1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2008 STMicroelectronics
4 * Copyright (C) 2010 Alessandro Rubini
5 * Copyright (C) 2010 Linus Walleij for ST-Ericsson
6 */
7 #include <linux/init.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/io.h>
11 #include <linux/clockchips.h>
12 #include <linux/clocksource.h>
13 #include <linux/of_address.h>
14 #include <linux/of_irq.h>
15 #include <linux/of_platform.h>
16 #include <linux/clk.h>
17 #include <linux/jiffies.h>
18 #include <linux/delay.h>
19 #include <linux/err.h>
20 #include <linux/sched_clock.h>
21 #include <asm/mach/time.h>
22
23 /*
24 * The MTU device hosts four different counters, with 4 set of
25 * registers. These are register names.
26 */
27
28 #define MTU_IMSC 0x00 /* Interrupt mask set/clear */
29 #define MTU_RIS 0x04 /* Raw interrupt status */
30 #define MTU_MIS 0x08 /* Masked interrupt status */
31 #define MTU_ICR 0x0C /* Interrupt clear register */
32
33 /* per-timer registers take 0..3 as argument */
34 #define MTU_LR(x) (0x10 + 0x10 * (x) + 0x00) /* Load value */
35 #define MTU_VAL(x) (0x10 + 0x10 * (x) + 0x04) /* Current value */
36 #define MTU_CR(x) (0x10 + 0x10 * (x) + 0x08) /* Control reg */
37 #define MTU_BGLR(x) (0x10 + 0x10 * (x) + 0x0c) /* At next overflow */
38
39 /* bits for the control register */
40 #define MTU_CRn_ENA 0x80
41 #define MTU_CRn_PERIODIC 0x40 /* if 0 = free-running */
42 #define MTU_CRn_PRESCALE_MASK 0x0c
43 #define MTU_CRn_PRESCALE_1 0x00
44 #define MTU_CRn_PRESCALE_16 0x04
45 #define MTU_CRn_PRESCALE_256 0x08
46 #define MTU_CRn_32BITS 0x02
47 #define MTU_CRn_ONESHOT 0x01 /* if 0 = wraps reloading from BGLR*/
48
49 /* Other registers are usual amba/primecell registers, currently not used */
50 #define MTU_ITCR 0xff0
51 #define MTU_ITOP 0xff4
52
53 #define MTU_PERIPH_ID0 0xfe0
54 #define MTU_PERIPH_ID1 0xfe4
55 #define MTU_PERIPH_ID2 0xfe8
56 #define MTU_PERIPH_ID3 0xfeC
57
58 #define MTU_PCELL0 0xff0
59 #define MTU_PCELL1 0xff4
60 #define MTU_PCELL2 0xff8
61 #define MTU_PCELL3 0xffC
62
63 static void __iomem *mtu_base;
64 static bool clkevt_periodic;
65 static u32 clk_prescale;
66 static u32 nmdk_cycle; /* write-once */
67 static struct delay_timer mtu_delay_timer;
68
69 /*
70 * Override the global weak sched_clock symbol with this
71 * local implementation which uses the clocksource to get some
72 * better resolution when scheduling the kernel.
73 */
nomadik_read_sched_clock(void)74 static u64 notrace nomadik_read_sched_clock(void)
75 {
76 if (unlikely(!mtu_base))
77 return 0;
78
79 return -readl(mtu_base + MTU_VAL(0));
80 }
81
nmdk_timer_read_current_timer(void)82 static unsigned long nmdk_timer_read_current_timer(void)
83 {
84 return ~readl_relaxed(mtu_base + MTU_VAL(0));
85 }
86
87 /* Clockevent device: use one-shot mode */
nmdk_clkevt_next(unsigned long evt,struct clock_event_device * ev)88 static int nmdk_clkevt_next(unsigned long evt, struct clock_event_device *ev)
89 {
90 writel(1 << 1, mtu_base + MTU_IMSC);
91 writel(evt, mtu_base + MTU_LR(1));
92 /* Load highest value, enable device, enable interrupts */
93 writel(MTU_CRn_ONESHOT | clk_prescale |
94 MTU_CRn_32BITS | MTU_CRn_ENA,
95 mtu_base + MTU_CR(1));
96
97 return 0;
98 }
99
nmdk_clkevt_reset(void)100 static void nmdk_clkevt_reset(void)
101 {
102 if (clkevt_periodic) {
103 /* Timer: configure load and background-load, and fire it up */
104 writel(nmdk_cycle, mtu_base + MTU_LR(1));
105 writel(nmdk_cycle, mtu_base + MTU_BGLR(1));
106
107 writel(MTU_CRn_PERIODIC | clk_prescale |
108 MTU_CRn_32BITS | MTU_CRn_ENA,
109 mtu_base + MTU_CR(1));
110 writel(1 << 1, mtu_base + MTU_IMSC);
111 } else {
112 /* Generate an interrupt to start the clockevent again */
113 (void) nmdk_clkevt_next(nmdk_cycle, NULL);
114 }
115 }
116
nmdk_clkevt_shutdown(struct clock_event_device * evt)117 static int nmdk_clkevt_shutdown(struct clock_event_device *evt)
118 {
119 writel(0, mtu_base + MTU_IMSC);
120 /* disable timer */
121 writel(0, mtu_base + MTU_CR(1));
122 /* load some high default value */
123 writel(0xffffffff, mtu_base + MTU_LR(1));
124 return 0;
125 }
126
nmdk_clkevt_set_oneshot(struct clock_event_device * evt)127 static int nmdk_clkevt_set_oneshot(struct clock_event_device *evt)
128 {
129 clkevt_periodic = false;
130 return 0;
131 }
132
nmdk_clkevt_set_periodic(struct clock_event_device * evt)133 static int nmdk_clkevt_set_periodic(struct clock_event_device *evt)
134 {
135 clkevt_periodic = true;
136 nmdk_clkevt_reset();
137 return 0;
138 }
139
nmdk_clksrc_reset(void)140 static void nmdk_clksrc_reset(void)
141 {
142 /* Disable */
143 writel(0, mtu_base + MTU_CR(0));
144
145 /* ClockSource: configure load and background-load, and fire it up */
146 writel(nmdk_cycle, mtu_base + MTU_LR(0));
147 writel(nmdk_cycle, mtu_base + MTU_BGLR(0));
148
149 writel(clk_prescale | MTU_CRn_32BITS | MTU_CRn_ENA,
150 mtu_base + MTU_CR(0));
151 }
152
nmdk_clkevt_resume(struct clock_event_device * cedev)153 static void nmdk_clkevt_resume(struct clock_event_device *cedev)
154 {
155 nmdk_clkevt_reset();
156 nmdk_clksrc_reset();
157 }
158
159 static struct clock_event_device nmdk_clkevt = {
160 .name = "mtu_1",
161 .features = CLOCK_EVT_FEAT_ONESHOT |
162 CLOCK_EVT_FEAT_PERIODIC |
163 CLOCK_EVT_FEAT_DYNIRQ,
164 .rating = 200,
165 .set_state_shutdown = nmdk_clkevt_shutdown,
166 .set_state_periodic = nmdk_clkevt_set_periodic,
167 .set_state_oneshot = nmdk_clkevt_set_oneshot,
168 .set_next_event = nmdk_clkevt_next,
169 .resume = nmdk_clkevt_resume,
170 };
171
172 /*
173 * IRQ Handler for timer 1 of the MTU block.
174 */
nmdk_timer_interrupt(int irq,void * dev_id)175 static irqreturn_t nmdk_timer_interrupt(int irq, void *dev_id)
176 {
177 struct clock_event_device *evdev = dev_id;
178
179 writel(1 << 1, mtu_base + MTU_ICR); /* Interrupt clear reg */
180 evdev->event_handler(evdev);
181 return IRQ_HANDLED;
182 }
183
nmdk_timer_init(void __iomem * base,int irq,struct clk * pclk,struct clk * clk)184 static int __init nmdk_timer_init(void __iomem *base, int irq,
185 struct clk *pclk, struct clk *clk)
186 {
187 unsigned long rate;
188 int ret;
189 int min_ticks;
190
191 mtu_base = base;
192
193 BUG_ON(clk_prepare_enable(pclk));
194 BUG_ON(clk_prepare_enable(clk));
195
196 /*
197 * Tick rate is 2.4MHz for Nomadik and 2.4Mhz, 100MHz or 133 MHz
198 * for ux500, and in one specific Ux500 case 32768 Hz.
199 *
200 * Use a divide-by-16 counter if the tick rate is more than 32MHz.
201 * At 32 MHz, the timer (with 32 bit counter) can be programmed
202 * to wake-up at a max 127s a head in time. Dividing a 2.4 MHz timer
203 * with 16 gives too low timer resolution.
204 */
205 rate = clk_get_rate(clk);
206 if (rate > 32000000) {
207 rate /= 16;
208 clk_prescale = MTU_CRn_PRESCALE_16;
209 } else {
210 clk_prescale = MTU_CRn_PRESCALE_1;
211 }
212
213 /* Cycles for periodic mode */
214 nmdk_cycle = DIV_ROUND_CLOSEST(rate, HZ);
215
216
217 /* Timer 0 is the free running clocksource */
218 nmdk_clksrc_reset();
219
220 ret = clocksource_mmio_init(mtu_base + MTU_VAL(0), "mtu_0",
221 rate, 200, 32, clocksource_mmio_readl_down);
222 if (ret) {
223 pr_err("timer: failed to initialize clock source %s\n", "mtu_0");
224 return ret;
225 }
226
227 sched_clock_register(nomadik_read_sched_clock, 32, rate);
228
229 /* Timer 1 is used for events, register irq and clockevents */
230 if (request_irq(irq, nmdk_timer_interrupt, IRQF_TIMER,
231 "Nomadik Timer Tick", &nmdk_clkevt))
232 pr_err("%s: request_irq() failed\n", "Nomadik Timer Tick");
233 nmdk_clkevt.cpumask = cpumask_of(0);
234 nmdk_clkevt.irq = irq;
235 if (rate < 100000)
236 min_ticks = 5;
237 else
238 min_ticks = 2;
239 clockevents_config_and_register(&nmdk_clkevt, rate, min_ticks,
240 0xffffffffU);
241
242 mtu_delay_timer.read_current_timer = &nmdk_timer_read_current_timer;
243 mtu_delay_timer.freq = rate;
244 register_current_timer_delay(&mtu_delay_timer);
245
246 return 0;
247 }
248
nmdk_timer_of_init(struct device_node * node)249 static int __init nmdk_timer_of_init(struct device_node *node)
250 {
251 struct clk *pclk;
252 struct clk *clk;
253 void __iomem *base;
254 int irq;
255
256 base = of_iomap(node, 0);
257 if (!base) {
258 pr_err("Can't remap registers\n");
259 return -ENXIO;
260 }
261
262 pclk = of_clk_get_by_name(node, "apb_pclk");
263 if (IS_ERR(pclk)) {
264 pr_err("could not get apb_pclk\n");
265 return PTR_ERR(pclk);
266 }
267
268 clk = of_clk_get_by_name(node, "timclk");
269 if (IS_ERR(clk)) {
270 pr_err("could not get timclk\n");
271 return PTR_ERR(clk);
272 }
273
274 irq = irq_of_parse_and_map(node, 0);
275 if (irq <= 0) {
276 pr_err("Can't parse IRQ\n");
277 return -EINVAL;
278 }
279
280 return nmdk_timer_init(base, irq, pclk, clk);
281 }
282 TIMER_OF_DECLARE(nomadik_mtu, "st,nomadik-mtu",
283 nmdk_timer_of_init);
284