cause their RCU-tasks read-side
890 * critical sections to extend past the end of the grace period.
891 * However, because these ->nvcsw updates are carried out with
892 * interrupts disabled, we can use synchronize_rcu() to force the
893 * needed ordering on all such CPUs.
894 *
895 * This synchronize_rcu() also confines all ->rcu_tasks_holdout
896 * accesses to be within the grace period, avoiding the need for
897 * memory barriers for ->rcu_tasks_holdout accesses.
898 *
899 * In addition, this synchronize_rcu() waits for exiting tasks
900 * to complete their final preempt_disable() region of execution,
901 * cleaning up after the synchronize_srcu() above.
902 */
903 synchronize_rcu();
904 }
905
906 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func);
907 DEFINE_RCU_TASKS(rcu_tasks, rcu_tasks_wait_gp, call_rcu_tasks, "RCU Tasks");
908
909 /**
910 * call_rcu_tasks() - Queue an RCU for invocation task-based grace period
911 * @rhp: structure to be used for queueing the RCU updates.
912 * @func: actual callback function to be invoked after the grace period
913 *
914 * The callback function will be invoked some time after a full grace
915 * period elapses, in other words after all currently executing RCU
916 * read-side critical sections have completed. call_rcu_tasks() assumes
917 * that the read-side critical sections end at a voluntary context
918 * switch (not a preemption!), cond_resched_tasks_rcu_qs(), entry into idle,
919 * or transition to usermode execution. As such, there are no read-side
920 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
921 * this primitive is intended to determine that all tasks have passed
922 * through a safe state, not so much for data-structure synchronization.
923 *
924 * See the description of call_rcu() for more detailed information on
925 * memory ordering guarantees.
926 */
call_rcu_tasks(struct rcu_head * rhp,rcu_callback_t func)927 void call_rcu_tasks(struct rcu_head *rhp, rcu_callback_t func)
928 {
929 call_rcu_tasks_generic(rhp, func, &rcu_tasks);
930 }
931 EXPORT_SYMBOL_GPL(call_rcu_tasks);
932
933 /**
934 * synchronize_rcu_tasks - wait until an rcu-tasks grace period has elapsed.
935 *
936 * Control will return to the caller some time after a full rcu-tasks
937 * grace period has elapsed, in other words after all currently
938 * executing rcu-tasks read-side critical sections have elapsed. These
939 * read-side critical sections are delimited by calls to schedule(),
940 * cond_resched_tasks_rcu_qs(), idle execution, userspace execution, calls
941 * to synchronize_rcu_tasks(), and (in theory, anyway) cond_resched().
942 *
943 * This is a very specialized primitive, intended only for a few uses in
944 * tracing and other situations requiring manipulation of function
945 * preambles and profiling hooks. The synchronize_rcu_tasks() function
946 * is not (yet) intended for heavy use from multiple CPUs.
947 *
948 * See the description of synchronize_rcu() for more detailed information
949 * on memory ordering guarantees.
950 */
synchronize_rcu_tasks(void)951 void synchronize_rcu_tasks(void)
952 {
953 synchronize_rcu_tasks_generic(&rcu_tasks);
954 }
955 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks);
956
957 /**
958 * rcu_barrier_tasks - Wait for in-flight call_rcu_tasks() callbacks.
959 *
960 * Although the current implementation is guaranteed to wait, it is not
961 * obligated to, for example, if there are no pending callbacks.
962 */
rcu_barrier_tasks(void)963 void rcu_barrier_tasks(void)
964 {
965 rcu_barrier_tasks_generic(&rcu_tasks);
966 }
967 EXPORT_SYMBOL_GPL(rcu_barrier_tasks);
968
rcu_spawn_tasks_kthread(void)969 static int __init rcu_spawn_tasks_kthread(void)
970 {
971 cblist_init_generic(&rcu_tasks);
972 rcu_tasks.gp_sleep = HZ / 10;
973 rcu_tasks.init_fract = HZ / 10;
974 rcu_tasks.pregp_func = rcu_tasks_pregp_step;
975 rcu_tasks.pertask_func = rcu_tasks_pertask;
976 rcu_tasks.postscan_func = rcu_tasks_postscan;
977 rcu_tasks.holdouts_func = check_all_holdout_tasks;
978 rcu_tasks.postgp_func = rcu_tasks_postgp;
979 rcu_spawn_tasks_kthread_generic(&rcu_tasks);
980 return 0;
981 }
982
983 #if !defined(CONFIG_TINY_RCU)
show_rcu_tasks_classic_gp_kthread(void)984 void show_rcu_tasks_classic_gp_kthread(void)
985 {
986 show_rcu_tasks_generic_gp_kthread(&rcu_tasks, "");
987 }
988 EXPORT_SYMBOL_GPL(show_rcu_tasks_classic_gp_kthread);
989 #endif // !defined(CONFIG_TINY_RCU)
990
991 /* Do the srcu_read_lock() for the above synchronize_srcu(). */
exit_tasks_rcu_start(void)992 void exit_tasks_rcu_start(void) __acquires(&tasks_rcu_exit_srcu)
993 {
994 preempt_disable();
995 current->rcu_tasks_idx = __srcu_read_lock(&tasks_rcu_exit_srcu);
996 preempt_enable();
997 }
998
999 /* Do the srcu_read_unlock() for the above synchronize_srcu(). */
exit_tasks_rcu_finish(void)1000 void exit_tasks_rcu_finish(void) __releases(&tasks_rcu_exit_srcu)
1001 {
1002 struct task_struct *t = current;
1003
1004 preempt_disable();
1005 __srcu_read_unlock(&tasks_rcu_exit_srcu, t->rcu_tasks_idx);
1006 preempt_enable();
1007 exit_tasks_rcu_finish_trace(t);
1008 }
1009
1010 #else /* #ifdef CONFIG_TASKS_RCU */
exit_tasks_rcu_start(void)1011 void exit_tasks_rcu_start(void) { }
exit_tasks_rcu_finish(void)1012 void exit_tasks_rcu_finish(void) { exit_tasks_rcu_finish_trace(current); }
1013 #endif /* #else #ifdef CONFIG_TASKS_RCU */
1014
1015 #ifdef CONFIG_TASKS_RUDE_RCU
1016
1017 ////////////////////////////////////////////////////////////////////////
1018 //
1019 // "Rude" variant of Tasks RCU, inspired by Steve Rostedt's trick of
1020 // passing an empty function to schedule_on_each_cpu(). This approach
1021 // provides an asynchronous call_rcu_tasks_rude() API and batching of
1022 // concurrent calls to the synchronous synchronize_rcu_tasks_rude() API.
1023 // This invokes schedule_on_each_cpu() in order to send IPIs far and wide
1024 // and induces otherwise unnecessary context switches on all online CPUs,
1025 // whether idle or not.
1026 //
1027 // Callback handling is provided by the rcu_tasks_kthread() function.
1028 //
1029 // Ordering is provided by the scheduler's context-switch code.
1030
1031 // Empty function to allow workqueues to force a context switch.
rcu_tasks_be_rude(struct work_struct * work)1032 static void rcu_tasks_be_rude(struct work_struct *work)
1033 {
1034 }
1035
1036 // Wait for one rude RCU-tasks grace period.
rcu_tasks_rude_wait_gp(struct rcu_tasks * rtp)1037 static void rcu_tasks_rude_wait_gp(struct rcu_tasks *rtp)
1038 {
1039 if (num_online_cpus() <= 1)
1040 return; // Fastpath for only one CPU.
1041
1042 rtp->n_ipis += cpumask_weight(cpu_online_mask);
1043 schedule_on_each_cpu(rcu_tasks_be_rude);
1044 }
1045
1046 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func);
1047 DEFINE_RCU_TASKS(rcu_tasks_rude, rcu_tasks_rude_wait_gp, call_rcu_tasks_rude,
1048 "RCU Tasks Rude");
1049
1050 /**
1051 * call_rcu_tasks_rude() - Queue a callback rude task-based grace period
1052 * @rhp: structure to be used for queueing the RCU updates.
1053 * @func: actual callback function to be invoked after the grace period
1054 *
1055 * The callback function will be invoked some time after a full grace
1056 * period elapses, in other words after all currently executing RCU
1057 * read-side critical sections have completed. call_rcu_tasks_rude()
1058 * assumes that the read-side critical sections end at context switch,
1059 * cond_resched_tasks_rcu_qs(), or transition to usermode execution (as
1060 * usermode execution is schedulable). As such, there are no read-side
1061 * primitives analogous to rcu_read_lock() and rcu_read_unlock() because
1062 * this primitive is intended to determine that all tasks have passed
1063 * through a safe state, not so much for data-structure synchronization.
1064 *
1065 * See the description of call_rcu() for more detailed information on
1066 * memory ordering guarantees.
1067 */
call_rcu_tasks_rude(struct rcu_head * rhp,rcu_callback_t func)1068 void call_rcu_tasks_rude(struct rcu_head *rhp, rcu_callback_t func)
1069 {
1070 call_rcu_tasks_generic(rhp, func, &rcu_tasks_rude);
1071 }
1072 EXPORT_SYMBOL_GPL(call_rcu_tasks_rude);
1073
1074 /**
1075 * synchronize_rcu_tasks_rude - wait for a rude rcu-tasks grace period
1076 *
1077 * Control will return to the caller some time after a rude rcu-tasks
1078 * grace period has elapsed, in other words after all currently
1079 * executing rcu-tasks read-side critical sections have elapsed. These
1080 * read-side critical sections are delimited by calls to schedule(),
1081 * cond_resched_tasks_rcu_qs(), userspace execution (which is a schedulable
1082 * context), and (in theory, anyway) cond_resched().
1083 *
1084 * This is a very specialized primitive, intended only for a few uses in
1085 * tracing and other situations requiring manipulation of function preambles
1086 * and profiling hooks. The synchronize_rcu_tasks_rude() function is not
1087 * (yet) intended for heavy use from multiple CPUs.
1088 *
1089 * See the description of synchronize_rcu() for more detailed information
1090 * on memory ordering guarantees.
1091 */
synchronize_rcu_tasks_rude(void)1092 void synchronize_rcu_tasks_rude(void)
1093 {
1094 synchronize_rcu_tasks_generic(&rcu_tasks_rude);
1095 }
1096 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_rude);
1097
1098 /**
1099 * rcu_barrier_tasks_rude - Wait for in-flight call_rcu_tasks_rude() callbacks.
1100 *
1101 * Although the current implementation is guaranteed to wait, it is not
1102 * obligated to, for example, if there are no pending callbacks.
1103 */
rcu_barrier_tasks_rude(void)1104 void rcu_barrier_tasks_rude(void)
1105 {
1106 rcu_barrier_tasks_generic(&rcu_tasks_rude);
1107 }
1108 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_rude);
1109
rcu_spawn_tasks_rude_kthread(void)1110 static int __init rcu_spawn_tasks_rude_kthread(void)
1111 {
1112 cblist_init_generic(&rcu_tasks_rude);
1113 rcu_tasks_rude.gp_sleep = HZ / 10;
1114 rcu_spawn_tasks_kthread_generic(&rcu_tasks_rude);
1115 return 0;
1116 }
1117
1118 #if !defined(CONFIG_TINY_RCU)
show_rcu_tasks_rude_gp_kthread(void)1119 void show_rcu_tasks_rude_gp_kthread(void)
1120 {
1121 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_rude, "");
1122 }
1123 EXPORT_SYMBOL_GPL(show_rcu_tasks_rude_gp_kthread);
1124 #endif // !defined(CONFIG_TINY_RCU)
1125 #endif /* #ifdef CONFIG_TASKS_RUDE_RCU */
1126
1127 ////////////////////////////////////////////////////////////////////////
1128 //
1129 // Tracing variant of Tasks RCU. This variant is designed to be used
1130 // to protect tracing hooks, including those of BPF. This variant
1131 // therefore:
1132 //
1133 // 1. Has explicit read-side markers to allow finite grace periods
1134 // in the face of in-kernel loops for PREEMPT=n builds.
1135 //
1136 // 2. Protects code in the idle loop, exception entry/exit, and
1137 // CPU-hotplug code paths, similar to the capabilities of SRCU.
1138 //
1139 // 3. Avoids expensive read-side instructions, having overhead similar
1140 // to that of Preemptible RCU.
1141 //
1142 // There are of course downsides. For example, the grace-period code
1143 // can send IPIs to CPUs, even when those CPUs are in the idle loop or
1144 // in nohz_full userspace. If needed, these downsides can be at least
1145 // partially remedied.
1146 //
1147 // Perhaps most important, this variant of RCU does not affect the vanilla
1148 // flavors, rcu_preempt and rcu_sched. The fact that RCU Tasks Trace
1149 // readers can operate from idle, offline, and exception entry/exit in no
1150 // way allows rcu_preempt and rcu_sched readers to also do so.
1151 //
1152 // The implementation uses rcu_tasks_wait_gp(), which relies on function
1153 // pointers in the rcu_tasks structure. The rcu_spawn_tasks_trace_kthread()
1154 // function sets these function pointers up so that rcu_tasks_wait_gp()
1155 // invokes these functions in this order:
1156 //
1157 // rcu_tasks_trace_pregp_step():
1158 // Disables CPU hotplug, adds all currently executing tasks to the
1159 // holdout list, then checks the state of all tasks that blocked
1160 // or were preempted within their current RCU Tasks Trace read-side
1161 // critical section, adding them to the holdout list if appropriate.
1162 // Finally, this function re-enables CPU hotplug.
1163 // The ->pertask_func() pointer is NULL, so there is no per-task processing.
1164 // rcu_tasks_trace_postscan():
1165 // Invokes synchronize_rcu() to wait for late-stage exiting tasks
1166 // to finish exiting.
1167 // check_all_holdout_tasks_trace(), repeatedly until holdout list is empty:
1168 // Scans the holdout list, attempting to identify a quiescent state
1169 // for each task on the list. If there is a quiescent state, the
1170 // corresponding task is removed from the holdout list. Once this
1171 // list is empty, the grace period has completed.
1172 // rcu_tasks_trace_postgp():
1173 // Provides the needed full memory barrier and does debug checks.
1174 //
1175 // The exit_tasks_rcu_finish_trace() synchronizes with exiting tasks.
1176 //
1177 // Pre-grace-period update-side code is ordered before the grace period
1178 // via the ->cbs_lock and barriers in rcu_tasks_kthread(). Pre-grace-period
1179 // read-side code is ordered before the grace period by atomic operations
1180 // on .b.need_qs flag of each task involved in this process, or by scheduler
1181 // context-switch ordering (for locked-down non-running readers).
1182
1183 // The lockdep state must be outside of #ifdef to be useful.
1184 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1185 static struct lock_class_key rcu_lock_trace_key;
1186 struct lockdep_map rcu_trace_lock_map =
1187 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock_trace", &rcu_lock_trace_key);
1188 EXPORT_SYMBOL_GPL(rcu_trace_lock_map);
1189 #endif /* #ifdef CONFIG_DEBUG_LOCK_ALLOC */
1190
1191 #ifdef CONFIG_TASKS_TRACE_RCU
1192
1193 // Record outstanding IPIs to each CPU. No point in sending two...
1194 static DEFINE_PER_CPU(bool, trc_ipi_to_cpu);
1195
1196 // The number of detections of task quiescent state relying on
1197 // heavyweight readers executing explicit memory barriers.
1198 static unsigned long n_heavy_reader_attempts;
1199 static unsigned long n_heavy_reader_updates;
1200 static unsigned long n_heavy_reader_ofl_updates;
1201 static unsigned long n_trc_holdouts;
1202
1203 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func);
1204 DEFINE_RCU_TASKS(rcu_tasks_trace, rcu_tasks_wait_gp, call_rcu_tasks_trace,
1205 "RCU Tasks Trace");
1206
1207 /* Load from ->trc_reader_special.b.need_qs with proper ordering. */
rcu_ld_need_qs(struct task_struct * t)1208 static u8 rcu_ld_need_qs(struct task_struct *t)
1209 {
1210 smp_mb(); // Enforce full grace-period ordering.
1211 return smp_load_acquire(&t->trc_reader_special.b.need_qs);
1212 }
1213
1214 /* Store to ->trc_reader_special.b.need_qs with proper ordering. */
rcu_st_need_qs(struct task_struct * t,u8 v)1215 static void rcu_st_need_qs(struct task_struct *t, u8 v)
1216 {
1217 smp_store_release(&t->trc_reader_special.b.need_qs, v);
1218 smp_mb(); // Enforce full grace-period ordering.
1219 }
1220
1221 /*
1222 * Do a cmpxchg() on ->trc_reader_special.b.need_qs, allowing for
1223 * the four-byte operand-size restriction of some platforms.
1224 * Returns the old value, which is often ignored.
1225 */
rcu_trc_cmpxchg_need_qs(struct task_struct * t,u8 old,u8 new)1226 u8 rcu_trc_cmpxchg_need_qs(struct task_struct *t, u8 old, u8 new)
1227 {
1228 union rcu_special ret;
1229 union rcu_special trs_old = READ_ONCE(t->trc_reader_special);
1230 union rcu_special trs_new = trs_old;
1231
1232 if (trs_old.b.need_qs != old)
1233 return trs_old.b.need_qs;
1234 trs_new.b.need_qs = new;
1235 ret.s = cmpxchg(&t->trc_reader_special.s, trs_old.s, trs_new.s);
1236 return ret.b.need_qs;
1237 }
1238 EXPORT_SYMBOL_GPL(rcu_trc_cmpxchg_need_qs);
1239
1240 /*
1241 * If we are the last reader, signal the grace-period kthread.
1242 * Also remove from the per-CPU list of blocked tasks.
1243 */
rcu_read_unlock_trace_special(struct task_struct * t)1244 void rcu_read_unlock_trace_special(struct task_struct *t)
1245 {
1246 unsigned long flags;
1247 struct rcu_tasks_percpu *rtpcp;
1248 union rcu_special trs;
1249
1250 // Open-coded full-word version of rcu_ld_need_qs().
1251 smp_mb(); // Enforce full grace-period ordering.
1252 trs = smp_load_acquire(&t->trc_reader_special);
1253
1254 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && t->trc_reader_special.b.need_mb)
1255 smp_mb(); // Pairs with update-side barriers.
1256 // Update .need_qs before ->trc_reader_nesting for irq/NMI handlers.
1257 if (trs.b.need_qs == (TRC_NEED_QS_CHECKED | TRC_NEED_QS)) {
1258 u8 result = rcu_trc_cmpxchg_need_qs(t, TRC_NEED_QS_CHECKED | TRC_NEED_QS,
1259 TRC_NEED_QS_CHECKED);
1260
1261 WARN_ONCE(result != trs.b.need_qs, "%s: result = %d", __func__, result);
1262 }
1263 if (trs.b.blocked) {
1264 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, t->trc_blkd_cpu);
1265 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1266 list_del_init(&t->trc_blkd_node);
1267 WRITE_ONCE(t->trc_reader_special.b.blocked, false);
1268 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1269 }
1270 WRITE_ONCE(t->trc_reader_nesting, 0);
1271 }
1272 EXPORT_SYMBOL_GPL(rcu_read_unlock_trace_special);
1273
1274 /* Add a newly blocked reader task to its CPU's list. */
rcu_tasks_trace_qs_blkd(struct task_struct * t)1275 void rcu_tasks_trace_qs_blkd(struct task_struct *t)
1276 {
1277 unsigned long flags;
1278 struct rcu_tasks_percpu *rtpcp;
1279
1280 local_irq_save(flags);
1281 rtpcp = this_cpu_ptr(rcu_tasks_trace.rtpcpu);
1282 raw_spin_lock_rcu_node(rtpcp); // irqs already disabled
1283 t->trc_blkd_cpu = smp_processor_id();
1284 if (!rtpcp->rtp_blkd_tasks.next)
1285 INIT_LIST_HEAD(&rtpcp->rtp_blkd_tasks);
1286 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1287 WRITE_ONCE(t->trc_reader_special.b.blocked, true);
1288 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1289 }
1290 EXPORT_SYMBOL_GPL(rcu_tasks_trace_qs_blkd);
1291
1292 /* Add a task to the holdout list, if it is not already on the list. */
trc_add_holdout(struct task_struct * t,struct list_head * bhp)1293 static void trc_add_holdout(struct task_struct *t, struct list_head *bhp)
1294 {
1295 if (list_empty(&t->trc_holdout_list)) {
1296 get_task_struct(t);
1297 list_add(&t->trc_holdout_list, bhp);
1298 n_trc_holdouts++;
1299 }
1300 }
1301
1302 /* Remove a task from the holdout list, if it is in fact present. */
trc_del_holdout(struct task_struct * t)1303 static void trc_del_holdout(struct task_struct *t)
1304 {
1305 if (!list_empty(&t->trc_holdout_list)) {
1306 list_del_init(&t->trc_holdout_list);
1307 put_task_struct(t);
1308 n_trc_holdouts--;
1309 }
1310 }
1311
1312 /* IPI handler to check task state. */
trc_read_check_handler(void * t_in)1313 static void trc_read_check_handler(void *t_in)
1314 {
1315 int nesting;
1316 struct task_struct *t = current;
1317 struct task_struct *texp = t_in;
1318
1319 // If the task is no longer running on this CPU, leave.
1320 if (unlikely(texp != t))
1321 goto reset_ipi; // Already on holdout list, so will check later.
1322
1323 // If the task is not in a read-side critical section, and
1324 // if this is the last reader, awaken the grace-period kthread.
1325 nesting = READ_ONCE(t->trc_reader_nesting);
1326 if (likely(!nesting)) {
1327 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1328 goto reset_ipi;
1329 }
1330 // If we are racing with an rcu_read_unlock_trace(), try again later.
1331 if (unlikely(nesting < 0))
1332 goto reset_ipi;
1333
1334 // Get here if the task is in a read-side critical section.
1335 // Set its state so that it will update state for the grace-period
1336 // kthread upon exit from that critical section.
1337 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED);
1338
1339 reset_ipi:
1340 // Allow future IPIs to be sent on CPU and for task.
1341 // Also order this IPI handler against any later manipulations of
1342 // the intended task.
1343 smp_store_release(per_cpu_ptr(&trc_ipi_to_cpu, smp_processor_id()), false); // ^^^
1344 smp_store_release(&texp->trc_ipi_to_cpu, -1); // ^^^
1345 }
1346
1347 /* Callback function for scheduler to check locked-down task. */
trc_inspect_reader(struct task_struct * t,void * bhp_in)1348 static int trc_inspect_reader(struct task_struct *t, void *bhp_in)
1349 {
1350 struct list_head *bhp = bhp_in;
1351 int cpu = task_cpu(t);
1352 int nesting;
1353 bool ofl = cpu_is_offline(cpu);
1354
1355 if (task_curr(t) && !ofl) {
1356 // If no chance of heavyweight readers, do it the hard way.
1357 if (!IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB))
1358 return -EINVAL;
1359
1360 // If heavyweight readers are enabled on the remote task,
1361 // we can inspect its state despite its currently running.
1362 // However, we cannot safely change its state.
1363 n_heavy_reader_attempts++;
1364 // Check for "running" idle tasks on offline CPUs.
1365 if (!rcu_dynticks_zero_in_eqs(cpu, &t->trc_reader_nesting))
1366 return -EINVAL; // No quiescent state, do it the hard way.
1367 n_heavy_reader_updates++;
1368 nesting = 0;
1369 } else {
1370 // The task is not running, so C-language access is safe.
1371 nesting = t->trc_reader_nesting;
1372 WARN_ON_ONCE(ofl && task_curr(t) && !is_idle_task(t));
1373 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB) && ofl)
1374 n_heavy_reader_ofl_updates++;
1375 }
1376
1377 // If not exiting a read-side critical section, mark as checked
1378 // so that the grace-period kthread will remove it from the
1379 // holdout list.
1380 if (!nesting) {
1381 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1382 return 0; // In QS, so done.
1383 }
1384 if (nesting < 0)
1385 return -EINVAL; // Reader transitioning, try again later.
1386
1387 // The task is in a read-side critical section, so set up its
1388 // state so that it will update state upon exit from that critical
1389 // section.
1390 if (!rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS | TRC_NEED_QS_CHECKED))
1391 trc_add_holdout(t, bhp);
1392 return 0;
1393 }
1394
1395 /* Attempt to extract the state for the specified task. */
trc_wait_for_one_reader(struct task_struct * t,struct list_head * bhp)1396 static void trc_wait_for_one_reader(struct task_struct *t,
1397 struct list_head *bhp)
1398 {
1399 int cpu;
1400
1401 // If a previous IPI is still in flight, let it complete.
1402 if (smp_load_acquire(&t->trc_ipi_to_cpu) != -1) // Order IPI
1403 return;
1404
1405 // The current task had better be in a quiescent state.
1406 if (t == current) {
1407 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1408 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1409 return;
1410 }
1411
1412 // Attempt to nail down the task for inspection.
1413 get_task_struct(t);
1414 if (!task_call_func(t, trc_inspect_reader, bhp)) {
1415 put_task_struct(t);
1416 return;
1417 }
1418 put_task_struct(t);
1419
1420 // If this task is not yet on the holdout list, then we are in
1421 // an RCU read-side critical section. Otherwise, the invocation of
1422 // trc_add_holdout() that added it to the list did the necessary
1423 // get_task_struct(). Either way, the task cannot be freed out
1424 // from under this code.
1425
1426 // If currently running, send an IPI, either way, add to list.
1427 trc_add_holdout(t, bhp);
1428 if (task_curr(t) &&
1429 time_after(jiffies + 1, rcu_tasks_trace.gp_start + rcu_task_ipi_delay)) {
1430 // The task is currently running, so try IPIing it.
1431 cpu = task_cpu(t);
1432
1433 // If there is already an IPI outstanding, let it happen.
1434 if (per_cpu(trc_ipi_to_cpu, cpu) || t->trc_ipi_to_cpu >= 0)
1435 return;
1436
1437 per_cpu(trc_ipi_to_cpu, cpu) = true;
1438 t->trc_ipi_to_cpu = cpu;
1439 rcu_tasks_trace.n_ipis++;
1440 if (smp_call_function_single(cpu, trc_read_check_handler, t, 0)) {
1441 // Just in case there is some other reason for
1442 // failure than the target CPU being offline.
1443 WARN_ONCE(1, "%s(): smp_call_function_single() failed for CPU: %d\n",
1444 __func__, cpu);
1445 rcu_tasks_trace.n_ipis_fails++;
1446 per_cpu(trc_ipi_to_cpu, cpu) = false;
1447 t->trc_ipi_to_cpu = -1;
1448 }
1449 }
1450 }
1451
1452 /*
1453 * Initialize for first-round processing for the specified task.
1454 * Return false if task is NULL or already taken care of, true otherwise.
1455 */
rcu_tasks_trace_pertask_prep(struct task_struct * t,bool notself)1456 static bool rcu_tasks_trace_pertask_prep(struct task_struct *t, bool notself)
1457 {
1458 // During early boot when there is only the one boot CPU, there
1459 // is no idle task for the other CPUs. Also, the grace-period
1460 // kthread is always in a quiescent state. In addition, just return
1461 // if this task is already on the list.
1462 if (unlikely(t == NULL) || (t == current && notself) || !list_empty(&t->trc_holdout_list))
1463 return false;
1464
1465 rcu_st_need_qs(t, 0);
1466 t->trc_ipi_to_cpu = -1;
1467 return true;
1468 }
1469
1470 /* Do first-round processing for the specified task. */
rcu_tasks_trace_pertask(struct task_struct * t,struct list_head * hop)1471 static void rcu_tasks_trace_pertask(struct task_struct *t, struct list_head *hop)
1472 {
1473 if (rcu_tasks_trace_pertask_prep(t, true))
1474 trc_wait_for_one_reader(t, hop);
1475 }
1476
1477 /* Initialize for a new RCU-tasks-trace grace period. */
rcu_tasks_trace_pregp_step(struct list_head * hop)1478 static void rcu_tasks_trace_pregp_step(struct list_head *hop)
1479 {
1480 LIST_HEAD(blkd_tasks);
1481 int cpu;
1482 unsigned long flags;
1483 struct rcu_tasks_percpu *rtpcp;
1484 struct task_struct *t;
1485
1486 // There shouldn't be any old IPIs, but...
1487 for_each_possible_cpu(cpu)
1488 WARN_ON_ONCE(per_cpu(trc_ipi_to_cpu, cpu));
1489
1490 // Disable CPU hotplug across the CPU scan for the benefit of
1491 // any IPIs that might be needed. This also waits for all readers
1492 // in CPU-hotplug code paths.
1493 cpus_read_lock();
1494
1495 // These rcu_tasks_trace_pertask_prep() calls are serialized to
1496 // allow safe access to the hop list.
1497 for_each_online_cpu(cpu) {
1498 rcu_read_lock();
1499 t = cpu_curr_snapshot(cpu);
1500 if (rcu_tasks_trace_pertask_prep(t, true))
1501 trc_add_holdout(t, hop);
1502 rcu_read_unlock();
1503 cond_resched_tasks_rcu_qs();
1504 }
1505
1506 // Only after all running tasks have been accounted for is it
1507 // safe to take care of the tasks that have blocked within their
1508 // current RCU tasks trace read-side critical section.
1509 for_each_possible_cpu(cpu) {
1510 rtpcp = per_cpu_ptr(rcu_tasks_trace.rtpcpu, cpu);
1511 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1512 list_splice_init(&rtpcp->rtp_blkd_tasks, &blkd_tasks);
1513 while (!list_empty(&blkd_tasks)) {
1514 rcu_read_lock();
1515 t = list_first_entry(&blkd_tasks, struct task_struct, trc_blkd_node);
1516 list_del_init(&t->trc_blkd_node);
1517 list_add(&t->trc_blkd_node, &rtpcp->rtp_blkd_tasks);
1518 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1519 rcu_tasks_trace_pertask(t, hop);
1520 rcu_read_unlock();
1521 raw_spin_lock_irqsave_rcu_node(rtpcp, flags);
1522 }
1523 raw_spin_unlock_irqrestore_rcu_node(rtpcp, flags);
1524 cond_resched_tasks_rcu_qs();
1525 }
1526
1527 // Re-enable CPU hotplug now that the holdout list is populated.
1528 cpus_read_unlock();
1529 }
1530
1531 /*
1532 * Do intermediate processing between task and holdout scans.
1533 */
rcu_tasks_trace_postscan(struct list_head * hop)1534 static void rcu_tasks_trace_postscan(struct list_head *hop)
1535 {
1536 // Wait for late-stage exiting tasks to finish exiting.
1537 // These might have passed the call to exit_tasks_rcu_finish().
1538 synchronize_rcu();
1539 // Any tasks that exit after this point will set
1540 // TRC_NEED_QS_CHECKED in ->trc_reader_special.b.need_qs.
1541 }
1542
1543 /* Communicate task state back to the RCU tasks trace stall warning request. */
1544 struct trc_stall_chk_rdr {
1545 int nesting;
1546 int ipi_to_cpu;
1547 u8 needqs;
1548 };
1549
trc_check_slow_task(struct task_struct * t,void * arg)1550 static int trc_check_slow_task(struct task_struct *t, void *arg)
1551 {
1552 struct trc_stall_chk_rdr *trc_rdrp = arg;
1553
1554 if (task_curr(t) && cpu_online(task_cpu(t)))
1555 return false; // It is running, so decline to inspect it.
1556 trc_rdrp->nesting = READ_ONCE(t->trc_reader_nesting);
1557 trc_rdrp->ipi_to_cpu = READ_ONCE(t->trc_ipi_to_cpu);
1558 trc_rdrp->needqs = rcu_ld_need_qs(t);
1559 return true;
1560 }
1561
1562 /* Show the state of a task stalling the current RCU tasks trace GP. */
show_stalled_task_trace(struct task_struct * t,bool * firstreport)1563 static void show_stalled_task_trace(struct task_struct *t, bool *firstreport)
1564 {
1565 int cpu;
1566 struct trc_stall_chk_rdr trc_rdr;
1567 bool is_idle_tsk = is_idle_task(t);
1568
1569 if (*firstreport) {
1570 pr_err("INFO: rcu_tasks_trace detected stalls on tasks:\n");
1571 *firstreport = false;
1572 }
1573 cpu = task_cpu(t);
1574 if (!task_call_func(t, trc_check_slow_task, &trc_rdr))
1575 pr_alert("P%d: %c%c\n",
1576 t->pid,
1577 ".I"[t->trc_ipi_to_cpu >= 0],
1578 ".i"[is_idle_tsk]);
1579 else
1580 pr_alert("P%d: %c%c%c%c nesting: %d%c%c cpu: %d%s\n",
1581 t->pid,
1582 ".I"[trc_rdr.ipi_to_cpu >= 0],
1583 ".i"[is_idle_tsk],
1584 ".N"[cpu >= 0 && tick_nohz_full_cpu(cpu)],
1585 ".B"[!!data_race(t->trc_reader_special.b.blocked)],
1586 trc_rdr.nesting,
1587 " !CN"[trc_rdr.needqs & 0x3],
1588 " ?"[trc_rdr.needqs > 0x3],
1589 cpu, cpu_online(cpu) ? "" : "(offline)");
1590 sched_show_task(t);
1591 }
1592
1593 /* List stalled IPIs for RCU tasks trace. */
show_stalled_ipi_trace(void)1594 static void show_stalled_ipi_trace(void)
1595 {
1596 int cpu;
1597
1598 for_each_possible_cpu(cpu)
1599 if (per_cpu(trc_ipi_to_cpu, cpu))
1600 pr_alert("\tIPI outstanding to CPU %d\n", cpu);
1601 }
1602
1603 /* Do one scan of the holdout list. */
check_all_holdout_tasks_trace(struct list_head * hop,bool needreport,bool * firstreport)1604 static void check_all_holdout_tasks_trace(struct list_head *hop,
1605 bool needreport, bool *firstreport)
1606 {
1607 struct task_struct *g, *t;
1608
1609 // Disable CPU hotplug across the holdout list scan for IPIs.
1610 cpus_read_lock();
1611
1612 list_for_each_entry_safe(t, g, hop, trc_holdout_list) {
1613 // If safe and needed, try to check the current task.
1614 if (READ_ONCE(t->trc_ipi_to_cpu) == -1 &&
1615 !(rcu_ld_need_qs(t) & TRC_NEED_QS_CHECKED))
1616 trc_wait_for_one_reader(t, hop);
1617
1618 // If check succeeded, remove this task from the list.
1619 if (smp_load_acquire(&t->trc_ipi_to_cpu) == -1 &&
1620 rcu_ld_need_qs(t) == TRC_NEED_QS_CHECKED)
1621 trc_del_holdout(t);
1622 else if (needreport)
1623 show_stalled_task_trace(t, firstreport);
1624 cond_resched_tasks_rcu_qs();
1625 }
1626
1627 // Re-enable CPU hotplug now that the holdout list scan has completed.
1628 cpus_read_unlock();
1629
1630 if (needreport) {
1631 if (*firstreport)
1632 pr_err("INFO: rcu_tasks_trace detected stalls? (Late IPI?)\n");
1633 show_stalled_ipi_trace();
1634 }
1635 }
1636
rcu_tasks_trace_empty_fn(void * unused)1637 static void rcu_tasks_trace_empty_fn(void *unused)
1638 {
1639 }
1640
1641 /* Wait for grace period to complete and provide ordering. */
rcu_tasks_trace_postgp(struct rcu_tasks * rtp)1642 static void rcu_tasks_trace_postgp(struct rcu_tasks *rtp)
1643 {
1644 int cpu;
1645
1646 // Wait for any lingering IPI handlers to complete. Note that
1647 // if a CPU has gone offline or transitioned to userspace in the
1648 // meantime, all IPI handlers should have been drained beforehand.
1649 // Yes, this assumes that CPUs process IPIs in order. If that ever
1650 // changes, there will need to be a recheck and/or timed wait.
1651 for_each_online_cpu(cpu)
1652 if (WARN_ON_ONCE(smp_load_acquire(per_cpu_ptr(&trc_ipi_to_cpu, cpu))))
1653 smp_call_function_single(cpu, rcu_tasks_trace_empty_fn, NULL, 1);
1654
1655 smp_mb(); // Caller's code must be ordered after wakeup.
1656 // Pairs with pretty much every ordering primitive.
1657 }
1658
1659 /* Report any needed quiescent state for this exiting task. */
exit_tasks_rcu_finish_trace(struct task_struct * t)1660 static void exit_tasks_rcu_finish_trace(struct task_struct *t)
1661 {
1662 union rcu_special trs = READ_ONCE(t->trc_reader_special);
1663
1664 rcu_trc_cmpxchg_need_qs(t, 0, TRC_NEED_QS_CHECKED);
1665 WARN_ON_ONCE(READ_ONCE(t->trc_reader_nesting));
1666 if (WARN_ON_ONCE(rcu_ld_need_qs(t) & TRC_NEED_QS || trs.b.blocked))
1667 rcu_read_unlock_trace_special(t);
1668 else
1669 WRITE_ONCE(t->trc_reader_nesting, 0);
1670 }
1671
1672 /**
1673 * call_rcu_tasks_trace() - Queue a callback trace task-based grace period
1674 * @rhp: structure to be used for queueing the RCU updates.
1675 * @func: actual callback function to be invoked after the grace period
1676 *
1677 * The callback function will be invoked some time after a trace rcu-tasks
1678 * grace period elapses, in other words after all currently executing
1679 * trace rcu-tasks read-side critical sections have completed. These
1680 * read-side critical sections are delimited by calls to rcu_read_lock_trace()
1681 * and rcu_read_unlock_trace().
1682 *
1683 * See the description of call_rcu() for more detailed information on
1684 * memory ordering guarantees.
1685 */
call_rcu_tasks_trace(struct rcu_head * rhp,rcu_callback_t func)1686 void call_rcu_tasks_trace(struct rcu_head *rhp, rcu_callback_t func)
1687 {
1688 call_rcu_tasks_generic(rhp, func, &rcu_tasks_trace);
1689 }
1690 EXPORT_SYMBOL_GPL(call_rcu_tasks_trace);
1691
1692 /**
1693 * synchronize_rcu_tasks_trace - wait for a trace rcu-tasks grace period
1694 *
1695 * Control will return to the caller some time after a trace rcu-tasks
1696 * grace period has elapsed, in other words after all currently executing
1697 * trace rcu-tasks read-side critical sections have elapsed. These read-side
1698 * critical sections are delimited by calls to rcu_read_lock_trace()
1699 * and rcu_read_unlock_trace().
1700 *
1701 * This is a very specialized primitive, intended only for a few uses in
1702 * tracing and other situations requiring manipulation of function preambles
1703 * and profiling hooks. The synchronize_rcu_tasks_trace() function is not
1704 * (yet) intended for heavy use from multiple CPUs.
1705 *
1706 * See the description of synchronize_rcu() for more detailed information
1707 * on memory ordering guarantees.
1708 */
synchronize_rcu_tasks_trace(void)1709 void synchronize_rcu_tasks_trace(void)
1710 {
1711 RCU_LOCKDEP_WARN(lock_is_held(&rcu_trace_lock_map), "Illegal synchronize_rcu_tasks_trace() in RCU Tasks Trace read-side critical section");
1712 synchronize_rcu_tasks_generic(&rcu_tasks_trace);
1713 }
1714 EXPORT_SYMBOL_GPL(synchronize_rcu_tasks_trace);
1715
1716 /**
1717 * rcu_barrier_tasks_trace - Wait for in-flight call_rcu_tasks_trace() callbacks.
1718 *
1719 * Although the current implementation is guaranteed to wait, it is not
1720 * obligated to, for example, if there are no pending callbacks.
1721 */
rcu_barrier_tasks_trace(void)1722 void rcu_barrier_tasks_trace(void)
1723 {
1724 rcu_barrier_tasks_generic(&rcu_tasks_trace);
1725 }
1726 EXPORT_SYMBOL_GPL(rcu_barrier_tasks_trace);
1727
rcu_spawn_tasks_trace_kthread(void)1728 static int __init rcu_spawn_tasks_trace_kthread(void)
1729 {
1730 cblist_init_generic(&rcu_tasks_trace);
1731 if (IS_ENABLED(CONFIG_TASKS_TRACE_RCU_READ_MB)) {
1732 rcu_tasks_trace.gp_sleep = HZ / 10;
1733 rcu_tasks_trace.init_fract = HZ / 10;
1734 } else {
1735 rcu_tasks_trace.gp_sleep = HZ / 200;
1736 if (rcu_tasks_trace.gp_sleep <= 0)
1737 rcu_tasks_trace.gp_sleep = 1;
1738 rcu_tasks_trace.init_fract = HZ / 200;
1739 if (rcu_tasks_trace.init_fract <= 0)
1740 rcu_tasks_trace.init_fract = 1;
1741 }
1742 rcu_tasks_trace.pregp_func = rcu_tasks_trace_pregp_step;
1743 rcu_tasks_trace.postscan_func = rcu_tasks_trace_postscan;
1744 rcu_tasks_trace.holdouts_func = check_all_holdout_tasks_trace;
1745 rcu_tasks_trace.postgp_func = rcu_tasks_trace_postgp;
1746 rcu_spawn_tasks_kthread_generic(&rcu_tasks_trace);
1747 return 0;
1748 }
1749
1750 #if !defined(CONFIG_TINY_RCU)
show_rcu_tasks_trace_gp_kthread(void)1751 void show_rcu_tasks_trace_gp_kthread(void)
1752 {
1753 char buf[64];
1754
1755 sprintf(buf, "N%lu h:%lu/%lu/%lu",
1756 data_race(n_trc_holdouts),
1757 data_race(n_heavy_reader_ofl_updates),
1758 data_race(n_heavy_reader_updates),
1759 data_race(n_heavy_reader_attempts));
1760 show_rcu_tasks_generic_gp_kthread(&rcu_tasks_trace, buf);
1761 }
1762 EXPORT_SYMBOL_GPL(show_rcu_tasks_trace_gp_kthread);
1763 #endif // !defined(CONFIG_TINY_RCU)
1764
1765 #else /* #ifdef CONFIG_TASKS_TRACE_RCU */
exit_tasks_rcu_finish_trace(struct task_struct * t)1766 static void exit_tasks_rcu_finish_trace(struct task_struct *t) { }
1767 #endif /* #else #ifdef CONFIG_TASKS_TRACE_RCU */
1768
1769 #ifndef CONFIG_TINY_RCU
show_rcu_tasks_gp_kthreads(void)1770 void show_rcu_tasks_gp_kthreads(void)
1771 {
1772 show_rcu_tasks_classic_gp_kthread();
1773 show_rcu_tasks_rude_gp_kthread();
1774 show_rcu_tasks_trace_gp_kthread();
1775 }
1776 #endif /* #ifndef CONFIG_TINY_RCU */
1777
1778 #ifdef CONFIG_PROVE_RCU
1779 struct rcu_tasks_test_desc {
1780 struct rcu_head rh;
1781 const char *name;
1782 bool notrun;
1783 unsigned long runstart;
1784 };
1785
1786 static struct rcu_tasks_test_desc tests[] = {
1787 {
1788 .name = "call_rcu_tasks()",
1789 /* If not defined, the test is skipped. */
1790 .notrun = IS_ENABLED(CONFIG_TASKS_RCU),
1791 },
1792 {
1793 .name = "call_rcu_tasks_rude()",
1794 /* If not defined, the test is skipped. */
1795 .notrun = IS_ENABLED(CONFIG_TASKS_RUDE_RCU),
1796 },
1797 {
1798 .name = "call_rcu_tasks_trace()",
1799 /* If not defined, the test is skipped. */
1800 .notrun = IS_ENABLED(CONFIG_TASKS_TRACE_RCU)
1801 }
1802 };
1803
test_rcu_tasks_callback(struct rcu_head * rhp)1804 static void test_rcu_tasks_callback(struct rcu_head *rhp)
1805 {
1806 struct rcu_tasks_test_desc *rttd =
1807 container_of(rhp, struct rcu_tasks_test_desc, rh);
1808
1809 pr_info("Callback from %s invoked.\n", rttd->name);
1810
1811 rttd->notrun = false;
1812 }
1813
rcu_tasks_initiate_self_tests(void)1814 static void rcu_tasks_initiate_self_tests(void)
1815 {
1816 unsigned long j = jiffies;
1817
1818 pr_info("Running RCU-tasks wait API self tests\n");
1819 #ifdef CONFIG_TASKS_RCU
1820 tests[0].runstart = j;
1821 synchronize_rcu_tasks();
1822 call_rcu_tasks(&tests[0].rh, test_rcu_tasks_callback);
1823 #endif
1824
1825 #ifdef CONFIG_TASKS_RUDE_RCU
1826 tests[1].runstart = j;
1827 synchronize_rcu_tasks_rude();
1828 call_rcu_tasks_rude(&tests[1].rh, test_rcu_tasks_callback);
1829 #endif
1830
1831 #ifdef CONFIG_TASKS_TRACE_RCU
1832 tests[2].runstart = j;
1833 synchronize_rcu_tasks_trace();
1834 call_rcu_tasks_trace(&tests[2].rh, test_rcu_tasks_callback);
1835 #endif
1836 }
1837
1838 /*
1839 * Return: 0 - test passed
1840 * 1 - test failed, but have not timed out yet
1841 * -1 - test failed and timed out
1842 */
rcu_tasks_verify_self_tests(void)1843 static int rcu_tasks_verify_self_tests(void)
1844 {
1845 int ret = 0;
1846 int i;
1847 unsigned long bst = rcu_task_stall_timeout;
1848
1849 if (bst <= 0 || bst > RCU_TASK_BOOT_STALL_TIMEOUT)
1850 bst = RCU_TASK_BOOT_STALL_TIMEOUT;
1851 for (i = 0; i < ARRAY_SIZE(tests); i++) {
1852 while (tests[i].notrun) { // still hanging.
1853 if (time_after(jiffies, tests[i].runstart + bst)) {
1854 pr_err("%s has failed boot-time tests.\n", tests[i].name);
1855 ret = -1;
1856 break;
1857 }
1858 ret = 1;
1859 break;
1860 }
1861 }
1862 WARN_ON(ret < 0);
1863
1864 return ret;
1865 }
1866
1867 /*
1868 * Repeat the rcu_tasks_verify_self_tests() call once every second until the
1869 * test passes or has timed out.
1870 */
1871 static struct delayed_work rcu_tasks_verify_work;
rcu_tasks_verify_work_fn(struct work_struct * work __maybe_unused)1872 static void rcu_tasks_verify_work_fn(struct work_struct *work __maybe_unused)
1873 {
1874 int ret = rcu_tasks_verify_self_tests();
1875
1876 if (ret <= 0)
1877 return;
1878
1879 /* Test fails but not timed out yet, reschedule another check */
1880 schedule_delayed_work(&rcu_tasks_verify_work, HZ);
1881 }
1882
rcu_tasks_verify_schedule_work(void)1883 static int rcu_tasks_verify_schedule_work(void)
1884 {
1885 INIT_DELAYED_WORK(&rcu_tasks_verify_work, rcu_tasks_verify_work_fn);
1886 rcu_tasks_verify_work_fn(NULL);
1887 return 0;
1888 }
1889 late_initcall(rcu_tasks_verify_schedule_work);
1890 #else /* #ifdef CONFIG_PROVE_RCU */
rcu_tasks_initiate_self_tests(void)1891 static void rcu_tasks_initiate_self_tests(void) { }
1892 #endif /* #else #ifdef CONFIG_PROVE_RCU */
1893
rcu_init_tasks_generic(void)1894 void __init rcu_init_tasks_generic(void)
1895 {
1896 #ifdef CONFIG_TASKS_RCU
1897 rcu_spawn_tasks_kthread();
1898 #endif
1899
1900 #ifdef CONFIG_TASKS_RUDE_RCU
1901 rcu_spawn_tasks_rude_kthread();
1902 #endif
1903
1904 #ifdef CONFIG_TASKS_TRACE_RCU
1905 rcu_spawn_tasks_trace_kthread();
1906 #endif
1907
1908 // Run the self-tests.
1909 rcu_tasks_initiate_self_tests();
1910 }
1911
1912 #else /* #ifdef CONFIG_TASKS_RCU_GENERIC */
rcu_tasks_bootup_oddness(void)1913 static inline void rcu_tasks_bootup_oddness(void) {}
1914 #endif /* #else #ifdef CONFIG_TASKS_RCU_GENERIC */
1915