1 /*
2 * Copyright © 2015-2016 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Robert Bragg <robert@sixbynine.org>
25 */
26
27
28 /**
29 * DOC: i915 Perf Overview
30 *
31 * Gen graphics supports a large number of performance counters that can help
32 * driver and application developers understand and optimize their use of the
33 * GPU.
34 *
35 * This i915 perf interface enables userspace to configure and open a file
36 * descriptor representing a stream of GPU metrics which can then be read() as
37 * a stream of sample records.
38 *
39 * The interface is particularly suited to exposing buffered metrics that are
40 * captured by DMA from the GPU, unsynchronized with and unrelated to the CPU.
41 *
42 * Streams representing a single context are accessible to applications with a
43 * corresponding drm file descriptor, such that OpenGL can use the interface
44 * without special privileges. Access to system-wide metrics requires root
45 * privileges by default, unless changed via the dev.i915.perf_event_paranoid
46 * sysctl option.
47 *
48 */
49
50 /**
51 * DOC: i915 Perf History and Comparison with Core Perf
52 *
53 * The interface was initially inspired by the core Perf infrastructure but
54 * some notable differences are:
55 *
56 * i915 perf file descriptors represent a "stream" instead of an "event"; where
57 * a perf event primarily corresponds to a single 64bit value, while a stream
58 * might sample sets of tightly-coupled counters, depending on the
59 * configuration. For example the Gen OA unit isn't designed to support
60 * orthogonal configurations of individual counters; it's configured for a set
61 * of related counters. Samples for an i915 perf stream capturing OA metrics
62 * will include a set of counter values packed in a compact HW specific format.
63 * The OA unit supports a number of different packing formats which can be
64 * selected by the user opening the stream. Perf has support for grouping
65 * events, but each event in the group is configured, validated and
66 * authenticated individually with separate system calls.
67 *
68 * i915 perf stream configurations are provided as an array of u64 (key,value)
69 * pairs, instead of a fixed struct with multiple miscellaneous config members,
70 * interleaved with event-type specific members.
71 *
72 * i915 perf doesn't support exposing metrics via an mmap'd circular buffer.
73 * The supported metrics are being written to memory by the GPU unsynchronized
74 * with the CPU, using HW specific packing formats for counter sets. Sometimes
75 * the constraints on HW configuration require reports to be filtered before it
76 * would be acceptable to expose them to unprivileged applications - to hide
77 * the metrics of other processes/contexts. For these use cases a read() based
78 * interface is a good fit, and provides an opportunity to filter data as it
79 * gets copied from the GPU mapped buffers to userspace buffers.
80 *
81 *
82 * Issues hit with first prototype based on Core Perf
83 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
84 *
85 * The first prototype of this driver was based on the core perf
86 * infrastructure, and while we did make that mostly work, with some changes to
87 * perf, we found we were breaking or working around too many assumptions baked
88 * into perf's currently cpu centric design.
89 *
90 * In the end we didn't see a clear benefit to making perf's implementation and
91 * interface more complex by changing design assumptions while we knew we still
92 * wouldn't be able to use any existing perf based userspace tools.
93 *
94 * Also considering the Gen specific nature of the Observability hardware and
95 * how userspace will sometimes need to combine i915 perf OA metrics with
96 * side-band OA data captured via MI_REPORT_PERF_COUNT commands; we're
97 * expecting the interface to be used by a platform specific userspace such as
98 * OpenGL or tools. This is to say; we aren't inherently missing out on having
99 * a standard vendor/architecture agnostic interface by not using perf.
100 *
101 *
102 * For posterity, in case we might re-visit trying to adapt core perf to be
103 * better suited to exposing i915 metrics these were the main pain points we
104 * hit:
105 *
106 * - The perf based OA PMU driver broke some significant design assumptions:
107 *
108 * Existing perf pmus are used for profiling work on a cpu and we were
109 * introducing the idea of _IS_DEVICE pmus with different security
110 * implications, the need to fake cpu-related data (such as user/kernel
111 * registers) to fit with perf's current design, and adding _DEVICE records
112 * as a way to forward device-specific status records.
113 *
114 * The OA unit writes reports of counters into a circular buffer, without
115 * involvement from the CPU, making our PMU driver the first of a kind.
116 *
117 * Given the way we were periodically forward data from the GPU-mapped, OA
118 * buffer to perf's buffer, those bursts of sample writes looked to perf like
119 * we were sampling too fast and so we had to subvert its throttling checks.
120 *
121 * Perf supports groups of counters and allows those to be read via
122 * transactions internally but transactions currently seem designed to be
123 * explicitly initiated from the cpu (say in response to a userspace read())
124 * and while we could pull a report out of the OA buffer we can't
125 * trigger a report from the cpu on demand.
126 *
127 * Related to being report based; the OA counters are configured in HW as a
128 * set while perf generally expects counter configurations to be orthogonal.
129 * Although counters can be associated with a group leader as they are
130 * opened, there's no clear precedent for being able to provide group-wide
131 * configuration attributes (for example we want to let userspace choose the
132 * OA unit report format used to capture all counters in a set, or specify a
133 * GPU context to filter metrics on). We avoided using perf's grouping
134 * feature and forwarded OA reports to userspace via perf's 'raw' sample
135 * field. This suited our userspace well considering how coupled the counters
136 * are when dealing with normalizing. It would be inconvenient to split
137 * counters up into separate events, only to require userspace to recombine
138 * them. For Mesa it's also convenient to be forwarded raw, periodic reports
139 * for combining with the side-band raw reports it captures using
140 * MI_REPORT_PERF_COUNT commands.
141 *
142 * - As a side note on perf's grouping feature; there was also some concern
143 * that using PERF_FORMAT_GROUP as a way to pack together counter values
144 * would quite drastically inflate our sample sizes, which would likely
145 * lower the effective sampling resolutions we could use when the available
146 * memory bandwidth is limited.
147 *
148 * With the OA unit's report formats, counters are packed together as 32
149 * or 40bit values, with the largest report size being 256 bytes.
150 *
151 * PERF_FORMAT_GROUP values are 64bit, but there doesn't appear to be a
152 * documented ordering to the values, implying PERF_FORMAT_ID must also be
153 * used to add a 64bit ID before each value; giving 16 bytes per counter.
154 *
155 * Related to counter orthogonality; we can't time share the OA unit, while
156 * event scheduling is a central design idea within perf for allowing
157 * userspace to open + enable more events than can be configured in HW at any
158 * one time. The OA unit is not designed to allow re-configuration while in
159 * use. We can't reconfigure the OA unit without losing internal OA unit
160 * state which we can't access explicitly to save and restore. Reconfiguring
161 * the OA unit is also relatively slow, involving ~100 register writes. From
162 * userspace Mesa also depends on a stable OA configuration when emitting
163 * MI_REPORT_PERF_COUNT commands and importantly the OA unit can't be
164 * disabled while there are outstanding MI_RPC commands lest we hang the
165 * command streamer.
166 *
167 * The contents of sample records aren't extensible by device drivers (i.e.
168 * the sample_type bits). As an example; Sourab Gupta had been looking to
169 * attach GPU timestamps to our OA samples. We were shoehorning OA reports
170 * into sample records by using the 'raw' field, but it's tricky to pack more
171 * than one thing into this field because events/core.c currently only lets a
172 * pmu give a single raw data pointer plus len which will be copied into the
173 * ring buffer. To include more than the OA report we'd have to copy the
174 * report into an intermediate larger buffer. I'd been considering allowing a
175 * vector of data+len values to be specified for copying the raw data, but
176 * it felt like a kludge to being using the raw field for this purpose.
177 *
178 * - It felt like our perf based PMU was making some technical compromises
179 * just for the sake of using perf:
180 *
181 * perf_event_open() requires events to either relate to a pid or a specific
182 * cpu core, while our device pmu related to neither. Events opened with a
183 * pid will be automatically enabled/disabled according to the scheduling of
184 * that process - so not appropriate for us. When an event is related to a
185 * cpu id, perf ensures pmu methods will be invoked via an inter process
186 * interrupt on that core. To avoid invasive changes our userspace opened OA
187 * perf events for a specific cpu. This was workable but it meant the
188 * majority of the OA driver ran in atomic context, including all OA report
189 * forwarding, which wasn't really necessary in our case and seems to make
190 * our locking requirements somewhat complex as we handled the interaction
191 * with the rest of the i915 driver.
192 */
193
194 #include <linux/anon_inodes.h>
195 #include <linux/sizes.h>
196 #include <linux/uuid.h>
197
198 #include "gem/i915_gem_context.h"
199 #include "gem/i915_gem_internal.h"
200 #include "gt/intel_engine_pm.h"
201 #include "gt/intel_engine_regs.h"
202 #include "gt/intel_engine_user.h"
203 #include "gt/intel_execlists_submission.h"
204 #include "gt/intel_gpu_commands.h"
205 #include "gt/intel_gt.h"
206 #include "gt/intel_gt_clock_utils.h"
207 #include "gt/intel_gt_regs.h"
208 #include "gt/intel_lrc.h"
209 #include "gt/intel_lrc_reg.h"
210 #include "gt/intel_ring.h"
211
212 #include "i915_drv.h"
213 #include "i915_file_private.h"
214 #include "i915_perf.h"
215 #include "i915_perf_oa_regs.h"
216
217 /* HW requires this to be a power of two, between 128k and 16M, though driver
218 * is currently generally designed assuming the largest 16M size is used such
219 * that the overflow cases are unlikely in normal operation.
220 */
221 #define OA_BUFFER_SIZE SZ_16M
222
223 #define OA_TAKEN(tail, head) ((tail - head) & (OA_BUFFER_SIZE - 1))
224
225 /**
226 * DOC: OA Tail Pointer Race
227 *
228 * There's a HW race condition between OA unit tail pointer register updates and
229 * writes to memory whereby the tail pointer can sometimes get ahead of what's
230 * been written out to the OA buffer so far (in terms of what's visible to the
231 * CPU).
232 *
233 * Although this can be observed explicitly while copying reports to userspace
234 * by checking for a zeroed report-id field in tail reports, we want to account
235 * for this earlier, as part of the oa_buffer_check_unlocked to avoid lots of
236 * redundant read() attempts.
237 *
238 * We workaround this issue in oa_buffer_check_unlocked() by reading the reports
239 * in the OA buffer, starting from the tail reported by the HW until we find a
240 * report with its first 2 dwords not 0 meaning its previous report is
241 * completely in memory and ready to be read. Those dwords are also set to 0
242 * once read and the whole buffer is cleared upon OA buffer initialization. The
243 * first dword is the reason for this report while the second is the timestamp,
244 * making the chances of having those 2 fields at 0 fairly unlikely. A more
245 * detailed explanation is available in oa_buffer_check_unlocked().
246 *
247 * Most of the implementation details for this workaround are in
248 * oa_buffer_check_unlocked() and _append_oa_reports()
249 *
250 * Note for posterity: previously the driver used to define an effective tail
251 * pointer that lagged the real pointer by a 'tail margin' measured in bytes
252 * derived from %OA_TAIL_MARGIN_NSEC and the configured sampling frequency.
253 * This was flawed considering that the OA unit may also automatically generate
254 * non-periodic reports (such as on context switch) or the OA unit may be
255 * enabled without any periodic sampling.
256 */
257 #define OA_TAIL_MARGIN_NSEC 100000ULL
258 #define INVALID_TAIL_PTR 0xffffffff
259
260 /* The default frequency for checking whether the OA unit has written new
261 * reports to the circular OA buffer...
262 */
263 #define DEFAULT_POLL_FREQUENCY_HZ 200
264 #define DEFAULT_POLL_PERIOD_NS (NSEC_PER_SEC / DEFAULT_POLL_FREQUENCY_HZ)
265
266 /* for sysctl proc_dointvec_minmax of dev.i915.perf_stream_paranoid */
267 static u32 i915_perf_stream_paranoid = true;
268
269 /* The maximum exponent the hardware accepts is 63 (essentially it selects one
270 * of the 64bit timestamp bits to trigger reports from) but there's currently
271 * no known use case for sampling as infrequently as once per 47 thousand years.
272 *
273 * Since the timestamps included in OA reports are only 32bits it seems
274 * reasonable to limit the OA exponent where it's still possible to account for
275 * overflow in OA report timestamps.
276 */
277 #define OA_EXPONENT_MAX 31
278
279 #define INVALID_CTX_ID 0xffffffff
280
281 /* On Gen8+ automatically triggered OA reports include a 'reason' field... */
282 #define OAREPORT_REASON_MASK 0x3f
283 #define OAREPORT_REASON_MASK_EXTENDED 0x7f
284 #define OAREPORT_REASON_SHIFT 19
285 #define OAREPORT_REASON_TIMER (1<<0)
286 #define OAREPORT_REASON_CTX_SWITCH (1<<3)
287 #define OAREPORT_REASON_CLK_RATIO (1<<5)
288
289
290 /* For sysctl proc_dointvec_minmax of i915_oa_max_sample_rate
291 *
292 * The highest sampling frequency we can theoretically program the OA unit
293 * with is always half the timestamp frequency: E.g. 6.25Mhz for Haswell.
294 *
295 * Initialized just before we register the sysctl parameter.
296 */
297 static int oa_sample_rate_hard_limit;
298
299 /* Theoretically we can program the OA unit to sample every 160ns but don't
300 * allow that by default unless root...
301 *
302 * The default threshold of 100000Hz is based on perf's similar
303 * kernel.perf_event_max_sample_rate sysctl parameter.
304 */
305 static u32 i915_oa_max_sample_rate = 100000;
306
307 /* XXX: beware if future OA HW adds new report formats that the current
308 * code assumes all reports have a power-of-two size and ~(size - 1) can
309 * be used as a mask to align the OA tail pointer.
310 */
311 static const struct i915_oa_format oa_formats[I915_OA_FORMAT_MAX] = {
312 [I915_OA_FORMAT_A13] = { 0, 64 },
313 [I915_OA_FORMAT_A29] = { 1, 128 },
314 [I915_OA_FORMAT_A13_B8_C8] = { 2, 128 },
315 /* A29_B8_C8 Disallowed as 192 bytes doesn't factor into buffer size */
316 [I915_OA_FORMAT_B4_C8] = { 4, 64 },
317 [I915_OA_FORMAT_A45_B8_C8] = { 5, 256 },
318 [I915_OA_FORMAT_B4_C8_A16] = { 6, 128 },
319 [I915_OA_FORMAT_C4_B8] = { 7, 64 },
320 [I915_OA_FORMAT_A12] = { 0, 64 },
321 [I915_OA_FORMAT_A12_B8_C8] = { 2, 128 },
322 [I915_OA_FORMAT_A32u40_A4u32_B8_C8] = { 5, 256 },
323 };
324
325 #define SAMPLE_OA_REPORT (1<<0)
326
327 /**
328 * struct perf_open_properties - for validated properties given to open a stream
329 * @sample_flags: `DRM_I915_PERF_PROP_SAMPLE_*` properties are tracked as flags
330 * @single_context: Whether a single or all gpu contexts should be monitored
331 * @hold_preemption: Whether the preemption is disabled for the filtered
332 * context
333 * @ctx_handle: A gem ctx handle for use with @single_context
334 * @metrics_set: An ID for an OA unit metric set advertised via sysfs
335 * @oa_format: An OA unit HW report format
336 * @oa_periodic: Whether to enable periodic OA unit sampling
337 * @oa_period_exponent: The OA unit sampling period is derived from this
338 * @engine: The engine (typically rcs0) being monitored by the OA unit
339 * @has_sseu: Whether @sseu was specified by userspace
340 * @sseu: internal SSEU configuration computed either from the userspace
341 * specified configuration in the opening parameters or a default value
342 * (see get_default_sseu_config())
343 * @poll_oa_period: The period in nanoseconds at which the CPU will check for OA
344 * data availability
345 *
346 * As read_properties_unlocked() enumerates and validates the properties given
347 * to open a stream of metrics the configuration is built up in the structure
348 * which starts out zero initialized.
349 */
350 struct perf_open_properties {
351 u32 sample_flags;
352
353 u64 single_context:1;
354 u64 hold_preemption:1;
355 u64 ctx_handle;
356
357 /* OA sampling state */
358 int metrics_set;
359 int oa_format;
360 bool oa_periodic;
361 int oa_period_exponent;
362
363 struct intel_engine_cs *engine;
364
365 bool has_sseu;
366 struct intel_sseu sseu;
367
368 u64 poll_oa_period;
369 };
370
371 struct i915_oa_config_bo {
372 struct llist_node node;
373
374 struct i915_oa_config *oa_config;
375 struct i915_vma *vma;
376 };
377
378 static struct ctl_table_header *sysctl_header;
379
380 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer);
381
i915_oa_config_release(struct kref * ref)382 void i915_oa_config_release(struct kref *ref)
383 {
384 struct i915_oa_config *oa_config =
385 container_of(ref, typeof(*oa_config), ref);
386
387 kfree(oa_config->flex_regs);
388 kfree(oa_config->b_counter_regs);
389 kfree(oa_config->mux_regs);
390
391 kfree_rcu(oa_config, rcu);
392 }
393
394 struct i915_oa_config *
i915_perf_get_oa_config(struct i915_perf * perf,int metrics_set)395 i915_perf_get_oa_config(struct i915_perf *perf, int metrics_set)
396 {
397 struct i915_oa_config *oa_config;
398
399 rcu_read_lock();
400 oa_config = idr_find(&perf->metrics_idr, metrics_set);
401 if (oa_config)
402 oa_config = i915_oa_config_get(oa_config);
403 rcu_read_unlock();
404
405 return oa_config;
406 }
407
free_oa_config_bo(struct i915_oa_config_bo * oa_bo)408 static void free_oa_config_bo(struct i915_oa_config_bo *oa_bo)
409 {
410 i915_oa_config_put(oa_bo->oa_config);
411 i915_vma_put(oa_bo->vma);
412 kfree(oa_bo);
413 }
414
gen12_oa_hw_tail_read(struct i915_perf_stream * stream)415 static u32 gen12_oa_hw_tail_read(struct i915_perf_stream *stream)
416 {
417 struct intel_uncore *uncore = stream->uncore;
418
419 return intel_uncore_read(uncore, GEN12_OAG_OATAILPTR) &
420 GEN12_OAG_OATAILPTR_MASK;
421 }
422
gen8_oa_hw_tail_read(struct i915_perf_stream * stream)423 static u32 gen8_oa_hw_tail_read(struct i915_perf_stream *stream)
424 {
425 struct intel_uncore *uncore = stream->uncore;
426
427 return intel_uncore_read(uncore, GEN8_OATAILPTR) & GEN8_OATAILPTR_MASK;
428 }
429
gen7_oa_hw_tail_read(struct i915_perf_stream * stream)430 static u32 gen7_oa_hw_tail_read(struct i915_perf_stream *stream)
431 {
432 struct intel_uncore *uncore = stream->uncore;
433 u32 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
434
435 return oastatus1 & GEN7_OASTATUS1_TAIL_MASK;
436 }
437
438 /**
439 * oa_buffer_check_unlocked - check for data and update tail ptr state
440 * @stream: i915 stream instance
441 *
442 * This is either called via fops (for blocking reads in user ctx) or the poll
443 * check hrtimer (atomic ctx) to check the OA buffer tail pointer and check
444 * if there is data available for userspace to read.
445 *
446 * This function is central to providing a workaround for the OA unit tail
447 * pointer having a race with respect to what data is visible to the CPU.
448 * It is responsible for reading tail pointers from the hardware and giving
449 * the pointers time to 'age' before they are made available for reading.
450 * (See description of OA_TAIL_MARGIN_NSEC above for further details.)
451 *
452 * Besides returning true when there is data available to read() this function
453 * also updates the tail, aging_tail and aging_timestamp in the oa_buffer
454 * object.
455 *
456 * Note: It's safe to read OA config state here unlocked, assuming that this is
457 * only called while the stream is enabled, while the global OA configuration
458 * can't be modified.
459 *
460 * Returns: %true if the OA buffer contains data, else %false
461 */
oa_buffer_check_unlocked(struct i915_perf_stream * stream)462 static bool oa_buffer_check_unlocked(struct i915_perf_stream *stream)
463 {
464 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
465 int report_size = stream->oa_buffer.format_size;
466 unsigned long flags;
467 bool pollin;
468 u32 hw_tail;
469 u64 now;
470
471 /* We have to consider the (unlikely) possibility that read() errors
472 * could result in an OA buffer reset which might reset the head and
473 * tail state.
474 */
475 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
476
477 hw_tail = stream->perf->ops.oa_hw_tail_read(stream);
478
479 /* The tail pointer increases in 64 byte increments,
480 * not in report_size steps...
481 */
482 hw_tail &= ~(report_size - 1);
483
484 now = ktime_get_mono_fast_ns();
485
486 if (hw_tail == stream->oa_buffer.aging_tail &&
487 (now - stream->oa_buffer.aging_timestamp) > OA_TAIL_MARGIN_NSEC) {
488 /* If the HW tail hasn't move since the last check and the HW
489 * tail has been aging for long enough, declare it the new
490 * tail.
491 */
492 stream->oa_buffer.tail = stream->oa_buffer.aging_tail;
493 } else {
494 u32 head, tail, aged_tail;
495
496 /* NB: The head we observe here might effectively be a little
497 * out of date. If a read() is in progress, the head could be
498 * anywhere between this head and stream->oa_buffer.tail.
499 */
500 head = stream->oa_buffer.head - gtt_offset;
501 aged_tail = stream->oa_buffer.tail - gtt_offset;
502
503 hw_tail -= gtt_offset;
504 tail = hw_tail;
505
506 /* Walk the stream backward until we find a report with dword 0
507 * & 1 not at 0. Since the circular buffer pointers progress by
508 * increments of 64 bytes and that reports can be up to 256
509 * bytes long, we can't tell whether a report has fully landed
510 * in memory before the first 2 dwords of the following report
511 * have effectively landed.
512 *
513 * This is assuming that the writes of the OA unit land in
514 * memory in the order they were written to.
515 * If not : (╯°□°)╯︵ ┻━┻
516 */
517 while (OA_TAKEN(tail, aged_tail) >= report_size) {
518 u32 *report32 = (void *)(stream->oa_buffer.vaddr + tail);
519
520 if (report32[0] != 0 || report32[1] != 0)
521 break;
522
523 tail = (tail - report_size) & (OA_BUFFER_SIZE - 1);
524 }
525
526 if (OA_TAKEN(hw_tail, tail) > report_size &&
527 __ratelimit(&stream->perf->tail_pointer_race))
528 DRM_NOTE("unlanded report(s) head=0x%x "
529 "tail=0x%x hw_tail=0x%x\n",
530 head, tail, hw_tail);
531
532 stream->oa_buffer.tail = gtt_offset + tail;
533 stream->oa_buffer.aging_tail = gtt_offset + hw_tail;
534 stream->oa_buffer.aging_timestamp = now;
535 }
536
537 pollin = OA_TAKEN(stream->oa_buffer.tail - gtt_offset,
538 stream->oa_buffer.head - gtt_offset) >= report_size;
539
540 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
541
542 return pollin;
543 }
544
545 /**
546 * append_oa_status - Appends a status record to a userspace read() buffer.
547 * @stream: An i915-perf stream opened for OA metrics
548 * @buf: destination buffer given by userspace
549 * @count: the number of bytes userspace wants to read
550 * @offset: (inout): the current position for writing into @buf
551 * @type: The kind of status to report to userspace
552 *
553 * Writes a status record (such as `DRM_I915_PERF_RECORD_OA_REPORT_LOST`)
554 * into the userspace read() buffer.
555 *
556 * The @buf @offset will only be updated on success.
557 *
558 * Returns: 0 on success, negative error code on failure.
559 */
append_oa_status(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset,enum drm_i915_perf_record_type type)560 static int append_oa_status(struct i915_perf_stream *stream,
561 char __user *buf,
562 size_t count,
563 size_t *offset,
564 enum drm_i915_perf_record_type type)
565 {
566 struct drm_i915_perf_record_header header = { type, 0, sizeof(header) };
567
568 if ((count - *offset) < header.size)
569 return -ENOSPC;
570
571 if (copy_to_user(buf + *offset, &header, sizeof(header)))
572 return -EFAULT;
573
574 (*offset) += header.size;
575
576 return 0;
577 }
578
579 /**
580 * append_oa_sample - Copies single OA report into userspace read() buffer.
581 * @stream: An i915-perf stream opened for OA metrics
582 * @buf: destination buffer given by userspace
583 * @count: the number of bytes userspace wants to read
584 * @offset: (inout): the current position for writing into @buf
585 * @report: A single OA report to (optionally) include as part of the sample
586 *
587 * The contents of a sample are configured through `DRM_I915_PERF_PROP_SAMPLE_*`
588 * properties when opening a stream, tracked as `stream->sample_flags`. This
589 * function copies the requested components of a single sample to the given
590 * read() @buf.
591 *
592 * The @buf @offset will only be updated on success.
593 *
594 * Returns: 0 on success, negative error code on failure.
595 */
append_oa_sample(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset,const u8 * report)596 static int append_oa_sample(struct i915_perf_stream *stream,
597 char __user *buf,
598 size_t count,
599 size_t *offset,
600 const u8 *report)
601 {
602 int report_size = stream->oa_buffer.format_size;
603 struct drm_i915_perf_record_header header;
604
605 header.type = DRM_I915_PERF_RECORD_SAMPLE;
606 header.pad = 0;
607 header.size = stream->sample_size;
608
609 if ((count - *offset) < header.size)
610 return -ENOSPC;
611
612 buf += *offset;
613 if (copy_to_user(buf, &header, sizeof(header)))
614 return -EFAULT;
615 buf += sizeof(header);
616
617 if (copy_to_user(buf, report, report_size))
618 return -EFAULT;
619
620 (*offset) += header.size;
621
622 return 0;
623 }
624
625 /**
626 * gen8_append_oa_reports - Copies all buffered OA reports into
627 * userspace read() buffer.
628 * @stream: An i915-perf stream opened for OA metrics
629 * @buf: destination buffer given by userspace
630 * @count: the number of bytes userspace wants to read
631 * @offset: (inout): the current position for writing into @buf
632 *
633 * Notably any error condition resulting in a short read (-%ENOSPC or
634 * -%EFAULT) will be returned even though one or more records may
635 * have been successfully copied. In this case it's up to the caller
636 * to decide if the error should be squashed before returning to
637 * userspace.
638 *
639 * Note: reports are consumed from the head, and appended to the
640 * tail, so the tail chases the head?... If you think that's mad
641 * and back-to-front you're not alone, but this follows the
642 * Gen PRM naming convention.
643 *
644 * Returns: 0 on success, negative error code on failure.
645 */
gen8_append_oa_reports(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)646 static int gen8_append_oa_reports(struct i915_perf_stream *stream,
647 char __user *buf,
648 size_t count,
649 size_t *offset)
650 {
651 struct intel_uncore *uncore = stream->uncore;
652 int report_size = stream->oa_buffer.format_size;
653 u8 *oa_buf_base = stream->oa_buffer.vaddr;
654 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
655 u32 mask = (OA_BUFFER_SIZE - 1);
656 size_t start_offset = *offset;
657 unsigned long flags;
658 u32 head, tail;
659 u32 taken;
660 int ret = 0;
661
662 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
663 return -EIO;
664
665 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
666
667 head = stream->oa_buffer.head;
668 tail = stream->oa_buffer.tail;
669
670 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
671
672 /*
673 * NB: oa_buffer.head/tail include the gtt_offset which we don't want
674 * while indexing relative to oa_buf_base.
675 */
676 head -= gtt_offset;
677 tail -= gtt_offset;
678
679 /*
680 * An out of bounds or misaligned head or tail pointer implies a driver
681 * bug since we validate + align the tail pointers we read from the
682 * hardware and we are in full control of the head pointer which should
683 * only be incremented by multiples of the report size (notably also
684 * all a power of two).
685 */
686 if (drm_WARN_ONCE(&uncore->i915->drm,
687 head > OA_BUFFER_SIZE || head % report_size ||
688 tail > OA_BUFFER_SIZE || tail % report_size,
689 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
690 head, tail))
691 return -EIO;
692
693
694 for (/* none */;
695 (taken = OA_TAKEN(tail, head));
696 head = (head + report_size) & mask) {
697 u8 *report = oa_buf_base + head;
698 u32 *report32 = (void *)report;
699 u32 ctx_id;
700 u32 reason;
701
702 /*
703 * All the report sizes factor neatly into the buffer
704 * size so we never expect to see a report split
705 * between the beginning and end of the buffer.
706 *
707 * Given the initial alignment check a misalignment
708 * here would imply a driver bug that would result
709 * in an overrun.
710 */
711 if (drm_WARN_ON(&uncore->i915->drm,
712 (OA_BUFFER_SIZE - head) < report_size)) {
713 drm_err(&uncore->i915->drm,
714 "Spurious OA head ptr: non-integral report offset\n");
715 break;
716 }
717
718 /*
719 * The reason field includes flags identifying what
720 * triggered this specific report (mostly timer
721 * triggered or e.g. due to a context switch).
722 *
723 * This field is never expected to be zero so we can
724 * check that the report isn't invalid before copying
725 * it to userspace...
726 */
727 reason = ((report32[0] >> OAREPORT_REASON_SHIFT) &
728 (GRAPHICS_VER(stream->perf->i915) == 12 ?
729 OAREPORT_REASON_MASK_EXTENDED :
730 OAREPORT_REASON_MASK));
731
732 ctx_id = report32[2] & stream->specific_ctx_id_mask;
733
734 /*
735 * Squash whatever is in the CTX_ID field if it's marked as
736 * invalid to be sure we avoid false-positive, single-context
737 * filtering below...
738 *
739 * Note: that we don't clear the valid_ctx_bit so userspace can
740 * understand that the ID has been squashed by the kernel.
741 */
742 if (!(report32[0] & stream->perf->gen8_valid_ctx_bit) &&
743 GRAPHICS_VER(stream->perf->i915) <= 11)
744 ctx_id = report32[2] = INVALID_CTX_ID;
745
746 /*
747 * NB: For Gen 8 the OA unit no longer supports clock gating
748 * off for a specific context and the kernel can't securely
749 * stop the counters from updating as system-wide / global
750 * values.
751 *
752 * Automatic reports now include a context ID so reports can be
753 * filtered on the cpu but it's not worth trying to
754 * automatically subtract/hide counter progress for other
755 * contexts while filtering since we can't stop userspace
756 * issuing MI_REPORT_PERF_COUNT commands which would still
757 * provide a side-band view of the real values.
758 *
759 * To allow userspace (such as Mesa/GL_INTEL_performance_query)
760 * to normalize counters for a single filtered context then it
761 * needs be forwarded bookend context-switch reports so that it
762 * can track switches in between MI_REPORT_PERF_COUNT commands
763 * and can itself subtract/ignore the progress of counters
764 * associated with other contexts. Note that the hardware
765 * automatically triggers reports when switching to a new
766 * context which are tagged with the ID of the newly active
767 * context. To avoid the complexity (and likely fragility) of
768 * reading ahead while parsing reports to try and minimize
769 * forwarding redundant context switch reports (i.e. between
770 * other, unrelated contexts) we simply elect to forward them
771 * all.
772 *
773 * We don't rely solely on the reason field to identify context
774 * switches since it's not-uncommon for periodic samples to
775 * identify a switch before any 'context switch' report.
776 */
777 if (!stream->perf->exclusive_stream->ctx ||
778 stream->specific_ctx_id == ctx_id ||
779 stream->oa_buffer.last_ctx_id == stream->specific_ctx_id ||
780 reason & OAREPORT_REASON_CTX_SWITCH) {
781
782 /*
783 * While filtering for a single context we avoid
784 * leaking the IDs of other contexts.
785 */
786 if (stream->perf->exclusive_stream->ctx &&
787 stream->specific_ctx_id != ctx_id) {
788 report32[2] = INVALID_CTX_ID;
789 }
790
791 ret = append_oa_sample(stream, buf, count, offset,
792 report);
793 if (ret)
794 break;
795
796 stream->oa_buffer.last_ctx_id = ctx_id;
797 }
798
799 /*
800 * Clear out the first 2 dword as a mean to detect unlanded
801 * reports.
802 */
803 report32[0] = 0;
804 report32[1] = 0;
805 }
806
807 if (start_offset != *offset) {
808 i915_reg_t oaheadptr;
809
810 oaheadptr = GRAPHICS_VER(stream->perf->i915) == 12 ?
811 GEN12_OAG_OAHEADPTR : GEN8_OAHEADPTR;
812
813 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
814
815 /*
816 * We removed the gtt_offset for the copy loop above, indexing
817 * relative to oa_buf_base so put back here...
818 */
819 head += gtt_offset;
820 intel_uncore_write(uncore, oaheadptr,
821 head & GEN12_OAG_OAHEADPTR_MASK);
822 stream->oa_buffer.head = head;
823
824 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
825 }
826
827 return ret;
828 }
829
830 /**
831 * gen8_oa_read - copy status records then buffered OA reports
832 * @stream: An i915-perf stream opened for OA metrics
833 * @buf: destination buffer given by userspace
834 * @count: the number of bytes userspace wants to read
835 * @offset: (inout): the current position for writing into @buf
836 *
837 * Checks OA unit status registers and if necessary appends corresponding
838 * status records for userspace (such as for a buffer full condition) and then
839 * initiate appending any buffered OA reports.
840 *
841 * Updates @offset according to the number of bytes successfully copied into
842 * the userspace buffer.
843 *
844 * NB: some data may be successfully copied to the userspace buffer
845 * even if an error is returned, and this is reflected in the
846 * updated @offset.
847 *
848 * Returns: zero on success or a negative error code
849 */
gen8_oa_read(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)850 static int gen8_oa_read(struct i915_perf_stream *stream,
851 char __user *buf,
852 size_t count,
853 size_t *offset)
854 {
855 struct intel_uncore *uncore = stream->uncore;
856 u32 oastatus;
857 i915_reg_t oastatus_reg;
858 int ret;
859
860 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
861 return -EIO;
862
863 oastatus_reg = GRAPHICS_VER(stream->perf->i915) == 12 ?
864 GEN12_OAG_OASTATUS : GEN8_OASTATUS;
865
866 oastatus = intel_uncore_read(uncore, oastatus_reg);
867
868 /*
869 * We treat OABUFFER_OVERFLOW as a significant error:
870 *
871 * Although theoretically we could handle this more gracefully
872 * sometimes, some Gens don't correctly suppress certain
873 * automatically triggered reports in this condition and so we
874 * have to assume that old reports are now being trampled
875 * over.
876 *
877 * Considering how we don't currently give userspace control
878 * over the OA buffer size and always configure a large 16MB
879 * buffer, then a buffer overflow does anyway likely indicate
880 * that something has gone quite badly wrong.
881 */
882 if (oastatus & GEN8_OASTATUS_OABUFFER_OVERFLOW) {
883 ret = append_oa_status(stream, buf, count, offset,
884 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
885 if (ret)
886 return ret;
887
888 drm_dbg(&stream->perf->i915->drm,
889 "OA buffer overflow (exponent = %d): force restart\n",
890 stream->period_exponent);
891
892 stream->perf->ops.oa_disable(stream);
893 stream->perf->ops.oa_enable(stream);
894
895 /*
896 * Note: .oa_enable() is expected to re-init the oabuffer and
897 * reset GEN8_OASTATUS for us
898 */
899 oastatus = intel_uncore_read(uncore, oastatus_reg);
900 }
901
902 if (oastatus & GEN8_OASTATUS_REPORT_LOST) {
903 ret = append_oa_status(stream, buf, count, offset,
904 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
905 if (ret)
906 return ret;
907
908 intel_uncore_rmw(uncore, oastatus_reg,
909 GEN8_OASTATUS_COUNTER_OVERFLOW |
910 GEN8_OASTATUS_REPORT_LOST,
911 IS_GRAPHICS_VER(uncore->i915, 8, 11) ?
912 (GEN8_OASTATUS_HEAD_POINTER_WRAP |
913 GEN8_OASTATUS_TAIL_POINTER_WRAP) : 0);
914 }
915
916 return gen8_append_oa_reports(stream, buf, count, offset);
917 }
918
919 /**
920 * gen7_append_oa_reports - Copies all buffered OA reports into
921 * userspace read() buffer.
922 * @stream: An i915-perf stream opened for OA metrics
923 * @buf: destination buffer given by userspace
924 * @count: the number of bytes userspace wants to read
925 * @offset: (inout): the current position for writing into @buf
926 *
927 * Notably any error condition resulting in a short read (-%ENOSPC or
928 * -%EFAULT) will be returned even though one or more records may
929 * have been successfully copied. In this case it's up to the caller
930 * to decide if the error should be squashed before returning to
931 * userspace.
932 *
933 * Note: reports are consumed from the head, and appended to the
934 * tail, so the tail chases the head?... If you think that's mad
935 * and back-to-front you're not alone, but this follows the
936 * Gen PRM naming convention.
937 *
938 * Returns: 0 on success, negative error code on failure.
939 */
gen7_append_oa_reports(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)940 static int gen7_append_oa_reports(struct i915_perf_stream *stream,
941 char __user *buf,
942 size_t count,
943 size_t *offset)
944 {
945 struct intel_uncore *uncore = stream->uncore;
946 int report_size = stream->oa_buffer.format_size;
947 u8 *oa_buf_base = stream->oa_buffer.vaddr;
948 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
949 u32 mask = (OA_BUFFER_SIZE - 1);
950 size_t start_offset = *offset;
951 unsigned long flags;
952 u32 head, tail;
953 u32 taken;
954 int ret = 0;
955
956 if (drm_WARN_ON(&uncore->i915->drm, !stream->enabled))
957 return -EIO;
958
959 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
960
961 head = stream->oa_buffer.head;
962 tail = stream->oa_buffer.tail;
963
964 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
965
966 /* NB: oa_buffer.head/tail include the gtt_offset which we don't want
967 * while indexing relative to oa_buf_base.
968 */
969 head -= gtt_offset;
970 tail -= gtt_offset;
971
972 /* An out of bounds or misaligned head or tail pointer implies a driver
973 * bug since we validate + align the tail pointers we read from the
974 * hardware and we are in full control of the head pointer which should
975 * only be incremented by multiples of the report size (notably also
976 * all a power of two).
977 */
978 if (drm_WARN_ONCE(&uncore->i915->drm,
979 head > OA_BUFFER_SIZE || head % report_size ||
980 tail > OA_BUFFER_SIZE || tail % report_size,
981 "Inconsistent OA buffer pointers: head = %u, tail = %u\n",
982 head, tail))
983 return -EIO;
984
985
986 for (/* none */;
987 (taken = OA_TAKEN(tail, head));
988 head = (head + report_size) & mask) {
989 u8 *report = oa_buf_base + head;
990 u32 *report32 = (void *)report;
991
992 /* All the report sizes factor neatly into the buffer
993 * size so we never expect to see a report split
994 * between the beginning and end of the buffer.
995 *
996 * Given the initial alignment check a misalignment
997 * here would imply a driver bug that would result
998 * in an overrun.
999 */
1000 if (drm_WARN_ON(&uncore->i915->drm,
1001 (OA_BUFFER_SIZE - head) < report_size)) {
1002 drm_err(&uncore->i915->drm,
1003 "Spurious OA head ptr: non-integral report offset\n");
1004 break;
1005 }
1006
1007 /* The report-ID field for periodic samples includes
1008 * some undocumented flags related to what triggered
1009 * the report and is never expected to be zero so we
1010 * can check that the report isn't invalid before
1011 * copying it to userspace...
1012 */
1013 if (report32[0] == 0) {
1014 if (__ratelimit(&stream->perf->spurious_report_rs))
1015 DRM_NOTE("Skipping spurious, invalid OA report\n");
1016 continue;
1017 }
1018
1019 ret = append_oa_sample(stream, buf, count, offset, report);
1020 if (ret)
1021 break;
1022
1023 /* Clear out the first 2 dwords as a mean to detect unlanded
1024 * reports.
1025 */
1026 report32[0] = 0;
1027 report32[1] = 0;
1028 }
1029
1030 if (start_offset != *offset) {
1031 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1032
1033 /* We removed the gtt_offset for the copy loop above, indexing
1034 * relative to oa_buf_base so put back here...
1035 */
1036 head += gtt_offset;
1037
1038 intel_uncore_write(uncore, GEN7_OASTATUS2,
1039 (head & GEN7_OASTATUS2_HEAD_MASK) |
1040 GEN7_OASTATUS2_MEM_SELECT_GGTT);
1041 stream->oa_buffer.head = head;
1042
1043 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1044 }
1045
1046 return ret;
1047 }
1048
1049 /**
1050 * gen7_oa_read - copy status records then buffered OA reports
1051 * @stream: An i915-perf stream opened for OA metrics
1052 * @buf: destination buffer given by userspace
1053 * @count: the number of bytes userspace wants to read
1054 * @offset: (inout): the current position for writing into @buf
1055 *
1056 * Checks Gen 7 specific OA unit status registers and if necessary appends
1057 * corresponding status records for userspace (such as for a buffer full
1058 * condition) and then initiate appending any buffered OA reports.
1059 *
1060 * Updates @offset according to the number of bytes successfully copied into
1061 * the userspace buffer.
1062 *
1063 * Returns: zero on success or a negative error code
1064 */
gen7_oa_read(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)1065 static int gen7_oa_read(struct i915_perf_stream *stream,
1066 char __user *buf,
1067 size_t count,
1068 size_t *offset)
1069 {
1070 struct intel_uncore *uncore = stream->uncore;
1071 u32 oastatus1;
1072 int ret;
1073
1074 if (drm_WARN_ON(&uncore->i915->drm, !stream->oa_buffer.vaddr))
1075 return -EIO;
1076
1077 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1078
1079 /* XXX: On Haswell we don't have a safe way to clear oastatus1
1080 * bits while the OA unit is enabled (while the tail pointer
1081 * may be updated asynchronously) so we ignore status bits
1082 * that have already been reported to userspace.
1083 */
1084 oastatus1 &= ~stream->perf->gen7_latched_oastatus1;
1085
1086 /* We treat OABUFFER_OVERFLOW as a significant error:
1087 *
1088 * - The status can be interpreted to mean that the buffer is
1089 * currently full (with a higher precedence than OA_TAKEN()
1090 * which will start to report a near-empty buffer after an
1091 * overflow) but it's awkward that we can't clear the status
1092 * on Haswell, so without a reset we won't be able to catch
1093 * the state again.
1094 *
1095 * - Since it also implies the HW has started overwriting old
1096 * reports it may also affect our sanity checks for invalid
1097 * reports when copying to userspace that assume new reports
1098 * are being written to cleared memory.
1099 *
1100 * - In the future we may want to introduce a flight recorder
1101 * mode where the driver will automatically maintain a safe
1102 * guard band between head/tail, avoiding this overflow
1103 * condition, but we avoid the added driver complexity for
1104 * now.
1105 */
1106 if (unlikely(oastatus1 & GEN7_OASTATUS1_OABUFFER_OVERFLOW)) {
1107 ret = append_oa_status(stream, buf, count, offset,
1108 DRM_I915_PERF_RECORD_OA_BUFFER_LOST);
1109 if (ret)
1110 return ret;
1111
1112 drm_dbg(&stream->perf->i915->drm,
1113 "OA buffer overflow (exponent = %d): force restart\n",
1114 stream->period_exponent);
1115
1116 stream->perf->ops.oa_disable(stream);
1117 stream->perf->ops.oa_enable(stream);
1118
1119 oastatus1 = intel_uncore_read(uncore, GEN7_OASTATUS1);
1120 }
1121
1122 if (unlikely(oastatus1 & GEN7_OASTATUS1_REPORT_LOST)) {
1123 ret = append_oa_status(stream, buf, count, offset,
1124 DRM_I915_PERF_RECORD_OA_REPORT_LOST);
1125 if (ret)
1126 return ret;
1127 stream->perf->gen7_latched_oastatus1 |=
1128 GEN7_OASTATUS1_REPORT_LOST;
1129 }
1130
1131 return gen7_append_oa_reports(stream, buf, count, offset);
1132 }
1133
1134 /**
1135 * i915_oa_wait_unlocked - handles blocking IO until OA data available
1136 * @stream: An i915-perf stream opened for OA metrics
1137 *
1138 * Called when userspace tries to read() from a blocking stream FD opened
1139 * for OA metrics. It waits until the hrtimer callback finds a non-empty
1140 * OA buffer and wakes us.
1141 *
1142 * Note: it's acceptable to have this return with some false positives
1143 * since any subsequent read handling will return -EAGAIN if there isn't
1144 * really data ready for userspace yet.
1145 *
1146 * Returns: zero on success or a negative error code
1147 */
i915_oa_wait_unlocked(struct i915_perf_stream * stream)1148 static int i915_oa_wait_unlocked(struct i915_perf_stream *stream)
1149 {
1150 /* We would wait indefinitely if periodic sampling is not enabled */
1151 if (!stream->periodic)
1152 return -EIO;
1153
1154 return wait_event_interruptible(stream->poll_wq,
1155 oa_buffer_check_unlocked(stream));
1156 }
1157
1158 /**
1159 * i915_oa_poll_wait - call poll_wait() for an OA stream poll()
1160 * @stream: An i915-perf stream opened for OA metrics
1161 * @file: An i915 perf stream file
1162 * @wait: poll() state table
1163 *
1164 * For handling userspace polling on an i915 perf stream opened for OA metrics,
1165 * this starts a poll_wait with the wait queue that our hrtimer callback wakes
1166 * when it sees data ready to read in the circular OA buffer.
1167 */
i915_oa_poll_wait(struct i915_perf_stream * stream,struct file * file,poll_table * wait)1168 static void i915_oa_poll_wait(struct i915_perf_stream *stream,
1169 struct file *file,
1170 poll_table *wait)
1171 {
1172 poll_wait(file, &stream->poll_wq, wait);
1173 }
1174
1175 /**
1176 * i915_oa_read - just calls through to &i915_oa_ops->read
1177 * @stream: An i915-perf stream opened for OA metrics
1178 * @buf: destination buffer given by userspace
1179 * @count: the number of bytes userspace wants to read
1180 * @offset: (inout): the current position for writing into @buf
1181 *
1182 * Updates @offset according to the number of bytes successfully copied into
1183 * the userspace buffer.
1184 *
1185 * Returns: zero on success or a negative error code
1186 */
i915_oa_read(struct i915_perf_stream * stream,char __user * buf,size_t count,size_t * offset)1187 static int i915_oa_read(struct i915_perf_stream *stream,
1188 char __user *buf,
1189 size_t count,
1190 size_t *offset)
1191 {
1192 return stream->perf->ops.read(stream, buf, count, offset);
1193 }
1194
oa_pin_context(struct i915_perf_stream * stream)1195 static struct intel_context *oa_pin_context(struct i915_perf_stream *stream)
1196 {
1197 struct i915_gem_engines_iter it;
1198 struct i915_gem_context *ctx = stream->ctx;
1199 struct intel_context *ce;
1200 struct i915_gem_ww_ctx ww;
1201 int err = -ENODEV;
1202
1203 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
1204 if (ce->engine != stream->engine) /* first match! */
1205 continue;
1206
1207 err = 0;
1208 break;
1209 }
1210 i915_gem_context_unlock_engines(ctx);
1211
1212 if (err)
1213 return ERR_PTR(err);
1214
1215 i915_gem_ww_ctx_init(&ww, true);
1216 retry:
1217 /*
1218 * As the ID is the gtt offset of the context's vma we
1219 * pin the vma to ensure the ID remains fixed.
1220 */
1221 err = intel_context_pin_ww(ce, &ww);
1222 if (err == -EDEADLK) {
1223 err = i915_gem_ww_ctx_backoff(&ww);
1224 if (!err)
1225 goto retry;
1226 }
1227 i915_gem_ww_ctx_fini(&ww);
1228
1229 if (err)
1230 return ERR_PTR(err);
1231
1232 stream->pinned_ctx = ce;
1233 return stream->pinned_ctx;
1234 }
1235
1236 /**
1237 * oa_get_render_ctx_id - determine and hold ctx hw id
1238 * @stream: An i915-perf stream opened for OA metrics
1239 *
1240 * Determine the render context hw id, and ensure it remains fixed for the
1241 * lifetime of the stream. This ensures that we don't have to worry about
1242 * updating the context ID in OACONTROL on the fly.
1243 *
1244 * Returns: zero on success or a negative error code
1245 */
oa_get_render_ctx_id(struct i915_perf_stream * stream)1246 static int oa_get_render_ctx_id(struct i915_perf_stream *stream)
1247 {
1248 struct intel_context *ce;
1249
1250 ce = oa_pin_context(stream);
1251 if (IS_ERR(ce))
1252 return PTR_ERR(ce);
1253
1254 switch (GRAPHICS_VER(ce->engine->i915)) {
1255 case 7: {
1256 /*
1257 * On Haswell we don't do any post processing of the reports
1258 * and don't need to use the mask.
1259 */
1260 stream->specific_ctx_id = i915_ggtt_offset(ce->state);
1261 stream->specific_ctx_id_mask = 0;
1262 break;
1263 }
1264
1265 case 8:
1266 case 9:
1267 if (intel_engine_uses_guc(ce->engine)) {
1268 /*
1269 * When using GuC, the context descriptor we write in
1270 * i915 is read by GuC and rewritten before it's
1271 * actually written into the hardware. The LRCA is
1272 * what is put into the context id field of the
1273 * context descriptor by GuC. Because it's aligned to
1274 * a page, the lower 12bits are always at 0 and
1275 * dropped by GuC. They won't be part of the context
1276 * ID in the OA reports, so squash those lower bits.
1277 */
1278 stream->specific_ctx_id = ce->lrc.lrca >> 12;
1279
1280 /*
1281 * GuC uses the top bit to signal proxy submission, so
1282 * ignore that bit.
1283 */
1284 stream->specific_ctx_id_mask =
1285 (1U << (GEN8_CTX_ID_WIDTH - 1)) - 1;
1286 } else {
1287 stream->specific_ctx_id_mask =
1288 (1U << GEN8_CTX_ID_WIDTH) - 1;
1289 stream->specific_ctx_id = stream->specific_ctx_id_mask;
1290 }
1291 break;
1292
1293 case 11:
1294 case 12:
1295 if (GRAPHICS_VER_FULL(ce->engine->i915) >= IP_VER(12, 50)) {
1296 stream->specific_ctx_id_mask =
1297 ((1U << XEHP_SW_CTX_ID_WIDTH) - 1) <<
1298 (XEHP_SW_CTX_ID_SHIFT - 32);
1299 stream->specific_ctx_id =
1300 (XEHP_MAX_CONTEXT_HW_ID - 1) <<
1301 (XEHP_SW_CTX_ID_SHIFT - 32);
1302 } else {
1303 stream->specific_ctx_id_mask =
1304 ((1U << GEN11_SW_CTX_ID_WIDTH) - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1305 /*
1306 * Pick an unused context id
1307 * 0 - BITS_PER_LONG are used by other contexts
1308 * GEN12_MAX_CONTEXT_HW_ID (0x7ff) is used by idle context
1309 */
1310 stream->specific_ctx_id =
1311 (GEN12_MAX_CONTEXT_HW_ID - 1) << (GEN11_SW_CTX_ID_SHIFT - 32);
1312 }
1313 break;
1314
1315 default:
1316 MISSING_CASE(GRAPHICS_VER(ce->engine->i915));
1317 }
1318
1319 ce->tag = stream->specific_ctx_id;
1320
1321 drm_dbg(&stream->perf->i915->drm,
1322 "filtering on ctx_id=0x%x ctx_id_mask=0x%x\n",
1323 stream->specific_ctx_id,
1324 stream->specific_ctx_id_mask);
1325
1326 return 0;
1327 }
1328
1329 /**
1330 * oa_put_render_ctx_id - counterpart to oa_get_render_ctx_id releases hold
1331 * @stream: An i915-perf stream opened for OA metrics
1332 *
1333 * In case anything needed doing to ensure the context HW ID would remain valid
1334 * for the lifetime of the stream, then that can be undone here.
1335 */
oa_put_render_ctx_id(struct i915_perf_stream * stream)1336 static void oa_put_render_ctx_id(struct i915_perf_stream *stream)
1337 {
1338 struct intel_context *ce;
1339
1340 ce = fetch_and_zero(&stream->pinned_ctx);
1341 if (ce) {
1342 ce->tag = 0; /* recomputed on next submission after parking */
1343 intel_context_unpin(ce);
1344 }
1345
1346 stream->specific_ctx_id = INVALID_CTX_ID;
1347 stream->specific_ctx_id_mask = 0;
1348 }
1349
1350 static void
free_oa_buffer(struct i915_perf_stream * stream)1351 free_oa_buffer(struct i915_perf_stream *stream)
1352 {
1353 i915_vma_unpin_and_release(&stream->oa_buffer.vma,
1354 I915_VMA_RELEASE_MAP);
1355
1356 stream->oa_buffer.vaddr = NULL;
1357 }
1358
1359 static void
free_oa_configs(struct i915_perf_stream * stream)1360 free_oa_configs(struct i915_perf_stream *stream)
1361 {
1362 struct i915_oa_config_bo *oa_bo, *tmp;
1363
1364 i915_oa_config_put(stream->oa_config);
1365 llist_for_each_entry_safe(oa_bo, tmp, stream->oa_config_bos.first, node)
1366 free_oa_config_bo(oa_bo);
1367 }
1368
1369 static void
free_noa_wait(struct i915_perf_stream * stream)1370 free_noa_wait(struct i915_perf_stream *stream)
1371 {
1372 i915_vma_unpin_and_release(&stream->noa_wait, 0);
1373 }
1374
i915_oa_stream_destroy(struct i915_perf_stream * stream)1375 static void i915_oa_stream_destroy(struct i915_perf_stream *stream)
1376 {
1377 struct i915_perf *perf = stream->perf;
1378
1379 if (WARN_ON(stream != perf->exclusive_stream))
1380 return;
1381
1382 /*
1383 * Unset exclusive_stream first, it will be checked while disabling
1384 * the metric set on gen8+.
1385 *
1386 * See i915_oa_init_reg_state() and lrc_configure_all_contexts()
1387 */
1388 WRITE_ONCE(perf->exclusive_stream, NULL);
1389 perf->ops.disable_metric_set(stream);
1390
1391 free_oa_buffer(stream);
1392
1393 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
1394 intel_engine_pm_put(stream->engine);
1395
1396 if (stream->ctx)
1397 oa_put_render_ctx_id(stream);
1398
1399 free_oa_configs(stream);
1400 free_noa_wait(stream);
1401
1402 if (perf->spurious_report_rs.missed) {
1403 DRM_NOTE("%d spurious OA report notices suppressed due to ratelimiting\n",
1404 perf->spurious_report_rs.missed);
1405 }
1406 }
1407
gen7_init_oa_buffer(struct i915_perf_stream * stream)1408 static void gen7_init_oa_buffer(struct i915_perf_stream *stream)
1409 {
1410 struct intel_uncore *uncore = stream->uncore;
1411 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1412 unsigned long flags;
1413
1414 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1415
1416 /* Pre-DevBDW: OABUFFER must be set with counters off,
1417 * before OASTATUS1, but after OASTATUS2
1418 */
1419 intel_uncore_write(uncore, GEN7_OASTATUS2, /* head */
1420 gtt_offset | GEN7_OASTATUS2_MEM_SELECT_GGTT);
1421 stream->oa_buffer.head = gtt_offset;
1422
1423 intel_uncore_write(uncore, GEN7_OABUFFER, gtt_offset);
1424
1425 intel_uncore_write(uncore, GEN7_OASTATUS1, /* tail */
1426 gtt_offset | OABUFFER_SIZE_16M);
1427
1428 /* Mark that we need updated tail pointers to read from... */
1429 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1430 stream->oa_buffer.tail = gtt_offset;
1431
1432 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1433
1434 /* On Haswell we have to track which OASTATUS1 flags we've
1435 * already seen since they can't be cleared while periodic
1436 * sampling is enabled.
1437 */
1438 stream->perf->gen7_latched_oastatus1 = 0;
1439
1440 /* NB: although the OA buffer will initially be allocated
1441 * zeroed via shmfs (and so this memset is redundant when
1442 * first allocating), we may re-init the OA buffer, either
1443 * when re-enabling a stream or in error/reset paths.
1444 *
1445 * The reason we clear the buffer for each re-init is for the
1446 * sanity check in gen7_append_oa_reports() that looks at the
1447 * report-id field to make sure it's non-zero which relies on
1448 * the assumption that new reports are being written to zeroed
1449 * memory...
1450 */
1451 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1452 }
1453
gen8_init_oa_buffer(struct i915_perf_stream * stream)1454 static void gen8_init_oa_buffer(struct i915_perf_stream *stream)
1455 {
1456 struct intel_uncore *uncore = stream->uncore;
1457 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1458 unsigned long flags;
1459
1460 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1461
1462 intel_uncore_write(uncore, GEN8_OASTATUS, 0);
1463 intel_uncore_write(uncore, GEN8_OAHEADPTR, gtt_offset);
1464 stream->oa_buffer.head = gtt_offset;
1465
1466 intel_uncore_write(uncore, GEN8_OABUFFER_UDW, 0);
1467
1468 /*
1469 * PRM says:
1470 *
1471 * "This MMIO must be set before the OATAILPTR
1472 * register and after the OAHEADPTR register. This is
1473 * to enable proper functionality of the overflow
1474 * bit."
1475 */
1476 intel_uncore_write(uncore, GEN8_OABUFFER, gtt_offset |
1477 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1478 intel_uncore_write(uncore, GEN8_OATAILPTR, gtt_offset & GEN8_OATAILPTR_MASK);
1479
1480 /* Mark that we need updated tail pointers to read from... */
1481 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1482 stream->oa_buffer.tail = gtt_offset;
1483
1484 /*
1485 * Reset state used to recognise context switches, affecting which
1486 * reports we will forward to userspace while filtering for a single
1487 * context.
1488 */
1489 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1490
1491 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1492
1493 /*
1494 * NB: although the OA buffer will initially be allocated
1495 * zeroed via shmfs (and so this memset is redundant when
1496 * first allocating), we may re-init the OA buffer, either
1497 * when re-enabling a stream or in error/reset paths.
1498 *
1499 * The reason we clear the buffer for each re-init is for the
1500 * sanity check in gen8_append_oa_reports() that looks at the
1501 * reason field to make sure it's non-zero which relies on
1502 * the assumption that new reports are being written to zeroed
1503 * memory...
1504 */
1505 memset(stream->oa_buffer.vaddr, 0, OA_BUFFER_SIZE);
1506 }
1507
gen12_init_oa_buffer(struct i915_perf_stream * stream)1508 static void gen12_init_oa_buffer(struct i915_perf_stream *stream)
1509 {
1510 struct intel_uncore *uncore = stream->uncore;
1511 u32 gtt_offset = i915_ggtt_offset(stream->oa_buffer.vma);
1512 unsigned long flags;
1513
1514 spin_lock_irqsave(&stream->oa_buffer.ptr_lock, flags);
1515
1516 intel_uncore_write(uncore, GEN12_OAG_OASTATUS, 0);
1517 intel_uncore_write(uncore, GEN12_OAG_OAHEADPTR,
1518 gtt_offset & GEN12_OAG_OAHEADPTR_MASK);
1519 stream->oa_buffer.head = gtt_offset;
1520
1521 /*
1522 * PRM says:
1523 *
1524 * "This MMIO must be set before the OATAILPTR
1525 * register and after the OAHEADPTR register. This is
1526 * to enable proper functionality of the overflow
1527 * bit."
1528 */
1529 intel_uncore_write(uncore, GEN12_OAG_OABUFFER, gtt_offset |
1530 OABUFFER_SIZE_16M | GEN8_OABUFFER_MEM_SELECT_GGTT);
1531 intel_uncore_write(uncore, GEN12_OAG_OATAILPTR,
1532 gtt_offset & GEN12_OAG_OATAILPTR_MASK);
1533
1534 /* Mark that we need updated tail pointers to read from... */
1535 stream->oa_buffer.aging_tail = INVALID_TAIL_PTR;
1536 stream->oa_buffer.tail = gtt_offset;
1537
1538 /*
1539 * Reset state used to recognise context switches, affecting which
1540 * reports we will forward to userspace while filtering for a single
1541 * context.
1542 */
1543 stream->oa_buffer.last_ctx_id = INVALID_CTX_ID;
1544
1545 spin_unlock_irqrestore(&stream->oa_buffer.ptr_lock, flags);
1546
1547 /*
1548 * NB: although the OA buffer will initially be allocated
1549 * zeroed via shmfs (and so this memset is redundant when
1550 * first allocating), we may re-init the OA buffer, either
1551 * when re-enabling a stream or in error/reset paths.
1552 *
1553 * The reason we clear the buffer for each re-init is for the
1554 * sanity check in gen8_append_oa_reports() that looks at the
1555 * reason field to make sure it's non-zero which relies on
1556 * the assumption that new reports are being written to zeroed
1557 * memory...
1558 */
1559 memset(stream->oa_buffer.vaddr, 0,
1560 stream->oa_buffer.vma->size);
1561 }
1562
alloc_oa_buffer(struct i915_perf_stream * stream)1563 static int alloc_oa_buffer(struct i915_perf_stream *stream)
1564 {
1565 struct drm_i915_private *i915 = stream->perf->i915;
1566 struct drm_i915_gem_object *bo;
1567 struct i915_vma *vma;
1568 int ret;
1569
1570 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.vma))
1571 return -ENODEV;
1572
1573 BUILD_BUG_ON_NOT_POWER_OF_2(OA_BUFFER_SIZE);
1574 BUILD_BUG_ON(OA_BUFFER_SIZE < SZ_128K || OA_BUFFER_SIZE > SZ_16M);
1575
1576 bo = i915_gem_object_create_shmem(stream->perf->i915, OA_BUFFER_SIZE);
1577 if (IS_ERR(bo)) {
1578 drm_err(&i915->drm, "Failed to allocate OA buffer\n");
1579 return PTR_ERR(bo);
1580 }
1581
1582 i915_gem_object_set_cache_coherency(bo, I915_CACHE_LLC);
1583
1584 /* PreHSW required 512K alignment, HSW requires 16M */
1585 vma = i915_gem_object_ggtt_pin(bo, NULL, 0, SZ_16M, 0);
1586 if (IS_ERR(vma)) {
1587 ret = PTR_ERR(vma);
1588 goto err_unref;
1589 }
1590 stream->oa_buffer.vma = vma;
1591
1592 stream->oa_buffer.vaddr =
1593 i915_gem_object_pin_map_unlocked(bo, I915_MAP_WB);
1594 if (IS_ERR(stream->oa_buffer.vaddr)) {
1595 ret = PTR_ERR(stream->oa_buffer.vaddr);
1596 goto err_unpin;
1597 }
1598
1599 return 0;
1600
1601 err_unpin:
1602 __i915_vma_unpin(vma);
1603
1604 err_unref:
1605 i915_gem_object_put(bo);
1606
1607 stream->oa_buffer.vaddr = NULL;
1608 stream->oa_buffer.vma = NULL;
1609
1610 return ret;
1611 }
1612
save_restore_register(struct i915_perf_stream * stream,u32 * cs,bool save,i915_reg_t reg,u32 offset,u32 dword_count)1613 static u32 *save_restore_register(struct i915_perf_stream *stream, u32 *cs,
1614 bool save, i915_reg_t reg, u32 offset,
1615 u32 dword_count)
1616 {
1617 u32 cmd;
1618 u32 d;
1619
1620 cmd = save ? MI_STORE_REGISTER_MEM : MI_LOAD_REGISTER_MEM;
1621 cmd |= MI_SRM_LRM_GLOBAL_GTT;
1622 if (GRAPHICS_VER(stream->perf->i915) >= 8)
1623 cmd++;
1624
1625 for (d = 0; d < dword_count; d++) {
1626 *cs++ = cmd;
1627 *cs++ = i915_mmio_reg_offset(reg) + 4 * d;
1628 *cs++ = intel_gt_scratch_offset(stream->engine->gt,
1629 offset) + 4 * d;
1630 *cs++ = 0;
1631 }
1632
1633 return cs;
1634 }
1635
alloc_noa_wait(struct i915_perf_stream * stream)1636 static int alloc_noa_wait(struct i915_perf_stream *stream)
1637 {
1638 struct drm_i915_private *i915 = stream->perf->i915;
1639 struct drm_i915_gem_object *bo;
1640 struct i915_vma *vma;
1641 const u64 delay_ticks = 0xffffffffffffffff -
1642 intel_gt_ns_to_clock_interval(to_gt(stream->perf->i915),
1643 atomic64_read(&stream->perf->noa_programming_delay));
1644 const u32 base = stream->engine->mmio_base;
1645 #define CS_GPR(x) GEN8_RING_CS_GPR(base, x)
1646 u32 *batch, *ts0, *cs, *jump;
1647 struct i915_gem_ww_ctx ww;
1648 int ret, i;
1649 enum {
1650 START_TS,
1651 NOW_TS,
1652 DELTA_TS,
1653 JUMP_PREDICATE,
1654 DELTA_TARGET,
1655 N_CS_GPR
1656 };
1657
1658 bo = i915_gem_object_create_internal(i915, 4096);
1659 if (IS_ERR(bo)) {
1660 drm_err(&i915->drm,
1661 "Failed to allocate NOA wait batchbuffer\n");
1662 return PTR_ERR(bo);
1663 }
1664
1665 i915_gem_ww_ctx_init(&ww, true);
1666 retry:
1667 ret = i915_gem_object_lock(bo, &ww);
1668 if (ret)
1669 goto out_ww;
1670
1671 /*
1672 * We pin in GGTT because we jump into this buffer now because
1673 * multiple OA config BOs will have a jump to this address and it
1674 * needs to be fixed during the lifetime of the i915/perf stream.
1675 */
1676 vma = i915_gem_object_ggtt_pin_ww(bo, &ww, NULL, 0, 0, PIN_HIGH);
1677 if (IS_ERR(vma)) {
1678 ret = PTR_ERR(vma);
1679 goto out_ww;
1680 }
1681
1682 batch = cs = i915_gem_object_pin_map(bo, I915_MAP_WB);
1683 if (IS_ERR(batch)) {
1684 ret = PTR_ERR(batch);
1685 goto err_unpin;
1686 }
1687
1688 /* Save registers. */
1689 for (i = 0; i < N_CS_GPR; i++)
1690 cs = save_restore_register(
1691 stream, cs, true /* save */, CS_GPR(i),
1692 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1693 cs = save_restore_register(
1694 stream, cs, true /* save */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE),
1695 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1696
1697 /* First timestamp snapshot location. */
1698 ts0 = cs;
1699
1700 /*
1701 * Initial snapshot of the timestamp register to implement the wait.
1702 * We work with 32b values, so clear out the top 32b bits of the
1703 * register because the ALU works 64bits.
1704 */
1705 *cs++ = MI_LOAD_REGISTER_IMM(1);
1706 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS)) + 4;
1707 *cs++ = 0;
1708 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1709 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1710 *cs++ = i915_mmio_reg_offset(CS_GPR(START_TS));
1711
1712 /*
1713 * This is the location we're going to jump back into until the
1714 * required amount of time has passed.
1715 */
1716 jump = cs;
1717
1718 /*
1719 * Take another snapshot of the timestamp register. Take care to clear
1720 * up the top 32bits of CS_GPR(1) as we're using it for other
1721 * operations below.
1722 */
1723 *cs++ = MI_LOAD_REGISTER_IMM(1);
1724 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS)) + 4;
1725 *cs++ = 0;
1726 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1727 *cs++ = i915_mmio_reg_offset(RING_TIMESTAMP(base));
1728 *cs++ = i915_mmio_reg_offset(CS_GPR(NOW_TS));
1729
1730 /*
1731 * Do a diff between the 2 timestamps and store the result back into
1732 * CS_GPR(1).
1733 */
1734 *cs++ = MI_MATH(5);
1735 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(NOW_TS));
1736 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(START_TS));
1737 *cs++ = MI_MATH_SUB;
1738 *cs++ = MI_MATH_STORE(MI_MATH_REG(DELTA_TS), MI_MATH_REG_ACCU);
1739 *cs++ = MI_MATH_STORE(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1740
1741 /*
1742 * Transfer the carry flag (set to 1 if ts1 < ts0, meaning the
1743 * timestamp have rolled over the 32bits) into the predicate register
1744 * to be used for the predicated jump.
1745 */
1746 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1747 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1748 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE));
1749
1750 /* Restart from the beginning if we had timestamps roll over. */
1751 *cs++ = (GRAPHICS_VER(i915) < 8 ?
1752 MI_BATCH_BUFFER_START :
1753 MI_BATCH_BUFFER_START_GEN8) |
1754 MI_BATCH_PREDICATE;
1755 *cs++ = i915_ggtt_offset(vma) + (ts0 - batch) * 4;
1756 *cs++ = 0;
1757
1758 /*
1759 * Now add the diff between to previous timestamps and add it to :
1760 * (((1 * << 64) - 1) - delay_ns)
1761 *
1762 * When the Carry Flag contains 1 this means the elapsed time is
1763 * longer than the expected delay, and we can exit the wait loop.
1764 */
1765 *cs++ = MI_LOAD_REGISTER_IMM(2);
1766 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET));
1767 *cs++ = lower_32_bits(delay_ticks);
1768 *cs++ = i915_mmio_reg_offset(CS_GPR(DELTA_TARGET)) + 4;
1769 *cs++ = upper_32_bits(delay_ticks);
1770
1771 *cs++ = MI_MATH(4);
1772 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCA, MI_MATH_REG(DELTA_TS));
1773 *cs++ = MI_MATH_LOAD(MI_MATH_REG_SRCB, MI_MATH_REG(DELTA_TARGET));
1774 *cs++ = MI_MATH_ADD;
1775 *cs++ = MI_MATH_STOREINV(MI_MATH_REG(JUMP_PREDICATE), MI_MATH_REG_CF);
1776
1777 *cs++ = MI_ARB_CHECK;
1778
1779 /*
1780 * Transfer the result into the predicate register to be used for the
1781 * predicated jump.
1782 */
1783 *cs++ = MI_LOAD_REGISTER_REG | (3 - 2);
1784 *cs++ = i915_mmio_reg_offset(CS_GPR(JUMP_PREDICATE));
1785 *cs++ = i915_mmio_reg_offset(MI_PREDICATE_RESULT_1(RENDER_RING_BASE));
1786
1787 /* Predicate the jump. */
1788 *cs++ = (GRAPHICS_VER(i915) < 8 ?
1789 MI_BATCH_BUFFER_START :
1790 MI_BATCH_BUFFER_START_GEN8) |
1791 MI_BATCH_PREDICATE;
1792 *cs++ = i915_ggtt_offset(vma) + (jump - batch) * 4;
1793 *cs++ = 0;
1794
1795 /* Restore registers. */
1796 for (i = 0; i < N_CS_GPR; i++)
1797 cs = save_restore_register(
1798 stream, cs, false /* restore */, CS_GPR(i),
1799 INTEL_GT_SCRATCH_FIELD_PERF_CS_GPR + 8 * i, 2);
1800 cs = save_restore_register(
1801 stream, cs, false /* restore */, MI_PREDICATE_RESULT_1(RENDER_RING_BASE),
1802 INTEL_GT_SCRATCH_FIELD_PERF_PREDICATE_RESULT_1, 1);
1803
1804 /* And return to the ring. */
1805 *cs++ = MI_BATCH_BUFFER_END;
1806
1807 GEM_BUG_ON(cs - batch > PAGE_SIZE / sizeof(*batch));
1808
1809 i915_gem_object_flush_map(bo);
1810 __i915_gem_object_release_map(bo);
1811
1812 stream->noa_wait = vma;
1813 goto out_ww;
1814
1815 err_unpin:
1816 i915_vma_unpin_and_release(&vma, 0);
1817 out_ww:
1818 if (ret == -EDEADLK) {
1819 ret = i915_gem_ww_ctx_backoff(&ww);
1820 if (!ret)
1821 goto retry;
1822 }
1823 i915_gem_ww_ctx_fini(&ww);
1824 if (ret)
1825 i915_gem_object_put(bo);
1826 return ret;
1827 }
1828
write_cs_mi_lri(u32 * cs,const struct i915_oa_reg * reg_data,u32 n_regs)1829 static u32 *write_cs_mi_lri(u32 *cs,
1830 const struct i915_oa_reg *reg_data,
1831 u32 n_regs)
1832 {
1833 u32 i;
1834
1835 for (i = 0; i < n_regs; i++) {
1836 if ((i % MI_LOAD_REGISTER_IMM_MAX_REGS) == 0) {
1837 u32 n_lri = min_t(u32,
1838 n_regs - i,
1839 MI_LOAD_REGISTER_IMM_MAX_REGS);
1840
1841 *cs++ = MI_LOAD_REGISTER_IMM(n_lri);
1842 }
1843 *cs++ = i915_mmio_reg_offset(reg_data[i].addr);
1844 *cs++ = reg_data[i].value;
1845 }
1846
1847 return cs;
1848 }
1849
num_lri_dwords(int num_regs)1850 static int num_lri_dwords(int num_regs)
1851 {
1852 int count = 0;
1853
1854 if (num_regs > 0) {
1855 count += DIV_ROUND_UP(num_regs, MI_LOAD_REGISTER_IMM_MAX_REGS);
1856 count += num_regs * 2;
1857 }
1858
1859 return count;
1860 }
1861
1862 static struct i915_oa_config_bo *
alloc_oa_config_buffer(struct i915_perf_stream * stream,struct i915_oa_config * oa_config)1863 alloc_oa_config_buffer(struct i915_perf_stream *stream,
1864 struct i915_oa_config *oa_config)
1865 {
1866 struct drm_i915_gem_object *obj;
1867 struct i915_oa_config_bo *oa_bo;
1868 struct i915_gem_ww_ctx ww;
1869 size_t config_length = 0;
1870 u32 *cs;
1871 int err;
1872
1873 oa_bo = kzalloc(sizeof(*oa_bo), GFP_KERNEL);
1874 if (!oa_bo)
1875 return ERR_PTR(-ENOMEM);
1876
1877 config_length += num_lri_dwords(oa_config->mux_regs_len);
1878 config_length += num_lri_dwords(oa_config->b_counter_regs_len);
1879 config_length += num_lri_dwords(oa_config->flex_regs_len);
1880 config_length += 3; /* MI_BATCH_BUFFER_START */
1881 config_length = ALIGN(sizeof(u32) * config_length, I915_GTT_PAGE_SIZE);
1882
1883 obj = i915_gem_object_create_shmem(stream->perf->i915, config_length);
1884 if (IS_ERR(obj)) {
1885 err = PTR_ERR(obj);
1886 goto err_free;
1887 }
1888
1889 i915_gem_ww_ctx_init(&ww, true);
1890 retry:
1891 err = i915_gem_object_lock(obj, &ww);
1892 if (err)
1893 goto out_ww;
1894
1895 cs = i915_gem_object_pin_map(obj, I915_MAP_WB);
1896 if (IS_ERR(cs)) {
1897 err = PTR_ERR(cs);
1898 goto out_ww;
1899 }
1900
1901 cs = write_cs_mi_lri(cs,
1902 oa_config->mux_regs,
1903 oa_config->mux_regs_len);
1904 cs = write_cs_mi_lri(cs,
1905 oa_config->b_counter_regs,
1906 oa_config->b_counter_regs_len);
1907 cs = write_cs_mi_lri(cs,
1908 oa_config->flex_regs,
1909 oa_config->flex_regs_len);
1910
1911 /* Jump into the active wait. */
1912 *cs++ = (GRAPHICS_VER(stream->perf->i915) < 8 ?
1913 MI_BATCH_BUFFER_START :
1914 MI_BATCH_BUFFER_START_GEN8);
1915 *cs++ = i915_ggtt_offset(stream->noa_wait);
1916 *cs++ = 0;
1917
1918 i915_gem_object_flush_map(obj);
1919 __i915_gem_object_release_map(obj);
1920
1921 oa_bo->vma = i915_vma_instance(obj,
1922 &stream->engine->gt->ggtt->vm,
1923 NULL);
1924 if (IS_ERR(oa_bo->vma)) {
1925 err = PTR_ERR(oa_bo->vma);
1926 goto out_ww;
1927 }
1928
1929 oa_bo->oa_config = i915_oa_config_get(oa_config);
1930 llist_add(&oa_bo->node, &stream->oa_config_bos);
1931
1932 out_ww:
1933 if (err == -EDEADLK) {
1934 err = i915_gem_ww_ctx_backoff(&ww);
1935 if (!err)
1936 goto retry;
1937 }
1938 i915_gem_ww_ctx_fini(&ww);
1939
1940 if (err)
1941 i915_gem_object_put(obj);
1942 err_free:
1943 if (err) {
1944 kfree(oa_bo);
1945 return ERR_PTR(err);
1946 }
1947 return oa_bo;
1948 }
1949
1950 static struct i915_vma *
get_oa_vma(struct i915_perf_stream * stream,struct i915_oa_config * oa_config)1951 get_oa_vma(struct i915_perf_stream *stream, struct i915_oa_config *oa_config)
1952 {
1953 struct i915_oa_config_bo *oa_bo;
1954
1955 /*
1956 * Look for the buffer in the already allocated BOs attached
1957 * to the stream.
1958 */
1959 llist_for_each_entry(oa_bo, stream->oa_config_bos.first, node) {
1960 if (oa_bo->oa_config == oa_config &&
1961 memcmp(oa_bo->oa_config->uuid,
1962 oa_config->uuid,
1963 sizeof(oa_config->uuid)) == 0)
1964 goto out;
1965 }
1966
1967 oa_bo = alloc_oa_config_buffer(stream, oa_config);
1968 if (IS_ERR(oa_bo))
1969 return ERR_CAST(oa_bo);
1970
1971 out:
1972 return i915_vma_get(oa_bo->vma);
1973 }
1974
1975 static int
emit_oa_config(struct i915_perf_stream * stream,struct i915_oa_config * oa_config,struct intel_context * ce,struct i915_active * active)1976 emit_oa_config(struct i915_perf_stream *stream,
1977 struct i915_oa_config *oa_config,
1978 struct intel_context *ce,
1979 struct i915_active *active)
1980 {
1981 struct i915_request *rq;
1982 struct i915_vma *vma;
1983 struct i915_gem_ww_ctx ww;
1984 int err;
1985
1986 vma = get_oa_vma(stream, oa_config);
1987 if (IS_ERR(vma))
1988 return PTR_ERR(vma);
1989
1990 i915_gem_ww_ctx_init(&ww, true);
1991 retry:
1992 err = i915_gem_object_lock(vma->obj, &ww);
1993 if (err)
1994 goto err;
1995
1996 err = i915_vma_pin_ww(vma, &ww, 0, 0, PIN_GLOBAL | PIN_HIGH);
1997 if (err)
1998 goto err;
1999
2000 intel_engine_pm_get(ce->engine);
2001 rq = i915_request_create(ce);
2002 intel_engine_pm_put(ce->engine);
2003 if (IS_ERR(rq)) {
2004 err = PTR_ERR(rq);
2005 goto err_vma_unpin;
2006 }
2007
2008 if (!IS_ERR_OR_NULL(active)) {
2009 /* After all individual context modifications */
2010 err = i915_request_await_active(rq, active,
2011 I915_ACTIVE_AWAIT_ACTIVE);
2012 if (err)
2013 goto err_add_request;
2014
2015 err = i915_active_add_request(active, rq);
2016 if (err)
2017 goto err_add_request;
2018 }
2019
2020 err = i915_request_await_object(rq, vma->obj, 0);
2021 if (!err)
2022 err = i915_vma_move_to_active(vma, rq, 0);
2023 if (err)
2024 goto err_add_request;
2025
2026 err = rq->engine->emit_bb_start(rq,
2027 vma->node.start, 0,
2028 I915_DISPATCH_SECURE);
2029 if (err)
2030 goto err_add_request;
2031
2032 err_add_request:
2033 i915_request_add(rq);
2034 err_vma_unpin:
2035 i915_vma_unpin(vma);
2036 err:
2037 if (err == -EDEADLK) {
2038 err = i915_gem_ww_ctx_backoff(&ww);
2039 if (!err)
2040 goto retry;
2041 }
2042
2043 i915_gem_ww_ctx_fini(&ww);
2044 i915_vma_put(vma);
2045 return err;
2046 }
2047
oa_context(struct i915_perf_stream * stream)2048 static struct intel_context *oa_context(struct i915_perf_stream *stream)
2049 {
2050 return stream->pinned_ctx ?: stream->engine->kernel_context;
2051 }
2052
2053 static int
hsw_enable_metric_set(struct i915_perf_stream * stream,struct i915_active * active)2054 hsw_enable_metric_set(struct i915_perf_stream *stream,
2055 struct i915_active *active)
2056 {
2057 struct intel_uncore *uncore = stream->uncore;
2058
2059 /*
2060 * PRM:
2061 *
2062 * OA unit is using “crclk” for its functionality. When trunk
2063 * level clock gating takes place, OA clock would be gated,
2064 * unable to count the events from non-render clock domain.
2065 * Render clock gating must be disabled when OA is enabled to
2066 * count the events from non-render domain. Unit level clock
2067 * gating for RCS should also be disabled.
2068 */
2069 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2070 GEN7_DOP_CLOCK_GATE_ENABLE, 0);
2071 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2072 0, GEN6_CSUNIT_CLOCK_GATE_DISABLE);
2073
2074 return emit_oa_config(stream,
2075 stream->oa_config, oa_context(stream),
2076 active);
2077 }
2078
hsw_disable_metric_set(struct i915_perf_stream * stream)2079 static void hsw_disable_metric_set(struct i915_perf_stream *stream)
2080 {
2081 struct intel_uncore *uncore = stream->uncore;
2082
2083 intel_uncore_rmw(uncore, GEN6_UCGCTL1,
2084 GEN6_CSUNIT_CLOCK_GATE_DISABLE, 0);
2085 intel_uncore_rmw(uncore, GEN7_MISCCPCTL,
2086 0, GEN7_DOP_CLOCK_GATE_ENABLE);
2087
2088 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2089 }
2090
oa_config_flex_reg(const struct i915_oa_config * oa_config,i915_reg_t reg)2091 static u32 oa_config_flex_reg(const struct i915_oa_config *oa_config,
2092 i915_reg_t reg)
2093 {
2094 u32 mmio = i915_mmio_reg_offset(reg);
2095 int i;
2096
2097 /*
2098 * This arbitrary default will select the 'EU FPU0 Pipeline
2099 * Active' event. In the future it's anticipated that there
2100 * will be an explicit 'No Event' we can select, but not yet...
2101 */
2102 if (!oa_config)
2103 return 0;
2104
2105 for (i = 0; i < oa_config->flex_regs_len; i++) {
2106 if (i915_mmio_reg_offset(oa_config->flex_regs[i].addr) == mmio)
2107 return oa_config->flex_regs[i].value;
2108 }
2109
2110 return 0;
2111 }
2112 /*
2113 * NB: It must always remain pointer safe to run this even if the OA unit
2114 * has been disabled.
2115 *
2116 * It's fine to put out-of-date values into these per-context registers
2117 * in the case that the OA unit has been disabled.
2118 */
2119 static void
gen8_update_reg_state_unlocked(const struct intel_context * ce,const struct i915_perf_stream * stream)2120 gen8_update_reg_state_unlocked(const struct intel_context *ce,
2121 const struct i915_perf_stream *stream)
2122 {
2123 u32 ctx_oactxctrl = stream->perf->ctx_oactxctrl_offset;
2124 u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2125 /* The MMIO offsets for Flex EU registers aren't contiguous */
2126 static const i915_reg_t flex_regs[] = {
2127 EU_PERF_CNTL0,
2128 EU_PERF_CNTL1,
2129 EU_PERF_CNTL2,
2130 EU_PERF_CNTL3,
2131 EU_PERF_CNTL4,
2132 EU_PERF_CNTL5,
2133 EU_PERF_CNTL6,
2134 };
2135 u32 *reg_state = ce->lrc_reg_state;
2136 int i;
2137
2138 reg_state[ctx_oactxctrl + 1] =
2139 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2140 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2141 GEN8_OA_COUNTER_RESUME;
2142
2143 for (i = 0; i < ARRAY_SIZE(flex_regs); i++)
2144 reg_state[ctx_flexeu0 + i * 2 + 1] =
2145 oa_config_flex_reg(stream->oa_config, flex_regs[i]);
2146 }
2147
2148 struct flex {
2149 i915_reg_t reg;
2150 u32 offset;
2151 u32 value;
2152 };
2153
2154 static int
gen8_store_flex(struct i915_request * rq,struct intel_context * ce,const struct flex * flex,unsigned int count)2155 gen8_store_flex(struct i915_request *rq,
2156 struct intel_context *ce,
2157 const struct flex *flex, unsigned int count)
2158 {
2159 u32 offset;
2160 u32 *cs;
2161
2162 cs = intel_ring_begin(rq, 4 * count);
2163 if (IS_ERR(cs))
2164 return PTR_ERR(cs);
2165
2166 offset = i915_ggtt_offset(ce->state) + LRC_STATE_OFFSET;
2167 do {
2168 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
2169 *cs++ = offset + flex->offset * sizeof(u32);
2170 *cs++ = 0;
2171 *cs++ = flex->value;
2172 } while (flex++, --count);
2173
2174 intel_ring_advance(rq, cs);
2175
2176 return 0;
2177 }
2178
2179 static int
gen8_load_flex(struct i915_request * rq,struct intel_context * ce,const struct flex * flex,unsigned int count)2180 gen8_load_flex(struct i915_request *rq,
2181 struct intel_context *ce,
2182 const struct flex *flex, unsigned int count)
2183 {
2184 u32 *cs;
2185
2186 GEM_BUG_ON(!count || count > 63);
2187
2188 cs = intel_ring_begin(rq, 2 * count + 2);
2189 if (IS_ERR(cs))
2190 return PTR_ERR(cs);
2191
2192 *cs++ = MI_LOAD_REGISTER_IMM(count);
2193 do {
2194 *cs++ = i915_mmio_reg_offset(flex->reg);
2195 *cs++ = flex->value;
2196 } while (flex++, --count);
2197 *cs++ = MI_NOOP;
2198
2199 intel_ring_advance(rq, cs);
2200
2201 return 0;
2202 }
2203
gen8_modify_context(struct intel_context * ce,const struct flex * flex,unsigned int count)2204 static int gen8_modify_context(struct intel_context *ce,
2205 const struct flex *flex, unsigned int count)
2206 {
2207 struct i915_request *rq;
2208 int err;
2209
2210 rq = intel_engine_create_kernel_request(ce->engine);
2211 if (IS_ERR(rq))
2212 return PTR_ERR(rq);
2213
2214 /* Serialise with the remote context */
2215 err = intel_context_prepare_remote_request(ce, rq);
2216 if (err == 0)
2217 err = gen8_store_flex(rq, ce, flex, count);
2218
2219 i915_request_add(rq);
2220 return err;
2221 }
2222
2223 static int
gen8_modify_self(struct intel_context * ce,const struct flex * flex,unsigned int count,struct i915_active * active)2224 gen8_modify_self(struct intel_context *ce,
2225 const struct flex *flex, unsigned int count,
2226 struct i915_active *active)
2227 {
2228 struct i915_request *rq;
2229 int err;
2230
2231 intel_engine_pm_get(ce->engine);
2232 rq = i915_request_create(ce);
2233 intel_engine_pm_put(ce->engine);
2234 if (IS_ERR(rq))
2235 return PTR_ERR(rq);
2236
2237 if (!IS_ERR_OR_NULL(active)) {
2238 err = i915_active_add_request(active, rq);
2239 if (err)
2240 goto err_add_request;
2241 }
2242
2243 err = gen8_load_flex(rq, ce, flex, count);
2244 if (err)
2245 goto err_add_request;
2246
2247 err_add_request:
2248 i915_request_add(rq);
2249 return err;
2250 }
2251
gen8_configure_context(struct i915_gem_context * ctx,struct flex * flex,unsigned int count)2252 static int gen8_configure_context(struct i915_gem_context *ctx,
2253 struct flex *flex, unsigned int count)
2254 {
2255 struct i915_gem_engines_iter it;
2256 struct intel_context *ce;
2257 int err = 0;
2258
2259 for_each_gem_engine(ce, i915_gem_context_lock_engines(ctx), it) {
2260 GEM_BUG_ON(ce == ce->engine->kernel_context);
2261
2262 if (ce->engine->class != RENDER_CLASS)
2263 continue;
2264
2265 /* Otherwise OA settings will be set upon first use */
2266 if (!intel_context_pin_if_active(ce))
2267 continue;
2268
2269 flex->value = intel_sseu_make_rpcs(ce->engine->gt, &ce->sseu);
2270 err = gen8_modify_context(ce, flex, count);
2271
2272 intel_context_unpin(ce);
2273 if (err)
2274 break;
2275 }
2276 i915_gem_context_unlock_engines(ctx);
2277
2278 return err;
2279 }
2280
gen12_configure_oar_context(struct i915_perf_stream * stream,struct i915_active * active)2281 static int gen12_configure_oar_context(struct i915_perf_stream *stream,
2282 struct i915_active *active)
2283 {
2284 int err;
2285 struct intel_context *ce = stream->pinned_ctx;
2286 u32 format = stream->oa_buffer.format;
2287 struct flex regs_context[] = {
2288 {
2289 GEN8_OACTXCONTROL,
2290 stream->perf->ctx_oactxctrl_offset + 1,
2291 active ? GEN8_OA_COUNTER_RESUME : 0,
2292 },
2293 };
2294 /* Offsets in regs_lri are not used since this configuration is only
2295 * applied using LRI. Initialize the correct offsets for posterity.
2296 */
2297 #define GEN12_OAR_OACONTROL_OFFSET 0x5B0
2298 struct flex regs_lri[] = {
2299 {
2300 GEN12_OAR_OACONTROL,
2301 GEN12_OAR_OACONTROL_OFFSET + 1,
2302 (format << GEN12_OAR_OACONTROL_COUNTER_FORMAT_SHIFT) |
2303 (active ? GEN12_OAR_OACONTROL_COUNTER_ENABLE : 0)
2304 },
2305 {
2306 RING_CONTEXT_CONTROL(ce->engine->mmio_base),
2307 CTX_CONTEXT_CONTROL,
2308 _MASKED_FIELD(GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE,
2309 active ?
2310 GEN12_CTX_CTRL_OAR_CONTEXT_ENABLE :
2311 0)
2312 },
2313 };
2314
2315 /* Modify the context image of pinned context with regs_context*/
2316 err = intel_context_lock_pinned(ce);
2317 if (err)
2318 return err;
2319
2320 err = gen8_modify_context(ce, regs_context, ARRAY_SIZE(regs_context));
2321 intel_context_unlock_pinned(ce);
2322 if (err)
2323 return err;
2324
2325 /* Apply regs_lri using LRI with pinned context */
2326 return gen8_modify_self(ce, regs_lri, ARRAY_SIZE(regs_lri), active);
2327 }
2328
2329 /*
2330 * Manages updating the per-context aspects of the OA stream
2331 * configuration across all contexts.
2332 *
2333 * The awkward consideration here is that OACTXCONTROL controls the
2334 * exponent for periodic sampling which is primarily used for system
2335 * wide profiling where we'd like a consistent sampling period even in
2336 * the face of context switches.
2337 *
2338 * Our approach of updating the register state context (as opposed to
2339 * say using a workaround batch buffer) ensures that the hardware
2340 * won't automatically reload an out-of-date timer exponent even
2341 * transiently before a WA BB could be parsed.
2342 *
2343 * This function needs to:
2344 * - Ensure the currently running context's per-context OA state is
2345 * updated
2346 * - Ensure that all existing contexts will have the correct per-context
2347 * OA state if they are scheduled for use.
2348 * - Ensure any new contexts will be initialized with the correct
2349 * per-context OA state.
2350 *
2351 * Note: it's only the RCS/Render context that has any OA state.
2352 * Note: the first flex register passed must always be R_PWR_CLK_STATE
2353 */
2354 static int
oa_configure_all_contexts(struct i915_perf_stream * stream,struct flex * regs,size_t num_regs,struct i915_active * active)2355 oa_configure_all_contexts(struct i915_perf_stream *stream,
2356 struct flex *regs,
2357 size_t num_regs,
2358 struct i915_active *active)
2359 {
2360 struct drm_i915_private *i915 = stream->perf->i915;
2361 struct intel_engine_cs *engine;
2362 struct i915_gem_context *ctx, *cn;
2363 int err;
2364
2365 lockdep_assert_held(&stream->perf->lock);
2366
2367 /*
2368 * The OA register config is setup through the context image. This image
2369 * might be written to by the GPU on context switch (in particular on
2370 * lite-restore). This means we can't safely update a context's image,
2371 * if this context is scheduled/submitted to run on the GPU.
2372 *
2373 * We could emit the OA register config through the batch buffer but
2374 * this might leave small interval of time where the OA unit is
2375 * configured at an invalid sampling period.
2376 *
2377 * Note that since we emit all requests from a single ring, there
2378 * is still an implicit global barrier here that may cause a high
2379 * priority context to wait for an otherwise independent low priority
2380 * context. Contexts idle at the time of reconfiguration are not
2381 * trapped behind the barrier.
2382 */
2383 spin_lock(&i915->gem.contexts.lock);
2384 list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
2385 if (!kref_get_unless_zero(&ctx->ref))
2386 continue;
2387
2388 spin_unlock(&i915->gem.contexts.lock);
2389
2390 err = gen8_configure_context(ctx, regs, num_regs);
2391 if (err) {
2392 i915_gem_context_put(ctx);
2393 return err;
2394 }
2395
2396 spin_lock(&i915->gem.contexts.lock);
2397 list_safe_reset_next(ctx, cn, link);
2398 i915_gem_context_put(ctx);
2399 }
2400 spin_unlock(&i915->gem.contexts.lock);
2401
2402 /*
2403 * After updating all other contexts, we need to modify ourselves.
2404 * If we don't modify the kernel_context, we do not get events while
2405 * idle.
2406 */
2407 for_each_uabi_engine(engine, i915) {
2408 struct intel_context *ce = engine->kernel_context;
2409
2410 if (engine->class != RENDER_CLASS)
2411 continue;
2412
2413 regs[0].value = intel_sseu_make_rpcs(engine->gt, &ce->sseu);
2414
2415 err = gen8_modify_self(ce, regs, num_regs, active);
2416 if (err)
2417 return err;
2418 }
2419
2420 return 0;
2421 }
2422
2423 static int
gen12_configure_all_contexts(struct i915_perf_stream * stream,const struct i915_oa_config * oa_config,struct i915_active * active)2424 gen12_configure_all_contexts(struct i915_perf_stream *stream,
2425 const struct i915_oa_config *oa_config,
2426 struct i915_active *active)
2427 {
2428 struct flex regs[] = {
2429 {
2430 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2431 CTX_R_PWR_CLK_STATE,
2432 },
2433 };
2434
2435 return oa_configure_all_contexts(stream,
2436 regs, ARRAY_SIZE(regs),
2437 active);
2438 }
2439
2440 static int
lrc_configure_all_contexts(struct i915_perf_stream * stream,const struct i915_oa_config * oa_config,struct i915_active * active)2441 lrc_configure_all_contexts(struct i915_perf_stream *stream,
2442 const struct i915_oa_config *oa_config,
2443 struct i915_active *active)
2444 {
2445 /* The MMIO offsets for Flex EU registers aren't contiguous */
2446 const u32 ctx_flexeu0 = stream->perf->ctx_flexeu0_offset;
2447 #define ctx_flexeuN(N) (ctx_flexeu0 + 2 * (N) + 1)
2448 struct flex regs[] = {
2449 {
2450 GEN8_R_PWR_CLK_STATE(RENDER_RING_BASE),
2451 CTX_R_PWR_CLK_STATE,
2452 },
2453 {
2454 GEN8_OACTXCONTROL,
2455 stream->perf->ctx_oactxctrl_offset + 1,
2456 },
2457 { EU_PERF_CNTL0, ctx_flexeuN(0) },
2458 { EU_PERF_CNTL1, ctx_flexeuN(1) },
2459 { EU_PERF_CNTL2, ctx_flexeuN(2) },
2460 { EU_PERF_CNTL3, ctx_flexeuN(3) },
2461 { EU_PERF_CNTL4, ctx_flexeuN(4) },
2462 { EU_PERF_CNTL5, ctx_flexeuN(5) },
2463 { EU_PERF_CNTL6, ctx_flexeuN(6) },
2464 };
2465 #undef ctx_flexeuN
2466 int i;
2467
2468 regs[1].value =
2469 (stream->period_exponent << GEN8_OA_TIMER_PERIOD_SHIFT) |
2470 (stream->periodic ? GEN8_OA_TIMER_ENABLE : 0) |
2471 GEN8_OA_COUNTER_RESUME;
2472
2473 for (i = 2; i < ARRAY_SIZE(regs); i++)
2474 regs[i].value = oa_config_flex_reg(oa_config, regs[i].reg);
2475
2476 return oa_configure_all_contexts(stream,
2477 regs, ARRAY_SIZE(regs),
2478 active);
2479 }
2480
2481 static int
gen8_enable_metric_set(struct i915_perf_stream * stream,struct i915_active * active)2482 gen8_enable_metric_set(struct i915_perf_stream *stream,
2483 struct i915_active *active)
2484 {
2485 struct intel_uncore *uncore = stream->uncore;
2486 struct i915_oa_config *oa_config = stream->oa_config;
2487 int ret;
2488
2489 /*
2490 * We disable slice/unslice clock ratio change reports on SKL since
2491 * they are too noisy. The HW generates a lot of redundant reports
2492 * where the ratio hasn't really changed causing a lot of redundant
2493 * work to processes and increasing the chances we'll hit buffer
2494 * overruns.
2495 *
2496 * Although we don't currently use the 'disable overrun' OABUFFER
2497 * feature it's worth noting that clock ratio reports have to be
2498 * disabled before considering to use that feature since the HW doesn't
2499 * correctly block these reports.
2500 *
2501 * Currently none of the high-level metrics we have depend on knowing
2502 * this ratio to normalize.
2503 *
2504 * Note: This register is not power context saved and restored, but
2505 * that's OK considering that we disable RC6 while the OA unit is
2506 * enabled.
2507 *
2508 * The _INCLUDE_CLK_RATIO bit allows the slice/unslice frequency to
2509 * be read back from automatically triggered reports, as part of the
2510 * RPT_ID field.
2511 */
2512 if (IS_GRAPHICS_VER(stream->perf->i915, 9, 11)) {
2513 intel_uncore_write(uncore, GEN8_OA_DEBUG,
2514 _MASKED_BIT_ENABLE(GEN9_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2515 GEN9_OA_DEBUG_INCLUDE_CLK_RATIO));
2516 }
2517
2518 /*
2519 * Update all contexts prior writing the mux configurations as we need
2520 * to make sure all slices/subslices are ON before writing to NOA
2521 * registers.
2522 */
2523 ret = lrc_configure_all_contexts(stream, oa_config, active);
2524 if (ret)
2525 return ret;
2526
2527 return emit_oa_config(stream,
2528 stream->oa_config, oa_context(stream),
2529 active);
2530 }
2531
oag_report_ctx_switches(const struct i915_perf_stream * stream)2532 static u32 oag_report_ctx_switches(const struct i915_perf_stream *stream)
2533 {
2534 return _MASKED_FIELD(GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS,
2535 (stream->sample_flags & SAMPLE_OA_REPORT) ?
2536 0 : GEN12_OAG_OA_DEBUG_DISABLE_CTX_SWITCH_REPORTS);
2537 }
2538
2539 static int
gen12_enable_metric_set(struct i915_perf_stream * stream,struct i915_active * active)2540 gen12_enable_metric_set(struct i915_perf_stream *stream,
2541 struct i915_active *active)
2542 {
2543 struct intel_uncore *uncore = stream->uncore;
2544 struct i915_oa_config *oa_config = stream->oa_config;
2545 bool periodic = stream->periodic;
2546 u32 period_exponent = stream->period_exponent;
2547 int ret;
2548
2549 intel_uncore_write(uncore, GEN12_OAG_OA_DEBUG,
2550 /* Disable clk ratio reports, like previous Gens. */
2551 _MASKED_BIT_ENABLE(GEN12_OAG_OA_DEBUG_DISABLE_CLK_RATIO_REPORTS |
2552 GEN12_OAG_OA_DEBUG_INCLUDE_CLK_RATIO) |
2553 /*
2554 * If the user didn't require OA reports, instruct
2555 * the hardware not to emit ctx switch reports.
2556 */
2557 oag_report_ctx_switches(stream));
2558
2559 intel_uncore_write(uncore, GEN12_OAG_OAGLBCTXCTRL, periodic ?
2560 (GEN12_OAG_OAGLBCTXCTRL_COUNTER_RESUME |
2561 GEN12_OAG_OAGLBCTXCTRL_TIMER_ENABLE |
2562 (period_exponent << GEN12_OAG_OAGLBCTXCTRL_TIMER_PERIOD_SHIFT))
2563 : 0);
2564
2565 /*
2566 * Update all contexts prior writing the mux configurations as we need
2567 * to make sure all slices/subslices are ON before writing to NOA
2568 * registers.
2569 */
2570 ret = gen12_configure_all_contexts(stream, oa_config, active);
2571 if (ret)
2572 return ret;
2573
2574 /*
2575 * For Gen12, performance counters are context
2576 * saved/restored. Only enable it for the context that
2577 * requested this.
2578 */
2579 if (stream->ctx) {
2580 ret = gen12_configure_oar_context(stream, active);
2581 if (ret)
2582 return ret;
2583 }
2584
2585 return emit_oa_config(stream,
2586 stream->oa_config, oa_context(stream),
2587 active);
2588 }
2589
gen8_disable_metric_set(struct i915_perf_stream * stream)2590 static void gen8_disable_metric_set(struct i915_perf_stream *stream)
2591 {
2592 struct intel_uncore *uncore = stream->uncore;
2593
2594 /* Reset all contexts' slices/subslices configurations. */
2595 lrc_configure_all_contexts(stream, NULL, NULL);
2596
2597 intel_uncore_rmw(uncore, GDT_CHICKEN_BITS, GT_NOA_ENABLE, 0);
2598 }
2599
gen11_disable_metric_set(struct i915_perf_stream * stream)2600 static void gen11_disable_metric_set(struct i915_perf_stream *stream)
2601 {
2602 struct intel_uncore *uncore = stream->uncore;
2603
2604 /* Reset all contexts' slices/subslices configurations. */
2605 lrc_configure_all_contexts(stream, NULL, NULL);
2606
2607 /* Make sure we disable noa to save power. */
2608 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2609 }
2610
gen12_disable_metric_set(struct i915_perf_stream * stream)2611 static void gen12_disable_metric_set(struct i915_perf_stream *stream)
2612 {
2613 struct intel_uncore *uncore = stream->uncore;
2614
2615 /* Reset all contexts' slices/subslices configurations. */
2616 gen12_configure_all_contexts(stream, NULL, NULL);
2617
2618 /* disable the context save/restore or OAR counters */
2619 if (stream->ctx)
2620 gen12_configure_oar_context(stream, NULL);
2621
2622 /* Make sure we disable noa to save power. */
2623 intel_uncore_rmw(uncore, RPM_CONFIG1, GEN10_GT_NOA_ENABLE, 0);
2624 }
2625
gen7_oa_enable(struct i915_perf_stream * stream)2626 static void gen7_oa_enable(struct i915_perf_stream *stream)
2627 {
2628 struct intel_uncore *uncore = stream->uncore;
2629 struct i915_gem_context *ctx = stream->ctx;
2630 u32 ctx_id = stream->specific_ctx_id;
2631 bool periodic = stream->periodic;
2632 u32 period_exponent = stream->period_exponent;
2633 u32 report_format = stream->oa_buffer.format;
2634
2635 /*
2636 * Reset buf pointers so we don't forward reports from before now.
2637 *
2638 * Think carefully if considering trying to avoid this, since it
2639 * also ensures status flags and the buffer itself are cleared
2640 * in error paths, and we have checks for invalid reports based
2641 * on the assumption that certain fields are written to zeroed
2642 * memory which this helps maintains.
2643 */
2644 gen7_init_oa_buffer(stream);
2645
2646 intel_uncore_write(uncore, GEN7_OACONTROL,
2647 (ctx_id & GEN7_OACONTROL_CTX_MASK) |
2648 (period_exponent <<
2649 GEN7_OACONTROL_TIMER_PERIOD_SHIFT) |
2650 (periodic ? GEN7_OACONTROL_TIMER_ENABLE : 0) |
2651 (report_format << GEN7_OACONTROL_FORMAT_SHIFT) |
2652 (ctx ? GEN7_OACONTROL_PER_CTX_ENABLE : 0) |
2653 GEN7_OACONTROL_ENABLE);
2654 }
2655
gen8_oa_enable(struct i915_perf_stream * stream)2656 static void gen8_oa_enable(struct i915_perf_stream *stream)
2657 {
2658 struct intel_uncore *uncore = stream->uncore;
2659 u32 report_format = stream->oa_buffer.format;
2660
2661 /*
2662 * Reset buf pointers so we don't forward reports from before now.
2663 *
2664 * Think carefully if considering trying to avoid this, since it
2665 * also ensures status flags and the buffer itself are cleared
2666 * in error paths, and we have checks for invalid reports based
2667 * on the assumption that certain fields are written to zeroed
2668 * memory which this helps maintains.
2669 */
2670 gen8_init_oa_buffer(stream);
2671
2672 /*
2673 * Note: we don't rely on the hardware to perform single context
2674 * filtering and instead filter on the cpu based on the context-id
2675 * field of reports
2676 */
2677 intel_uncore_write(uncore, GEN8_OACONTROL,
2678 (report_format << GEN8_OA_REPORT_FORMAT_SHIFT) |
2679 GEN8_OA_COUNTER_ENABLE);
2680 }
2681
gen12_oa_enable(struct i915_perf_stream * stream)2682 static void gen12_oa_enable(struct i915_perf_stream *stream)
2683 {
2684 struct intel_uncore *uncore = stream->uncore;
2685 u32 report_format = stream->oa_buffer.format;
2686
2687 /*
2688 * If we don't want OA reports from the OA buffer, then we don't even
2689 * need to program the OAG unit.
2690 */
2691 if (!(stream->sample_flags & SAMPLE_OA_REPORT))
2692 return;
2693
2694 gen12_init_oa_buffer(stream);
2695
2696 intel_uncore_write(uncore, GEN12_OAG_OACONTROL,
2697 (report_format << GEN12_OAG_OACONTROL_OA_COUNTER_FORMAT_SHIFT) |
2698 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE);
2699 }
2700
2701 /**
2702 * i915_oa_stream_enable - handle `I915_PERF_IOCTL_ENABLE` for OA stream
2703 * @stream: An i915 perf stream opened for OA metrics
2704 *
2705 * [Re]enables hardware periodic sampling according to the period configured
2706 * when opening the stream. This also starts a hrtimer that will periodically
2707 * check for data in the circular OA buffer for notifying userspace (e.g.
2708 * during a read() or poll()).
2709 */
i915_oa_stream_enable(struct i915_perf_stream * stream)2710 static void i915_oa_stream_enable(struct i915_perf_stream *stream)
2711 {
2712 stream->pollin = false;
2713
2714 stream->perf->ops.oa_enable(stream);
2715
2716 if (stream->sample_flags & SAMPLE_OA_REPORT)
2717 hrtimer_start(&stream->poll_check_timer,
2718 ns_to_ktime(stream->poll_oa_period),
2719 HRTIMER_MODE_REL_PINNED);
2720 }
2721
gen7_oa_disable(struct i915_perf_stream * stream)2722 static void gen7_oa_disable(struct i915_perf_stream *stream)
2723 {
2724 struct intel_uncore *uncore = stream->uncore;
2725
2726 intel_uncore_write(uncore, GEN7_OACONTROL, 0);
2727 if (intel_wait_for_register(uncore,
2728 GEN7_OACONTROL, GEN7_OACONTROL_ENABLE, 0,
2729 50))
2730 drm_err(&stream->perf->i915->drm,
2731 "wait for OA to be disabled timed out\n");
2732 }
2733
gen8_oa_disable(struct i915_perf_stream * stream)2734 static void gen8_oa_disable(struct i915_perf_stream *stream)
2735 {
2736 struct intel_uncore *uncore = stream->uncore;
2737
2738 intel_uncore_write(uncore, GEN8_OACONTROL, 0);
2739 if (intel_wait_for_register(uncore,
2740 GEN8_OACONTROL, GEN8_OA_COUNTER_ENABLE, 0,
2741 50))
2742 drm_err(&stream->perf->i915->drm,
2743 "wait for OA to be disabled timed out\n");
2744 }
2745
gen12_oa_disable(struct i915_perf_stream * stream)2746 static void gen12_oa_disable(struct i915_perf_stream *stream)
2747 {
2748 struct intel_uncore *uncore = stream->uncore;
2749
2750 intel_uncore_write(uncore, GEN12_OAG_OACONTROL, 0);
2751 if (intel_wait_for_register(uncore,
2752 GEN12_OAG_OACONTROL,
2753 GEN12_OAG_OACONTROL_OA_COUNTER_ENABLE, 0,
2754 50))
2755 drm_err(&stream->perf->i915->drm,
2756 "wait for OA to be disabled timed out\n");
2757
2758 intel_uncore_write(uncore, GEN12_OA_TLB_INV_CR, 1);
2759 if (intel_wait_for_register(uncore,
2760 GEN12_OA_TLB_INV_CR,
2761 1, 0,
2762 50))
2763 drm_err(&stream->perf->i915->drm,
2764 "wait for OA tlb invalidate timed out\n");
2765 }
2766
2767 /**
2768 * i915_oa_stream_disable - handle `I915_PERF_IOCTL_DISABLE` for OA stream
2769 * @stream: An i915 perf stream opened for OA metrics
2770 *
2771 * Stops the OA unit from periodically writing counter reports into the
2772 * circular OA buffer. This also stops the hrtimer that periodically checks for
2773 * data in the circular OA buffer, for notifying userspace.
2774 */
i915_oa_stream_disable(struct i915_perf_stream * stream)2775 static void i915_oa_stream_disable(struct i915_perf_stream *stream)
2776 {
2777 stream->perf->ops.oa_disable(stream);
2778
2779 if (stream->sample_flags & SAMPLE_OA_REPORT)
2780 hrtimer_cancel(&stream->poll_check_timer);
2781 }
2782
2783 static const struct i915_perf_stream_ops i915_oa_stream_ops = {
2784 .destroy = i915_oa_stream_destroy,
2785 .enable = i915_oa_stream_enable,
2786 .disable = i915_oa_stream_disable,
2787 .wait_unlocked = i915_oa_wait_unlocked,
2788 .poll_wait = i915_oa_poll_wait,
2789 .read = i915_oa_read,
2790 };
2791
i915_perf_stream_enable_sync(struct i915_perf_stream * stream)2792 static int i915_perf_stream_enable_sync(struct i915_perf_stream *stream)
2793 {
2794 struct i915_active *active;
2795 int err;
2796
2797 active = i915_active_create();
2798 if (!active)
2799 return -ENOMEM;
2800
2801 err = stream->perf->ops.enable_metric_set(stream, active);
2802 if (err == 0)
2803 __i915_active_wait(active, TASK_UNINTERRUPTIBLE);
2804
2805 i915_active_put(active);
2806 return err;
2807 }
2808
2809 static void
get_default_sseu_config(struct intel_sseu * out_sseu,struct intel_engine_cs * engine)2810 get_default_sseu_config(struct intel_sseu *out_sseu,
2811 struct intel_engine_cs *engine)
2812 {
2813 const struct sseu_dev_info *devinfo_sseu = &engine->gt->info.sseu;
2814
2815 *out_sseu = intel_sseu_from_device_info(devinfo_sseu);
2816
2817 if (GRAPHICS_VER(engine->i915) == 11) {
2818 /*
2819 * We only need subslice count so it doesn't matter which ones
2820 * we select - just turn off low bits in the amount of half of
2821 * all available subslices per slice.
2822 */
2823 out_sseu->subslice_mask =
2824 ~(~0 << (hweight8(out_sseu->subslice_mask) / 2));
2825 out_sseu->slice_mask = 0x1;
2826 }
2827 }
2828
2829 static int
get_sseu_config(struct intel_sseu * out_sseu,struct intel_engine_cs * engine,const struct drm_i915_gem_context_param_sseu * drm_sseu)2830 get_sseu_config(struct intel_sseu *out_sseu,
2831 struct intel_engine_cs *engine,
2832 const struct drm_i915_gem_context_param_sseu *drm_sseu)
2833 {
2834 if (drm_sseu->engine.engine_class != engine->uabi_class ||
2835 drm_sseu->engine.engine_instance != engine->uabi_instance)
2836 return -EINVAL;
2837
2838 return i915_gem_user_to_context_sseu(engine->gt, drm_sseu, out_sseu);
2839 }
2840
2841 /**
2842 * i915_oa_stream_init - validate combined props for OA stream and init
2843 * @stream: An i915 perf stream
2844 * @param: The open parameters passed to `DRM_I915_PERF_OPEN`
2845 * @props: The property state that configures stream (individually validated)
2846 *
2847 * While read_properties_unlocked() validates properties in isolation it
2848 * doesn't ensure that the combination necessarily makes sense.
2849 *
2850 * At this point it has been determined that userspace wants a stream of
2851 * OA metrics, but still we need to further validate the combined
2852 * properties are OK.
2853 *
2854 * If the configuration makes sense then we can allocate memory for
2855 * a circular OA buffer and apply the requested metric set configuration.
2856 *
2857 * Returns: zero on success or a negative error code.
2858 */
i915_oa_stream_init(struct i915_perf_stream * stream,struct drm_i915_perf_open_param * param,struct perf_open_properties * props)2859 static int i915_oa_stream_init(struct i915_perf_stream *stream,
2860 struct drm_i915_perf_open_param *param,
2861 struct perf_open_properties *props)
2862 {
2863 struct drm_i915_private *i915 = stream->perf->i915;
2864 struct i915_perf *perf = stream->perf;
2865 int format_size;
2866 int ret;
2867
2868 if (!props->engine) {
2869 drm_dbg(&stream->perf->i915->drm,
2870 "OA engine not specified\n");
2871 return -EINVAL;
2872 }
2873
2874 /*
2875 * If the sysfs metrics/ directory wasn't registered for some
2876 * reason then don't let userspace try their luck with config
2877 * IDs
2878 */
2879 if (!perf->metrics_kobj) {
2880 drm_dbg(&stream->perf->i915->drm,
2881 "OA metrics weren't advertised via sysfs\n");
2882 return -EINVAL;
2883 }
2884
2885 if (!(props->sample_flags & SAMPLE_OA_REPORT) &&
2886 (GRAPHICS_VER(perf->i915) < 12 || !stream->ctx)) {
2887 drm_dbg(&stream->perf->i915->drm,
2888 "Only OA report sampling supported\n");
2889 return -EINVAL;
2890 }
2891
2892 if (!perf->ops.enable_metric_set) {
2893 drm_dbg(&stream->perf->i915->drm,
2894 "OA unit not supported\n");
2895 return -ENODEV;
2896 }
2897
2898 /*
2899 * To avoid the complexity of having to accurately filter
2900 * counter reports and marshal to the appropriate client
2901 * we currently only allow exclusive access
2902 */
2903 if (perf->exclusive_stream) {
2904 drm_dbg(&stream->perf->i915->drm,
2905 "OA unit already in use\n");
2906 return -EBUSY;
2907 }
2908
2909 if (!props->oa_format) {
2910 drm_dbg(&stream->perf->i915->drm,
2911 "OA report format not specified\n");
2912 return -EINVAL;
2913 }
2914
2915 stream->engine = props->engine;
2916 stream->uncore = stream->engine->gt->uncore;
2917
2918 stream->sample_size = sizeof(struct drm_i915_perf_record_header);
2919
2920 format_size = perf->oa_formats[props->oa_format].size;
2921
2922 stream->sample_flags = props->sample_flags;
2923 stream->sample_size += format_size;
2924
2925 stream->oa_buffer.format_size = format_size;
2926 if (drm_WARN_ON(&i915->drm, stream->oa_buffer.format_size == 0))
2927 return -EINVAL;
2928
2929 stream->hold_preemption = props->hold_preemption;
2930
2931 stream->oa_buffer.format =
2932 perf->oa_formats[props->oa_format].format;
2933
2934 stream->periodic = props->oa_periodic;
2935 if (stream->periodic)
2936 stream->period_exponent = props->oa_period_exponent;
2937
2938 if (stream->ctx) {
2939 ret = oa_get_render_ctx_id(stream);
2940 if (ret) {
2941 drm_dbg(&stream->perf->i915->drm,
2942 "Invalid context id to filter with\n");
2943 return ret;
2944 }
2945 }
2946
2947 ret = alloc_noa_wait(stream);
2948 if (ret) {
2949 drm_dbg(&stream->perf->i915->drm,
2950 "Unable to allocate NOA wait batch buffer\n");
2951 goto err_noa_wait_alloc;
2952 }
2953
2954 stream->oa_config = i915_perf_get_oa_config(perf, props->metrics_set);
2955 if (!stream->oa_config) {
2956 drm_dbg(&stream->perf->i915->drm,
2957 "Invalid OA config id=%i\n", props->metrics_set);
2958 ret = -EINVAL;
2959 goto err_config;
2960 }
2961
2962 /* PRM - observability performance counters:
2963 *
2964 * OACONTROL, performance counter enable, note:
2965 *
2966 * "When this bit is set, in order to have coherent counts,
2967 * RC6 power state and trunk clock gating must be disabled.
2968 * This can be achieved by programming MMIO registers as
2969 * 0xA094=0 and 0xA090[31]=1"
2970 *
2971 * In our case we are expecting that taking pm + FORCEWAKE
2972 * references will effectively disable RC6.
2973 */
2974 intel_engine_pm_get(stream->engine);
2975 intel_uncore_forcewake_get(stream->uncore, FORCEWAKE_ALL);
2976
2977 ret = alloc_oa_buffer(stream);
2978 if (ret)
2979 goto err_oa_buf_alloc;
2980
2981 stream->ops = &i915_oa_stream_ops;
2982
2983 perf->sseu = props->sseu;
2984 WRITE_ONCE(perf->exclusive_stream, stream);
2985
2986 ret = i915_perf_stream_enable_sync(stream);
2987 if (ret) {
2988 drm_dbg(&stream->perf->i915->drm,
2989 "Unable to enable metric set\n");
2990 goto err_enable;
2991 }
2992
2993 drm_dbg(&stream->perf->i915->drm,
2994 "opening stream oa config uuid=%s\n",
2995 stream->oa_config->uuid);
2996
2997 hrtimer_init(&stream->poll_check_timer,
2998 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2999 stream->poll_check_timer.function = oa_poll_check_timer_cb;
3000 init_waitqueue_head(&stream->poll_wq);
3001 spin_lock_init(&stream->oa_buffer.ptr_lock);
3002
3003 return 0;
3004
3005 err_enable:
3006 WRITE_ONCE(perf->exclusive_stream, NULL);
3007 perf->ops.disable_metric_set(stream);
3008
3009 free_oa_buffer(stream);
3010
3011 err_oa_buf_alloc:
3012 free_oa_configs(stream);
3013
3014 intel_uncore_forcewake_put(stream->uncore, FORCEWAKE_ALL);
3015 intel_engine_pm_put(stream->engine);
3016
3017 err_config:
3018 free_noa_wait(stream);
3019
3020 err_noa_wait_alloc:
3021 if (stream->ctx)
3022 oa_put_render_ctx_id(stream);
3023
3024 return ret;
3025 }
3026
i915_oa_init_reg_state(const struct intel_context * ce,const struct intel_engine_cs * engine)3027 void i915_oa_init_reg_state(const struct intel_context *ce,
3028 const struct intel_engine_cs *engine)
3029 {
3030 struct i915_perf_stream *stream;
3031
3032 if (engine->class != RENDER_CLASS)
3033 return;
3034
3035 /* perf.exclusive_stream serialised by lrc_configure_all_contexts() */
3036 stream = READ_ONCE(engine->i915->perf.exclusive_stream);
3037 if (stream && GRAPHICS_VER(stream->perf->i915) < 12)
3038 gen8_update_reg_state_unlocked(ce, stream);
3039 }
3040
3041 /**
3042 * i915_perf_read - handles read() FOP for i915 perf stream FDs
3043 * @file: An i915 perf stream file
3044 * @buf: destination buffer given by userspace
3045 * @count: the number of bytes userspace wants to read
3046 * @ppos: (inout) file seek position (unused)
3047 *
3048 * The entry point for handling a read() on a stream file descriptor from
3049 * userspace. Most of the work is left to the i915_perf_read_locked() and
3050 * &i915_perf_stream_ops->read but to save having stream implementations (of
3051 * which we might have multiple later) we handle blocking read here.
3052 *
3053 * We can also consistently treat trying to read from a disabled stream
3054 * as an IO error so implementations can assume the stream is enabled
3055 * while reading.
3056 *
3057 * Returns: The number of bytes copied or a negative error code on failure.
3058 */
i915_perf_read(struct file * file,char __user * buf,size_t count,loff_t * ppos)3059 static ssize_t i915_perf_read(struct file *file,
3060 char __user *buf,
3061 size_t count,
3062 loff_t *ppos)
3063 {
3064 struct i915_perf_stream *stream = file->private_data;
3065 struct i915_perf *perf = stream->perf;
3066 size_t offset = 0;
3067 int ret;
3068
3069 /* To ensure it's handled consistently we simply treat all reads of a
3070 * disabled stream as an error. In particular it might otherwise lead
3071 * to a deadlock for blocking file descriptors...
3072 */
3073 if (!stream->enabled || !(stream->sample_flags & SAMPLE_OA_REPORT))
3074 return -EIO;
3075
3076 if (!(file->f_flags & O_NONBLOCK)) {
3077 /* There's the small chance of false positives from
3078 * stream->ops->wait_unlocked.
3079 *
3080 * E.g. with single context filtering since we only wait until
3081 * oabuffer has >= 1 report we don't immediately know whether
3082 * any reports really belong to the current context
3083 */
3084 do {
3085 ret = stream->ops->wait_unlocked(stream);
3086 if (ret)
3087 return ret;
3088
3089 mutex_lock(&perf->lock);
3090 ret = stream->ops->read(stream, buf, count, &offset);
3091 mutex_unlock(&perf->lock);
3092 } while (!offset && !ret);
3093 } else {
3094 mutex_lock(&perf->lock);
3095 ret = stream->ops->read(stream, buf, count, &offset);
3096 mutex_unlock(&perf->lock);
3097 }
3098
3099 /* We allow the poll checking to sometimes report false positive EPOLLIN
3100 * events where we might actually report EAGAIN on read() if there's
3101 * not really any data available. In this situation though we don't
3102 * want to enter a busy loop between poll() reporting a EPOLLIN event
3103 * and read() returning -EAGAIN. Clearing the oa.pollin state here
3104 * effectively ensures we back off until the next hrtimer callback
3105 * before reporting another EPOLLIN event.
3106 * The exception to this is if ops->read() returned -ENOSPC which means
3107 * that more OA data is available than could fit in the user provided
3108 * buffer. In this case we want the next poll() call to not block.
3109 */
3110 if (ret != -ENOSPC)
3111 stream->pollin = false;
3112
3113 /* Possible values for ret are 0, -EFAULT, -ENOSPC, -EIO, ... */
3114 return offset ?: (ret ?: -EAGAIN);
3115 }
3116
oa_poll_check_timer_cb(struct hrtimer * hrtimer)3117 static enum hrtimer_restart oa_poll_check_timer_cb(struct hrtimer *hrtimer)
3118 {
3119 struct i915_perf_stream *stream =
3120 container_of(hrtimer, typeof(*stream), poll_check_timer);
3121
3122 if (oa_buffer_check_unlocked(stream)) {
3123 stream->pollin = true;
3124 wake_up(&stream->poll_wq);
3125 }
3126
3127 hrtimer_forward_now(hrtimer,
3128 ns_to_ktime(stream->poll_oa_period));
3129
3130 return HRTIMER_RESTART;
3131 }
3132
3133 /**
3134 * i915_perf_poll_locked - poll_wait() with a suitable wait queue for stream
3135 * @stream: An i915 perf stream
3136 * @file: An i915 perf stream file
3137 * @wait: poll() state table
3138 *
3139 * For handling userspace polling on an i915 perf stream, this calls through to
3140 * &i915_perf_stream_ops->poll_wait to call poll_wait() with a wait queue that
3141 * will be woken for new stream data.
3142 *
3143 * Note: The &perf->lock mutex has been taken to serialize
3144 * with any non-file-operation driver hooks.
3145 *
3146 * Returns: any poll events that are ready without sleeping
3147 */
i915_perf_poll_locked(struct i915_perf_stream * stream,struct file * file,poll_table * wait)3148 static __poll_t i915_perf_poll_locked(struct i915_perf_stream *stream,
3149 struct file *file,
3150 poll_table *wait)
3151 {
3152 __poll_t events = 0;
3153
3154 stream->ops->poll_wait(stream, file, wait);
3155
3156 /* Note: we don't explicitly check whether there's something to read
3157 * here since this path may be very hot depending on what else
3158 * userspace is polling, or on the timeout in use. We rely solely on
3159 * the hrtimer/oa_poll_check_timer_cb to notify us when there are
3160 * samples to read.
3161 */
3162 if (stream->pollin)
3163 events |= EPOLLIN;
3164
3165 return events;
3166 }
3167
3168 /**
3169 * i915_perf_poll - call poll_wait() with a suitable wait queue for stream
3170 * @file: An i915 perf stream file
3171 * @wait: poll() state table
3172 *
3173 * For handling userspace polling on an i915 perf stream, this ensures
3174 * poll_wait() gets called with a wait queue that will be woken for new stream
3175 * data.
3176 *
3177 * Note: Implementation deferred to i915_perf_poll_locked()
3178 *
3179 * Returns: any poll events that are ready without sleeping
3180 */
i915_perf_poll(struct file * file,poll_table * wait)3181 static __poll_t i915_perf_poll(struct file *file, poll_table *wait)
3182 {
3183 struct i915_perf_stream *stream = file->private_data;
3184 struct i915_perf *perf = stream->perf;
3185 __poll_t ret;
3186
3187 mutex_lock(&perf->lock);
3188 ret = i915_perf_poll_locked(stream, file, wait);
3189 mutex_unlock(&perf->lock);
3190
3191 return ret;
3192 }
3193
3194 /**
3195 * i915_perf_enable_locked - handle `I915_PERF_IOCTL_ENABLE` ioctl
3196 * @stream: A disabled i915 perf stream
3197 *
3198 * [Re]enables the associated capture of data for this stream.
3199 *
3200 * If a stream was previously enabled then there's currently no intention
3201 * to provide userspace any guarantee about the preservation of previously
3202 * buffered data.
3203 */
i915_perf_enable_locked(struct i915_perf_stream * stream)3204 static void i915_perf_enable_locked(struct i915_perf_stream *stream)
3205 {
3206 if (stream->enabled)
3207 return;
3208
3209 /* Allow stream->ops->enable() to refer to this */
3210 stream->enabled = true;
3211
3212 if (stream->ops->enable)
3213 stream->ops->enable(stream);
3214
3215 if (stream->hold_preemption)
3216 intel_context_set_nopreempt(stream->pinned_ctx);
3217 }
3218
3219 /**
3220 * i915_perf_disable_locked - handle `I915_PERF_IOCTL_DISABLE` ioctl
3221 * @stream: An enabled i915 perf stream
3222 *
3223 * Disables the associated capture of data for this stream.
3224 *
3225 * The intention is that disabling an re-enabling a stream will ideally be
3226 * cheaper than destroying and re-opening a stream with the same configuration,
3227 * though there are no formal guarantees about what state or buffered data
3228 * must be retained between disabling and re-enabling a stream.
3229 *
3230 * Note: while a stream is disabled it's considered an error for userspace
3231 * to attempt to read from the stream (-EIO).
3232 */
i915_perf_disable_locked(struct i915_perf_stream * stream)3233 static void i915_perf_disable_locked(struct i915_perf_stream *stream)
3234 {
3235 if (!stream->enabled)
3236 return;
3237
3238 /* Allow stream->ops->disable() to refer to this */
3239 stream->enabled = false;
3240
3241 if (stream->hold_preemption)
3242 intel_context_clear_nopreempt(stream->pinned_ctx);
3243
3244 if (stream->ops->disable)
3245 stream->ops->disable(stream);
3246 }
3247
i915_perf_config_locked(struct i915_perf_stream * stream,unsigned long metrics_set)3248 static long i915_perf_config_locked(struct i915_perf_stream *stream,
3249 unsigned long metrics_set)
3250 {
3251 struct i915_oa_config *config;
3252 long ret = stream->oa_config->id;
3253
3254 config = i915_perf_get_oa_config(stream->perf, metrics_set);
3255 if (!config)
3256 return -EINVAL;
3257
3258 if (config != stream->oa_config) {
3259 int err;
3260
3261 /*
3262 * If OA is bound to a specific context, emit the
3263 * reconfiguration inline from that context. The update
3264 * will then be ordered with respect to submission on that
3265 * context.
3266 *
3267 * When set globally, we use a low priority kernel context,
3268 * so it will effectively take effect when idle.
3269 */
3270 err = emit_oa_config(stream, config, oa_context(stream), NULL);
3271 if (!err)
3272 config = xchg(&stream->oa_config, config);
3273 else
3274 ret = err;
3275 }
3276
3277 i915_oa_config_put(config);
3278
3279 return ret;
3280 }
3281
3282 /**
3283 * i915_perf_ioctl_locked - support ioctl() usage with i915 perf stream FDs
3284 * @stream: An i915 perf stream
3285 * @cmd: the ioctl request
3286 * @arg: the ioctl data
3287 *
3288 * Note: The &perf->lock mutex has been taken to serialize
3289 * with any non-file-operation driver hooks.
3290 *
3291 * Returns: zero on success or a negative error code. Returns -EINVAL for
3292 * an unknown ioctl request.
3293 */
i915_perf_ioctl_locked(struct i915_perf_stream * stream,unsigned int cmd,unsigned long arg)3294 static long i915_perf_ioctl_locked(struct i915_perf_stream *stream,
3295 unsigned int cmd,
3296 unsigned long arg)
3297 {
3298 switch (cmd) {
3299 case I915_PERF_IOCTL_ENABLE:
3300 i915_perf_enable_locked(stream);
3301 return 0;
3302 case I915_PERF_IOCTL_DISABLE:
3303 i915_perf_disable_locked(stream);
3304 return 0;
3305 case I915_PERF_IOCTL_CONFIG:
3306 return i915_perf_config_locked(stream, arg);
3307 }
3308
3309 return -EINVAL;
3310 }
3311
3312 /**
3313 * i915_perf_ioctl - support ioctl() usage with i915 perf stream FDs
3314 * @file: An i915 perf stream file
3315 * @cmd: the ioctl request
3316 * @arg: the ioctl data
3317 *
3318 * Implementation deferred to i915_perf_ioctl_locked().
3319 *
3320 * Returns: zero on success or a negative error code. Returns -EINVAL for
3321 * an unknown ioctl request.
3322 */
i915_perf_ioctl(struct file * file,unsigned int cmd,unsigned long arg)3323 static long i915_perf_ioctl(struct file *file,
3324 unsigned int cmd,
3325 unsigned long arg)
3326 {
3327 struct i915_perf_stream *stream = file->private_data;
3328 struct i915_perf *perf = stream->perf;
3329 long ret;
3330
3331 mutex_lock(&perf->lock);
3332 ret = i915_perf_ioctl_locked(stream, cmd, arg);
3333 mutex_unlock(&perf->lock);
3334
3335 return ret;
3336 }
3337
3338 /**
3339 * i915_perf_destroy_locked - destroy an i915 perf stream
3340 * @stream: An i915 perf stream
3341 *
3342 * Frees all resources associated with the given i915 perf @stream, disabling
3343 * any associated data capture in the process.
3344 *
3345 * Note: The &perf->lock mutex has been taken to serialize
3346 * with any non-file-operation driver hooks.
3347 */
i915_perf_destroy_locked(struct i915_perf_stream * stream)3348 static void i915_perf_destroy_locked(struct i915_perf_stream *stream)
3349 {
3350 if (stream->enabled)
3351 i915_perf_disable_locked(stream);
3352
3353 if (stream->ops->destroy)
3354 stream->ops->destroy(stream);
3355
3356 if (stream->ctx)
3357 i915_gem_context_put(stream->ctx);
3358
3359 kfree(stream);
3360 }
3361
3362 /**
3363 * i915_perf_release - handles userspace close() of a stream file
3364 * @inode: anonymous inode associated with file
3365 * @file: An i915 perf stream file
3366 *
3367 * Cleans up any resources associated with an open i915 perf stream file.
3368 *
3369 * NB: close() can't really fail from the userspace point of view.
3370 *
3371 * Returns: zero on success or a negative error code.
3372 */
i915_perf_release(struct inode * inode,struct file * file)3373 static int i915_perf_release(struct inode *inode, struct file *file)
3374 {
3375 struct i915_perf_stream *stream = file->private_data;
3376 struct i915_perf *perf = stream->perf;
3377
3378 mutex_lock(&perf->lock);
3379 i915_perf_destroy_locked(stream);
3380 mutex_unlock(&perf->lock);
3381
3382 /* Release the reference the perf stream kept on the driver. */
3383 drm_dev_put(&perf->i915->drm);
3384
3385 return 0;
3386 }
3387
3388
3389 static const struct file_operations fops = {
3390 .owner = THIS_MODULE,
3391 .llseek = no_llseek,
3392 .release = i915_perf_release,
3393 .poll = i915_perf_poll,
3394 .read = i915_perf_read,
3395 .unlocked_ioctl = i915_perf_ioctl,
3396 /* Our ioctl have no arguments, so it's safe to use the same function
3397 * to handle 32bits compatibility.
3398 */
3399 .compat_ioctl = i915_perf_ioctl,
3400 };
3401
3402
3403 /**
3404 * i915_perf_open_ioctl_locked - DRM ioctl() for userspace to open a stream FD
3405 * @perf: i915 perf instance
3406 * @param: The open parameters passed to 'DRM_I915_PERF_OPEN`
3407 * @props: individually validated u64 property value pairs
3408 * @file: drm file
3409 *
3410 * See i915_perf_ioctl_open() for interface details.
3411 *
3412 * Implements further stream config validation and stream initialization on
3413 * behalf of i915_perf_open_ioctl() with the &perf->lock mutex
3414 * taken to serialize with any non-file-operation driver hooks.
3415 *
3416 * Note: at this point the @props have only been validated in isolation and
3417 * it's still necessary to validate that the combination of properties makes
3418 * sense.
3419 *
3420 * In the case where userspace is interested in OA unit metrics then further
3421 * config validation and stream initialization details will be handled by
3422 * i915_oa_stream_init(). The code here should only validate config state that
3423 * will be relevant to all stream types / backends.
3424 *
3425 * Returns: zero on success or a negative error code.
3426 */
3427 static int
i915_perf_open_ioctl_locked(struct i915_perf * perf,struct drm_i915_perf_open_param * param,struct perf_open_properties * props,struct drm_file * file)3428 i915_perf_open_ioctl_locked(struct i915_perf *perf,
3429 struct drm_i915_perf_open_param *param,
3430 struct perf_open_properties *props,
3431 struct drm_file *file)
3432 {
3433 struct i915_gem_context *specific_ctx = NULL;
3434 struct i915_perf_stream *stream = NULL;
3435 unsigned long f_flags = 0;
3436 bool privileged_op = true;
3437 int stream_fd;
3438 int ret;
3439
3440 if (props->single_context) {
3441 u32 ctx_handle = props->ctx_handle;
3442 struct drm_i915_file_private *file_priv = file->driver_priv;
3443
3444 specific_ctx = i915_gem_context_lookup(file_priv, ctx_handle);
3445 if (IS_ERR(specific_ctx)) {
3446 drm_dbg(&perf->i915->drm,
3447 "Failed to look up context with ID %u for opening perf stream\n",
3448 ctx_handle);
3449 ret = PTR_ERR(specific_ctx);
3450 goto err;
3451 }
3452 }
3453
3454 /*
3455 * On Haswell the OA unit supports clock gating off for a specific
3456 * context and in this mode there's no visibility of metrics for the
3457 * rest of the system, which we consider acceptable for a
3458 * non-privileged client.
3459 *
3460 * For Gen8->11 the OA unit no longer supports clock gating off for a
3461 * specific context and the kernel can't securely stop the counters
3462 * from updating as system-wide / global values. Even though we can
3463 * filter reports based on the included context ID we can't block
3464 * clients from seeing the raw / global counter values via
3465 * MI_REPORT_PERF_COUNT commands and so consider it a privileged op to
3466 * enable the OA unit by default.
3467 *
3468 * For Gen12+ we gain a new OAR unit that only monitors the RCS on a
3469 * per context basis. So we can relax requirements there if the user
3470 * doesn't request global stream access (i.e. query based sampling
3471 * using MI_RECORD_PERF_COUNT.
3472 */
3473 if (IS_HASWELL(perf->i915) && specific_ctx)
3474 privileged_op = false;
3475 else if (GRAPHICS_VER(perf->i915) == 12 && specific_ctx &&
3476 (props->sample_flags & SAMPLE_OA_REPORT) == 0)
3477 privileged_op = false;
3478
3479 if (props->hold_preemption) {
3480 if (!props->single_context) {
3481 drm_dbg(&perf->i915->drm,
3482 "preemption disable with no context\n");
3483 ret = -EINVAL;
3484 goto err;
3485 }
3486 privileged_op = true;
3487 }
3488
3489 /*
3490 * Asking for SSEU configuration is a priviliged operation.
3491 */
3492 if (props->has_sseu)
3493 privileged_op = true;
3494 else
3495 get_default_sseu_config(&props->sseu, props->engine);
3496
3497 /* Similar to perf's kernel.perf_paranoid_cpu sysctl option
3498 * we check a dev.i915.perf_stream_paranoid sysctl option
3499 * to determine if it's ok to access system wide OA counters
3500 * without CAP_PERFMON or CAP_SYS_ADMIN privileges.
3501 */
3502 if (privileged_op &&
3503 i915_perf_stream_paranoid && !perfmon_capable()) {
3504 drm_dbg(&perf->i915->drm,
3505 "Insufficient privileges to open i915 perf stream\n");
3506 ret = -EACCES;
3507 goto err_ctx;
3508 }
3509
3510 stream = kzalloc(sizeof(*stream), GFP_KERNEL);
3511 if (!stream) {
3512 ret = -ENOMEM;
3513 goto err_ctx;
3514 }
3515
3516 stream->perf = perf;
3517 stream->ctx = specific_ctx;
3518 stream->poll_oa_period = props->poll_oa_period;
3519
3520 ret = i915_oa_stream_init(stream, param, props);
3521 if (ret)
3522 goto err_alloc;
3523
3524 /* we avoid simply assigning stream->sample_flags = props->sample_flags
3525 * to have _stream_init check the combination of sample flags more
3526 * thoroughly, but still this is the expected result at this point.
3527 */
3528 if (WARN_ON(stream->sample_flags != props->sample_flags)) {
3529 ret = -ENODEV;
3530 goto err_flags;
3531 }
3532
3533 if (param->flags & I915_PERF_FLAG_FD_CLOEXEC)
3534 f_flags |= O_CLOEXEC;
3535 if (param->flags & I915_PERF_FLAG_FD_NONBLOCK)
3536 f_flags |= O_NONBLOCK;
3537
3538 stream_fd = anon_inode_getfd("[i915_perf]", &fops, stream, f_flags);
3539 if (stream_fd < 0) {
3540 ret = stream_fd;
3541 goto err_flags;
3542 }
3543
3544 if (!(param->flags & I915_PERF_FLAG_DISABLED))
3545 i915_perf_enable_locked(stream);
3546
3547 /* Take a reference on the driver that will be kept with stream_fd
3548 * until its release.
3549 */
3550 drm_dev_get(&perf->i915->drm);
3551
3552 return stream_fd;
3553
3554 err_flags:
3555 if (stream->ops->destroy)
3556 stream->ops->destroy(stream);
3557 err_alloc:
3558 kfree(stream);
3559 err_ctx:
3560 if (specific_ctx)
3561 i915_gem_context_put(specific_ctx);
3562 err:
3563 return ret;
3564 }
3565
oa_exponent_to_ns(struct i915_perf * perf,int exponent)3566 static u64 oa_exponent_to_ns(struct i915_perf *perf, int exponent)
3567 {
3568 return intel_gt_clock_interval_to_ns(to_gt(perf->i915),
3569 2ULL << exponent);
3570 }
3571
3572 static __always_inline bool
oa_format_valid(struct i915_perf * perf,enum drm_i915_oa_format format)3573 oa_format_valid(struct i915_perf *perf, enum drm_i915_oa_format format)
3574 {
3575 return test_bit(format, perf->format_mask);
3576 }
3577
3578 static __always_inline void
oa_format_add(struct i915_perf * perf,enum drm_i915_oa_format format)3579 oa_format_add(struct i915_perf *perf, enum drm_i915_oa_format format)
3580 {
3581 __set_bit(format, perf->format_mask);
3582 }
3583
3584 /**
3585 * read_properties_unlocked - validate + copy userspace stream open properties
3586 * @perf: i915 perf instance
3587 * @uprops: The array of u64 key value pairs given by userspace
3588 * @n_props: The number of key value pairs expected in @uprops
3589 * @props: The stream configuration built up while validating properties
3590 *
3591 * Note this function only validates properties in isolation it doesn't
3592 * validate that the combination of properties makes sense or that all
3593 * properties necessary for a particular kind of stream have been set.
3594 *
3595 * Note that there currently aren't any ordering requirements for properties so
3596 * we shouldn't validate or assume anything about ordering here. This doesn't
3597 * rule out defining new properties with ordering requirements in the future.
3598 */
read_properties_unlocked(struct i915_perf * perf,u64 __user * uprops,u32 n_props,struct perf_open_properties * props)3599 static int read_properties_unlocked(struct i915_perf *perf,
3600 u64 __user *uprops,
3601 u32 n_props,
3602 struct perf_open_properties *props)
3603 {
3604 u64 __user *uprop = uprops;
3605 u32 i;
3606 int ret;
3607
3608 memset(props, 0, sizeof(struct perf_open_properties));
3609 props->poll_oa_period = DEFAULT_POLL_PERIOD_NS;
3610
3611 if (!n_props) {
3612 drm_dbg(&perf->i915->drm,
3613 "No i915 perf properties given\n");
3614 return -EINVAL;
3615 }
3616
3617 /* At the moment we only support using i915-perf on the RCS. */
3618 props->engine = intel_engine_lookup_user(perf->i915,
3619 I915_ENGINE_CLASS_RENDER,
3620 0);
3621 if (!props->engine) {
3622 drm_dbg(&perf->i915->drm,
3623 "No RENDER-capable engines\n");
3624 return -EINVAL;
3625 }
3626
3627 /* Considering that ID = 0 is reserved and assuming that we don't
3628 * (currently) expect any configurations to ever specify duplicate
3629 * values for a particular property ID then the last _PROP_MAX value is
3630 * one greater than the maximum number of properties we expect to get
3631 * from userspace.
3632 */
3633 if (n_props >= DRM_I915_PERF_PROP_MAX) {
3634 drm_dbg(&perf->i915->drm,
3635 "More i915 perf properties specified than exist\n");
3636 return -EINVAL;
3637 }
3638
3639 for (i = 0; i < n_props; i++) {
3640 u64 oa_period, oa_freq_hz;
3641 u64 id, value;
3642
3643 ret = get_user(id, uprop);
3644 if (ret)
3645 return ret;
3646
3647 ret = get_user(value, uprop + 1);
3648 if (ret)
3649 return ret;
3650
3651 if (id == 0 || id >= DRM_I915_PERF_PROP_MAX) {
3652 drm_dbg(&perf->i915->drm,
3653 "Unknown i915 perf property ID\n");
3654 return -EINVAL;
3655 }
3656
3657 switch ((enum drm_i915_perf_property_id)id) {
3658 case DRM_I915_PERF_PROP_CTX_HANDLE:
3659 props->single_context = 1;
3660 props->ctx_handle = value;
3661 break;
3662 case DRM_I915_PERF_PROP_SAMPLE_OA:
3663 if (value)
3664 props->sample_flags |= SAMPLE_OA_REPORT;
3665 break;
3666 case DRM_I915_PERF_PROP_OA_METRICS_SET:
3667 if (value == 0) {
3668 drm_dbg(&perf->i915->drm,
3669 "Unknown OA metric set ID\n");
3670 return -EINVAL;
3671 }
3672 props->metrics_set = value;
3673 break;
3674 case DRM_I915_PERF_PROP_OA_FORMAT:
3675 if (value == 0 || value >= I915_OA_FORMAT_MAX) {
3676 drm_dbg(&perf->i915->drm,
3677 "Out-of-range OA report format %llu\n",
3678 value);
3679 return -EINVAL;
3680 }
3681 if (!oa_format_valid(perf, value)) {
3682 drm_dbg(&perf->i915->drm,
3683 "Unsupported OA report format %llu\n",
3684 value);
3685 return -EINVAL;
3686 }
3687 props->oa_format = value;
3688 break;
3689 case DRM_I915_PERF_PROP_OA_EXPONENT:
3690 if (value > OA_EXPONENT_MAX) {
3691 drm_dbg(&perf->i915->drm,
3692 "OA timer exponent too high (> %u)\n",
3693 OA_EXPONENT_MAX);
3694 return -EINVAL;
3695 }
3696
3697 /* Theoretically we can program the OA unit to sample
3698 * e.g. every 160ns for HSW, 167ns for BDW/SKL or 104ns
3699 * for BXT. We don't allow such high sampling
3700 * frequencies by default unless root.
3701 */
3702
3703 BUILD_BUG_ON(sizeof(oa_period) != 8);
3704 oa_period = oa_exponent_to_ns(perf, value);
3705
3706 /* This check is primarily to ensure that oa_period <=
3707 * UINT32_MAX (before passing to do_div which only
3708 * accepts a u32 denominator), but we can also skip
3709 * checking anything < 1Hz which implicitly can't be
3710 * limited via an integer oa_max_sample_rate.
3711 */
3712 if (oa_period <= NSEC_PER_SEC) {
3713 u64 tmp = NSEC_PER_SEC;
3714 do_div(tmp, oa_period);
3715 oa_freq_hz = tmp;
3716 } else
3717 oa_freq_hz = 0;
3718
3719 if (oa_freq_hz > i915_oa_max_sample_rate && !perfmon_capable()) {
3720 drm_dbg(&perf->i915->drm,
3721 "OA exponent would exceed the max sampling frequency (sysctl dev.i915.oa_max_sample_rate) %uHz without CAP_PERFMON or CAP_SYS_ADMIN privileges\n",
3722 i915_oa_max_sample_rate);
3723 return -EACCES;
3724 }
3725
3726 props->oa_periodic = true;
3727 props->oa_period_exponent = value;
3728 break;
3729 case DRM_I915_PERF_PROP_HOLD_PREEMPTION:
3730 props->hold_preemption = !!value;
3731 break;
3732 case DRM_I915_PERF_PROP_GLOBAL_SSEU: {
3733 struct drm_i915_gem_context_param_sseu user_sseu;
3734
3735 if (GRAPHICS_VER_FULL(perf->i915) >= IP_VER(12, 50)) {
3736 drm_dbg(&perf->i915->drm,
3737 "SSEU config not supported on gfx %x\n",
3738 GRAPHICS_VER_FULL(perf->i915));
3739 return -ENODEV;
3740 }
3741
3742 if (copy_from_user(&user_sseu,
3743 u64_to_user_ptr(value),
3744 sizeof(user_sseu))) {
3745 drm_dbg(&perf->i915->drm,
3746 "Unable to copy global sseu parameter\n");
3747 return -EFAULT;
3748 }
3749
3750 ret = get_sseu_config(&props->sseu, props->engine, &user_sseu);
3751 if (ret) {
3752 drm_dbg(&perf->i915->drm,
3753 "Invalid SSEU configuration\n");
3754 return ret;
3755 }
3756 props->has_sseu = true;
3757 break;
3758 }
3759 case DRM_I915_PERF_PROP_POLL_OA_PERIOD:
3760 if (value < 100000 /* 100us */) {
3761 drm_dbg(&perf->i915->drm,
3762 "OA availability timer too small (%lluns < 100us)\n",
3763 value);
3764 return -EINVAL;
3765 }
3766 props->poll_oa_period = value;
3767 break;
3768 case DRM_I915_PERF_PROP_MAX:
3769 MISSING_CASE(id);
3770 return -EINVAL;
3771 }
3772
3773 uprop += 2;
3774 }
3775
3776 return 0;
3777 }
3778
3779 /**
3780 * i915_perf_open_ioctl - DRM ioctl() for userspace to open a stream FD
3781 * @dev: drm device
3782 * @data: ioctl data copied from userspace (unvalidated)
3783 * @file: drm file
3784 *
3785 * Validates the stream open parameters given by userspace including flags
3786 * and an array of u64 key, value pair properties.
3787 *
3788 * Very little is assumed up front about the nature of the stream being
3789 * opened (for instance we don't assume it's for periodic OA unit metrics). An
3790 * i915-perf stream is expected to be a suitable interface for other forms of
3791 * buffered data written by the GPU besides periodic OA metrics.
3792 *
3793 * Note we copy the properties from userspace outside of the i915 perf
3794 * mutex to avoid an awkward lockdep with mmap_lock.
3795 *
3796 * Most of the implementation details are handled by
3797 * i915_perf_open_ioctl_locked() after taking the &perf->lock
3798 * mutex for serializing with any non-file-operation driver hooks.
3799 *
3800 * Return: A newly opened i915 Perf stream file descriptor or negative
3801 * error code on failure.
3802 */
i915_perf_open_ioctl(struct drm_device * dev,void * data,struct drm_file * file)3803 int i915_perf_open_ioctl(struct drm_device *dev, void *data,
3804 struct drm_file *file)
3805 {
3806 struct i915_perf *perf = &to_i915(dev)->perf;
3807 struct drm_i915_perf_open_param *param = data;
3808 struct perf_open_properties props;
3809 u32 known_open_flags;
3810 int ret;
3811
3812 if (!perf->i915) {
3813 drm_dbg(&perf->i915->drm,
3814 "i915 perf interface not available for this system\n");
3815 return -ENOTSUPP;
3816 }
3817
3818 known_open_flags = I915_PERF_FLAG_FD_CLOEXEC |
3819 I915_PERF_FLAG_FD_NONBLOCK |
3820 I915_PERF_FLAG_DISABLED;
3821 if (param->flags & ~known_open_flags) {
3822 drm_dbg(&perf->i915->drm,
3823 "Unknown drm_i915_perf_open_param flag\n");
3824 return -EINVAL;
3825 }
3826
3827 ret = read_properties_unlocked(perf,
3828 u64_to_user_ptr(param->properties_ptr),
3829 param->num_properties,
3830 &props);
3831 if (ret)
3832 return ret;
3833
3834 mutex_lock(&perf->lock);
3835 ret = i915_perf_open_ioctl_locked(perf, param, &props, file);
3836 mutex_unlock(&perf->lock);
3837
3838 return ret;
3839 }
3840
3841 /**
3842 * i915_perf_register - exposes i915-perf to userspace
3843 * @i915: i915 device instance
3844 *
3845 * In particular OA metric sets are advertised under a sysfs metrics/
3846 * directory allowing userspace to enumerate valid IDs that can be
3847 * used to open an i915-perf stream.
3848 */
i915_perf_register(struct drm_i915_private * i915)3849 void i915_perf_register(struct drm_i915_private *i915)
3850 {
3851 struct i915_perf *perf = &i915->perf;
3852
3853 if (!perf->i915)
3854 return;
3855
3856 /* To be sure we're synchronized with an attempted
3857 * i915_perf_open_ioctl(); considering that we register after
3858 * being exposed to userspace.
3859 */
3860 mutex_lock(&perf->lock);
3861
3862 perf->metrics_kobj =
3863 kobject_create_and_add("metrics",
3864 &i915->drm.primary->kdev->kobj);
3865
3866 mutex_unlock(&perf->lock);
3867 }
3868
3869 /**
3870 * i915_perf_unregister - hide i915-perf from userspace
3871 * @i915: i915 device instance
3872 *
3873 * i915-perf state cleanup is split up into an 'unregister' and
3874 * 'deinit' phase where the interface is first hidden from
3875 * userspace by i915_perf_unregister() before cleaning up
3876 * remaining state in i915_perf_fini().
3877 */
i915_perf_unregister(struct drm_i915_private * i915)3878 void i915_perf_unregister(struct drm_i915_private *i915)
3879 {
3880 struct i915_perf *perf = &i915->perf;
3881
3882 if (!perf->metrics_kobj)
3883 return;
3884
3885 kobject_put(perf->metrics_kobj);
3886 perf->metrics_kobj = NULL;
3887 }
3888
gen8_is_valid_flex_addr(struct i915_perf * perf,u32 addr)3889 static bool gen8_is_valid_flex_addr(struct i915_perf *perf, u32 addr)
3890 {
3891 static const i915_reg_t flex_eu_regs[] = {
3892 EU_PERF_CNTL0,
3893 EU_PERF_CNTL1,
3894 EU_PERF_CNTL2,
3895 EU_PERF_CNTL3,
3896 EU_PERF_CNTL4,
3897 EU_PERF_CNTL5,
3898 EU_PERF_CNTL6,
3899 };
3900 int i;
3901
3902 for (i = 0; i < ARRAY_SIZE(flex_eu_regs); i++) {
3903 if (i915_mmio_reg_offset(flex_eu_regs[i]) == addr)
3904 return true;
3905 }
3906 return false;
3907 }
3908
reg_in_range_table(u32 addr,const struct i915_range * table)3909 static bool reg_in_range_table(u32 addr, const struct i915_range *table)
3910 {
3911 while (table->start || table->end) {
3912 if (addr >= table->start && addr <= table->end)
3913 return true;
3914
3915 table++;
3916 }
3917
3918 return false;
3919 }
3920
3921 #define REG_EQUAL(addr, mmio) \
3922 ((addr) == i915_mmio_reg_offset(mmio))
3923
3924 static const struct i915_range gen7_oa_b_counters[] = {
3925 { .start = 0x2710, .end = 0x272c }, /* OASTARTTRIG[1-8] */
3926 { .start = 0x2740, .end = 0x275c }, /* OAREPORTTRIG[1-8] */
3927 { .start = 0x2770, .end = 0x27ac }, /* OACEC[0-7][0-1] */
3928 {}
3929 };
3930
3931 static const struct i915_range gen12_oa_b_counters[] = {
3932 { .start = 0x2b2c, .end = 0x2b2c }, /* GEN12_OAG_OA_PESS */
3933 { .start = 0xd900, .end = 0xd91c }, /* GEN12_OAG_OASTARTTRIG[1-8] */
3934 { .start = 0xd920, .end = 0xd93c }, /* GEN12_OAG_OAREPORTTRIG1[1-8] */
3935 { .start = 0xd940, .end = 0xd97c }, /* GEN12_OAG_CEC[0-7][0-1] */
3936 { .start = 0xdc00, .end = 0xdc3c }, /* GEN12_OAG_SCEC[0-7][0-1] */
3937 { .start = 0xdc40, .end = 0xdc40 }, /* GEN12_OAG_SPCTR_CNF */
3938 { .start = 0xdc44, .end = 0xdc44 }, /* GEN12_OAA_DBG_REG */
3939 {}
3940 };
3941
3942 static const struct i915_range gen7_oa_mux_regs[] = {
3943 { .start = 0x91b8, .end = 0x91cc }, /* OA_PERFCNT[1-2], OA_PERFMATRIX */
3944 { .start = 0x9800, .end = 0x9888 }, /* MICRO_BP0_0 - NOA_WRITE */
3945 { .start = 0xe180, .end = 0xe180 }, /* HALF_SLICE_CHICKEN2 */
3946 {}
3947 };
3948
3949 static const struct i915_range hsw_oa_mux_regs[] = {
3950 { .start = 0x09e80, .end = 0x09ea4 }, /* HSW_MBVID2_NOA[0-9] */
3951 { .start = 0x09ec0, .end = 0x09ec0 }, /* HSW_MBVID2_MISR0 */
3952 { .start = 0x25100, .end = 0x2ff90 },
3953 {}
3954 };
3955
3956 static const struct i915_range chv_oa_mux_regs[] = {
3957 { .start = 0x182300, .end = 0x1823a4 },
3958 {}
3959 };
3960
3961 static const struct i915_range gen8_oa_mux_regs[] = {
3962 { .start = 0x0d00, .end = 0x0d2c }, /* RPM_CONFIG[0-1], NOA_CONFIG[0-8] */
3963 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */
3964 {}
3965 };
3966
3967 static const struct i915_range gen11_oa_mux_regs[] = {
3968 { .start = 0x91c8, .end = 0x91dc }, /* OA_PERFCNT[3-4] */
3969 {}
3970 };
3971
3972 static const struct i915_range gen12_oa_mux_regs[] = {
3973 { .start = 0x0d00, .end = 0x0d04 }, /* RPM_CONFIG[0-1] */
3974 { .start = 0x0d0c, .end = 0x0d2c }, /* NOA_CONFIG[0-8] */
3975 { .start = 0x9840, .end = 0x9840 }, /* GDT_CHICKEN_BITS */
3976 { .start = 0x9884, .end = 0x9888 }, /* NOA_WRITE */
3977 { .start = 0x20cc, .end = 0x20cc }, /* WAIT_FOR_RC6_EXIT */
3978 {}
3979 };
3980
gen7_is_valid_b_counter_addr(struct i915_perf * perf,u32 addr)3981 static bool gen7_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
3982 {
3983 return reg_in_range_table(addr, gen7_oa_b_counters);
3984 }
3985
gen8_is_valid_mux_addr(struct i915_perf * perf,u32 addr)3986 static bool gen8_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3987 {
3988 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
3989 reg_in_range_table(addr, gen8_oa_mux_regs);
3990 }
3991
gen11_is_valid_mux_addr(struct i915_perf * perf,u32 addr)3992 static bool gen11_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
3993 {
3994 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
3995 reg_in_range_table(addr, gen8_oa_mux_regs) ||
3996 reg_in_range_table(addr, gen11_oa_mux_regs);
3997 }
3998
hsw_is_valid_mux_addr(struct i915_perf * perf,u32 addr)3999 static bool hsw_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4000 {
4001 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4002 reg_in_range_table(addr, hsw_oa_mux_regs);
4003 }
4004
chv_is_valid_mux_addr(struct i915_perf * perf,u32 addr)4005 static bool chv_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4006 {
4007 return reg_in_range_table(addr, gen7_oa_mux_regs) ||
4008 reg_in_range_table(addr, chv_oa_mux_regs);
4009 }
4010
gen12_is_valid_b_counter_addr(struct i915_perf * perf,u32 addr)4011 static bool gen12_is_valid_b_counter_addr(struct i915_perf *perf, u32 addr)
4012 {
4013 return reg_in_range_table(addr, gen12_oa_b_counters);
4014 }
4015
gen12_is_valid_mux_addr(struct i915_perf * perf,u32 addr)4016 static bool gen12_is_valid_mux_addr(struct i915_perf *perf, u32 addr)
4017 {
4018 return reg_in_range_table(addr, gen12_oa_mux_regs);
4019 }
4020
mask_reg_value(u32 reg,u32 val)4021 static u32 mask_reg_value(u32 reg, u32 val)
4022 {
4023 /* HALF_SLICE_CHICKEN2 is programmed with a the
4024 * WaDisableSTUnitPowerOptimization workaround. Make sure the value
4025 * programmed by userspace doesn't change this.
4026 */
4027 if (REG_EQUAL(reg, HALF_SLICE_CHICKEN2))
4028 val = val & ~_MASKED_BIT_ENABLE(GEN8_ST_PO_DISABLE);
4029
4030 /* WAIT_FOR_RC6_EXIT has only one bit fullfilling the function
4031 * indicated by its name and a bunch of selection fields used by OA
4032 * configs.
4033 */
4034 if (REG_EQUAL(reg, WAIT_FOR_RC6_EXIT))
4035 val = val & ~_MASKED_BIT_ENABLE(HSW_WAIT_FOR_RC6_EXIT_ENABLE);
4036
4037 return val;
4038 }
4039
alloc_oa_regs(struct i915_perf * perf,bool (* is_valid)(struct i915_perf * perf,u32 addr),u32 __user * regs,u32 n_regs)4040 static struct i915_oa_reg *alloc_oa_regs(struct i915_perf *perf,
4041 bool (*is_valid)(struct i915_perf *perf, u32 addr),
4042 u32 __user *regs,
4043 u32 n_regs)
4044 {
4045 struct i915_oa_reg *oa_regs;
4046 int err;
4047 u32 i;
4048
4049 if (!n_regs)
4050 return NULL;
4051
4052 /* No is_valid function means we're not allowing any register to be programmed. */
4053 GEM_BUG_ON(!is_valid);
4054 if (!is_valid)
4055 return ERR_PTR(-EINVAL);
4056
4057 oa_regs = kmalloc_array(n_regs, sizeof(*oa_regs), GFP_KERNEL);
4058 if (!oa_regs)
4059 return ERR_PTR(-ENOMEM);
4060
4061 for (i = 0; i < n_regs; i++) {
4062 u32 addr, value;
4063
4064 err = get_user(addr, regs);
4065 if (err)
4066 goto addr_err;
4067
4068 if (!is_valid(perf, addr)) {
4069 drm_dbg(&perf->i915->drm,
4070 "Invalid oa_reg address: %X\n", addr);
4071 err = -EINVAL;
4072 goto addr_err;
4073 }
4074
4075 err = get_user(value, regs + 1);
4076 if (err)
4077 goto addr_err;
4078
4079 oa_regs[i].addr = _MMIO(addr);
4080 oa_regs[i].value = mask_reg_value(addr, value);
4081
4082 regs += 2;
4083 }
4084
4085 return oa_regs;
4086
4087 addr_err:
4088 kfree(oa_regs);
4089 return ERR_PTR(err);
4090 }
4091
show_dynamic_id(struct kobject * kobj,struct kobj_attribute * attr,char * buf)4092 static ssize_t show_dynamic_id(struct kobject *kobj,
4093 struct kobj_attribute *attr,
4094 char *buf)
4095 {
4096 struct i915_oa_config *oa_config =
4097 container_of(attr, typeof(*oa_config), sysfs_metric_id);
4098
4099 return sprintf(buf, "%d\n", oa_config->id);
4100 }
4101
create_dynamic_oa_sysfs_entry(struct i915_perf * perf,struct i915_oa_config * oa_config)4102 static int create_dynamic_oa_sysfs_entry(struct i915_perf *perf,
4103 struct i915_oa_config *oa_config)
4104 {
4105 sysfs_attr_init(&oa_config->sysfs_metric_id.attr);
4106 oa_config->sysfs_metric_id.attr.name = "id";
4107 oa_config->sysfs_metric_id.attr.mode = S_IRUGO;
4108 oa_config->sysfs_metric_id.show = show_dynamic_id;
4109 oa_config->sysfs_metric_id.store = NULL;
4110
4111 oa_config->attrs[0] = &oa_config->sysfs_metric_id.attr;
4112 oa_config->attrs[1] = NULL;
4113
4114 oa_config->sysfs_metric.name = oa_config->uuid;
4115 oa_config->sysfs_metric.attrs = oa_config->attrs;
4116
4117 return sysfs_create_group(perf->metrics_kobj,
4118 &oa_config->sysfs_metric);
4119 }
4120
4121 /**
4122 * i915_perf_add_config_ioctl - DRM ioctl() for userspace to add a new OA config
4123 * @dev: drm device
4124 * @data: ioctl data (pointer to struct drm_i915_perf_oa_config) copied from
4125 * userspace (unvalidated)
4126 * @file: drm file
4127 *
4128 * Validates the submitted OA register to be saved into a new OA config that
4129 * can then be used for programming the OA unit and its NOA network.
4130 *
4131 * Returns: A new allocated config number to be used with the perf open ioctl
4132 * or a negative error code on failure.
4133 */
i915_perf_add_config_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4134 int i915_perf_add_config_ioctl(struct drm_device *dev, void *data,
4135 struct drm_file *file)
4136 {
4137 struct i915_perf *perf = &to_i915(dev)->perf;
4138 struct drm_i915_perf_oa_config *args = data;
4139 struct i915_oa_config *oa_config, *tmp;
4140 struct i915_oa_reg *regs;
4141 int err, id;
4142
4143 if (!perf->i915) {
4144 drm_dbg(&perf->i915->drm,
4145 "i915 perf interface not available for this system\n");
4146 return -ENOTSUPP;
4147 }
4148
4149 if (!perf->metrics_kobj) {
4150 drm_dbg(&perf->i915->drm,
4151 "OA metrics weren't advertised via sysfs\n");
4152 return -EINVAL;
4153 }
4154
4155 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4156 drm_dbg(&perf->i915->drm,
4157 "Insufficient privileges to add i915 OA config\n");
4158 return -EACCES;
4159 }
4160
4161 if ((!args->mux_regs_ptr || !args->n_mux_regs) &&
4162 (!args->boolean_regs_ptr || !args->n_boolean_regs) &&
4163 (!args->flex_regs_ptr || !args->n_flex_regs)) {
4164 drm_dbg(&perf->i915->drm,
4165 "No OA registers given\n");
4166 return -EINVAL;
4167 }
4168
4169 oa_config = kzalloc(sizeof(*oa_config), GFP_KERNEL);
4170 if (!oa_config) {
4171 drm_dbg(&perf->i915->drm,
4172 "Failed to allocate memory for the OA config\n");
4173 return -ENOMEM;
4174 }
4175
4176 oa_config->perf = perf;
4177 kref_init(&oa_config->ref);
4178
4179 if (!uuid_is_valid(args->uuid)) {
4180 drm_dbg(&perf->i915->drm,
4181 "Invalid uuid format for OA config\n");
4182 err = -EINVAL;
4183 goto reg_err;
4184 }
4185
4186 /* Last character in oa_config->uuid will be 0 because oa_config is
4187 * kzalloc.
4188 */
4189 memcpy(oa_config->uuid, args->uuid, sizeof(args->uuid));
4190
4191 oa_config->mux_regs_len = args->n_mux_regs;
4192 regs = alloc_oa_regs(perf,
4193 perf->ops.is_valid_mux_reg,
4194 u64_to_user_ptr(args->mux_regs_ptr),
4195 args->n_mux_regs);
4196
4197 if (IS_ERR(regs)) {
4198 drm_dbg(&perf->i915->drm,
4199 "Failed to create OA config for mux_regs\n");
4200 err = PTR_ERR(regs);
4201 goto reg_err;
4202 }
4203 oa_config->mux_regs = regs;
4204
4205 oa_config->b_counter_regs_len = args->n_boolean_regs;
4206 regs = alloc_oa_regs(perf,
4207 perf->ops.is_valid_b_counter_reg,
4208 u64_to_user_ptr(args->boolean_regs_ptr),
4209 args->n_boolean_regs);
4210
4211 if (IS_ERR(regs)) {
4212 drm_dbg(&perf->i915->drm,
4213 "Failed to create OA config for b_counter_regs\n");
4214 err = PTR_ERR(regs);
4215 goto reg_err;
4216 }
4217 oa_config->b_counter_regs = regs;
4218
4219 if (GRAPHICS_VER(perf->i915) < 8) {
4220 if (args->n_flex_regs != 0) {
4221 err = -EINVAL;
4222 goto reg_err;
4223 }
4224 } else {
4225 oa_config->flex_regs_len = args->n_flex_regs;
4226 regs = alloc_oa_regs(perf,
4227 perf->ops.is_valid_flex_reg,
4228 u64_to_user_ptr(args->flex_regs_ptr),
4229 args->n_flex_regs);
4230
4231 if (IS_ERR(regs)) {
4232 drm_dbg(&perf->i915->drm,
4233 "Failed to create OA config for flex_regs\n");
4234 err = PTR_ERR(regs);
4235 goto reg_err;
4236 }
4237 oa_config->flex_regs = regs;
4238 }
4239
4240 err = mutex_lock_interruptible(&perf->metrics_lock);
4241 if (err)
4242 goto reg_err;
4243
4244 /* We shouldn't have too many configs, so this iteration shouldn't be
4245 * too costly.
4246 */
4247 idr_for_each_entry(&perf->metrics_idr, tmp, id) {
4248 if (!strcmp(tmp->uuid, oa_config->uuid)) {
4249 drm_dbg(&perf->i915->drm,
4250 "OA config already exists with this uuid\n");
4251 err = -EADDRINUSE;
4252 goto sysfs_err;
4253 }
4254 }
4255
4256 err = create_dynamic_oa_sysfs_entry(perf, oa_config);
4257 if (err) {
4258 drm_dbg(&perf->i915->drm,
4259 "Failed to create sysfs entry for OA config\n");
4260 goto sysfs_err;
4261 }
4262
4263 /* Config id 0 is invalid, id 1 for kernel stored test config. */
4264 oa_config->id = idr_alloc(&perf->metrics_idr,
4265 oa_config, 2,
4266 0, GFP_KERNEL);
4267 if (oa_config->id < 0) {
4268 drm_dbg(&perf->i915->drm,
4269 "Failed to create sysfs entry for OA config\n");
4270 err = oa_config->id;
4271 goto sysfs_err;
4272 }
4273
4274 mutex_unlock(&perf->metrics_lock);
4275
4276 drm_dbg(&perf->i915->drm,
4277 "Added config %s id=%i\n", oa_config->uuid, oa_config->id);
4278
4279 return oa_config->id;
4280
4281 sysfs_err:
4282 mutex_unlock(&perf->metrics_lock);
4283 reg_err:
4284 i915_oa_config_put(oa_config);
4285 drm_dbg(&perf->i915->drm,
4286 "Failed to add new OA config\n");
4287 return err;
4288 }
4289
4290 /**
4291 * i915_perf_remove_config_ioctl - DRM ioctl() for userspace to remove an OA config
4292 * @dev: drm device
4293 * @data: ioctl data (pointer to u64 integer) copied from userspace
4294 * @file: drm file
4295 *
4296 * Configs can be removed while being used, the will stop appearing in sysfs
4297 * and their content will be freed when the stream using the config is closed.
4298 *
4299 * Returns: 0 on success or a negative error code on failure.
4300 */
i915_perf_remove_config_ioctl(struct drm_device * dev,void * data,struct drm_file * file)4301 int i915_perf_remove_config_ioctl(struct drm_device *dev, void *data,
4302 struct drm_file *file)
4303 {
4304 struct i915_perf *perf = &to_i915(dev)->perf;
4305 u64 *arg = data;
4306 struct i915_oa_config *oa_config;
4307 int ret;
4308
4309 if (!perf->i915) {
4310 drm_dbg(&perf->i915->drm,
4311 "i915 perf interface not available for this system\n");
4312 return -ENOTSUPP;
4313 }
4314
4315 if (i915_perf_stream_paranoid && !perfmon_capable()) {
4316 drm_dbg(&perf->i915->drm,
4317 "Insufficient privileges to remove i915 OA config\n");
4318 return -EACCES;
4319 }
4320
4321 ret = mutex_lock_interruptible(&perf->metrics_lock);
4322 if (ret)
4323 return ret;
4324
4325 oa_config = idr_find(&perf->metrics_idr, *arg);
4326 if (!oa_config) {
4327 drm_dbg(&perf->i915->drm,
4328 "Failed to remove unknown OA config\n");
4329 ret = -ENOENT;
4330 goto err_unlock;
4331 }
4332
4333 GEM_BUG_ON(*arg != oa_config->id);
4334
4335 sysfs_remove_group(perf->metrics_kobj, &oa_config->sysfs_metric);
4336
4337 idr_remove(&perf->metrics_idr, *arg);
4338
4339 mutex_unlock(&perf->metrics_lock);
4340
4341 drm_dbg(&perf->i915->drm,
4342 "Removed config %s id=%i\n", oa_config->uuid, oa_config->id);
4343
4344 i915_oa_config_put(oa_config);
4345
4346 return 0;
4347
4348 err_unlock:
4349 mutex_unlock(&perf->metrics_lock);
4350 return ret;
4351 }
4352
4353 static struct ctl_table oa_table[] = {
4354 {
4355 .procname = "perf_stream_paranoid",
4356 .data = &i915_perf_stream_paranoid,
4357 .maxlen = sizeof(i915_perf_stream_paranoid),
4358 .mode = 0644,
4359 .proc_handler = proc_dointvec_minmax,
4360 .extra1 = SYSCTL_ZERO,
4361 .extra2 = SYSCTL_ONE,
4362 },
4363 {
4364 .procname = "oa_max_sample_rate",
4365 .data = &i915_oa_max_sample_rate,
4366 .maxlen = sizeof(i915_oa_max_sample_rate),
4367 .mode = 0644,
4368 .proc_handler = proc_dointvec_minmax,
4369 .extra1 = SYSCTL_ZERO,
4370 .extra2 = &oa_sample_rate_hard_limit,
4371 },
4372 {}
4373 };
4374
oa_init_supported_formats(struct i915_perf * perf)4375 static void oa_init_supported_formats(struct i915_perf *perf)
4376 {
4377 struct drm_i915_private *i915 = perf->i915;
4378 enum intel_platform platform = INTEL_INFO(i915)->platform;
4379
4380 switch (platform) {
4381 case INTEL_HASWELL:
4382 oa_format_add(perf, I915_OA_FORMAT_A13);
4383 oa_format_add(perf, I915_OA_FORMAT_A13);
4384 oa_format_add(perf, I915_OA_FORMAT_A29);
4385 oa_format_add(perf, I915_OA_FORMAT_A13_B8_C8);
4386 oa_format_add(perf, I915_OA_FORMAT_B4_C8);
4387 oa_format_add(perf, I915_OA_FORMAT_A45_B8_C8);
4388 oa_format_add(perf, I915_OA_FORMAT_B4_C8_A16);
4389 oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4390 break;
4391
4392 case INTEL_BROADWELL:
4393 case INTEL_CHERRYVIEW:
4394 case INTEL_SKYLAKE:
4395 case INTEL_BROXTON:
4396 case INTEL_KABYLAKE:
4397 case INTEL_GEMINILAKE:
4398 case INTEL_COFFEELAKE:
4399 case INTEL_COMETLAKE:
4400 case INTEL_ICELAKE:
4401 case INTEL_ELKHARTLAKE:
4402 case INTEL_JASPERLAKE:
4403 case INTEL_TIGERLAKE:
4404 case INTEL_ROCKETLAKE:
4405 case INTEL_DG1:
4406 case INTEL_ALDERLAKE_S:
4407 case INTEL_ALDERLAKE_P:
4408 oa_format_add(perf, I915_OA_FORMAT_A12);
4409 oa_format_add(perf, I915_OA_FORMAT_A12_B8_C8);
4410 oa_format_add(perf, I915_OA_FORMAT_A32u40_A4u32_B8_C8);
4411 oa_format_add(perf, I915_OA_FORMAT_C4_B8);
4412 break;
4413
4414 default:
4415 MISSING_CASE(platform);
4416 }
4417 }
4418
4419 /**
4420 * i915_perf_init - initialize i915-perf state on module bind
4421 * @i915: i915 device instance
4422 *
4423 * Initializes i915-perf state without exposing anything to userspace.
4424 *
4425 * Note: i915-perf initialization is split into an 'init' and 'register'
4426 * phase with the i915_perf_register() exposing state to userspace.
4427 */
i915_perf_init(struct drm_i915_private * i915)4428 void i915_perf_init(struct drm_i915_private *i915)
4429 {
4430 struct i915_perf *perf = &i915->perf;
4431
4432 /* XXX const struct i915_perf_ops! */
4433
4434 /* i915_perf is not enabled for DG2 yet */
4435 if (IS_DG2(i915))
4436 return;
4437
4438 perf->oa_formats = oa_formats;
4439 if (IS_HASWELL(i915)) {
4440 perf->ops.is_valid_b_counter_reg = gen7_is_valid_b_counter_addr;
4441 perf->ops.is_valid_mux_reg = hsw_is_valid_mux_addr;
4442 perf->ops.is_valid_flex_reg = NULL;
4443 perf->ops.enable_metric_set = hsw_enable_metric_set;
4444 perf->ops.disable_metric_set = hsw_disable_metric_set;
4445 perf->ops.oa_enable = gen7_oa_enable;
4446 perf->ops.oa_disable = gen7_oa_disable;
4447 perf->ops.read = gen7_oa_read;
4448 perf->ops.oa_hw_tail_read = gen7_oa_hw_tail_read;
4449 } else if (HAS_LOGICAL_RING_CONTEXTS(i915)) {
4450 /* Note: that although we could theoretically also support the
4451 * legacy ringbuffer mode on BDW (and earlier iterations of
4452 * this driver, before upstreaming did this) it didn't seem
4453 * worth the complexity to maintain now that BDW+ enable
4454 * execlist mode by default.
4455 */
4456 perf->ops.read = gen8_oa_read;
4457
4458 if (IS_GRAPHICS_VER(i915, 8, 9)) {
4459 perf->ops.is_valid_b_counter_reg =
4460 gen7_is_valid_b_counter_addr;
4461 perf->ops.is_valid_mux_reg =
4462 gen8_is_valid_mux_addr;
4463 perf->ops.is_valid_flex_reg =
4464 gen8_is_valid_flex_addr;
4465
4466 if (IS_CHERRYVIEW(i915)) {
4467 perf->ops.is_valid_mux_reg =
4468 chv_is_valid_mux_addr;
4469 }
4470
4471 perf->ops.oa_enable = gen8_oa_enable;
4472 perf->ops.oa_disable = gen8_oa_disable;
4473 perf->ops.enable_metric_set = gen8_enable_metric_set;
4474 perf->ops.disable_metric_set = gen8_disable_metric_set;
4475 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4476
4477 if (GRAPHICS_VER(i915) == 8) {
4478 perf->ctx_oactxctrl_offset = 0x120;
4479 perf->ctx_flexeu0_offset = 0x2ce;
4480
4481 perf->gen8_valid_ctx_bit = BIT(25);
4482 } else {
4483 perf->ctx_oactxctrl_offset = 0x128;
4484 perf->ctx_flexeu0_offset = 0x3de;
4485
4486 perf->gen8_valid_ctx_bit = BIT(16);
4487 }
4488 } else if (GRAPHICS_VER(i915) == 11) {
4489 perf->ops.is_valid_b_counter_reg =
4490 gen7_is_valid_b_counter_addr;
4491 perf->ops.is_valid_mux_reg =
4492 gen11_is_valid_mux_addr;
4493 perf->ops.is_valid_flex_reg =
4494 gen8_is_valid_flex_addr;
4495
4496 perf->ops.oa_enable = gen8_oa_enable;
4497 perf->ops.oa_disable = gen8_oa_disable;
4498 perf->ops.enable_metric_set = gen8_enable_metric_set;
4499 perf->ops.disable_metric_set = gen11_disable_metric_set;
4500 perf->ops.oa_hw_tail_read = gen8_oa_hw_tail_read;
4501
4502 perf->ctx_oactxctrl_offset = 0x124;
4503 perf->ctx_flexeu0_offset = 0x78e;
4504
4505 perf->gen8_valid_ctx_bit = BIT(16);
4506 } else if (GRAPHICS_VER(i915) == 12) {
4507 perf->ops.is_valid_b_counter_reg =
4508 gen12_is_valid_b_counter_addr;
4509 perf->ops.is_valid_mux_reg =
4510 gen12_is_valid_mux_addr;
4511 perf->ops.is_valid_flex_reg =
4512 gen8_is_valid_flex_addr;
4513
4514 perf->ops.oa_enable = gen12_oa_enable;
4515 perf->ops.oa_disable = gen12_oa_disable;
4516 perf->ops.enable_metric_set = gen12_enable_metric_set;
4517 perf->ops.disable_metric_set = gen12_disable_metric_set;
4518 perf->ops.oa_hw_tail_read = gen12_oa_hw_tail_read;
4519
4520 perf->ctx_flexeu0_offset = 0;
4521 perf->ctx_oactxctrl_offset = 0x144;
4522 }
4523 }
4524
4525 if (perf->ops.enable_metric_set) {
4526 mutex_init(&perf->lock);
4527
4528 /* Choose a representative limit */
4529 oa_sample_rate_hard_limit = to_gt(i915)->clock_frequency / 2;
4530
4531 mutex_init(&perf->metrics_lock);
4532 idr_init_base(&perf->metrics_idr, 1);
4533
4534 /* We set up some ratelimit state to potentially throttle any
4535 * _NOTES about spurious, invalid OA reports which we don't
4536 * forward to userspace.
4537 *
4538 * We print a _NOTE about any throttling when closing the
4539 * stream instead of waiting until driver _fini which no one
4540 * would ever see.
4541 *
4542 * Using the same limiting factors as printk_ratelimit()
4543 */
4544 ratelimit_state_init(&perf->spurious_report_rs, 5 * HZ, 10);
4545 /* Since we use a DRM_NOTE for spurious reports it would be
4546 * inconsistent to let __ratelimit() automatically print a
4547 * warning for throttling.
4548 */
4549 ratelimit_set_flags(&perf->spurious_report_rs,
4550 RATELIMIT_MSG_ON_RELEASE);
4551
4552 ratelimit_state_init(&perf->tail_pointer_race,
4553 5 * HZ, 10);
4554 ratelimit_set_flags(&perf->tail_pointer_race,
4555 RATELIMIT_MSG_ON_RELEASE);
4556
4557 atomic64_set(&perf->noa_programming_delay,
4558 500 * 1000 /* 500us */);
4559
4560 perf->i915 = i915;
4561
4562 oa_init_supported_formats(perf);
4563 }
4564 }
4565
destroy_config(int id,void * p,void * data)4566 static int destroy_config(int id, void *p, void *data)
4567 {
4568 i915_oa_config_put(p);
4569 return 0;
4570 }
4571
i915_perf_sysctl_register(void)4572 int i915_perf_sysctl_register(void)
4573 {
4574 sysctl_header = register_sysctl("dev/i915", oa_table);
4575 return 0;
4576 }
4577
i915_perf_sysctl_unregister(void)4578 void i915_perf_sysctl_unregister(void)
4579 {
4580 unregister_sysctl_table(sysctl_header);
4581 }
4582
4583 /**
4584 * i915_perf_fini - Counter part to i915_perf_init()
4585 * @i915: i915 device instance
4586 */
i915_perf_fini(struct drm_i915_private * i915)4587 void i915_perf_fini(struct drm_i915_private *i915)
4588 {
4589 struct i915_perf *perf = &i915->perf;
4590
4591 if (!perf->i915)
4592 return;
4593
4594 idr_for_each(&perf->metrics_idr, destroy_config, perf);
4595 idr_destroy(&perf->metrics_idr);
4596
4597 memset(&perf->ops, 0, sizeof(perf->ops));
4598 perf->i915 = NULL;
4599 }
4600
4601 /**
4602 * i915_perf_ioctl_version - Version of the i915-perf subsystem
4603 *
4604 * This version number is used by userspace to detect available features.
4605 */
i915_perf_ioctl_version(void)4606 int i915_perf_ioctl_version(void)
4607 {
4608 /*
4609 * 1: Initial version
4610 * I915_PERF_IOCTL_ENABLE
4611 * I915_PERF_IOCTL_DISABLE
4612 *
4613 * 2: Added runtime modification of OA config.
4614 * I915_PERF_IOCTL_CONFIG
4615 *
4616 * 3: Add DRM_I915_PERF_PROP_HOLD_PREEMPTION parameter to hold
4617 * preemption on a particular context so that performance data is
4618 * accessible from a delta of MI_RPC reports without looking at the
4619 * OA buffer.
4620 *
4621 * 4: Add DRM_I915_PERF_PROP_ALLOWED_SSEU to limit what contexts can
4622 * be run for the duration of the performance recording based on
4623 * their SSEU configuration.
4624 *
4625 * 5: Add DRM_I915_PERF_PROP_POLL_OA_PERIOD parameter that controls the
4626 * interval for the hrtimer used to check for OA data.
4627 */
4628 return 5;
4629 }
4630
4631 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4632 #include "selftests/i915_perf.c"
4633 #endif
4634